-
-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathmhp.py
103 lines (99 loc) · 4.65 KB
/
mhp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
'''
Function:
Implementation of MHPv1Dataset and MHPv2Dataset
Author:
Zhenchao Jin
'''
import os
import cv2
import glob
import numpy as np
import pandas as pd
from .base import BaseDataset
'''MHPv1Dataset'''
class MHPv1Dataset(BaseDataset):
num_classes = 19
classnames = [
'__background__', 'hat', 'hair', 'sunglasses', 'upper clothes', 'skirt', 'pants',
'dress', 'belt', 'left shoe', 'right shoe', 'face', 'left leg', 'right leg',
'left arm', 'right arm', 'bag', 'scarf', 'torso skin'
]
palette = BaseDataset.randompalette(num_classes)
assert num_classes == len(classnames) and num_classes == len(palette)
def __init__(self, mode, logger_handle, dataset_cfg):
super(MHPv1Dataset, self).__init__(mode=mode, logger_handle=logger_handle, dataset_cfg=dataset_cfg)
# obtain the dirs
rootdir = dataset_cfg['rootdir']
self.image_dir = os.path.join(rootdir, 'images')
self.ann_dir = os.path.join(rootdir, 'annotations')
# obatin imageids
df = pd.read_csv(os.path.join(rootdir, dataset_cfg['set']+'_list.txt'), names=['imageids'])
self.imageids = df['imageids'].values
self.imageids = [str(_id) for _id in self.imageids]
'''getitem'''
def __getitem__(self, index):
# imageid
imageid = self.imageids[index % len(self.imageids)]
# read sample_meta
imagepath = os.path.join(self.image_dir, imageid)
annpath = os.path.join(self.ann_dir, imageid.replace('.jpg', '_*'))
image = cv2.imread(imagepath)
seg_target = np.zeros((image.shape[0], image.shape[1]))
for path in glob.glob(annpath):
seg_per_image = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
seg_target[seg_per_image != 0] = seg_per_image[seg_per_image != 0]
sample_meta = {
'image': image, 'seg_target': seg_target, 'width': image.shape[1], 'height': image.shape[0],
}
# add image id
sample_meta.update({'id': imageid})
# synctransforms
sample_meta = self.synctransforms(sample_meta)
# return
return sample_meta
'''MHPv2Dataset'''
class MHPv2Dataset(BaseDataset):
num_classes = 59
classnames = [
'__background__', 'cap/hat', 'helmet', 'face', 'hair', 'left-arm', 'right-arm', 'left-hand', 'right-hand',
'protector', 'bikini/bra', 'jacket/windbreaker/hoodie', 't-shirt', 'polo-shirt', 'sweater', 'sin-glet',
'torso-skin', 'pants', 'shorts/swim-shorts', 'skirt', 'stock-ings', 'socks', 'left-boot', 'right-boot',
'left-shoe', 'right-shoe', 'left-highheel', 'right-highheel', 'left-sandal', 'right-sandal', 'left-leg',
'right-leg', 'left-foot', 'right-foot', 'coat', 'dress', 'robe', 'jumpsuits', 'other-full-body-clothes',
'headwear', 'backpack', 'ball', 'bats', 'belt', 'bottle', 'carrybag', 'cases', 'sunglasses', 'eyewear',
'gloves', 'scarf', 'umbrella', 'wallet/purse', 'watch', 'wristband', 'tie', 'other-accessaries',
'other-upper-body-clothes', 'other-lower-body-clothes'
]
palette = BaseDataset.randompalette(num_classes)
assert num_classes == len(classnames) and num_classes == len(palette)
def __init__(self, mode, logger_handle, dataset_cfg):
super(MHPv2Dataset, self).__init__(mode=mode, logger_handle=logger_handle, dataset_cfg=dataset_cfg)
# obtain the dirs
rootdir = dataset_cfg['rootdir']
self.image_dir = os.path.join(rootdir, dataset_cfg['set'], 'images')
self.ann_dir = os.path.join(rootdir, dataset_cfg['set'], 'parsing_annos')
# obatin imageids
df = pd.read_csv(os.path.join(rootdir, 'list', dataset_cfg['set']+'.txt'), names=['imageids'])
self.imageids = df['imageids'].values
self.imageids = [str(_id) for _id in self.imageids]
'''getitem'''
def __getitem__(self, index):
# imageid
imageid = self.imageids[index % len(self.imageids)]
# read sample_meta
imagepath = os.path.join(self.image_dir, f'{imageid}{self.image_ext}')
annpath = os.path.join(self.ann_dir, imageid + '_*')
image = cv2.imread(imagepath)
seg_target = np.zeros((image.shape[0], image.shape[1]))
for path in glob.glob(annpath):
seg_per_image = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
seg_target[seg_per_image != 0] = seg_per_image[seg_per_image != 0]
sample_meta = {
'image': image, 'seg_target': seg_target, 'width': image.shape[1], 'height': image.shape[0],
}
# add image id
sample_meta.update({'id': imageid})
# synctransforms
sample_meta = self.synctransforms(sample_meta)
# return
return sample_meta