Skip to content

Latest commit

 

History

History

fcn

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 

Introduction

Official Repo

Code Snippet

FCN (CVPR'2015/TPAMI'2017)
@inproceedings{long2015fully,
    title={Fully convolutional networks for semantic segmentation},
    author={Long, Jonathan and Shelhamer, Evan and Darrell, Trevor},
    booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
    pages={3431--3440},
    year={2015}
}

Results

PASCAL VOC

Backbone Pretrain Crop Size Schedule Train/Eval Set mIoU Download
R-50-D8 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/60 trainaug/val 67.80% cfg | model | log
R-50-D16 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/60 trainaug/val 66.58% cfg | model | log
R-101-D8 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/60 trainaug/val 70.59% cfg | model | log
R-101-D16 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/60 trainaug/val 69.39% cfg | model | log

ADE20k

Backbone Pretrain Crop Size Schedule Train/Eval Set mIoU Download
R-50-D8 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 36.96% cfg | model | log
R-50-D16 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 36.50% cfg | model | log
R-101-D8 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 41.22% cfg | model | log
R-101-D16 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 40.15% cfg | model | log

CityScapes

Backbone Pretrain Crop Size Schedule Train/Eval Set mIoU Download
R-50-D8 ImageNet-1k-224x224 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/8/220 train/val 75.16% cfg | model | log
R-50-D16 ImageNet-1k-224x224 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/8/220 train/val 73.94% cfg | model | log
R-101-D8 ImageNet-1k-224x224 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/8/220 train/val 76.31% cfg | model | log
R-101-D16 ImageNet-1k-224x224 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/8/220 train/val 75.36% cfg | model | log

More

You can also download the model weights from following sources: