-
Notifications
You must be signed in to change notification settings - Fork 119
/
Copy pathtrain.py
71 lines (52 loc) · 2.23 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#!/usr/bin/env python
from __future__ import division
import os
import tensorflow as tf
import model
import params
import time
if params.shuffle_training:
import data_shuffled as data
else:
import data_ordered as data
import local_common as cm
write_summary = params.write_summary
sess = tf.InteractiveSession()
loss = tf.reduce_mean(tf.square(tf.sub(model.y_, model.y)))
# loss = tf.reduce_mean(tf.square(tf.sub(model.y_, model.y)))
# + tf.add_n([tf.nn.l2_loss(v) for v in train_vars]) * L2NormConst
train_step = tf.train.AdamOptimizer(1e-4).minimize(loss)
sess.run(tf.initialize_all_variables())
# create a summary to monitor cost tensor
if write_summary:
tf.summary.scalar("loss", loss)
# merge all summaries into a single op
if write_summary:
merged_summary_op = tf.summary.merge_all()
saver = tf.train.Saver()
time_start = time.time()
# op to write logs to Tensorboard
if write_summary:
summary_writer = tf.summary.FileWriter(params.save_dir, graph=tf.get_default_graph())
if params.shuffle_training:
data.load_imgs()
for i in xrange(params.training_steps):
txx, tyy = data.load_batch('train')
train_step.run(feed_dict={model.x: txx, model.y_: tyy, model.keep_prob: 0.8})
# write logs at every iteration
if write_summary:
summary = merged_summary_op.eval(feed_dict={model.x: txx, model.y_: tyy, model.keep_prob: 1.0})
summary_writer.add_summary(summary, i)
if (i+1) % 10 == 0:
vxx, vyy = data.load_batch('val')
t_loss = loss.eval(feed_dict={model.x: txx, model.y_: tyy, model.keep_prob: 1.0})
v_loss = loss.eval(feed_dict={model.x: vxx, model.y_: vyy, model.keep_prob: 1.0})
print "step {} of {}, train loss {}, val loss {}".format(i+1, params.training_steps, t_loss, v_loss)
if (i+1) % 100 == 0:
if not os.path.exists(params.save_dir):
os.makedirs(params.save_dir)
checkpoint_path = os.path.join(params.save_dir, "model.ckpt")
filename = saver.save(sess, checkpoint_path)
time_passed = cm.pretty_running_time(time_start)
time_left = cm.pretty_time_left(time_start, i, params.training_steps)
print 'Model saved. Time passed: {}. Time left: {}'.format(time_passed, time_left)