-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsingleband_rf.m
155 lines (131 loc) · 5.57 KB
/
singleband_rf.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
function [rf,tb,rf_me_exc] = singleband_rf(Nt,tb,flip,mode,type,phase,d1,d2,quiet)
% Functions checks
if and(and(strcmp(mode,'cvx'),strcmp(phase,'linear')),mod(Nt,2));
error('Linear Design needs even number of time-points');
end
if and(strcmp(type,'exc'),flip>pi/2)
warning('Excitation flip angle over 90 deg. Setting flip to 90');
flip = pi/2;
end
% Change d1 & d2 depending on pulse type ('exc','ref','me')
switch type
case 'exc' %<-- SLR excitation pulse
d1 = sqrt(d1/2);
d2 = d2/sqrt(2);
case 'ref' %<-- SLR spin-echo refocusing pulse
d1 = d1/4;
d2 = sqrt(d2);
case 'me' %<-- SLR matched-exictation spin-echo refocusing pulse
d1 = d1/4;
d2 = (d2/sqrt(2))^0.25;
otherwise
error('Pulse type not recognized');
end
% ------------------------------- %
% Change d1,d2 depending on phase arrangement ('linear','minimum','maximum','quadratic')
% Also set tbmin, if not linear.
switch phase
case 'linear'
fprintf('Linear phase d1=%.4f d2=%.4f\n',d1,d2);
case {'minimum','maximum','quadratic'}
fprintf('Non-linear phase d1=%.4f d2=%.4f\n',d1,d2);
otherwise
error('Phase type not recognized \n Use linear, minimum, maximum or quadratic');
end
% ------------------------------- %
% Design beta filter using either cvx or ls
switch mode
case 'cvx'
b = dz_cvx(Nt,tb,d1,d2,quiet,phase);
case 'ls'
b = dz_ls(Nt ,tb,d1,d2,phase);
otherwise
error('Optimization mode not recognized. Choose cvx or ls');
end
% ------------------------------- %
% Adjust time bandwidth product for non-linear phase pulses.
% Produce maximum phase pulses by time-reversing minimum-phase pulses
% Produce quadratic phase pulses by flipping all roots on negative halve of
% the unit circle.
switch phase
case 'linear'
case 'minimum'
dinfmin = 1/2*dinf(2*d1,d2^2/2);
dinflin = dinf(d1,d2);
tbmin = tb/dinflin*dinfmin; % scale TBW product so as to get the same transition
% width as linear phase pulse with same ripples,
% after scaling back to desired slice thickness. This
% makes comparison to other MB excitations more
% meaningful, since all will have same slice characteristics.
tb = tbmin;
case 'maximum'
dinfmin = 1/2*dinf(2*d1,d2^2/2);
dinflin = dinf(d1,d2);
tbmin = tb/dinflin*dinfmin; % scale TBW product so as to get the same transition
% width as linear phase pulse with same ripples,
% after scaling back to desired slice thickness. This
% makes comparison to other MB excitations more
% meaningful, since all will have same slice characteristics.
tb = tbmin;
% Time-reverse from minimum-phase to maximum-phase
% (or equivalently, conjugate in frequency domain).
b = b(end:-1:1);
case 'quadratic'
dinfmin = 1/2*dinf(2*d1,d2^2/2);
dinflin = dinf(d1,d2);
tbmin = tb/dinflin*dinfmin; % scale TBW product so as to get the same transition
% width as linear phase pulse with same ripples,
% after scaling back to desired slice thickness. This
% makes comparison to other MB excitations more
% meaningful, since all will have same slice characteristics.
tb = tbmin;
% Design Quadratic-phase pulse as described in Shinnar MRM 1994.
% Evaluate roots from minimum-phase filter.
r =roots(b);
% For each root with a negative imaginary component, replace it by
% its conjugate reciprocal (i.e. "Flipping").
r(imag(r)>=0) = 1./conj(r(imag(r) >= 0));
% Convert from root-format to polynomial format
b = poly(leja(r));
% Normalise filter response.
b = b/max(abs(freqz(b)));
if quiet == 0
figure;
cscatter(r);
ylabel('Imaginary axis');
xlabel('Real axis');
end
end
% Apply flip angle
b = b*sin(flip/2); % scale to target flip angle
% calculate the alpha-SLR filter from the beta
[~,a] = b2amp(b,64);
% calculate RF from alpha and beta filter
rf = 1i*(islr(a,b));
% If designing a matched-excitation pulse and an excitation pulse is
% requested, design it from the refocusing pulse.
if and(strcmp(type,'me'),nargout>2)
fprintf('Designing matched excitation pulse\n');
[~,b90] = rf2ab_sas(rf,(-Nt/2:1/2:Nt/2-1/2)',0); % get beta of 180 pulse
b90d = (b90.^2)/sqrt(2); % target 90-deg beta profile
b90d= -conj(b90d); %negative conjugate to cancel out phase of the 180 pulse
bx=fftshift( fft(ifftshift(b90d))/length(b90d));
[~,ax]=b2amp(bx);
rf_me_exc = -1i*conj(islr(ax,bx));
elseif and(~strcmp(type,'me'),nargout>2)
warning('Matched excitation pulse requested for non matched-design. Returning halve-amplitude RF')
rf_me_exc = rf/2;
else
rf_me_exc = [];
end
% Debug code, if desired set to 1.
if 0
fh = figure;
plot(abs(fftshift(fft(b))));
hold on;
bx = (fftshift(fft(b)));ax = (fftshift(fft(a)));
plot(abs(2*conj(ax).*bx));
legend('fft(b)','2ab')
keyboard;
end
end