forked from andreamazzella/r4asme
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathr4asme09 further cox.Rmd
305 lines (213 loc) · 9.44 KB
/
r4asme09 further cox.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
---
title: "9: Further analysis with Cox regression"
subtitle: "R 4 ASME"
authors: Authors – Lakmal Mudalige & Andrea Mazzella [(GitHub)](https://github.com/andreamazzella)
output: html_notebook
---
-------------------------------------------------------------------------------
## Contents
* Examine the proportionality assumption in Cox models
* graphically, with Nelson-Aalen plots
* with a test for interaction
* with a test for residuals
* Cox regression with multiple covariates
-------------------------------------------------------------------------------
## 0. Packages and options
```{r message=FALSE, warning=FALSE}
# Load packages
library("haven")
library("magrittr")
library("survival")
library("survminer")
library("epiDisplay")
library("tidyverse")
# Limit significant digits to 3, reduce scientific notation
options(digits = 3, scipen = 9)
```
-------------------------------------------------------------------------------
# Diet and heart disease
This dataset contains information on dietary energy intake and subsequent incidence of coronary heart disease.
**Outcome*: `chd` (coronary heart disease mortality)
**Exposure*: `hieng` (high-energy diet)
**Time*:
-`doe` (date of entry)
-`dox` (date of exit)
-`dob` (date of birth)
-`agein` (age at entry)
-`ageout` (age at exit)
-`fup` (follow-up time)
**Other*
- `fibre` (daily dietary fibre, g)
Data import and management. The practical asks later to categorise the `fibre` variable, let's do it now.
```{r include=FALSE}
diet <- read_dta("dietlsh.dta") %>% mutate_if(is.labelled, as_factor)
glimpse(diet)
diet %<>% mutate(hieng = factor(hieng,
levels = c(0, 1),
labels = c("normal", "high-energy")),
fibre_cat = cut_number(fibre, 3))
summary(diet$fibre_cat)
summary(diet$fibre)
glimpse(diet)
```
-------------------------------------------------------------------------------
## 1. Cox regression
Set the timescale as time since entry, and analyse the effect of a high-energy diet on the CHD mortality with Cox regression.
```{r}
# Create survival object
surv_diet <- Surv(diet$fup, diet$chd)
summary(surv_diet)
# Cox model
(cox_hieng <- coxph(surv_diet ~ hieng, data = diet))
cox_hieng$coefficients %>% exp()
confint(cox_hieng) %>% exp()
```
The longest follow-up period was 20 years.
People following a high-energy diet half the rate of CHD than people not on that diet (HR 0.52, 0.29-0.95).
-------------------------------------------------------------------------------
## 2. Nelson-Aalen plot
Cox regression carries an assumption that the rate ratio remains constant over time. We can check this visually with a Nelson-Aalen plot. Do you think the proportionality assumption is valid?
N-A plots are built with function `ggsurvplot()` from package "survminer"; it uses ggplot to visualise survival objects made with `Surv()` and fitted to data with `survfit()`. Unlike Stata, the confidence interval bands are semi-transparent, which makes the graph much more readable.
```{r message=FALSE, warning=FALSE}
# Create Survfit object
sf_diet <- survfit(surv_diet ~ hieng, data = diet)
# Nelson-Aalen graph
ggsurvplot(sf_diet,
data = diet,
fun = "cumhaz",
conf.int = T,
yscale = "log2",
title = "Nelson-Aalen plot", xlab = "Time since entry (years)")
```
On the logarithm scale, the lines seem to remain equidistant through time: the relative effects of diet seem proportional.
-------------------------------------------------------------------------------
## 3. Interaction test
Let's now formally assess this with an interaction test.
Let's first split the data in two: before and after the median follow-up period.
*Issue*: I don't know how to calculate the median (equivalent of centile in Stata) for the Surv object.
```{r}
# Calculate median follow-up ???
summary(surv_diet)
# plot(surv_diet)
sf_diet
# Split the dataset into two time-bands
split_diet <- survSplit(surv_diet ~ ., diet, cut = c(6.8), episode = "timegroup")
```
We add the newly created timegroup variable in `strata()`, and we use `*` to indicate interaction with high-energy diet. In the output, R knows not to estimate an effect for time, so it doesn't, unlike Stata.
We compare this model with another model without strata() with a LRT.
NB: you need to fit a new basic model to the split dataset!
```{r}
# Model with interaction
(cox_hieng_inter <- coxph(surv_diet ~ hieng * strata(timegroup), data = split_diet))
# Model without interaction
cox_hieng_basic <- coxph(surv_diet ~ hieng, data = split_diet)
# Likelihood ratio test
lrtest(cox_hieng_basic, cox_hieng_inter)
```
There is no evidence that the effect of diet is not proportional using time in the study (LRT p = 0.38).
-------------------------------------------------------------------------------
## 4. Nelson-Aalen plot with age timescale
Now do the same analyses in Q1-2 but using age as the time scale.
```{r}
# Create survival object with age as the time scale
surv_diet_age <- diet %$% Surv(time = as.numeric(doe) / 365.25,
time2 = as.numeric(dox) / 365.25,
event = chd,
origin = as.numeric(dob) / 365.25)
summary(surv_diet_age)
```
```{r message=FALSE}
# Nelson-Aalen plot
sf_diet_age <- survfit(surv_diet_age ~ hieng, data = diet)
ggsurvplot(sf_diet_age,
data = diet,
fun = "cumhaz",
conf.int = T,
yscale = "log2",
title = "Nelson-Aalen plot", xlab = "Age (years)")
```
The lines are not equidistant, so the effect does not *appear* to be proportional; but the confidence intervals are very wide, because there are few observations particularly at the start (among younger people). So, a NA plot is not very helpful.
-------------------------------------------------------------------------------
## 5. Interaction test on age timescale
Now do the same analyses in Q3 but using age as the time scale.
```{r}
# Split the age timeaxis into two, at 59.7
split_diet_age <- survSplit(surv_diet_age ~ ., diet, cut = c(59.7), episode = "agegroup")
# Cox with interaction for age
(cox_hieng_age_inter <- coxph(surv_diet_age ~ hieng * strata(agegroup), data = split_diet_age))
# Cox without interaction
cox_hieng_age_basic <- coxph(surv_diet_age ~ hieng, data = split_diet_age)
# LRT
lrtest(cox_hieng_age_inter, cox_hieng_age_basic)
```
There is no evidence against proportionality using age as timescale.
-------------------------------------------------------------------------------
## 6. Non-binary exposures
Investigate the effect of dietary fibre (`fibre_cat`) on CHD mortality, first with follow-up time scale.
```{r}
# Create survfit object
sf_diet_fibre <- survfit(surv_diet ~ fibre_cat, data = diet)
# Nelson-Aalen plot
ggsurvplot(sf_diet_fibre, data = diet, fun = "cumhaz", conf.int = T, yscale = "log2", title = "Nelson-Aalen plot", xlab = "Time of follow-up (years)")
```
The plot becomes very difficult to interpret, and the confidence intervals greatly overlap.
```{r}
# Fit a Cox model
(cox_fibre <- coxph(surv_diet ~ fibre_cat, data = split_diet))
# Cox with interaction
(cox_fibre_inter <- coxph(surv_diet ~ fibre_cat * strata(timegroup), data = split_diet))
# LRT
lrtest(cox_fibre, cox_fibre_inter)
```
Now let's do the same analyses (except NA plot) but using age time-scale.
```{r}
# Cox model
(cox_fibre_age <- coxph(surv_diet_age ~ fibre_cat, data = split_diet_age))
# Cox model adjusting for age
(cox_fibre_age_inter <- coxph(surv_diet_age ~ fibre_cat * strata(agegroup), data = split_diet_age))
# LRT
lrtest(cox_fibre_age, cox_fibre_age_inter)
```
-------------------------------------------------------------------------------
# Primary Biliary Cirrhosis
## 7. Cox with multiple covariates
Read in pbc1bas.dta and set the analysis on a follow-up timescale.
```{r}
# Read in the pbc1bas.dta dataset
pbc <- read_dta("pbc1bas.dta")
# Data management
pbc %<>% mutate(death = d,
treat = factor(treat, levels = c(1, 2), labels = c("placebo", "azath")),
cenc0 = factor(cenc0, levels = c(0, 1), labels = c("no", "yes")),
cir0 = factor(cir0, levels = c(0, 1), labels = c("no", "yes")),
gh0 = factor(gh0, levels = c(0, 1), labels = c("no", "yes")),
asc0 = factor(asc0, levels = c(0, 1), labels = c("no", "yes"))) %>%
select(-d)
# Survival object
surv_pbc <- Surv(pbc$time, pbc$death)
```
Firstly, examine the effect of treatment (`treat`), then add bilirubin (`logb0`) and cirrhosis (`cir0`) to the model, one by one.
```{r}
# Univariate
coxph(surv_pbc ~ treat, data = pbc)
# Adding bilirubin
coxph(surv_pbc ~ treat + logb0, data = pbc)
# Fully adjusted model
coxph(surv_pbc ~ treat + logb0 + cir0, data = pbc)
```
-------------------------------------------------------------------------------
## Bonus 1: Forest plots
Package survminer has a great function to visually represent the rate ratios in a Cox model via a Forest plot: `ggforest()`. It takes as argument a Cox model. (Alternatively, you can use `sjPlot::plot_model()`)
```{r}
ggforest(cox_fibre_age, data = diet)
# sjPlot::plot_model(cox_fibre_age)
```
## Bonus 2: test of proportional hazards with residuals
There is a quicker way of testing the assumption of proportional hazards: testing of residuals, with function `cox.zph()`.
```{r}
# Test
(pr_haz <- cox.zph(cox_hieng))
# Plot curves
ggcoxzph(pr_haz)
```
-------------------------------------------------------------------------------