forked from ejhusom/d2m
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparams_default.yaml
125 lines (108 loc) · 2.74 KB
/
params_default.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
profile:
dataset: name_of_dataset
clean:
target: name_of_target_variable
classification: False
onehot_encode_target: False
combine_files: False
percentage_zeros_threshold: 1.0
correlation_metric: pearson
input_max_correlation_threshold: 1.0
featurize:
# If empty, all input variables are used
variables_to_include:
# - variable1
# - variable2
# By setting this to True, the add_-options below are overrided.
use_all_engineered_features_on_all_variables: False
# List the variables below each add_* to add engineered feature
add_sum:
# - variable1
add_gradient:
# - variable1
add_mean:
# - variable1
add_maximum:
# - variable1
add_minimum:
# - variable1
add_min_max_range:
# - variable1
add_slope:
# - variable1
add_slope_sin:
# - variable1
add_slope_cos:
# - variable1
add_standard_deviation:
# - variable1
add_variance:
# - variable1
add_peak_frequency:
# - variable1
rolling_window_size_sum: 10
rolling_window_size_mean: 10
rolling_window_size_max_min: 10
rolling_window_size_standard_deviation: 10
# List features here to remove the raw variables after engineering features
# from them
remove_features:
# - variable1
target_min_correlation_threshold: 0.0
split:
train_split: 0.5
shuffle_files: False
shuffle_samples_before_split: False
scale:
input_method: minmax
output_method:
sequentialize:
window_size: 10
overlap: 0
target_size: 1
shuffle_samples: False
future_predict: False
train:
seed: 2020
learning_method: dnn
ensemble: False
hyperparameter_tuning: False
# Parameters for deep learning (dnn, cnn, lstm etc):
n_epochs: 800
early_stopping: True
patience: 50
activation_function: relu
batch_size: 256
n_layers: 2
n_neurons: [16, 16]
dropout: 0.1
# Parameters for cnn and rnn
n_flattened_layers: 1
n_flattened_nodes: 16
# Parameters for cnn:
kernel_size: 3
maxpooling: False
maxpooling_size: 4
# Parameters for rnn:
unit_type: LSTM
# Parameters for transformer:
ff_dim: 4
n_transformer_blocks: 4
n_heads: 4
head_size: 256
evaluate:
performance_metric: r2
threshold_for_ensemble_models: -1000
dropout_uncertainty_estimation: True
uncertainty_estimation_sampling_size: 100
show_inputs: True
explain:
generate_explanations: True
number_of_background_samples: 10
number_of_summary_samples: 20
explanation_method: shap
seed: 2020
combine_explanations:
combination_method: weighted
weighting_method: softmax
agreement_method: spearman