-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathxception_detector.py
117 lines (102 loc) · 4.26 KB
/
xception_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
'''
# author: Zhiyuan Yan
# email: [email protected]
# date: 2023-0706
# description: Class for the XceptionDetector
Functions in the Class are summarized as:
1. __init__: Initialization
2. build_backbone: Backbone-building
3. build_loss: Loss-function-building
4. features: Feature-extraction
5. classifier: Classification
6. get_losses: Loss-computation
7. get_train_metrics: Training-metrics-computation
8. get_test_metrics: Testing-metrics-computation
9. forward: Forward-propagation
Reference:
@inproceedings{rossler2019faceforensics++,
title={Faceforensics++: Learning to detect manipulated facial images},
author={Rossler, Andreas and Cozzolino, Davide and Verdoliva, Luisa and Riess, Christian and Thies, Justus and Nie{\ss}ner, Matthias},
booktitle={Proceedings of the IEEE/CVF international conference on computer vision},
pages={1--11},
year={2019}
}
'''
import os
import datetime
import logging
import numpy as np
from sklearn import metrics
from typing import Union
from collections import defaultdict
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.nn import DataParallel
from torch.utils.tensorboard import SummaryWriter
from metrics.base_metrics_class import calculate_metrics_for_train
from .base_detector import AbstractDetector
from detectors import DETECTOR
from networks import BACKBONE
from loss import LOSSFUNC
logger = logging.getLogger(__name__)
@DETECTOR.register_module(module_name='xception')
class XceptionDetector(AbstractDetector):
def __init__(self, config):
super().__init__()
self.config = config
self.backbone = self.build_backbone(config)
self.loss_func = self.build_loss(config)
self.prob, self.label = [], []
self.video_names = []
self.correct, self.total = 0, 0
def build_backbone(self, config):
# prepare the backbone
backbone_class = BACKBONE[config['backbone_name']]
model_config = config['backbone_config']
backbone = backbone_class(model_config)
# if donot load the pretrained weights, fail to get good results
state_dict = torch.load(config['pretrained'])
for name, weights in state_dict.items():
if 'pointwise' in name:
state_dict[name] = weights.unsqueeze(-1).unsqueeze(-1)
state_dict = {k:v for k, v in state_dict.items() if 'fc' not in k}
backbone.load_state_dict(state_dict, False)
logger.info('Load pretrained model successfully!')
return backbone
def build_loss(self, config):
# prepare the loss function
loss_class = LOSSFUNC[config['loss_func']]
loss_func = loss_class()
return loss_func
def features(self, data_dict: dict) -> torch.tensor:
return self.backbone.features(data_dict['image']) #32,3,256,256
def classifier(self, features: torch.tensor) -> torch.tensor:
return self.backbone.classifier(features)
def get_losses(self, data_dict: dict, pred_dict: dict) -> dict:
label = data_dict['label']
pred = pred_dict['cls']
loss = self.loss_func(pred, label)
overall_loss = loss
loss_dict = {'overall': overall_loss, 'cls': loss,}
return loss_dict
def get_train_metrics(self, data_dict: dict, pred_dict: dict) -> dict:
label = data_dict['label']
pred = pred_dict['cls']
# compute metrics for batch data
auc, eer, acc, ap = calculate_metrics_for_train(label.detach(), pred.detach())
metric_batch_dict = {'acc': acc, 'auc': auc, 'eer': eer, 'ap': ap}
# we dont compute the video-level metrics for training
self.video_names = []
return metric_batch_dict
def forward(self, data_dict: dict, inference=False) -> dict:
# get the features by backbone
features = self.features(data_dict)
# get the prediction by classifier
pred = self.classifier(features)
# get the probability of the pred
prob = torch.softmax(pred, dim=1)[:, 1]
# build the prediction dict for each output
pred_dict = {'cls': pred, 'prob': prob, 'feat': features}
return pred_dict