-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathaltfreezing_detector.py
241 lines (203 loc) · 7.63 KB
/
altfreezing_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
config_text = """
TRAIN:
ENABLE: True
DATASET: kinetics
BATCH_SIZE: 64
EVAL_PERIOD: 10
CHECKPOINT_PERIOD: 1
AUTO_RESUME: True
DATA:
NUM_FRAMES: 8
SAMPLING_RATE: 8
TRAIN_JITTER_SCALES: [256, 320]
TRAIN_CROP_SIZE: 224
TEST_CROP_SIZE: 256
INPUT_CHANNEL_NUM: [3]
RESNET:
ZERO_INIT_FINAL_BN: True
WIDTH_PER_GROUP: 64
NUM_GROUPS: 1
DEPTH: 50
TRANS_FUNC: bottleneck_transform
STRIDE_1X1: False
NUM_BLOCK_TEMP_KERNEL: [[3], [4], [6], [3]]
NONLOCAL:
LOCATION: [[[]], [[]], [[]], [[]]]
GROUP: [[1], [1], [1], [1]]
INSTANTIATION: softmax
BN:
USE_PRECISE_STATS: True
NUM_BATCHES_PRECISE: 200
SOLVER:
BASE_LR: 0.1
LR_POLICY: cosine
MAX_EPOCH: 196
MOMENTUM: 0.9
WEIGHT_DECAY: 1e-4
WARMUP_EPOCHS: 34.0
WARMUP_START_LR: 0.01
OPTIMIZING_METHOD: sgd
MODEL:
NUM_CLASSES: 1
ARCH: i3d
MODEL_NAME: ResNet
LOSS_FUNC: cross_entropy
DROPOUT_RATE: 0.5
HEAD_ACT: sigmoid
TEST:
ENABLE: True
DATASET: kinetics
BATCH_SIZE: 64
DATA_LOADER:
NUM_WORKERS: 8
PIN_MEMORY: True
NUM_GPUS: 8
NUM_SHARDS: 1
RNG_SEED: 0
OUTPUT_DIR: .
"""
'''
# author: Zhiyuan Yan
# email: [email protected]
# date: 2023-0706
# description: Class for the AltFreezingDetector
Functions in the Class are summarized as:
1. __init__: Initialization
2. build_backbone: Backbone-building
3. build_loss: Loss-function-building
4. features: Feature-extraction
5. classifier: Classification
6. get_losses: Loss-computation
7. get_train_metrics: Training-metrics-computation
8. get_test_metrics: Testing-metrics-computation
9. forward: Forward-propagation
Reference:
@InProceedings{Wang_2023_CVPR,
author = {Wang, Zhendong and Bao, Jianmin and Zhou, Wengang and Wang, Weilun and Li, Houqiang},
title = {AltFreezing for More General Video Face Forgery Detection},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2023},
pages = {4129-4138}
}
'''
import os
import datetime
import logging
import numpy as np
from sklearn import metrics
from typing import Union
from collections import defaultdict
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.nn import DataParallel
from torch.utils.tensorboard import SummaryWriter
from metrics.base_metrics_class import calculate_metrics_for_train
from .base_detector import AbstractDetector
from detectors import DETECTOR
from networks import BACKBONE
from loss import LOSSFUNC
import os
import sys
current_file_path = os.path.abspath(__file__)
parent_dir = os.path.dirname(os.path.dirname(current_file_path))
project_root_dir = os.path.dirname(parent_dir)
sys.path.append(parent_dir)
sys.path.append(project_root_dir)
import torch
from .utils.slowfast.models.video_model_builder import ResNet as ResNetOri
from .utils.slowfast.config.defaults import get_cfg
from torch import nn
import random
random_select = True
no_time_pool = False
logger = logging.getLogger(__name__)
@DETECTOR.register_module(module_name='altfreezing')
class AltFreezingDetector(AbstractDetector):
def __init__(self, config):
super().__init__()
cfg = get_cfg()
cfg.merge_from_str(config_text)
cfg.NUM_GPUS = 1
cfg.TEST.BATCH_SIZE = 1
cfg.TRAIN.BATCH_SIZE = 1
cfg.DATA.NUM_FRAMES = config['clip_size']
self.resnet = ResNetOri(cfg)
if config['pretrained'] is not None:
print(f"loading pretrained model from {config['pretrained']}")
pretrained_weights = torch.load(config['pretrained'], map_location='cpu', encoding='latin1')
modified_weights = {k.replace("resnet.", ""): v for k, v in pretrained_weights.items()}
# fit from 400 num_classes to 1
modified_weights["head.projection.weight"] = modified_weights["head.projection.weight"][:1, :]
modified_weights["head.projection.bias"] = modified_weights["head.projection.bias"][:1]
# load final ckpt
self.resnet.load_state_dict(modified_weights, strict=True)
self.conv_dict = self.find_conv_layers(self.resnet)
print("1x3x3 Conv: {}\n3x1x1 Conv:{}".format(self.conv_dict['spatial'], self.conv_dict['temporal']))
self.train_batch_cnt = 0
self.loss_func = nn.BCELoss() # The output of the model is a probability value between 0 and 1 (haved used sigmoid)
def find_conv_layers(self, module, parent_name='', conv_dict=None):
if conv_dict is None:
conv_dict = {'temporal': [], 'spatial': []}
for name, sub_module in module.named_children():
full_name = f'{parent_name}.{name}' if parent_name else name
if isinstance(sub_module, nn.Conv3d):
if sub_module.kernel_size == (3, 1, 1):
conv_dict['temporal'].append(full_name)
if sub_module.kernel_size == (1, 3, 3):
conv_dict['spatial'].append(full_name)
else:
self.find_conv_layers(sub_module, full_name, conv_dict)
return conv_dict
def alternate_mode(self, target_mode):
for layer_name in self.conv_dict['temporal']:
layer = dict(self.resnet.named_modules())[layer_name]
layer.weight.requires_grad = True if target_mode == 'temporal' else False
if layer.bias is not None:
layer.bias.requires_grad = True if target_mode == 'temporal' else False
for layer_name in self.conv_dict['spatial']:
layer = dict(self.resnet.named_modules())[layer_name]
layer.weight.requires_grad = True if target_mode == 'spatial' else False
if layer.bias is not None:
layer.bias.requires_grad = True if target_mode == 'spatial' else False
def build_backbone(self, config):
pass
def build_loss(self, config):
# prepare the loss function
loss_class = LOSSFUNC[config['loss_func']]
loss_func = loss_class()
return loss_func
def features(self, data_dict: dict) -> torch.tensor:
inputs = [data_dict['image'].permute(0,2,1,3,4)]
pred = self.resnet(inputs)
output = {"final_output": pred}
return output["final_output"]
def classifier(self, features: torch.tensor):
pass
def get_losses(self, data_dict: dict, pred_dict: dict) -> dict:
label = data_dict['label'].float()
pred = pred_dict['cls'].view(-1)
loss = self.loss_func(pred, label)
loss_dict = {'overall': loss}
return loss_dict
def get_train_metrics(self, data_dict: dict, pred_dict: dict) -> dict:
label = data_dict['label']
pred = pred_dict['cls']
# compute metrics for batch data
auc, eer, acc, ap = calculate_metrics_for_train(label.detach(), pred.detach())
metric_batch_dict = {'acc': acc, 'auc': auc, 'eer': eer, 'ap': ap}
return metric_batch_dict
def forward(self, data_dict: dict, inference=False) -> dict:
# get the probability
prob = self.features(data_dict)
# build the prediction dict for each output
pred_dict = {'cls': prob, 'prob': prob, 'feat': prob}
if not inference:
if self.train_batch_cnt % (20 + 1) == 0:
self.alternate_mode('spatial')
elif self.train_batch_cnt % (20 + 1) == 1:
self.alternate_mode('temporal')
self.train_batch_cnt += 1
return pred_dict