Skip to content

Latest commit

 

History

History
272 lines (208 loc) · 12.8 KB

README.md

File metadata and controls

272 lines (208 loc) · 12.8 KB

omopcept

Active development 2024, breaking changes possible

omopcept provides access to OMOP conCEPTs (all pros, no cons!).

Initial motivation was to make it super-easy to get the names associated with concept IDs.
Later additions allow exploration and visualisation of OMOP hierarchies.

omopcept provides R functions that are :

  • modern
  • flexible
  • tidyverse compatible
  • memory efficient (using arrow parquet)

omopcept includes concise named copies of functions designed for interactive use e.g. oid() and onames() to search concept ids and names respectively. For example the line below can be used to return all ~ 1000 OMOP ids for SNOMED codes for clinical drugs starting with A.

onames("^a",d="DRUG",v="SNOMED",cc="Clinical Drug")

Installation

Install the development version of omopcept with:

# install.packages("remotes")

remotes::install_github("SAFEHR-data/omopcept")

OMOP vocabularies data

OMOP vocabularies can be searched and downloaded from Athena – the OHDSI vocabularies repository. omopcept provides R tools to interact with OMOP concepts in a more reproducible way.

omopcept can use vocabulary files that you have downloaded from Athena, or automatically download a subset of the vocabularies that we have saved in the cloud.

Getting started with omopcept

On initial use omopcept tries to download OMOP vocabulary files from the cloud to a local package cache where it can be accessed in future sessions. The arrow R package allows parquet files to be opened and queried in dplyr pipelines without having to read in the data. e.g. the code below will return just the top rows of the concept table.

library(omopcept)

omop_concept() |> 
  head() |> 
  dplyr::collect()

Main omopcept functions

full name quick interactive name action
omop_names() onames() search concepts by parts of names
omop_id() oid() search for concept_id(s)
omop_domain() - return domain for concept_id(s)
omop_join_name() ojoin() join an omop name column onto a table with an id column
omop_join_name_all() ojoinall() join omop names columns onto all id columns in a table
omop_check_names() ochecknames() check that names match ids
omop_ancestors() oance() return ancestors of a concept
omop_descendants() odesc() return descendants of a concept
omop_relations() orels() return (immediate) relations of a concept including the nature of the relationship e.g. ‘Is a’
omop_relations_recursive() - return (immediate) relations of a concept and the relations of those up to nsteps
omop_graph() - graph omop relationships (experimental)
omop_concept() oc() return reference to concept table (for use in dplyr pipelines)
omop_concept_ancestor() oca() return reference to concept ancestor table
omop_concept_relationship() ocr() return reference to concept relationship table
omop_concept_fields() ocfields() names of concept table columns
omop_concept_ancestor_fields() ocafields() names of concept ancestor table columns
omop_concept_relationship_fields() ocrfields() names of concept relationship table columns

OMOP outline

The OMOP Common Data Model is an open standard for health data. “[It is] designed to standardize the structure and content of observational data and to enable efficient analyses that can produce reliable evidence”.

OMOP is maintained by OHDSI (pronounced “Odyssey”). “The Observational Health Data Sciences and Informatics program is a multi-stakeholder, interdisciplinary collaborative that strives to improve medical decision making and bring better health outcomes to patients around the world.”

OMOP vocabularies in the background

Vocabularies downloaded from Athena include tables called CONCEPT.csv, CONCEPT_ANCESTOR.csv and CONCEPT_RELATIONSHIP.csv.

You have two main options :

  1. manually download selected vocabulary csv files from Athena, use omopcept::omop_vocabs_preprocess()

  2. automatically download pre-processed vocabulary files saved in the cloud by us

omopcept downloads a selection of vocabularies and stores them locally the first time you use it (in the recommended data location for R packages). The download does not need to be repeated until you update the package. Vocabularies are stored as parquet files that can be queried in a memory-efficient manner without having to first read the data in to memory.

OMOP concept table fields

fields about query_arguments
concept_id unique id c_ids
concept_name descriptive name pattern
domain_id e.g. drug, measurement d_ids
vocabulary_id e.g. LOINC, SNOMED v_ids
concept_class_id e.g. Clinical Observation, Organism cc_ids
standard_concept standard or not standard
concept_code source code
valid_start_date
valid_end_date
invalid_reason

omop_names(): query concepts by their names

omop_names("chemotherapy", v_ids="LOINC")
#> # A tibble: 71 × 10
#>    concept_id concept_name              domain_id vocabulary_id concept_class_id
#>         <int> <chr>                     <chr>     <chr>         <chr>           
#>  1   45882419 A proper value is applic… Meas Val… LOINC         Answer          
#>  2   45882273 Information is not avail… Meas Val… LOINC         Answer          
#>  3   45884441 No information whatsoeve… Meas Val… LOINC         Answer          
#>  4   45884440 No proper value is appli… Meas Val… LOINC         Answer          
#>  5   45881771 Received cancer chemothe… Meas Val… LOINC         Answer          
#>  6   45884510 Chemotherapy/medication … Meas Val… LOINC         Answer          
#>  7   36309148 Currently receiving chem… Meas Val… LOINC         Answer          
#>  8    1035179 Chemotherapy - IV         Meas Val… LOINC         Answer          
#>  9    1035159 Chemotherapy - Oral       Meas Val… LOINC         Answer          
#> 10    1035128 Chemotherapy - Other      Meas Val… LOINC         Answer          
#> # ℹ 61 more rows
#> # ℹ 5 more variables: standard_concept <chr>, concept_code <chr>,
#> #   valid_start_date <date>, valid_end_date <date>, invalid_reason <chr>

omop_names("chemotherapy", v_ids=c("LOINC","SNOMED"), d_ids=c("Observation","Procedure"))
#> # A tibble: 316 × 10
#>    concept_id concept_name              domain_id vocabulary_id concept_class_id
#>         <int> <chr>                     <chr>     <chr>         <chr>           
#>  1    3046488 Chemotherapy [Minimum Da… Observat… LOINC         Survey          
#>  2   40768860 Cancer chemotherapy rece… Observat… LOINC         Clinical Observ…
#>  3   36303659 Guidance for chemoemboli… Procedure LOINC         Clinical Observ…
#>  4    1024644 Guidance for chemoemboli… Observat… LOINC         LOINC Component 
#>  5    1030274 Chemotherapy              Observat… LOINC         LOINC Component 
#>  6    1034150 Chemotherapy in last 14 … Observat… LOINC         LOINC Component 
#>  7    1034151 Chemotherapy in last 14 … Observat… LOINC         LOINC Component 
#>  8    3010410 Chemotherapy records      Observat… LOINC         Clinical Observ…
#>  9    3011998 Date 1st chemotherapy tr… Observat… LOINC         Clinical Observ…
#> 10   40758122 Chemotherapy in last 14 … Observat… LOINC         Survey          
#> # ℹ 306 more rows
#> # ℹ 5 more variables: standard_concept <chr>, concept_code <chr>,
#> #   valid_start_date <date>, valid_end_date <date>, invalid_reason <chr>

omop_join_name(): join concept names onto a *concept_id dataframe column

Helps to interpret OMOP data.

data.frame(concept_id=(c(3571338L,4002075L))) |> 
  omop_join_name()
#> # A tibble: 2 × 2
#>   concept_id concept_name     
#>        <int> <chr>            
#> 1    3571338 Problem behaviour
#> 2    4002075 BLUE LOTION
 

data.frame(drug_concept_id=(c(4000794L,4002592L))) |> 
  omop_join_name(namestart="drug")
#> # A tibble: 2 × 2
#>   drug_concept_id drug_concept_name      
#>             <int> <chr>                  
#> 1         4000794 BUZZ OFF               
#> 2         4002592 DEXAMETHASONE INJECTION

omop_join_name_all(): join concept names onto all *_concept_id columns in a dataframe

data.frame(concept_id=(c(3571338L,3655355L)),
            drug_concept_id=(c(4000794L,35628998L))) |>
            omop_join_name_all()
#> # A tibble: 2 × 4
#>   concept_id concept_name         drug_concept_id drug_concept_name             
#>        <int> <chr>                          <int> <chr>                         
#> 1    3571338 Problem behaviour            4000794 BUZZ OFF                      
#> 2    3655355 Erectile dysfunction        35628998 Retired SNOMED UK Drug extens…

omop_graph(): starting to visualise OMOP hierarchies

sharp <- omop_names("Accident caused by sharp-edged object", standard="S")

relations <- omop_relations_recursive(sharp$concept_id, 
                                      r_ids=c('Is a','Subsumes'), 
                                      nsteps=2) 

omop_graph(relations, saveplot=FALSE, graphtitle=NULL, 
           legendshow=FALSE, nodetxtsize=5, textcolourvar="step")

Vocabularies included

The vocabularies that omopcept downloads automatically are a default download from Athena with a few extra vocabs added. If you wish to control which vocabularies are included you can manually download vocabulary csv files from Athena.

Numbers of concepts in automatic omopcept vocabulary download by domain and vocabulary

library(dplyr)
library(ggplot2)
library(forcats)

concept_summary <- 
  omop_concept() |>
  count(vocabulary_id, sort=TRUE) |> 
  collect()

ggplot(concept_summary,aes(y=reorder(vocabulary_id,n),x=n,col=vocabulary_id)) +
  geom_point() +
  labs(y = "vocabulary_id") +
  guides(col="none") +
  theme_minimal()

Acknowledgements

Development of omopcept has been partly supported by the UCLH Biomedical Research Centre.