forked from AlejoEnriquez2/GreenLightDistrict_Scripts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoutliers-detection.R
245 lines (187 loc) · 9.74 KB
/
outliers-detection.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
install.packages("ggplot2")
install.packages("dplyr")
library(ggplot2)
library(dplyr)
check_data <- read.csv("data-analysis/data.csv")
#electron and web apps data
check_web_data <- check_data %>% filter(app_type == "web")
check_electron_data <- check_data %>% filter(app_type == "electron")
# web apps data
web_energy_data <- check_web_data$energy
web_cpu_data <- check_web_data$cpu
web_network_data <- check_web_data$network
web_memory_data <- check_web_data$memory
#electron apps data
electron_energy_data <- check_electron_data$energy
electron_cpu_data <- check_electron_data$cpu
electron_network_data <- check_electron_data$network
electron_memory_data <- check_electron_data$memory
# Function to calculate mode
# mode <- function(x) {
# uniq_x <- unique(x) # Get unique values in the vector
# freq <- tabulate(match(x, uniq_x)) # Count the frequency of each unique value
# mode_value <- uniq_x[which.max(freq)] # Find the unique value with the highest frequency
# return(mode_value)
# }
#
# mean_energy <- mean(data_file$energy)
# median_energy <- median(data_file$energy)
# mode_energy <- mode(data_file$energy)
#
# # Print the variables in a single statement
# print(paste("Mean Energy:", mean_energy, ", Median Energy:", median_energy, ", Mode Energy:", mode_energy))
## specific detection of outliers
detect_outliers <- function(data_name, data_column) {
Q1 <- quantile(data_column, 0.25)
Q3 <- quantile(data_column, 0.75)
IQR_value <- Q3 - Q1
lower_bound <- Q1 - 1.5 * IQR_value
upper_bound <- Q3 + 1.5 * IQR_value
outliers <- data_column[data_column < lower_bound | data_column > upper_bound]
print(data_name)
return(outliers)
}
# get the data for each electon app
skype_electron_data_2 <- check_data %>% filter(app == 1 & app_type == "electron" & duration == 2)
slack_electron_data_2 <- check_data %>% filter(app == 2 & app_type == "electron" & duration == 2)
discord_electron_data_2 <- check_data %>% filter(app == 3 & app_type == "electron" & duration == 2)
# get the data for each electon app
skype_web_data_2 <- check_data %>% filter(app == 1 & app_type == "web" & duration == 2)
slack_web_data_2 <- check_data %>% filter(app == 2 & app_type == "web" & duration == 2)
discord_web_data_2 <- check_data %>% filter(app == 3 & app_type == "web" & duration == 2)
# get the data for each electon app
skype_electron_data_8 <- check_data %>% filter(app == 1 & app_type == "electron" & duration == 8)
slack_electron_data_8 <- check_data %>% filter(app == 2 & app_type == "electron" & duration == 8)
discord_electron_data_8 <- check_data %>% filter(app == 3 & app_type == "electron" & duration == 8)
# get the data for each electon app
skype_web_data_8 <- check_data %>% filter(app == 1 & app_type == "web" & duration == 8)
slack_web_data_8 <- check_data %>% filter(app == 2 & app_type == "web" & duration == 8)
discord_web_data_8 <- check_data %>% filter(app == 3 & app_type == "web" & duration == 8)
detect_outliers("skype_web_data_8_network", skype_web_data_8$network)
detect_outliers("slack_web_data_8_network", slack_web_data_8$network)
detect_outliers("discord_web_data_8_network", discord_web_data_8$network)
detect_outliers("skype_web_data_2_network", skype_web_data_2$network)
detect_outliers("slack_web_data_2_network", slack_web_data_2$network)
detect_outliers("discord_web_data_2_network", discord_web_data_2$network)
# For Web Data at Duration 8 - Memory
detect_outliers("skype_web_data_8_memory", skype_web_data_8$memory)
detect_outliers("slack_web_data_8_memory", slack_web_data_8$memory)
detect_outliers("discord_web_data_8_memory", discord_web_data_8$memory)
# For Web Data at Duration 2 - Memory
detect_outliers("skype_web_data_2_memory", skype_web_data_2$memory)
detect_outliers("slack_web_data_2_memory", slack_web_data_2$memory)
detect_outliers("discord_web_data_2_memory", discord_web_data_2$memory)
# electron network
detect_outliers("skype_electron_data_8_network", skype_electron_data_8$network)
detect_outliers("slack_electron_data_8_network", slack_electron_data_8$network)
detect_outliers("discord_electron_data_8_network", discord_electron_data_8$network)
detect_outliers("skype_electron_data_2_network", skype_electron_data_2$network)
detect_outliers("slack_electron_data_2_network", slack_electron_data_2$network)
detect_outliers("discord_electron_data_2_network", discord_electron_data_2$network)
# Calculate Quartiles and IQR for energy
Q1_web_energy <- quantile(web_energy_data, 0.25)
Q3_web_energy <- quantile(web_energy_data, 0.75)
IQR_web_energy <- Q3_web_energy - Q1_web_energy
# Calculate Lower and Upper Bounds
lower_bound_web_energy <- Q1_web_energy - 1.5 * IQR_web_energy
upper_bound_web_energy <- Q3_web_energy + 1.5 * IQR_web_energy
# Identify Outliers
web_energy_outliers <- web_energy_data[web_energy_data < lower_bound_web_energy | web_energy_data > upper_bound_web_energy]
print("Web Energy Outliers:")
print(web_energy_outliers)
# Outliers for Web Energy Data
# Calculate Quartiles and IQR for energy
Q1_web_energy <- quantile(web_energy_data, 0.25)
Q3_web_energy <- quantile(web_energy_data, 0.75)
IQR_web_energy <- Q3_web_energy - Q1_web_energy
# Calculate Lower and Upper Bounds
lower_bound_web_energy <- Q1_web_energy - 1.5 * IQR_web_energy
upper_bound_web_energy <- Q3_web_energy + 1.5 * IQR_web_energy
# Identify Outliers
web_energy_outliers <- web_energy_data[web_energy_data < lower_bound_web_energy | web_energy_data > upper_bound_web_energy]
print("Web Energy Outliers:")
print(web_energy_outliers)
# Outliers for Web CPU Data
# Calculate Quartiles and IQR for CPU
Q1_web_cpu <- quantile(web_cpu_data, 0.25)
Q3_web_cpu <- quantile(web_cpu_data, 0.75)
IQR_web_cpu <- Q3_web_cpu - Q1_web_cpu
# Calculate Lower and Upper Bounds
lower_bound_web_cpu <- Q1_web_cpu - 1.5 * IQR_web_cpu
upper_bound_web_cpu <- Q3_web_cpu + 1.5 * IQR_web_cpu
# Identify Outliers
web_cpu_outliers <- web_cpu_data[web_cpu_data < lower_bound_web_cpu | web_cpu_data > upper_bound_web_cpu]
print("Web CPU Outliers:")
print(web_cpu_outliers)
# Outliers for Web Memory Data
# Calculate Quartiles and IQR for Memory
Q1_web_memory <- quantile(web_memory_data, 0.25)
Q3_web_memory <- quantile(web_memory_data, 0.75)
IQR_web_memory <- Q3_web_memory - Q1_web_memory
# Calculate Lower and Upper Bounds
lower_bound_web_memory <- Q1_web_memory - 1.5 * IQR_web_memory
upper_bound_web_memory <- Q3_web_memory + 1.5 * IQR_web_memory
# Identify Outliers
web_memory_outliers <- web_memory_data[web_memory_data < lower_bound_web_memory | web_memory_data > upper_bound_web_memory]
print("Web Memory Outliers:")
print(web_memory_outliers)
# Outliers for Web Network Data
# Calculate Quartiles and IQR for Network
Q1_web_network <- quantile(web_network_data, 0.25)
Q3_web_network <- quantile(web_network_data, 0.75)
IQR_web_network <- Q3_web_network - Q1_web_network
# Calculate Lower and Upper Bounds
lower_bound_web_network <- Q1_web_network - 1.5 * IQR_web_network
upper_bound_web_network <- Q3_web_network + 1.5 * IQR_web_network
# Identify Outliers
web_network_outliers <- web_network_data[web_network_data < lower_bound_web_network | web_network_data > upper_bound_web_network]
print("Web Network Outliers:")
print(web_network_outliers)
# Outliers for Electron Energy Data
# Calculate Quartiles and IQR for energy
Q1_electron_energy <- quantile(electron_energy_data, 0.25)
Q3_electron_energy <- quantile(electron_energy_data, 0.75)
IQR_electron_energy <- Q3_electron_energy - Q1_electron_energy
# Calculate Lower and Upper Bounds
lower_bound_electron_energy <- Q1_electron_energy - 1.5 * IQR_electron_energy
upper_bound_electron_energy <- Q3_electron_energy + 1.5 * IQR_electron_energy
# Identify Outliers
electron_energy_outliers <- electron_energy_data[electron_energy_data < lower_bound_electron_energy | electron_energy_data > upper_bound_electron_energy]
print("Electron Energy Outliers:")
print(electron_energy_outliers)
# Outliers for Electron CPU Data
# Calculate Quartiles and IQR for CPU
Q1_electron_cpu <- quantile(electron_cpu_data, 0.25)
Q3_electron_cpu <- quantile(electron_cpu_data, 0.75)
IQR_electron_cpu <- Q3_electron_cpu - Q1_electron_cpu
# Calculate Lower and Upper Bounds
lower_bound_electron_cpu <- Q1_electron_cpu - 1.5 * IQR_electron_cpu
upper_bound_electron_cpu <- Q3_electron_cpu + 1.5 * IQR_electron_cpu
# Identify Outliers
electron_cpu_outliers <- electron_cpu_data[electron_cpu_data < lower_bound_electron_cpu | electron_cpu_data > upper_bound_electron_cpu]
print("Electron CPU Outliers:")
print(electron_cpu_outliers)
# Outliers for Electron Memory Data
# Calculate Quartiles and IQR for Memory
Q1_electron_memory <- quantile(electron_memory_data, 0.25)
Q3_electron_memory <- quantile(electron_memory_data, 0.75)
IQR_electron_memory <- Q3_electron_memory - Q1_electron_memory
# Calculate Lower and Upper Bounds
lower_bound_electron_memory <- Q1_electron_memory - 1.5 * IQR_electron_memory
upper_bound_electron_memory <- Q3_electron_memory + 1.5 * IQR_electron_memory
# Identify Outliers
electron_memory_outliers <- electron_memory_data[electron_memory_data < lower_bound_electron_memory | electron_memory_data > upper_bound_electron_memory]
print("Electron Memory Outliers:")
print(electron_memory_outliers)
# Outliers for Electron Network Data
# Calculate Quartiles and IQR for Network
Q1_electron_network <- quantile(electron_network_data, 0.25)
Q3_electron_network <- quantile(electron_network_data, 0.75)
IQR_electron_network <- Q3_electron_network - Q1_electron_network
# Calculate Lower and Upper Bounds
lower_bound_electron_network <- Q1_electron_network - 1.5 * IQR_electron_network
upper_bound_electron_network <- Q3_electron_network + 1.5 * IQR_electron_network
# Identify Outliers
electron_network_outliers <- electron_network_data[electron_network_data < lower_bound_electron_network | electron_network_data > upper_bound_electron_network]
print("Electron Network Outliers:")
print(electron_network_outliers)