-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreshard.py
82 lines (70 loc) · 2.97 KB
/
reshard.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# script to decompose/recompose llama model in different number of shards
# note that it loads the full model * 2 in cpu memory
import os
import json
import sys
import torch
import glob
if len(sys.argv) != 4:
print('usage: %s <new-shards> <input-model-path> <output-model-path>' % sys.argv[0], file=sys.stderr)
sys.exit(1)
num_shards = int(sys.argv[1])
input_model_dir = sys.argv[2]
output_model_dir = sys.argv[3]
with open(os.path.join(input_model_dir, 'params.json'), 'r') as fp:
params = json.loads(fp.read())
assert params['dim'] % num_shards == 0, "number of shards need to divide parameter dimension %d" % params['dim']
print('loading...')
checkpoints = [torch.load(path, map_location=torch.device('cpu')) for path in glob.glob(os.path.join(input_model_dir, '*.pth'))]
layer_kind = {
'tok_embeddings': 'ParallelEmbedding',
'output': 'ColumnParallelLinear',
'attention.wq': 'ColumnParallelLinear',
'attention.wk': 'ColumnParallelLinear',
'attention.wv': 'ColumnParallelLinear',
'attention.wo': 'RowParallelLinear',
'feed_forward.w1': 'ColumnParallelLinear',
'feed_forward.w2': 'RowParallelLinear',
'feed_forward.w3': 'ColumnParallelLinear',
'attention_norm': None,
'ffn_norm': None,
'norm': None,
'rope.freqs': None,
}
output = [dict() for x in range(num_shards)]
print('converting...')
for key in checkpoints[0].keys():
tensors = [m[key] for m in checkpoints]
print(key)
print(' in shapes=', [p.shape for p in tensors])
for pattern, kind in layer_kind.items():
if key.replace('.weight', '').endswith(pattern):
print(' kind=', kind)
if kind == 'ColumnParallelLinear':
with torch.no_grad():
merged = torch.cat(tensors, 0)
slice_size = merged.shape[0] // num_shards
for rank in range(num_shards):
output[rank][key] = merged[slice_size * rank: slice_size * (rank + 1),:].clone().detach()
elif kind in ('ParallelEmbedding', 'RowParallelLinear'):
with torch.no_grad():
merged = torch.cat(tensors, 1)
slice_size = merged.shape[1] // num_shards
for rank in range(num_shards):
output[rank][key] = merged[:,slice_size * rank: slice_size * (rank + 1)].clone().detach()
else:
for rank in range(num_shards):
output[rank][key] = tensors[0]
print(' out shapes=', [output[rank][key].shape for rank in range(num_shards)])
print()
break
else:
raise Exception('parameter name not recognized')
print('saving...')
os.makedirs(output_model_dir, exist_ok=True)
with open(os.path.join(output_model_dir, 'params.json'), 'w') as fp:
fp.write(json.dumps(params))
for rank in range(num_shards):
print(' ', rank)
torch.save(output[rank], os.path.join(output_model_dir, 'consolidated.%02d.pth' % rank))
print('done.')