-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsindy.py
395 lines (356 loc) · 15.7 KB
/
sindy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import torch
import torch.nn as nn
import numpy as np
import sympy as sp
import math
def SINDyConst(x):
return torch.ones(*x.shape[:-1], 1, device=x.device)
def SINDyPoly1(x):
return x
def SINDyPoly2(x):
return torch.cat([(x[..., i] * x[..., j]).view(*x.shape[:-1], 1)
for i in range(x.shape[-1])
for j in range(i, x.shape[-1])],
dim = -1)
def SINDyPoly3(x):
return torch.cat([(x[..., i] * x[..., j] * x[..., k]).view(*x.shape[:-1], 1)
for i in range(x.shape[-1])
for j in range(i, x.shape[-1])
for k in range(j, x.shape[-1])],
dim = -1)
def SINDySine(x):
return torch.sin(x)
def SINDyExp(x):
return torch.exp(x)
class SINDyRegression(nn.Module):
"""
Arguments:
latent_dim: dimension of latent space
poly_order: highest order of polynomial terms, max=3
include_sine: whether to include sine terms
L_list: list of Lie algebra generators
"""
def __init__(self, latent_dim, poly_order, include_sine, include_exp, L_list=[], **kwargs):
super().__init__()
self.latent_dim = latent_dim
self.poly_order = poly_order
self.constraint = (len(L_list)!=0)
self.include_sine = include_sine and not self.constraint
self.include_exp = include_exp and not self.constraint
self.L_list = L_list
self.terms = []
self.threshold = kwargs["threshold"]
# SINDy with constraint
if self.constraint:
print('Computing equivariance constraint...')
# self.M_list = self.get_M_list()
self.Q = self.get_Q().to(kwargs["device"])
self.beta = nn.Parameter(torch.randn((self.Q.shape[1]), device=kwargs["device"]))
self.const = nn.Parameter(torch.randn((latent_dim, 1), device=kwargs["device"]))
self.allow_constant = not kwargs['constrain_constant']
self.Xi = self.get_Xi()
# SINDy without constraint
else:
self.Xi = nn.Parameter(torch.randn(self.latent_dim, self.get_term_num(), device=kwargs["device"]))
# Mask of \Xi
self.mask = torch.ones_like(self.Xi, device=kwargs["device"])
# Fuction basis
self.terms.append(SINDyConst)
self.terms.append(SINDyPoly1)
if poly_order > 1:
self.terms.append(SINDyPoly2)
if poly_order > 2:
self.terms.append(SINDyPoly3)
if self.include_sine:
self.terms.append(SINDySine)
if self.include_exp:
self.terms.append(SINDyExp)
def forward(self, x):
self.Xi = self.get_Xi() if self.constraint else self.Xi
x = torch.cat([module(x) for module in self.terms], dim=-1)
return x @ (self.Xi * self.mask).T
# Calculate Q, whose column space forms the null space of C
def get_Q(self):
M_list = self.get_M_list()
C_list = []
for i in range(len(M_list)):
# check if L is invertible
if torch.det(self.L_list[i]) < 1e-5:
self.use_kron_product = False
MT, L = M_list[i].transpose(0, 1), self.L_list[i]
C = torch.kron(-MT.contiguous(), torch.eye(L.shape[0])) + torch.kron(torch.eye(MT.shape[0]), L)
else: # when L is invertible, this somehow leads to better stability in equation discovery
self.use_kron_product = True
C = torch.kron(self.L_list[i].inverse(), M_list[i].T)
C = C - torch.eye(C.shape[0])
C_list.append(C)
C_total = torch.cat(C_list, dim=0)
U, Sigma, V = torch.svd(C_total)
# Calculate r (rank of null space)
for r in range(len(Sigma)):
if abs(Sigma[-1 - r]) > 5e-3:
break
# Extract Q
Q = V[:, -r:]
# Print constraint information
# print(f'M_list={M_list}')
# print(f'C_total={C_total}')
# print(f'Q={Q}')
# print(f'Sigma={Sigma}')
# print(f'Number of free parameters (excluding constant terms) under equivariance constraint: {Q.shape[1]}')
return Q
def update_Q(self, new_Li):
self.L_list = new_Li
self.Q = self.get_Q().to(self.Xi.device)
self.beta = nn.Parameter(torch.randn((self.Q.shape[1]), device=self.Xi.device))
# Calculate symbolic map M
def get_M_list(self):
# Create variables z0~zn-1
z = sp.Matrix([sp.symbols(f"z{i}") for i in range(self.latent_dim)])
# Calculate function basis library \Theta
Theta = self.get_Theta()
# Calculate Jacobian matrix of \Theta
Jacobian_Theta = Theta.jacobian(z)
# Calculate J*L*z, e.g. M*Theta
M_temp = [Jacobian_Theta*sp.Matrix(Li)*z for Li in self.L_list]
# Calculate M
p = M_temp[0].shape[0]
M_list = [torch.zeros(p, p) for i in range(len(self.L_list))]
for i in range(len(self.L_list)):
for j in range(p):
expression = M_temp[i][j].expand()
# Calculate constant term
M_list[i][j, 0] = float(expression.subs({zi: 0 for zi in z}))
# Calculate other terms
for k in range(1, p):
# Extract coeff, using subs(z=0) to avoid bug in coeff()
M_list[i][j, k] = float(expression.coeff(Theta[k]).subs({zi: 0 for zi in z}))
return M_list
# Calculate function basis library \Theta
def get_Theta(self):
# Create variables z_0~z_n-1
z = [sp.symbols(f"z{i}") for i in range(self.latent_dim)]
# Poly0
Theta = sp.Matrix([1])
# Poly1
for i in range(self.latent_dim):
Theta = sp.Matrix.vstack(Theta, sp.Matrix([f"z{i}"]))
# Poly2
if self.poly_order > 1:
for i in range(self.latent_dim):
for j in range(i, self.latent_dim):
Theta = sp.Matrix.vstack(Theta, sp.Matrix([f"z{i}*z{j}"]))
# Poly3
if self.poly_order > 2:
for i in range(self.latent_dim):
for j in range(i, self.latent_dim):
for k in range(j, self.latent_dim):
Theta = sp.Matrix.vstack(Theta, sp.Matrix([f"z{i}*z{j}*z{k}"]))
return Theta
# Convert bata and const to Xi matrix
def get_Xi(self):
if self.use_kron_product:
Xi = (self.Q @ self.beta).view(self.latent_dim, -1)
else:
Xi = (self.Q @ self.beta).view(-1, self.latent_dim).transpose(0, 1)
if self.allow_constant:
Xi += torch.cat([self.const, torch.zeros((Xi.shape[0], Xi.shape[1]-1), device=Xi.device)], dim=1)
return Xi
# Get the total number of function basis
def get_term_num(self):
num = self.latent_dim + 1
if self.poly_order > 1:
num += self.latent_dim * (self.latent_dim + 1) / 2
if self.poly_order > 2:
num += (self.latent_dim**3 + 3*self.latent_dim**2 + 2*self.latent_dim) / 6
if self.include_sine:
num += self.latent_dim
if self.include_exp:
num += self.latent_dim
return int(num)
# Update mask
def set_threshold(self, threshold):
self.Xi = self.get_Xi() if self.constraint else self.Xi
self.mask.data = torch.logical_and(torch.abs(self.Xi) > threshold, self.mask).float()
# self.mask.data = (torch.abs(self.Xi) > threshold).float()
def reset_mask(self):
self.mask.data = torch.ones_like(self.Xi, device=self.Xi.device)
# Get function library w/o coefficients
def eval_Theta_at(self, x):
x = torch.cat([module(x) for module in self.terms], dim=-1)
return x
# Print equations
def print(self):
Xi = self.get_Xi() if self.constraint else self.Xi
for i in range(self.latent_dim):
pos = 0
equation = f'dz{i} ='
# Constant term
if self.mask[i, pos]:
equation += f' {Xi[i, pos]:.3f} +'
pos += 1
# Poly1 terms
for j in range(self.latent_dim):
if self.mask[i, pos]:
equation += f' {Xi[i, pos]:.3f}*z{j} +'
pos += 1
# Poly2 terms
if self.poly_order > 1:
for j in range(self.latent_dim):
for k in range(j, self.latent_dim):
if self.mask[i, pos]:
equation += f' {Xi[i, pos]:.3f}*z{j}*z{k} +'
pos += 1
# Poly3 terms
if self.poly_order > 2:
for j in range(self.latent_dim):
for k in range(j, self.latent_dim):
for l in range(k, self.latent_dim):
if self.mask[i ,pos]:
equation += f' {Xi[i, pos]:.3f}*z{j}*z{k}*z{l} +'
pos += 1
# Sin terms
if self.include_sine:
for j in range(self.latent_dim):
if self.mask[i, pos]:
equation += f' {Xi[i, pos]:.3f}*sin(z{j}) +'
pos += 1
# Exp terms
if self.include_exp:
for j in range(self.latent_dim):
if self.mask[i, pos]:
equation += f' {Xi[i, pos]:.3f}*exp(z{j}) +'
pos += 1
print(equation)
def solve_SINDy_one_step(regressor, x, y, w_sindy_reg, st_threshold, **kwargs):
'''
Solve the SINDy optimization problem with given data (x, y):
argmin_{w} ||y - w @ Theta(x)||_2^2 + w_sindy_reg * ||w||_2^2
Arguments:
x & y: data of shape (n_samples, dim);
w_sindy_reg: regularization weight; only support L2 regularization for now
st_threshold: sparsity threshold
'''
theta_x = regressor.eval_Theta_at(x)
gamma_I = w_sindy_reg * torch.eye(theta_x.shape[1], device=x.device)
A = torch.cat([theta_x, gamma_I], dim=0)
B = torch.cat([y, torch.zeros(theta_x.shape[1], y.shape[1], device=y.device)], dim=0)
# flatten and apply thresholding
mask = regressor.mask
mask = mask > 0.0
if (not torch.all(mask)) or regressor.constraint:
A_ = A.clone()
for _ in range(y.shape[-1]-1):
A = torch.block_diag(A, A_)
A = A[:, mask.flatten()]
B = B.transpose(0, 1).reshape(-1)
if regressor.constraint:
Q = regressor.Q
if regressor.allow_constant:
Q = torch.cat([Q, torch.zeros((Q.shape[0], regressor.latent_dim), device=Q.device)], dim=1)
for i in range(regressor.latent_dim):
Q[i * Q.shape[0] // regressor.latent_dim, Q.shape[1] - regressor.latent_dim + i] = 1.0
# w = Q @ beta => Aw = A @ Q @ beta
A = A @ Q[mask.flatten()]
# avoid zero column in A
effective_param = torch.any(A != 0.0, dim=0)
A = A[:, effective_param]
# solve the regularized lstsq problem
lm = torch.linalg.lstsq(A, B)
solution = lm.solution
residual = lm.residuals
# update parameters
prev_mask = regressor.mask.clone()
if not regressor.constraint:
if not torch.all(mask):
new_coef = torch.zeros_like(regressor.Xi, device=regressor.Xi.device)
new_coef[mask] = solution
regressor.Xi.data = new_coef
else:
regressor.Xi.data = solution.T
else:
if not regressor.allow_constant:
new_beta = torch.zeros_like(regressor.beta, device=regressor.beta.device)
new_beta[effective_param] = solution
regressor.beta.data = new_beta
else:
# split solution into beta and const
new_solution = torch.zeros(regressor.beta.shape[0] + regressor.latent_dim, device=regressor.beta.device)
new_solution[effective_param] = solution
regressor.beta.data = new_solution[:-regressor.latent_dim]
regressor.const.data = new_solution[-regressor.latent_dim:].view(-1, 1)
regressor.set_threshold(st_threshold)
converged = torch.allclose(prev_mask, regressor.mask)
return residual.mean() / x.shape[0], converged
def solve_SINDy(regressor, x, y, w_sindy_reg, st_threshold, max_iter=5, **kwargs):
regressor.reset_mask()
for _ in range(max_iter):
residual, converged = solve_SINDy_one_step(regressor, x, y, w_sindy_reg, st_threshold)
if converged:
break
return residual
class WSINDyWrapper():
"""
Wrapper for solving Weak SINDy as a regularized least square problem.
"""
def __init__(self, regressor, t, t_max, num_test_funcs=50, test_func_family='trig', device='cuda', **kwargs):
self.t = t.to(device)
self.dt = self.t[1] - self.t[0]
self.regressor = regressor
if test_func_family == 'trig':
# for k in range(num_test_funcs), compute g_k(t) = sin(k * pi * t / t_max)
# and g_k'(t) = k * pi / t_max * cos(k * pi * t / t_max)
k = torch.arange(1, num_test_funcs + 1, dtype=torch.float32, device=device)
k = k.view(-1, 1)
g_k_t = math.sqrt(2 / t_max) * torch.sin(k * torch.pi * self.t / t_max)
g_k_t_drv = math.sqrt(2 / t_max) * k * np.pi / t_max * torch.cos(k * np.pi * self.t / t_max)
else:
raise NotImplementedError(f'test_func_family={test_func_family} not implemented')
# construct integration matrix nd covariance matrix
self.V = self.dt * g_k_t
self.V_drv = self.dt * g_k_t_drv
self.sigma = self.V_drv @ self.V_drv.T
self.sigma_inv = torch.inverse(self.sigma)
self.sqrt_sigma_inv = torch.sqrt(self.sigma_inv)
def solve(self, x, w_sindy_reg, st_threshold, **kwargs):
'''
Solve the weak SINDy optimization problem with given data x.
Arguments:
x: data of shape (seq_len, dim);
time interval is assumed to be uniform and should match the one used to construct the wrapper
w_sindy_reg: regularization weight; only support L2 regularization for now
st_threshold: sparsity threshold
'''
# compute Gram matrix and rhs
with torch.no_grad():
G = self.V @ self.regressor.eval_Theta_at(x)
b = -self.V_drv @ x
data_dim = x.shape[-1]
# prepare the augmented matrix and vector
sqrt_gamma_I = math.sqrt(w_sindy_reg) * torch.eye(G.shape[1], device=G.device)
G_aug = torch.cat([self.V.T @ G, sqrt_gamma_I], dim=0)
b_aug = torch.cat([self.V.T @ b, torch.zeros(G.shape[1], b.shape[1], device=b.device)], dim=0)
# # flatten and apply existing threshold
mask = self.regressor.mask
mask = mask > 0.0
if not torch.all(mask):
G_aug_ = G_aug.clone()
for _ in range(data_dim-1):
G_aug = torch.block_diag(G_aug, G_aug_)
G_aug = G_aug[:, mask.flatten()]
b_aug = b_aug.transpose(0, 1).reshape(-1)
# solve the regularized lstsq problem
lm = torch.linalg.lstsq(G_aug, b_aug)
solution = lm.solution
residual = lm.residuals
# update parameters
prev_mask = self.regressor.mask.clone()
if not torch.all(mask):
new_coef = torch.zeros_like(self.regressor.Xi, device=self.regressor.Xi.device)
new_coef[mask] = solution
self.regressor.Xi.data = new_coef
else:
self.regressor.Xi.data = solution.T
self.regressor.set_threshold(st_threshold)
converged = torch.allclose(prev_mask, self.regressor.mask)
return residual.mean().item(), converged