-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_utils.py
255 lines (224 loc) · 10.2 KB
/
model_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd.functional import jvp
from functools import partial
import numpy as np
def symmreg_i(x_fx, autoencoder, generator, f=None, dfdx=None, normalize='global', z_mean=None, relative=True, require_grad=False, numpy=False):
'''
Compute the infinitesimal symmetry regularization loss.
x_fx: input and predicted output: (batch_size, 2, input_dim)
autoencoder, generator: nn.Module representing the symmetry
f: function represented by nn.Module to be symmetrized
dfdx: alternatively, the Jacobian of f at x
normalize: 'in_batch' or 'global', whether to normalize the latent vector
z_mean: if normalize='global', the mean of the latent vectors; if None, use the final batch norm layer in encoder
relative: whether to use relative loss (i.e. normalize by the scale of difference between x and fx)
require_grad: whether to compute the gradient of the loss
'''
if numpy:
x_fx = torch.from_numpy(x_fx).float().to(autoencoder.device)
if z_mean is not None:
z_mean = torch.from_numpy(z_mean).float().to(autoencoder.device)
if require_grad:
raise ValueError('Cannot require grad when numpy=True.')
if f is None and dfdx is None:
raise ValueError('Either f or dfdx must be specified.')
if f is not None and dfdx is not None:
raise ValueError('Only one of f and dfdx can be specified.')
jvp_fn = partial(jvp, create_graph=True, strict=True) if require_grad else jvp
autoencoder.eval()
generator.eval()
with torch.set_grad_enabled(require_grad):
loss = 0.0
z = autoencoder.encode(x_fx)
x_dim = x_fx.shape[-1]
x, fx = x_fx[:, 0], x_fx[:, 1]
if normalize == 'in_batch':
z = z - z.mean(dim=0, keepdim=True)
elif normalize == 'global':
if z_mean is None:
z_mean = autoencoder.encoder[-2].bias
z = z - z_mean
z_shape = z.shape
for v in generator.get_full_basis_list():
v_z = torch.einsum('jk,...k->...j', v, z.reshape(z_shape[0], -1))
v_z = v_z.reshape(z_shape)
v_x_fx = jvp_fn(autoencoder.decoder, z, v=v_z)[1]
v_x, v_fx = v_x_fx[:, 0], v_x_fx[:, 1]
if f is not None:
input_variation = jvp_fn(f, x, v_x)[1]
elif dfdx is not None:
input_variation = torch.einsum('bjk,bk->bj', dfdx, v_x)
if not relative:
loss += torch.mean((input_variation - v_fx) ** 2)
else:
loss += torch.mean((input_variation - v_fx) ** 2) / torch.mean(input_variation ** 2)
if numpy:
loss = loss.cpu().numpy()
return loss # , input_variation, v_fx
def symmreg_f(x_fx, autoencoder, generator, f, normalize='global', z_mean=None, relative=True, require_grad=False, numpy=False):
'''
Compute the finite symmetry regularization loss.
x_fx: input and predicted output: (batch_size, 2, input_dim)
autoencoder, generator: nn.Module representing the symmetry
f: function to be symmetrized
normalize: 'in_batch' or 'global', whether to normalize the latent vector
z_mean: if normalize='global', the mean of the latent vectors; if None, use the final batch norm layer in encoder
relative: whether to use relative loss (i.e. normalize by the scale of difference between x and fx)
require_grad: whether to compute the gradient of the loss
'''
autoencoder.eval()
generator.eval()
if numpy:
x_fx = torch.from_numpy(x_fx).float().to(generator.Li[0].device)
if z_mean is not None:
z_mean = torch.from_numpy(z_mean).float().to(generator.Li[0].device)
if require_grad:
raise ValueError('Cannot require grad when numpy=True.')
with torch.set_grad_enabled(require_grad):
loss = 0.0
z = autoencoder.encode(x_fx)
x_dim = x_fx.shape[-1]
x, fx = x_fx[:, 0], x_fx[:, 1]
if normalize == 'in_batch':
z = z - z.mean(dim=0, keepdim=True)
elif normalize == 'global':
if z_mean is None:
z_mean = autoencoder.encoder[-2].bias
z = z - z_mean
z_shape = z.shape
for g in generator.get_deterministic_group_elems():
g_z = torch.einsum('jk,...k->...j', g, z.reshape(z_shape[0], -1))
g_z = g_z.reshape(z_shape)
g_z = g_z + z_mean
g_x_fx = autoencoder.decode(g_z)
g_x, g_fx = g_x_fx[:, 0], g_x_fx[:, 1]
if numpy:
g_x = g_x.cpu().numpy()
f_g_x = f(g_x)
if numpy:
f_g_x = torch.from_numpy(f_g_x).float().to(generator.Li[0].device)
if not relative:
loss += torch.mean((f_g_x - g_fx) ** 2)
else:
loss += torch.mean((f_g_x - g_fx) ** 2) / torch.mean((f_g_x - fx) ** 2)
if numpy:
loss = loss.cpu().numpy()
return loss
def symmreg_r(x, autoencoder, generator, h, normalize='global', z_mean=None, require_grad=False, scale=0.01):
'''
Compute the reversed symmetry regularization loss.
x_fx: input and predicted output: (batch_size, 2, input_dim)
autoencoder, generator: nn.Module representing the symmetry
h: ODE to be symmetrized
normalize: 'in_batch' or 'global', whether to normalize the latent vector
z_mean: if normalize='global', the mean of the latent vectors; if None, use the final batch norm layer in encoder
require_grad: whether to compute the gradient of the loss
'''
jvp_fn = partial(jvp, create_graph=True, strict=True) if require_grad else jvp
autoencoder.eval()
generator.eval()
g_list = generator.get_deterministic_group_elems(scale=scale)
n_group_elems = len(g_list)
def group_transform(x, g_idx=0, normalize='global', z_mean=None):
xx = torch.stack([x, x], dim=1)
z = autoencoder.encode(xx)
if normalize == 'in_batch':
z = z - z.mean(dim=0, keepdim=True)
elif normalize == 'global':
if z_mean is None:
z_mean = autoencoder.encoder[-2].bias
z = z - z_mean
z_shape = z.shape
g_z = torch.einsum('jk,...k->...j', g_list[g_idx], z.reshape(z_shape[0], -1))
g_z = g_z.reshape(z_shape)
g_z = g_z + z_mean
g_xx = autoencoder.decode(g_z)
return g_xx[:, 0]
with torch.set_grad_enabled(require_grad):
loss = 0.0
for i in range(n_group_elems):
group_transform_ith = partial(group_transform, g_idx=i, normalize=normalize, z_mean=z_mean)
gx = group_transform_ith(x)
hx = h(x)
variation1 = jvp_fn(group_transform_ith, x, v=hx)[1]
variation2 = h(gx)
loss += torch.mean((variation1 - variation2) ** 2)
return loss
def precompute_symmreg_r(x, autoencoder, generator, z_mean=None, scale=0.01):
'''
Precompute the group transformation g(x) and its Jacobian J_g(x) for reversed symmetry regularization loss.
This decouples the group transformation from the ODE, allowing for integration with PySR.
'''
from torch.func import jacrev, jacfwd, vmap # pytorch beta feature
autoencoder.eval()
generator.eval()
g_list = generator.get_deterministic_group_elems(scale=scale)
n_group_elems = len(g_list)
def group_transform(x, g_idx=0, normalize='global', z_mean=None):
xx = torch.stack([x, x], dim=1)
z = autoencoder.encode(xx)
if normalize == 'in_batch':
z = z - z.mean(dim=0, keepdim=True)
elif normalize == 'global':
if z_mean is None:
z_mean = autoencoder.encoder[-2].bias
z = z - z_mean
z_shape = z.shape
g_z = torch.einsum('jk,...k->...j', g_list[g_idx], z.reshape(z_shape[0], -1))
g_z = g_z.reshape(z_shape)
g_z = g_z + z_mean
g_xx = autoencoder.decode(g_z)
return g_xx[:, 0]
with torch.no_grad():
gx_list = []
Jgx_list = []
for i in range(n_group_elems):
group_transform_ith = partial(group_transform, g_idx=i, normalize='global', z_mean=z_mean)
gx = group_transform_ith(x)
gx_list.append(gx)
Jgx = vmap(jacfwd(group_transform_ith))(x)
Jgx_list.append(Jgx)
return gx_list, Jgx_list
make_symmreg = lambda autoencoder, generator: partial(symmreg_i, autoencoder=autoencoder, generator=generator)
make_symmreg_pttrain = lambda autoencoder, generator: partial(symmreg_i, autoencoder=autoencoder, generator=generator, require_grad=True)
make_symmreg_np = lambda autoencoder, generator: partial(symmreg_i, autoencoder=autoencoder, generator=generator, numpy=True)
make_fsymmreg = lambda autoencoder, generator: partial(symmreg_f, autoencoder=autoencoder, generator=generator)
make_fsymmreg_pttrain = lambda autoencoder, generator: partial(symmreg_f, autoencoder=autoencoder, generator=generator, require_grad=True)
make_fsymmreg_np = lambda autoencoder, generator: partial(symmreg_f, autoencoder=autoencoder, generator=generator, numpy=True)
make_rsymmreg = lambda autoencoder, generator: partial(symmreg_r, autoencoder=autoencoder, generator=generator)
make_rsymmreg_pttrain = lambda autoencoder, generator: partial(symmreg_r, autoencoder=autoencoder, generator=generator, require_grad=True)
def odeint(f, x0, t, dt, method='euler', full_traj=False):
'''
Integrate an ODE f over a time interval differentiably.
f: a PyTorch nn.Module representing the ODE
x0: initial state
t: time
dt: timestep
method: 'euler' or 'rk4'
full_traj: whether to return the full trajectory
'''
n_steps = int(t / dt)
if full_traj:
traj = []
if method == 'euler':
for i in range(n_steps):
x0 = x0 + dt * f(x0)
if full_traj:
traj.append(x0)
elif method == 'rk4':
for i in range(n_steps):
k1 = f(x0)
k2 = f(x0 + dt / 2 * k1)
k3 = f(x0 + dt / 2 * k2)
k4 = f(x0 + dt * k3)
x0 = x0 + dt / 6 * (k1 + 2 * k2 + 2 * k3 + k4)
if full_traj:
traj.append(x0)
else:
raise ValueError('Unrecognized ODEInt method.')
if full_traj:
return torch.stack(traj, dim=0)
else:
return x0