-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
70 lines (58 loc) · 2.74 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils.parametrizations import orthogonal
class Reshape(nn.Module):
def __init__(self, *args):
super().__init__()
self.shape = args
def forward(self, x):
return x.reshape(self.shape)
class EncoderMLP(nn.Module):
def __init__(self, input_dim, hidden_dim, batch_norm, n_comps, activation, n_layers, latent_dim, **kwargs):
super().__init__()
self.layers = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
# Batch norm
Reshape(-1, hidden_dim) if batch_norm and n_comps > 1 else nn.Identity(),
nn.BatchNorm1d(hidden_dim) if batch_norm else nn.Identity(),
Reshape(-1, n_comps, hidden_dim) if batch_norm and n_comps > 1 else nn.Identity(),
getattr(nn, activation)(*kwargs['activation_args']),
*[nn.Sequential(
nn.Linear(hidden_dim, hidden_dim),
# Batch norm
Reshape(-1, hidden_dim) if batch_norm and n_comps > 1 else nn.Identity(),
nn.BatchNorm1d(hidden_dim) if batch_norm else nn.Identity(),
Reshape(-1, n_comps, hidden_dim) if batch_norm and n_comps > 1 else nn.Identity(),
getattr(nn, activation)(*kwargs['activation_args']),
) for _ in range(n_layers-1)],
nn.Linear(hidden_dim, latent_dim) if not kwargs['ortho_ae'] else orthogonal(nn.Linear(hidden_dim, latent_dim)),
Reshape(-1, latent_dim) if batch_norm and n_comps > 1 else nn.Identity(),
nn.BatchNorm1d(latent_dim) if batch_norm else nn.Identity(),
Reshape(-1, n_comps, latent_dim) if batch_norm and n_comps > 1 else nn.Identity(),
)
def forward(self, x):
return self.layers(x)
class DecoderMLP(nn.Module):
def __init__(self, latent_dim, hidden_dim, activation, n_layers, input_dim, **kwargs):
super().__init__()
self.layers = nn.Sequential(
nn.Linear(latent_dim, hidden_dim),
getattr(nn, activation)(*kwargs['activation_args']),
*[nn.Sequential(
nn.Linear(hidden_dim, hidden_dim),
getattr(nn, activation)(*kwargs['activation_args']),
) for _ in range(n_layers-1)],
nn.Linear(hidden_dim, input_dim),
)
def forward(self, x):
return self.layers(x)
class SplitModel(nn.Module):
def __init__(self, model_class, **kwargs):
super().__init__()
self.model1 = model_class(**kwargs)
self.model2 = model_class(**kwargs)
def forward(self, x):
x1, x2 = torch.split(x, x.shape[-1]//2, dim=-1)
return torch.cat([self.model1(x1), self.model2(x2)], dim=-1)