-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgan.py
424 lines (393 loc) · 19.3 KB
/
gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from copy import deepcopy
from utils import *
class IntParameter(nn.Module):
def __init__(self, k=2, noise=0.1):
super(IntParameter, self).__init__()
self.noise = noise
self.k = k
def forward(self, data):
noise = torch.randn_like(data) * self.noise
return torch.round(torch.clamp(self.k * (data + noise), -self.k - 0.49, self.k + 0.49))
class LieGenerator(nn.Module):
def __init__(self, **kwargs):
super(LieGenerator, self).__init__()
self.repr = kwargs['repr']
group_idx = kwargs['group_idx']
self.uniform_max = kwargs['uniform_max']
self.coef_dist = kwargs['coef_dist']
self.g_init = kwargs['g_init']
self.task = kwargs['task']
self.sigma_init = kwargs['sigma_init']
self.int_param = kwargs['int_param']
self.int_param_noise = kwargs['int_param_noise']
self.int_param_max = kwargs['int_param_max']
self.threshold = kwargs['gan_st_thres']
self.keep_center = kwargs['keep_center']
self.activated_channel = None # default to all channel
self.construct_group_representation(self.repr, group_idx)
self.masks = [mask.to(kwargs['device']) if mask is not None else None for mask in self.masks]
self.int_param_approx = IntParameter(k=self.int_param_max, noise=self.int_param_noise)
def construct_group_representation(self, repr_str, group_idx):
# analyze the repr string
repr = []
tuple_list = repr_str.split('+')
for t in tuple_list:
t = t.strip()
if t.startswith('(') and t.endswith(')'):
elements = t[1:-1].split(',')
elements = [e.strip() for e in elements]
repr.append(tuple(elements))
self.group_idx = group_idx.split(',')
if len(self.group_idx) != len(repr):
raise ValueError('Number of group indices does not match number of components in representation string.')
group_idx_dict = {}
for i, idx in enumerate(self.group_idx):
if idx not in group_idx_dict:
group_idx_dict[idx] = []
group_idx_dict[idx].append(i)
# repr is a tuple of
# either (N1, N2, N3) indicating N1 N3-dim vectors acted on by N2-dim Lie group,
# or (N1, STR) specifying the group, or (N1,) indicating N1 scalars
self.Li = nn.ParameterList()
self.sigma = nn.ParameterList()
self.struct_const = nn.ParameterList()
self.masks = [] # mask for sequential thresholding
self.n_comps = []
self.n_channels = []
self.learnable = []
self.f_Li = []
self.n_dims = 0
for i, r in enumerate(repr):
if len(r) >= 3:
if len(r) == 3:
n_comps, n_channels, n_dims = r
self.f_Li.append(lambda Li: Li)
else: # len=4
n_comps, n_channels, n_dims, group_str = r
if group_str == 'o':
self.f_Li.append(lambda Li: Li - torch.transpose(Li, -1, -2))
else:
raise ValueError(f'Group {group_str} not implemented yet.')
n_comps, n_channels, n_dims = int(n_comps), int(n_channels), int(n_dims)
Li = nn.Parameter(torch.randn(n_channels, n_dims, n_dims))
struct_const = nn.Parameter(torch.zeros(n_channels, n_channels, n_channels))
mask = torch.ones_like(Li)
self.Li.append(Li)
self.struct_const.append(struct_const)
self.masks.append(mask)
self.n_comps.append(n_comps)
self.n_channels.append(n_channels)
self.learnable.append(True)
self.n_dims += n_dims * n_comps
self.sigma.append(nn.Parameter(torch.eye(n_channels, n_channels) * self.sigma_init, requires_grad=False))
elif len(r) == 1:
n_comps = int(r[0])
self.Li.append(nn.Parameter(torch.zeros(1, n_comps, n_comps), requires_grad=False))
self.struct_const.append(nn.Parameter(torch.zeros(1, 1, 1), requires_grad=False))
self.masks.append(None)
self.n_comps.append(1)
self.n_channels.append(1)
self.learnable.append(False)
self.n_dims += n_comps
self.sigma.append(nn.Parameter(torch.eye(1, 1)))
self.f_Li.append(lambda Li: Li)
elif len(r) == 2:
n_comps, group_str = r
n_comps = int(n_comps)
self.masks.append(None)
self.f_Li.append(lambda Li: Li)
if group_str == 'so2':
self.Li.append(nn.Parameter(torch.FloatTensor([[[0.0, 1.0], [-1.0, 0.0]]]), requires_grad=False))
self.struct_const.append(nn.Parameter(torch.zeros(1, 1, 1), requires_grad=False))
self.n_comps.append(n_comps)
self.n_channels.append(1)
self.learnable.append(False)
self.n_dims += n_comps * 2
self.sigma.append(nn.Parameter(torch.eye(1, 1) * self.sigma_init, requires_grad=False))
elif group_str == 'sim2':
self.Li.append(nn.Parameter(torch.FloatTensor([[[-0.2, 1.0], [-1.0, 0.0]]]), requires_grad=False))
self.struct_const.append(nn.Parameter(torch.zeros(1, 1, 1), requires_grad=False))
self.n_comps.append(n_comps)
self.n_channels.append(1)
self.learnable.append(False)
self.n_dims += n_comps * 2
self.sigma.append(nn.Parameter(torch.eye(1, 1) * self.sigma_init, requires_grad=False))
elif group_str == 'scaling2':
self.Li.append(nn.Parameter(torch.FloatTensor([[[2.0, 0.0], [0.0, 1.0]]]), requires_grad=False))
self.struct_const.append(nn.Parameter(torch.zeros(1, 1, 1), requires_grad=False))
self.n_comps.append(n_comps)
self.n_channels.append(1)
self.learnable.append(False)
self.n_dims += n_comps * 2
self.sigma.append(nn.Parameter(torch.eye(1, 1) * self.sigma_init, requires_grad=False))
elif group_str == 'so2*r':
Li = nn.Parameter(torch.FloatTensor([[[0.0, 1.0], [-1.0, 0.0]], [[0.1, 0.0], [0.0, 0.1]]]), requires_grad=False)
self.Li.append(Li)
self.struct_const.append(nn.Parameter(torch.zeros(2, 2, 2), requires_grad=False))
self.n_comps.append(n_comps)
self.n_channels.append(2)
self.learnable.append(False)
self.n_dims += n_comps * 2
self.sigma.append(nn.Parameter(torch.eye(2, 2) * self.sigma_init, requires_grad=False))
elif group_str == 'so3':
self.Li.append(nn.Parameter(so(3), requires_grad=False))
self.struct_const.append(nn.Parameter(torch.zeros(3, 3, 3), requires_grad=False))
self.n_comps.append(n_comps)
self.n_channels.append(3)
self.learnable.append(False)
self.n_dims += n_comps * 3
self.sigma.append(nn.Parameter(torch.eye(3, 3) * self.sigma_init, requires_grad=False))
elif group_str == 'so3+1':
L = torch.zeros(3, 4, 4)
L[:, :3, :3] = so(3)
self.Li.append(nn.Parameter(L, requires_grad=False))
self.struct_const.append(nn.Parameter(torch.zeros(3, 3, 3), requires_grad=False))
self.n_comps.append(n_comps)
self.n_channels.append(3)
self.learnable.append(False)
self.n_dims += n_comps * 4
self.sigma.append(nn.Parameter(torch.eye(3, 3) * self.sigma_init, requires_grad=False))
elif group_str == 'so4':
self.Li.append(nn.Parameter(so(4), requires_grad=False))
self.struct_const.append(nn.Parameter(torch.zeros(6, 6, 6), requires_grad=False))
self.n_comps.append(n_comps)
self.n_channels.append(6)
self.learnable.append(False)
self.n_dims += n_comps * 4
self.sigma.append(nn.Parameter(torch.eye(6, 6) * self.sigma_init, requires_grad=False))
else:
raise ValueError(f'Group {group_str} not implemented yet.')
else:
raise ValueError(f'Invalid representation string at position {i}: {r}')
# Check if the group indices are valid
for k, v in group_idx_dict.items():
n_ch = self.n_channels[v[0]]
for i in v:
if self.n_channels[i] != n_ch:
raise ValueError(f'Group index {k} contains channels of different dimensions.')
# Complete
# print(f'Constructed Lie group representation with {self.n_dims} latent dimensions.')
# print(self.getLi())
def set_activated_channel(self, ch):
self.activated_channel = ch
def activate_all_channels(self):
self.activated_channel = None
# def channel_corr(self):
# s = 0.0
# for Li in self.Li:
# norm = torch.einsum('kdf,kdf->k', Li, Li)
# Li_N = Li / (torch.sqrt(norm).unsqueeze(-1).unsqueeze(-1) + 1e-6)
# s += torch.sum(torch.abs(torch.triu(torch.einsum('bij,cij->bc', Li_N, Li_N), diagonal=1)))
# return s
def reg_norm(self):
s = 0.0
for Li, f, mask, learnable in zip(self.Li, self.f_Li, self.masks, self.learnable):
if learnable:
s += torch.sum(torch.clamp(0.5 - torch.einsum('kdf,kdf->k', f(Li) * mask, f(Li) * mask), min=0.0))
return s
def reg_ortho(self):
s = 0.0
for Li, f, mask, learnable in zip(self.Li, self.f_Li, self.masks, self.learnable):
Li_m = f(Li) * mask
Li_m_norm = torch.einsum('kdf,kdf->k', Li_m, Li_m)
Li_m = Li_m / (torch.sqrt(Li_m_norm).unsqueeze(-1).unsqueeze(-1) + 1e-6)
if learnable:
s += torch.sum(torch.square(torch.triu(torch.einsum('bij,cij->bc', Li_m, Li_m), diagonal=1)))
return s
def reg_closure(self):
s = 0.0
for Li, f, c, mask, learnable in zip(self.Li, self.f_Li, self.struct_const, self.masks, self.learnable):
if not learnable:
continue
n_dims = Li.shape[0]
Li_m = f(Li) * mask
Li_m_norm = torch.einsum('kdf,kdf->k', Li_m, Li_m)
Li_m = Li_m / (torch.sqrt(Li_m_norm).unsqueeze(-1).unsqueeze(-1) + 1e-6)
for i in range(n_dims):
for j in range(i + 1, n_dims):
commutator = Li_m[i] @ Li_m[j] - Li_m[j] @ Li_m[i]
s += torch.sum(torch.square(commutator - torch.einsum('k,kij->ij', c[i, j], Li_m)))
return s
def forward(self, x): # random transformation on x
# x: (batch_size, *, n_dims)
# normalize x to have zero mean
if not self.keep_center:
x_mean = torch.mean(x, dim=list(range(len(x.shape)-1)), keepdim=True)
x = x - x_mean
batch_size = x.shape[0]
output_shape = x.shape
if len(x.shape) == 3:
x = x.reshape(batch_size, -1)
# z = self.sample_coefficient(batch_size, x.device)
# g_z = torch.matrix_exp(torch.einsum('bj,jkl->bkl', z, self.getLi()))
g_z = self.sample_group_element(batch_size, x.device)
x_t = torch.einsum('bij,bj->bi', g_z, x)
x_t = x_t.reshape(output_shape)
if not self.keep_center:
x_t = x_t + x_mean
return x_t
def infinitesimal_transform(self, x, L_idx):
'''
x: (batch_size, *, n_dims)
L_idx: index of the Lie algebra basis to use
Compute the infinitesimal change of x by Lie algebra element.
'''
# normalize x to have zero mean
if not self.keep_center:
x_mean = torch.mean(x, dim=list(range(len(x.shape)-1)), keepdim=True)
x = x - x_mean
batch_size = x.shape[0]
output_shape = x.shape
if len(x.shape) == 3:
x = x.reshape(batch_size, -1)
L = self.get_full_basis_list()[L_idx]
L_x = torch.einsum('ij,bj->bi', L, x)
L_x = L_x.reshape(output_shape)
return L_x
def set_threshold(self, threshold):
# relative to max in each channel
for Li, f, mask in zip(self.Li, self.f_Li, self.masks):
if mask is None:
continue
max_chval = torch.amax(torch.abs(f(Li)), dim=(1, 2), keepdim=True)
mask.data = torch.logical_and(torch.abs(f(Li)) > threshold * max_chval, mask).float()
# mask.data = (torch.abs(f(Li)) > threshold * max_chval).float()
def sample_group_element(self, batch_size, device):
start_dim = 0
g = []
z_dict = {}
# only sample one z for each group as specified in group_idx
for i, idx in enumerate(self.group_idx):
if idx not in z_dict:
z_dict[idx] = self.sample_coefficient(batch_size, self.n_channels[i], self.sigma[i], device)
# compute group element
for Li, f, group_idx, mask, n_comps, learnable in zip(self.Li, self.f_Li, self.group_idx, self.masks, self.n_comps, self.learnable):
if learnable and self.int_param:
Li = self.int_param_approx(f(Li))
if learnable and mask is not None:
Li = f(Li) * mask
# z = self.sample_coefficient(batch_size, n_channels, sigma, device)
z = z_dict[group_idx]
g_z = torch.matrix_exp(torch.einsum('bj,jkl->bkl', z, Li))
for _ in range(n_comps):
end_dim = start_dim + g_z.shape[1]
g_z_padded = F.pad(g_z, (start_dim, self.n_dims - end_dim, start_dim, self.n_dims - end_dim))
g.append(g_z_padded)
start_dim = end_dim
g = torch.stack(g, dim=1)
g = torch.sum(g, dim=1)
return g
def get_full_basis_list(self, split_channel=True):
start_dim = 0
v = []
group_idx_dict = {}
for i, idx in enumerate(self.group_idx):
if idx not in group_idx_dict:
group_idx_dict[idx] = []
for Li, f, group_idx, mask, n_comps, learnable in zip(self.Li, self.f_Li, self.group_idx, self.masks, self.n_comps, self.learnable):
if learnable and mask is not None:
Li = f(Li) * mask
v_comp = []
for _ in range(n_comps):
end_dim = start_dim + Li.shape[1]
v_padded = F.pad(Li, (start_dim, self.n_dims - end_dim, start_dim, self.n_dims - end_dim))
v_comp.append(v_padded)
start_dim = end_dim
v_comp = torch.stack(v_comp, dim=1)
v_comp = torch.sum(v_comp, dim=1)
group_idx_dict[group_idx].append(v_comp)
for idx in group_idx_dict.keys():
if split_channel:
v += [ch for ch in sum(group_idx_dict[idx])]
else:
v.append(sum(group_idx_dict[idx]))
return v
def get_deterministic_group_elems(self, split_channel=False, scale=1.0):
'''
Return a list of group elements with deterministic coefficients.
Used for exporting the model as a finite symmetry regularizer.
'''
lie_basis_list = self.get_full_basis_list(split_channel=split_channel)
g_list = []
for sigma, L in zip(self.sigma, lie_basis_list):
if len(L.shape) == 3:
Li_split = [Li for Li in L]
for Li in Li_split:
g_z = torch.matrix_exp(sigma * Li * scale)
g_list.append(g_z)
else:
g_z = torch.matrix_exp(sigma * L * scale)
g_list.append(g_z)
return g_list
def sample_coefficient(self, batch_size, n_channels, params, device):
if self.coef_dist == 'normal':
sigma = params
z = torch.randn(batch_size, n_channels, device=device) @ sigma
elif self.coef_dist == 'uniform':
uniform_max = params
z = torch.rand(batch_size, n_channels, device=device) * 2 * uniform_max - uniform_max
elif self.coef_dist == 'uniform_int_grid':
uniform_max = params
z = torch.randint(-int(uniform_max), int(uniform_max), (batch_size, n_channels), device=device, dtype=torch.float32)
ch = self.activated_channel
if ch is not None: # leaving only specified columns
mask = torch.zeros_like(z, device=z.device)
mask[:, ch] = 1
z = z * mask
return z
def transform(self, g_z, x, tp):
return torch.einsum('bjk,bk->bj', g_z, x)
# if tp == 'vector':
# return torch.einsum('bjk,btk->btj', g_z, x)
# elif tp == 'scalar':
# return x
# elif tp == 'grid':
# grid = F.affine_grid(g_z[:, :-1], x.shape)
# return F.grid_sample(x, grid)
def getLi(self):
return self.get_full_basis_list(split_channel=False)
# convert ParameterList to list of tensors
# return [self.int_param_approx(Li) if self.int_param and learnable
# else f(Li) * mask if learnable else f(Li)
# for Li, f, mask, learnable in zip(self.Li, self.f_Li, self.masks, self.learnable)]
def getStructureConst(self):
return [c.reshape(-1, c.shape[-1]) for c, learnable in zip(self.struct_const, self.learnable) if learnable]
class Discriminator(nn.Module):
def __init__(self, latent_dim, n_comps, hidden_dim, n_layers, activation='ReLU', **kwargs):
super(Discriminator, self).__init__()
self.input_dim = latent_dim * n_comps
if kwargs['use_original_x']:
self.input_dim += kwargs['input_dim'] * n_comps
if kwargs['use_invariant_y']:
if kwargs['embed_y']:
self.y_embedding = nn.Embedding(kwargs['y_classes'], kwargs['y_embed_dim'])
self.input_dim += kwargs['y_embed_dim']
else:
self.input_dim += kwargs['y_dim']
self.embed_y = kwargs['embed_y']
self.model = nn.Sequential(
nn.Linear(self.input_dim, hidden_dim),
getattr(nn, activation)(),
*[nn.Sequential(
nn.Linear(hidden_dim, hidden_dim),
getattr(nn, activation)(),
) for _ in range(n_layers-1)],
nn.Linear(hidden_dim, 1),
nn.Sigmoid(),
)
def forward(self, z, y=None, x=None):
# z: latent representation; y: invariant label; x: original input
z = z.reshape(z.shape[0], -1)
if y is not None:
if self.embed_y:
y = self.y_embedding(y)
z = torch.cat([z, y], dim=-1)
if x is not None:
x = x.reshape(x.shape[0], -1)
z = torch.cat([z, x], dim=-1)
validity = self.model(z)
return validity