-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathosim_sequence.py
519 lines (373 loc) · 19.3 KB
/
osim_sequence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
"""
Code inspired from: https://skel.is.tue.mpg.de
Copyright©2023 Max-Planck-Gesellschaft zur Förderung
der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
for Intelligent Systems. All rights reserved.
Author: Marilyn Keller
See https://skel.is.tue.mpg.de/license.html for licensing and contact information.
Reference: https://github.com/MarilynKeller/aitviewer-skel/blob/main/aitviewer/renderables/osim.py
"""
from calendar import c
import os
import shutil
import numpy as np
import tqdm
import trimesh
import torch
import nimblephysics as nimble
import pickle as pkl
# from utils.motion_process import recover_from_ric
def load_osim(osim_path, geometry_path=None, ignore_geometry=False):
"""Load an osim file"""
assert os.path.exists(osim_path), f'Could not find osim file {osim_path}'
osim_path = os.path.abspath(osim_path)
if geometry_path is None:
# Check that there is a Geometry folder at the same level as the osim file
geometry_path = os.path.join('/home/ubuntu/data/T2M-GPT','Geometry')
if os.path.dirname(osim_path) != os.path.dirname(geometry_path):
# Check that there is a Geometry folder at the same level as the osim file. Otherwise nimble physics cannot import it.
os.makedirs(os.path.join(os.path.dirname(osim_path),'Geometry'), exist_ok=True)
for file in os.listdir(geometry_path):
check_path = os.path.join(os.path.dirname(osim_path),'Geometry',file)
check_path = os.path.abspath(check_path)
if os.path.exists(check_path): continue # If symlink for a particular joint already exist then don't create a
# File data does not exist, but the filename exists, which is referecing to some random unrecongnized location
if os.path.islink(check_path):
os.unlink(check_path)
os.symlink(os.path.join(geometry_path, file), check_path)
print(osim_path)
print(os.path.join(os.path.dirname(osim_path), 'Geometry', file))
print("HELLLLLLLLLLLLLLOOOOOOOOOOOOOOOOOOOOO")
# Create a tmp folder
osim : nimble.biomechanics.OpenSimFile = nimble.biomechanics.OpenSimParser.parseOsim(osim_path)
assert osim is not None, "Could not load osim file: {}".format(osim_path)
return osim
class OSIMSequence():
"""
Represents a temporal sequence of OSSO poses. Can be loaded from disk or initialized from memory.
"""
def __init__(self,
osim,
motion,
color_markers_per_part = False,
color_markers_per_index = False, # Overrides color_markers_per_part
color_skeleton_per_part = False,
osim_path = None,
fps = None,
fps_in = None,
is_rigged = False,
viewer = True,
**kwargs):
"""
Initializer.
:param osim_path: A osim model
:param mot: A motion array
:osim_path: Path the osim model was loaded from (optional)
:param kwargs: Remaining arguments for rendering.
"""
self.osim_path = osim_path
self.osim = osim
self.motion = motion
assert self.osim_path, "No osim path given"
self.fps = fps
self.fps_in = fps_in
self._is_rigged = is_rigged or True
assert len(motion.shape) == 2
self.n_frames = motion.shape[0]
self._render_kwargs = kwargs
# The node names of the skeleton model, the associated mesh and the template indices
# self.node_names = [n.getName() for n in osim.skeleton.getBodyNodes()]
self.node_names = [osim.skeleton.getBodyNode(i).getName() for i in range(osim.skeleton.getNumBodyNodes())]
self.meshes_dict = {}
self.indices_dict = {}
self.generate_meshes_dict() # Populate self.meshes_dict and self.indices_dict
self.create_template()
# model markers
markers_labels = [ml for ml in self.osim.markersMap.keys()]
markers_labels.sort()
self.markers_labels = markers_labels
# Nodes
self.vertices, self.faces, self.marker_trajectory, self.joints, self.joints_ori = self.fk()
# TODO: fix that. This triggers a segfault at destruction so I hardcode it
# self.joints_labels = [J.getName() for J in self.osim.skeleton.getJoints()]
# self.joints_labels = ['ground_pelvis', 'hip_r', 'walker_knee_r', 'ankle_r', 'subtalar_r', 'mtp_r', 'hip_l', 'walker_knee_l', 'ankle_l', 'subtalar_l', 'mtp_l', 'back', 'neck', 'acromial_r', 'elbow_r', 'radioulnar_r', 'radius_hand_r', 'acromial_l', 'elbow_l', 'radioulnar_l', 'radius_hand_l']
def per_part_bone_colors(self):
""" Color the mesh with one color per node. """
vertex_colors = np.ones((self.n_frames, self.template.vertices.shape[0], 4))
color_palette = vertex_colors_from_weights(np.arange(len(self.node_names)), shuffle=True)
for i, node_name in enumerate(self.node_names):
id_start, id_end = self.indices_dict[node_name]
vertex_colors[:, id_start :id_end, 0:3] = color_palette[i, :]
return vertex_colors
def generate_meshes_dict(self):
""" Output a dictionary giving for each bone, the attached mesh"""
current_index = 0
self.indices_dict = {}
self.meshes_dict = {}
node_names = self.node_names
for node_name in node_names:
mesh_list = []
body_node = self.osim.skeleton.getBodyNode(node_name)
# print(f' Loading meshes for node: {node_name}')
num_shape_nodes = body_node.getNumShapeNodes()
if num_shape_nodes == 0:
print(f'WARNING:\tNo shape nodes listed for {node_name}')
for shape_node_i in range(num_shape_nodes):
shape_node = body_node.getShapeNode(shape_node_i)
submesh_path = shape_node.getShape().getMeshPath()
# Get the scaling for this meshes
scale = shape_node.getShape().getScale()
offset = shape_node.getRelativeTranslation()
# Load the mesh
try:
submesh = trimesh.load_mesh(submesh_path, process=False)
# print(f'Loaded mesh {submesh_path}')
except Exception as e:
print(e)
print(f'WARNING:\tCould not load mesh {submesh_path}')
submesh = None
continue
if submesh is not None:
trimesh.repair.fix_normals(submesh)
trimesh.repair.fix_inversion(submesh)
trimesh.repair.fix_winding(submesh)
# import pyvista
# submesh_poly = pyvista.read(submesh_path)
# faces_as_array = submesh_poly.faces.reshape((submesh_poly.n_faces, 4))[:, 1:]
# submesh = trimesh.Trimesh(submesh_poly.points, faces_as_array)
# Scale the bone to match .osim subject scaling
submesh.vertices[:] = submesh.vertices * scale
submesh.vertices[:] += offset
# print(f'submesh_path: {submesh_path}, Nb vertices: {submesh.vertices.shape[0]}')
mesh_list.append(submesh)
# Concatenate meshes
if mesh_list:
node_mesh = trimesh.util.concatenate(mesh_list)
self.indices_dict[node_name] = (current_index, current_index + node_mesh.vertices.shape[0])
current_index += node_mesh.vertices.shape[0]
else:
node_mesh = None
print("\t WARNING: No submesh for node:", node_name)
self.indices_dict[node_name] = (current_index, current_index )
# Add to the dictionary
self.meshes_dict[node_name] = node_mesh
print(self.meshes_dict)
def create_template(self):
part_meshes = []
for node_name in self.node_names:
mesh = self.meshes_dict[node_name]
# assert mesh, "No mesh for node: {}".format(node_name)
if mesh is None:
print( "WARNING: No mesh for node: {}".format(node_name))
if mesh:
part_meshes.append(mesh)
# part_meshes = [m for m in part_meshes if m]
template = trimesh.util.concatenate(part_meshes)
# import ipdb; ipdb.set_trace()
template.remove_degenerate_faces()
self.template = template
#save mesh
# # import ipdb; ipdb.set_trace()
# self.template.export('template.obj')
# print(f'Saved template to template.obj')
# from psbody.mesh import Mesh
# m = Mesh(filename='template.obj')
# m.set_vertex_colors_from_weights(np.arange(m.v.shape[0]))
# m.show()
@classmethod
def a_pose(cls, osim_path = None, **kwargs):
"""Creates a OSIM sequence whose single frame is a OSIM mesh in rest pose."""
# Load osim file
if osim_path is None:
osim : nimble.biomechanics.OpenSimFile = nimble.models.RajagopalHumanBodyModel()
osim_path = "RajagopalHumanBodyModel.osim" # This is not a real path, but it is needed to instantiate the sequence object
else:
osim = load_osim(osim_path)
assert osim is not None, "Could not load osim file: {}".format(osim_path)
motion = osim.skeleton.getPositions()[np.newaxis,:]
return cls(osim, motion,
osim_path = osim_path,
**kwargs)
@classmethod
def zero_pose(cls, osim_path = None, **kwargs):
"""Creates a OSIM sequence whose single frame is a OSIM mesh in rest pose."""
# Load osim file
if osim_path is None:
osim : nimble.biomechanics.OpenSimFile = nimble.models.RajagopalHumanBodyModel()
osim_path = "RajagopalHumanBodyModel.osim" # This is not a real path, but it is needed to instantiate the sequence object
else:
osim = nimble.biomechanics.OpenSimParser.parseOsim(osim_path)
assert osim is not None, "Could not load osim file: {}".format(osim_path)
# motion = np.zeros((1, len(osim.skeleton.getBodyNodes())))
motion = osim.skeleton.getPositions()[np.newaxis,:]
motion = np.zeros_like(motion)
# import ipdb; ipdb.set_trace()
return cls(osim, motion,
osim_path = osim_path,
**kwargs)
@classmethod
def from_ab_folder(cls, ab_folder, trial, start_frame=None, end_frame=None, fps_out=None, **kwargs):
"""
Load an osim sequence from a folder returned by AddBiomechanics
ab_folder: the folder returned by AddBiomechanics, ex: '/home/kellerm/Data/AddBiomechanics/CMU/01/smpl_head_manual'
trial: Trial name
start_frame: the first frame to load
end_frame: the last frame to load
fps_out: the output fps
"""
if ab_folder[-1] != '/':
ab_folder += '/'
mot_file = ab_folder + f"IK/{trial}_ik.mot"
osim_path = ab_folder + 'Models/optimized_scale_and_markers.osim'
return OSIMSequence.from_files(osim_path=osim_path, mot_file=mot_file, start_frame=start_frame, end_frame=end_frame, fps_out=fps_out, **kwargs)
@classmethod
def from_files(cls, osim_path, mot_file, geometry_path=None, start_frame=None, end_frame=None, fps_out: int=None, ignore_fps=False, ignore_geometry=False,**kwargs):
"""Creates a OSIM sequence from addbiomechanics return data
osim_path: .osim file path
mot_file : .mot file path
start_frame: first frame to use in the sequence
end_frame: last frame to use in the sequence
fps_out: frames per second of the output sequence
ignore_geometry : use the aitconfig.osim_geometry folder instead of the one next to the osim file
"""
# Load osim file
osim = load_osim(osim_path, geometry_path=geometry_path, ignore_geometry=ignore_geometry)
# Load the .mot file
mot: nimble.biomechanics.OpenSimMot = nimble.biomechanics.OpenSimParser.loadMot(
osim.skeleton, mot_file)
motion = np.array(mot.poses.T)
# Crop and sample
sf = start_frame or 0
ef = end_frame or motion.shape[0]
motion = motion[sf:ef]
# estimate fps_in
ts = np.array(mot.timestamps)
fps_estimated = 1/np.mean(ts[1:] - ts[:-1])
fps_in = int(round(fps_estimated))
print(f'Estimated fps for the .mot sequence: {fps_estimated}, rounded to {fps_in}')
if not ignore_fps:
assert abs(1 - fps_estimated/fps_in) < 1e-5 , f"FPS estimation might be bad, {fps_estimated} rounded to {fps_in}, check."
if fps_out is not None:
assert fps_in%fps_out == 0, 'fps_out must be a interger divisor of fps_in'
mask = np.arange(0, motion.shape[0], fps_in//fps_out)
print(f'Resampling from {fps_in} to {fps_out} fps. Keeping every {fps_in//fps_out}th frame')
# motion = resample_positions(motion, fps_in, fps_out) #TODO: restore this
motion = motion[mask]
del mot
else:
fps_out = fps_in
return cls(osim, motion, osim_path=osim_path, fps=fps_out, fps_in=fps_in, **kwargs)
@staticmethod
def to_numpy(x):
if isinstance(x, np.ndarray):
return x
return x.detach().cpu().numpy()
def fk(self):
"""Get vertices from the poses."""
# Forward kinematics https://github.com/nimblephysics/nimblephysics/search?q=setPositions
verts = np.zeros((self.n_frames, self.template.vertices.shape[0], self.template.vertices.shape[1]))
markers = np.zeros((self.n_frames, len(self.markers_labels), 3))
joints = np.zeros([self.n_frames, len(self.meshes_dict), 3])
joints_ori = np.zeros([self.n_frames, len(self.meshes_dict), 3, 3])
prev_verts = verts[0]
self.motion = torch.tensor(self.motion)
prev_pose = self.motion[0, :]
for frame_id in (pbar := tqdm.tqdm(range(self.n_frames))):
pbar.set_description("Generating osim skeleton meshes ")
pose = self.motion[frame_id, :]
# If the pose did not change, use the previous frame verts
if torch.all(pose == prev_pose) and frame_id != 0:
verts[frame_id] = prev_verts
continue
# Pose osim
self.osim.skeleton.setPositions(self.motion[frame_id, :])
# Since python 3.6, dicts have a fixed order so the order of this list should be marching labels
markers[frame_id, :, :] = np.vstack(self.osim.skeleton.getMarkerMapWorldPositions(self.osim.markersMap).values())
#Sanity check for previous comment
assert list(self.osim.skeleton.getMarkerMapWorldPositions(self.osim.markersMap).keys()) == self.markers_labels, "Marker labels are not in the same order"
for ni, node_name in enumerate(self.node_names):
# if ('thorax' in node_name) or ('lumbar' in node_name):
# # We do not display the spine as the riggidly rigged mesh can't represent the constant curvature of the spine
# continue
mesh = self.meshes_dict[node_name]
if mesh is not None:
part_verts = mesh.vertices
# pose part
transfo = self.osim.skeleton.getBodyNode(node_name).getWorldTransform()
# Add a row of homogenous coordinates
part_verts = np.concatenate([part_verts, np.ones((mesh.vertices.shape[0], 1))], axis=1)
part_verts = np.matmul(part_verts, transfo.matrix().T)[:,0:3]
# Update the part in the full mesh
id_start, id_end = self.indices_dict[node_name]
verts[frame_id, id_start :id_end, :] = part_verts
# Update joint
joints[frame_id, ni, :] = transfo.translation()
joints_ori[frame_id, ni, :, :] = transfo.rotation()
prev_verts = verts[frame_id]
prev_pose = pose
faces = self.template.faces
return self.to_numpy(verts), self.to_numpy(faces), markers, joints, joints_ori
################################# Subject Optimization using nimble ###############################################
class GetLowestPointLayer(torch.autograd.Function):
"""
This implements a differentiable query for the "lowest point" (specified relative to an `up` vector) on a skeleton.
"""
@staticmethod
def forward(ctx, skel, position):
"""
We can't put type annotations on this declaration, because the supertype
doesn't have any type annotations and otherwise mypy will complain, so here
are the types:
skel: nimble.dynamics.Skeleton
position: torch.Tensor,
bodyNames: List[str]
bodyScales: torch.Tensor
-> torch.Tensor
"""
originalScales = skel.getBodyScales()
originalPosition = skel.getPositions()
current_position = position.detach().numpy()
# Set positions
skel.setPositions(current_position)
# Set body scales
skel.setBodyScales(originalScales)
# Get lowest point
lowestPoint = skel.getLowestPoint()
# print(lowestPoint)
# print(f"Lowest Point:", lowestPoint)
ctx.gradWrtPos = skel.getGradientOfLowestPointWrtJoints()
ctx.skel = skel
# Reset and return
skel.setBodyScales(originalScales)
skel.setPositions(originalPosition)
# return torch.tensor([lowestPoint])
return torch.tensor([lowestPoint], device=position.device, requires_grad=True)
@staticmethod
def backward(ctx, grad_lowest_point):
"""
In the backward pass we receive a Tensor containing the gradient of the loss
with respect to the output, and we need to compute the gradient of the loss
with respect to the input.
"""
gradWrtPos: np.ndarray = ctx.gradWrtPos
skel: nimble.dynamics.Skeleton = ctx.skel
lossWrtLowestPoint: float = grad_lowest_point.numpy()[0]
lossWrtPos: torch.Tensor = torch.from_numpy(
gradWrtPos * lossWrtLowestPoint)
return (
None,
lossWrtPos
)
def groundConstraint(osim, motion):
assert len(motion.shape) == 3, "Motion should be NxTxD. Got:{motion.shape}"
N,T,D = motion.shape
sum = torch.zeros(1)
for m_index in range(N):
for t in range(T):
ground_error = GetLowestPointLayer.apply(osim.skeleton, motion[m_index,t])
# print(f"{m_index} {t} Lowest Point:", ground_error.numpy())
# just make sure we never penetrate the ground
ground_error = ground_error.clamp(min=-10)
ground_error = ground_error.clamp(max=10)
sum += torch.square(ground_error)
return sum