-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathclassify.py
executable file
·178 lines (140 loc) · 5.75 KB
/
classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#@title Imports
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from matplotlib import gridspec
from matplotlib import pyplot as plt
import numpy as np
import csv
import time
from datetime import datetime
import tensorflow as tf
import re
class ClassifyModel(object):
"""Class to load classify model and run inference."""
def __init__(self, frozen_graph=None, input_tensor_name=None, output_tensor_name=None):
"""Creates and loads pretrained model."""
if not frozen_graph.endswith('.pb'):
raise ValueError('frozen_graph is not a correct pb file!')
if ((not input_tensor_name) or (not output_tensor_name)) :
raise ValueError('input_tensor_name or output_tensor_name is None!')
self.input_tensor_name = input_tensor_name
self.output_tensor_name = output_tensor_name
self.is_debug = True
self.prediction =-1
self.graph, \
self.input_tensor, \
self.output_tensor = self.load_graph(frozen_graph)
self.sess = tf.Session(graph=self.graph)
self.labels = self.load_labels("data/imagenet_slim_labels.txt")
def load_graph(self, frozen_graph):
# We parse the graph_def file
with tf.gfile.GFile(frozen_graph, "rb") as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
# We load the graph_def in the default graph
with tf.Graph().as_default() as graph:
input_tensor, output_tensor = tf.import_graph_def(
graph_def,
input_map=None,
return_elements=[self.input_tensor_name, self.output_tensor_name],
name="",
producer_op_list=None)
if self.is_debug:
writer = tf.summary.FileWriter("./logs_classify_graph", graph=graph)
writer.close()
return graph, input_tensor, output_tensor
def read_tensor_from_image_file(self,
file_name,
input_height=299,
input_width=299,
input_mean=0,
input_std=255):
input_name = "file_reader"
output_name = "normalized"
file_reader = tf.read_file(file_name, input_name)
if file_name.endswith(".png"):
image_reader = tf.image.decode_png(
file_reader, channels=3, name="png_reader")
elif file_name.endswith(".gif"):
image_reader = tf.squeeze(
tf.image.decode_gif(file_reader, name="gif_reader"))
elif file_name.endswith(".bmp"):
image_reader = tf.image.decode_bmp(file_reader, name="bmp_reader")
else:
image_reader = tf.image.decode_jpeg(
file_reader, channels=3, name="jpeg_reader")
float_caster = tf.cast(image_reader, tf.float32)
dims_expander = tf.expand_dims(float_caster, 0)
resized = tf.image.resize_bilinear(dims_expander, [input_height, input_width])
normalized = tf.divide(tf.subtract(resized, [input_mean]), [input_std])
with tf.Session() as sess:
result = sess.run(normalized)
return result
def load_labels(self, label_file):
label = []
proto_as_ascii_lines = tf.gfile.GFile(label_file).readlines()
for l in proto_as_ascii_lines:
label.append(l.rstrip())
return label
def run(self, image):
"""Runs inference on a single image.
Args:
image: raw input image.
Returns:
"""
start_time = time.time()
results= self.sess.run(
self.output_tensor,
feed_dict={self.input_tensor:image})
duration = time.time() - start_time
if self.is_debug:
print ('%s: ClassifyModel.run(), duration = %.3f' %(datetime.now(), duration))
self.prediction = np.argmax(results)
return results
def vis_segmentation(image):
plt.figure(figsize=(6, 6))
plt.imshow(image)
plt.axis('off')
plt.title('input image')
plt.show()
def run_classification(ClassifyModel,path):
"""Inferences classify model and visualizes result."""
if not tf.gfile.Exists(path):
raise ValueError('path is None!')
image_np = ClassifyModel.read_tensor_from_image_file(path)
results = ClassifyModel.run(image_np)
labels = ClassifyModel.labels[ClassifyModel.prediction]
if ClassifyModel.is_debug:
results = np.squeeze(results)
top_k = results.argsort()[-5:][::-1]
for i in top_k:
print(ClassifyModel.labels[i], results[i])
#vis_segmentation(np.squeeze(image_np, axis=0))
return labels
def read_examples_list(path):
"""Read list of training or validation examples.
Args:
path: absolute path to examples list file.
Returns:
list of example identifiers (strings).
"""
with tf.gfile.GFile(path) as fid:
lines = fid.readlines()
return [line.strip().split(' ')[0] for line in lines]
MODEL_DIR= "data/inception_v3_2016_08_28_frozen.pb"
flags = tf.app.flags
# Dataset settings.
tf.app.flags.DEFINE_string('test_path', 'data/', 'Test image path.')
flags.DEFINE_string('modir_dir', MODEL_DIR, 'Where the Model reside.')
FLAGS = flags.FLAGS
def main():
INPUT_TENSOR_NAME = 'input:0'
OUTPUT_TENSOR_NAME = 'InceptionV3/Predictions/Reshape_1:0'
MODEL = ClassifyModel(FLAGS.modir_dir, INPUT_TENSOR_NAME,OUTPUT_TENSOR_NAME)
image_files = tf.gfile.Glob(FLAGS.test_path+"*.jpg")
print(image_files)
for file in image_files:
run_classification(MODEL, file)
main()