-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinputHybridIOT.py
259 lines (201 loc) · 10 KB
/
inputHybridIOT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# -*- coding: utf-8 -*-
"""
Created on Tue May 28 20:57:08 2024
@author: regin
"""
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
#%%
current_pop = 16655799
project_pop = 20610000
Populationgrowth = project_pop / current_pop
unit = "tonne"
#%% input path of the IOT
iot_path = r"C:/Industrial_ecology/Thesis/IOT_2015_ixi"
save_path = r'C:/Industrial_ecology/Thesis/Circularinterventions/Code'
#%%Input of the HIOT
hybrid_output_path = "C:/Industrial_ecology/Thesis/HIOT_2021_ixi"
# F_imp_hh = pd.read_csv(f'{hybrid_output_path}/impacts/F_Y.txt' , sep='\t', index_col=[0], header=[0, 1])
# Z_labels = pd.read_csv(f'{iot_path}/Z.txt', sep='\t', index_col=[0, 1], header=[0, 1])
# A = pd.read_csv(f'{iot_path}/A.txt', sep='\t', index_col=[0, 1], header=[0,1])
# Y = pd.read_csv(f'{iot_path}/Y.txt' , sep='\t', index_col=[0, 1], header=[0, 1])
# data input and modify
hiot_path = "C:/Industrial_ecology/Thesis/Circularinterventions/Data/"
Z_hybrid = pd.read_csv(f"{hiot_path}MR_HIOT_2011_v3_3_18_by_product_technology.csv", index_col=[0,1,2,3,4], header=[0,1,2,3])
Z_hybrid = pd.DataFrame(Z_hybrid.values, columns = Z_hybrid.columns, index = Z_hybrid.columns)
Z_hybrid = Z_hybrid.droplevel([2,3], axis=1).droplevel([2,3], axis=0)
Y_hybrid = pd.read_csv(f"{hiot_path}MR_HIOT_2011_v3_3_18_FD.csv", index_col=[0,1,2,3,4], header=[0,1,2,3])
Y_hybrid = pd.DataFrame(Y_hybrid.values, columns = Y_hybrid.columns, index = Z_hybrid.columns)
Y_hybrid = Y_hybrid.droplevel([2,3], axis=1)
Y_hybrid.NL = Y_hybrid.NL * Populationgrowth
#modify the final demand to project to 2050
x_hybrid = Z_hybrid.sum(axis = 1) + Y_hybrid.sum(axis = 1)
x_out = x_hybrid.copy()
x_out[x_out!=0] = 1/x_out[x_out!=0]
inv_diag_x = np.diag(x_out)
A_hybrid = Z_hybrid @ inv_diag_x
A_hybrid = pd.DataFrame(A_hybrid.values, columns = Z_hybrid.columns, index = Z_hybrid.columns)
I = np.eye(A_hybrid.shape[0])
L_hybrid = np.linalg.inv(I-A_hybrid)
# hybrid_output_path = "C:/Industrial_ecology/Thesis/HIOT_2021_ixi"
# A_hybrid.to_csv(f'{hybrid_output_path}/A.txt', sep='\t', index=True)
# Y_hybrid.to_csv(f'{hybrid_output_path}/Y.txt',sep='\t', index=True)
#world_IOT = parse_exiobase_3(path = hybrid_output_path)
#%%
file_path = 'C:/Industrial_ecology/Thesis/Circularinterventions/Code/Input_circular_interventions/shocks_full.xlsx'
sheet_name = 'z' # Replace with the name of your sheet
Full_shocks_A = pd.read_excel(file_path, sheet_name=sheet_name)
print(Full_shocks_A)
#%% Implement shocks
A_modify = A_hybrid.copy()
for _, row in Full_shocks_A.iterrows():
country_row = row['row region']
sector_row = row['row sector']
country_column = row['column region']
sector_column = row['column sector']
value = row['value']
typechange = row["type"]
if typechange == "Percentage":
A_modify.loc[(country_row, sector_row), (country_column, sector_column)] *= 1 + value
else:
A_modify.loc[(country_row, sector_row), (country_column, sector_column)] += value
#groupby to check results
A_modify1 = A_modify.sum(axis = 0)
sortedHybrid = A_modify1.groupby(level=0, axis=0, sort=False).sum()
A_hybrid = A_hybrid.sum(axis = 0)
sortedHybridBaseline = A_hybrid.groupby(level=0, axis=0, sort=False).sum()
diffchecker = pd.DataFrame()
diffchecker["baseline"] = sortedHybridBaseline
diffchecker["changes"] = sortedHybrid
diffchecker["diff"] = diffchecker["changes"] - diffchecker["baseline"]
A_modify.loc[("NL", "Cultivation of wheat"), ("NL", "Cultivation of wheat")]
#%%
file_path = 'C:/Industrial_ecology/Thesis/Circularinterventions/Code/Input_circular_interventions/shocks_full.xlsx'
sheet_name = 'Y' # Replace with the name of your sheet
Full_shocks_Y = pd.read_excel(file_path, sheet_name=sheet_name)
print(Full_shocks_Y)
Y_modify = Y_hybrid.copy()
for _, row in Full_shocks_Y.iterrows():
country_row = row['row region']
sector_row = row['row sector']
country_column = row['column region']
sector_column = row['demand category']
value = row['value']
Y_modify.loc[(country_row, sector_row), (country_column, sector_column)] *= 1 + value
#groupby to check results
Y_modify1 = Y_modify.sum(axis = 1)
YsortedHybrid = Y_modify1.groupby(level=0, axis=0, sort=False).sum()
Y_hybrid = Y_hybrid.sum(axis = 1)
YsortedHybridBaseline = Y_hybrid.groupby(level=0, axis=0, sort=False).sum()
diffchecker["baselineY"] = YsortedHybridBaseline
diffchecker["changesY"] = YsortedHybrid
diffchecker["diffY"] = diffchecker["changesY"] - diffchecker["baselineY"]
#%% Check difference between all by taking resource activity and emmissions (CO2)
extensions = pd.ExcelFile("C:/Industrial_ecology/Thesis/Circularinterventions/Data/MR_HIOT_2011_v3_3_18_extensions.xlsx")
extensions.sheet_names
resource = "Iron ores"
resource = "Bauxite and aluminium ores"
Emission = "Carbon dioxide, fossil"
#resource = "Copper ores"
#resource extraction --> take only the material of interest
RE = extensions.parse(sheet_name="resource_act", index_col=[0,1], header=[0,1,2,3])
RE_FD = extensions.parse(sheet_name="resource_FD", index_col=[0,1], header=[0,1,2,3])
RE = RE.loc[resource].sum(axis = 0)
RE_FD = RE_FD.loc[resource]
#emissions
EM = extensions.parse(sheet_name="Emiss_act", index_col=[0,1,2], header=[0,1,2,3])
EM_FD = extensions.parse(sheet_name="Emiss_FD", index_col=[0,1,2], header=[0,1,2,3])
EM = EM.loc[Emission].sum(axis = 0)
EM_FD = EM_FD.loc[Emission]
#%%calculate the intensiteis in the baseline scenario
RE_f = RE.values @ inv_diag_x
EM_f = EM.values @ inv_diag_x
#%%Create necessary variables to calculate the new resource extractions
I = np.eye(A_hybrid.shape[0])
L_ct = np.linalg.inv(I - A_modify.values)
Z_modify = A_modify @ (np.diag(x_hybrid))
x_ct = Z_modify.sum(axis = 1) + Y_modify.sum(axis = 1)
x_ct = L_ct @ Y_modify.values.sum(axis = 1)
RE_ct = RE_f * x_ct
EM_ct = EM_f * x_ct
F_diff_RE = (RE_ct - RE.values)#.dropna()
F_diff_EM = (EM_ct - EM.values)#.dropna()
F_diff_RE = pd.DataFrame(F_diff_RE, index = RE.index)
F_diff_RE_grouped_region = F_diff_RE.groupby(level=0, axis=0, sort=False).sum()
#F_relative_change_grouped_region *= 0.001
F_diff_EM = pd.DataFrame(F_diff_EM, index = EM.index)
F_diff_EM_grouped_region = F_diff_EM.groupby(level=0, axis=0, sort=False).sum()
RE_FD_grouped_region = RE_FD.groupby(level=0, axis=1, sort=False).sum()
EM_FD_grouped_region = EM_FD.groupby(level=0, axis=1, sort=False).sum()
total_RE = F_diff_RE_grouped_region.values + RE_FD_grouped_region.T.values
total_RE = pd.DataFrame(total_RE, index =F_diff_RE_grouped_region.index )
total_EM = F_diff_EM_grouped_region.values + EM_FD_grouped_region.T.values
total_EM = pd.DataFrame(total_EM, index =F_diff_RE_grouped_region.index )
total_RE = total_RE/1000 #tonnes to kilotonnes
total_EM = total_EM/1000000 #kg to kilotonnes
#%% Make a graph that includes the below threshold values so it doesnt dissapear out of the system
colors = plt.get_cmap('Set1').colors
ax = total_RE.unstack().plot(kind="bar", stacked=True, legend=False, figsize=(20, 12), color=colors)
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize = 11)
ax.grid(True) # Add grid lines
ax.set_title(f'difference baseline and ct for {resource}')
ax.set_ylabel(f"Resource extraction of {resource} in tonnes")
ax.set_xlabel('Regions')
# Show the plot
plt.show()
#%%
F_diff_RE_grouped_region.plot(kind = "bar")
#%%
threshold = 1000
F_relative_change1 = F_diff_RE.droplevel([2,3], axis=0)
# Filter the DataFrame to include only values above the threshold
filtered_df = F_relative_change1[np.absolute(F_relative_change1) > threshold].dropna()
# Calculate the sum of values below the threshold
below_threshold_sum = F_relative_change1[np.absolute(F_relative_change1) <= threshold].sum().sum()
# Add the below-threshold sum as a new row
filtered_df.loc[('Below Threshold', 'Sum of below threshold'), :] = below_threshold_sum
# Sort the DataFrame to keep the new row at the end (optional)
# filtered_df = filtered_df.sort_index()
# Choose a color palette (using Set1)
colors = plt.get_cmap('Set1').colors
plt.rcParams.update({'font.size': 18}) # Reducing font size
# Plot the filtered DataFrame with adjusted size and legend placement
ax = filtered_df.unstack().plot(kind="bar", stacked=True, legend=False, figsize=(10, 6), color=colors)
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize = 11)
ax.grid(True) # Add grid lines
ax.set_title(f'Filtered difference in resource extraction (full- baseline)\n in {resource} (threshold = {threshold} {unit})', fontsize=12)
ax.set_ylabel(f"{resource} in tonnes", fontsize=12)
ax.set_xlabel('Regions',fontsize=12)
ax.set_xticklabels(ax.get_xticklabels(), rotation=45, ha='right', fontsize=12)
# ax.set_yticklabels(ax.get_yticklabels(),fontsize=12)
# Show the plot
plt.show()
#%%
threshold = 500000
F_relative_change1 = F_diff_EM.droplevel([2,3], axis=0)
# Filter the DataFrame to include only values above the threshold
filtered_df = F_relative_change1[np.absolute(F_relative_change1) > threshold].dropna()
# Calculate the sum of values below the threshold
below_threshold_sum = F_relative_change1[np.absolute(F_relative_change1) <= threshold].sum().sum()
# Add the below-threshold sum as a new row
filtered_df.loc[('Below Threshold', 'Sum of below threshold'), :] = below_threshold_sum
# Sort the DataFrame to keep the new row at the end (optional)
# filtered_df = filtered_df.sort_index()
# Choose a color palette (using Set1)
colors = plt.get_cmap('Set1').colors
plt.rcParams.update({'font.size': 18}) # Reducing font size
# Plot the filtered DataFrame with adjusted size and legend placement
ax = filtered_df.unstack().plot(kind="bar", stacked=True, legend=False, figsize=(10, 6), color=colors)
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5),fontsize = 11)
ax.grid(True) # Add grid lines
ax.set_title(f'Filtered difference emisison of interest (full- baseline)\n in {Emission} (threshold = {threshold} {unit})', fontsize=12)
ax.set_ylabel(f"{Emission} in tonnes", fontsize=12)
ax.set_xlabel('Regions',fontsize=12)
plt.tight_layout(pad=3.0)
ax.set_xticklabels(ax.get_xticklabels(), rotation=45, ha='right', fontsize=12)
# ax.set_yticklabels(ax.get_yticklabels(),fontsize=12)
# Show the plot
plt.show()
#%%
F_diff_RE_total= F_diff_RE.sum()