-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInputCircularInterventions.py
82 lines (68 loc) · 3.16 KB
/
InputCircularInterventions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import mario
from mario import slicer, parse_exiobase_3,parse_from_txt, hybrid_sut_exiobase
# %%
regionlock = False #nl and rest of the world
regionlock2 = False # bigger regions in the world
sectorlock = False # arbitary sector combinations
outputpath = "C:/Industrial_ecology/Thesis/Circularinterventions/Code/Output/"
#%% input path of the IOT
iot_path = r"C:/Industrial_ecology/Thesis/IOT_2011_ixi"
save_path = r'C:/Industrial_ecology/Thesis/Circularinterventions/Code'
world_IOT = parse_exiobase_3(path=iot_path, version='3.8.1')
#world_IOT.get_shock_excel(path=save_path)
#%%
if regionlock == True:
world_IOT.aggregate(r'Dutch_agg.xlsx', ignore_nan= True, levels = "Region")
RegionI= "NL"
world_IOT.get_index("Region")
if regionlock2 == True:
world_IOT.aggregate(r'Bigregion.xlsx', ignore_nan= True, levels = "Region")
RegionI= "NL"
world_IOT.get_index("Region")
#%% Uncomment if in need of shockexcel
#world_IOT.get_aggregation_excel(path=r'sector.xlsx', levels= "Sector")
#%% Implement Aluminiums shocks (shock 1)
world_IOT.shock_calc(io=r'shocks_al.xlsx', # Path to the excel file
z= True, # the shock will be implemented on z
Y= True,
e= True,
notes=['Implement Aluminium shocks']
)
#%%Implement Steel shocks(shock 2)
world_IOT.shock_calc(io=r'shocks_st.xlsx', # Path to the excel file
z= True, # the shock will be implemented on z
Y = True,
e = True,
notes=['Implement Steel shocks']
)
#%%Implement both aluminium and steel shocks (shock 3)
world_IOT.shock_calc(io=r'shocks_full.xlsx', # Path to the excel file
z= True, # the shock will be implemented on z
Y= True,
e= True,
notes=['Implement Aluminium shocks']
)
#%%Implement sectoral aggregation to reduce sector
if sectorlock == True:
world_IOT.aggregate(r'sector.xlsx', ignore_nan= True, levels = "Sector")
world_IOT.get_index("Sector")
#%% Create variables which will be used in the enviromental footprint and territorial analysis
A_Al_adjusted = world_IOT['shock 1']['z']
Y_Al_adjusted = world_IOT['shock 1']['Y']
e_Al_adjusted =world_IOT['shock 1']['E']
A_St_adjusted = world_IOT['shock 2']['z']
Y_St_adjusted = world_IOT['shock 2']['Y']
e_St_adjusted =world_IOT['shock 2']['E']
A_full_adjusted = world_IOT['shock 3']['z']
Y_full_adjusted = world_IOT['shock 3']['Y']
e_full_adjusted =world_IOT['shock 3']['E']
#%%Export all variables to csv files
A_Al_adjusted.to_csv(f'{outputpath}A_Al_adjusted.csv', index=True)
Y_Al_adjusted.to_csv(f'{outputpath}Y_Al_adjusted.csv', index=True)
e_Al_adjusted.to_csv(f'{outputpath}F_Al_adjusted.csv', index=True)
A_St_adjusted.to_csv(f'{outputpath}A_St_adjusted.csv', index=True)
Y_St_adjusted.to_csv(f'{outputpath}Y_St_adjusted.csv', index=True)
e_St_adjusted.to_csv(f'{outputpath}F_St_adjusted.csv', index=True)
A_full_adjusted.to_csv(f'{outputpath}A_full_adjusted.csv', index=True)
Y_full_adjusted.to_csv(f'{outputpath}Y_full_adjusted.csv', index=True)
e_full_adjusted.to_csv(f'{outputpath}F_full_adjusted.csv', index=True)