-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathREADME.Rmd
executable file
·399 lines (331 loc) · 20.4 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
---
title: "rISIMIP - R package for accessing and analysing ISIMIP Environmental Data"
output:
github_document
editor_options:
chunk_output_type: console
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo=T, warning=F, comment=NA, message=F, fig.path="figures/")
```
## Overview
`rISIMIP` is an R package for <!--downloading,--> accessing and analysing data provided by the Inter-sectoral Impact Model Intercomparison Project (ISIMIP). Data from the different simulation rounds (ISIMIP2a, ISIMIP2b, ISIMIP3a, ISIMIP3b) is available from [here](https://esg.pik-potsdam.de/search/isimip/). For more information on the different data types and data input and output products have a look at the [ISIMIP Website](https://www.isimip.org/). The package currently consists of two functions:
<!--* `getISIMIP()` downloads ISIMIP data -->
<!-- getISIMIP should call listISIMIP() and than run download!!!-->
* `readISIMIP()` reads and pre-processes ISIMIP data
* `listISIMIP()` creates a list of requested ISIMIP data files
You can learn more about them in `vignette("rISIMIP")`.
An example of extracting country-specific data from ISIMIP2b can be found in `vignette("country-specific")`.
## Installation
To *use* the package, install it directly from GitHub using the `remotes` package:
```{r}
# Install remotes if not previously installed
if(!"remotes" %in% installed.packages()[,"Package"]) install.packages("remotes")
# Install rISIMIP from Github if not previously installed
if(!"rISIMIP" %in% installed.packages()[,"Package"]) remotes::install_github("RS-eco/rISIMIP", build_vignettes = TRUE)
```
**If you encounter a bug or if you have any problems, please file an [issue](https://github.com/RS-eco/rISIMIP/issues) on Github.**
## Usage
```{r}
# Load rISIMIP package
library(rISIMIP)
```
### List ISIMIP files
The function `listISIMIP` just lists all climate files for the desired time period, model and variable. The files can then be put into the `aggregateNC` function of the `processNC` package for processing the required NetCDF files.
```{r list_urbanareas, eval=F}
# List urban area files for histsoc scenario - ISIMIP2b
listISIMIP(path="I:/", version="ISIMIP2b", type="landuse",
scenario="histsoc", var="urbanareas", startyear=1861, endyear=2005)
# List crop data files for histsoc scenario - ISIMIP3b
listISIMIP(path="I:/", version="ISIMIP3b", type="landuse",
scenario="histsoc", var="5crops", startyear=1861, endyear=2005)
```
**Note:** The path must lead to a file directory on your computer, which contains the required ISIMIP files. You can download the required ISIMIP data files from: https://esg.pik-potsdam.de/search/isimip/
### Read ISIMIP files
With `readISIMIP` you can read one or multiple ISIMIP datafiles into a raster stack.
```{r read_urbanareas, eval=F}
# Read urban area file for 2005soc scenario - ISIMIP2b
(urbanareas_1970_1999 <- readISIMIP(path="I:/", type="landuse", scenario="2005soc",
var="urbanareas", startyear=1970, endyear=1999))
# Read pasture file for 2015soc scenario - ISIMIP3b
(pastures_1970_1999 <- readISIMIP(path="I:/", type="landuse", scenario="2015soc",
var="pastures", startyear=1970, endyear=1999))
```
However, this is not useful if you are interested in long time periods, as one datafile is about 7 GB in size and you will quickly run into memory limitations.
## Internal data
`rISIMIP` contains various pre-processed data. See the *data-raw* folder for how we derived the included datasets.
### Temperature thresholds
Annual global mean temperature as well as the 31-year running mean were calculated for each GCM and four RCPs (RCP2.6, RCP4.5, RCP6.0 and RCP8.5). Furthermore, the year when the 31-year runnning mean of global mean temperature crosses a certain temperature threshold has been calculated. The data has been provided by ISIMIP and a summary of it can be accessed from the `vignette("temperature-thresholds")` vignette and is also available from [the ISIMIP Website](https://www.isimip.org/protocol/temperature-thresholds-and-time-slices/).
### Landseamask
The landseamask used by ISIMIP has been included in the package and can be accessed by:
```{r}
data("landseamask_generic")
```
### Bioclimatic data
The code for calculating global bioclimatic data from ISIMIP2b and ISIMIP3b mnodel output can be found in `vignette("global-landonly")` and `vignette("global-landonly-isimip3b")` respectively.
#### ISIMIP2b & EWEMBI
Current and future bioclimatic data for three 30-yr periods (1995, 2050, 2080) was derived from the EWEMBI (https://esg.pik-potsdam.de/search/isimip/?project=ISIMIP2b&product=input_secondary&dataset_type=Climate+atmosphere+observed) and ISIMIP2b data (https://esg.pik-potsdam.de/search/isimip/?project=ISIMIP2b&product=input&dataset_type=Climate+atmosphere+simulated) and is included in this package.
**EWEMBI - 1995**
```{r bio1_1995, fig.width=9, fig.height=4}
data("bioclim_ewembi_1995_landonly")
library(dplyr); library(sf); library(ggplot2)
data(outline, package="ggmap2")
outline <- sf::st_as_sf(outline)
col_val <- scales::rescale(unique(c(seq(min(bioclim_ewembi_1995_landonly$bio1), 0, length=5),
seq(0, max(bioclim_ewembi_1995_landonly$bio1), length=5))))
bioclim_ewembi_1995_landonly %>% select(x,y,bio1) %>%
ggplot() + geom_tile(aes(x=x, y=y, fill=bio1)) +
geom_sf(data=outline, fill="transparent", colour="black") +
scale_fill_gradientn(name="tmean (°C)", colours=rev(colorRampPalette(
c("#00007F", "blue", "#007FFF", "cyan",
"white", "yellow", "#FF7F00", "red", "#7F0000"))(255)),
na.value="transparent", values=col_val,
limits=c(min(bioclim_ewembi_1995_landonly$bio1)-2,
max(bioclim_ewembi_1995_landonly$bio1)+2)) +
coord_sf(expand=F,
xlim=c(min(bioclim_ewembi_1995_landonly$x),
max(bioclim_ewembi_1995_landonly$x)),
ylim=c(min(bioclim_ewembi_1995_landonly$y),
max(bioclim_ewembi_1995_landonly$y)),
ndiscr=0) + theme_classic() +
theme(axis.title = element_blank(), axis.line = element_blank(),
axis.ticks = element_blank(), axis.text = element_blank(),
plot.background = element_rect(fill = "transparent"),
legend.background = element_rect(fill = "transparent"),
legend.box.background = element_rect(fill = "transparent", colour=NA))
```
**RCP2.6 - 2080**
```{r bio1_2080_rcp26, fig.width=9, fig.height=4}
data("bioclim_gfdl-esm2m_rcp26_2080_landonly")
data("bioclim_hadgem2-es_rcp26_2080_landonly")
data("bioclim_ipsl-cm5a-lr_rcp26_2080_landonly")
data("bioclim_miroc5_rcp26_2080_landonly")
bioclim_rcp26_2080_landonly <- bind_rows(`bioclim_gfdl-esm2m_rcp26_2080_landonly`,
`bioclim_hadgem2-es_rcp26_2080_landonly`,
`bioclim_ipsl-cm5a-lr_rcp26_2080_landonly`,
`bioclim_miroc5_rcp26_2080_landonly`) %>%
select(x,y,bio1) %>% group_by(x,y) %>% summarise(bio1=mean(bio1, na.rm=T))
col_val <- scales::rescale(unique(c(seq(min(bioclim_rcp26_2080_landonly$bio1), 0, length=5),
seq(0, max(bioclim_rcp26_2080_landonly$bio1), length=5))))
ggplot() + geom_tile(data=bioclim_rcp26_2080_landonly, aes(x=x, y=y, fill=bio1)) +
geom_sf(data=outline, fill="transparent", colour="black") +
scale_fill_gradientn(name="tmean (°C)", colours=rev(colorRampPalette(
c("#00007F", "blue", "#007FFF", "cyan",
"white", "yellow", "#FF7F00", "red", "#7F0000"))(255)),
na.value="transparent", values=col_val,
limits=c(min(bioclim_rcp26_2080_landonly$bio1)-2,
max(bioclim_rcp26_2080_landonly$bio1)+2)) +
coord_sf(expand=F,
xlim=c(min(bioclim_rcp26_2080_landonly$x),
max(bioclim_rcp26_2080_landonly$x)),
ylim=c(min(bioclim_rcp26_2080_landonly$y),
max(bioclim_rcp26_2080_landonly$y)),
ndiscr=0) + theme_classic() +
theme(axis.title = element_blank(), axis.line = element_blank(),
axis.ticks = element_blank(), axis.text = element_blank(),
plot.background = element_rect(fill = "transparent"),
legend.background = element_rect(fill = "transparent"),
legend.box.background = element_rect(fill = "transparent", colour=NA))
```
**RCP6.0 - 2080**
```{r bio1_2080_rcp60, fig.width=9, fig.height=4}
data("bioclim_gfdl-esm2m_rcp60_2080_landonly")
data("bioclim_hadgem2-es_rcp60_2080_landonly")
data("bioclim_ipsl-cm5a-lr_rcp60_2080_landonly")
data("bioclim_miroc5_rcp60_2080_landonly")
bioclim_rcp60_2080_landonly <- bind_rows(`bioclim_gfdl-esm2m_rcp60_2080_landonly`,
`bioclim_hadgem2-es_rcp60_2080_landonly`,
`bioclim_ipsl-cm5a-lr_rcp60_2080_landonly`,
`bioclim_miroc5_rcp60_2080_landonly`) %>%
select(x,y,bio1) %>% group_by(x,y) %>% summarise(bio1=mean(bio1, na.rm=T))
col_val <- scales::rescale(unique(c(seq(min(bioclim_rcp60_2080_landonly$bio1), 0, length=5),
seq(0, max(bioclim_rcp60_2080_landonly$bio1), length=5))))
ggplot() + geom_tile(data=bioclim_rcp60_2080_landonly, aes(x=x, y=y, fill=bio1)) +
geom_sf(data=outline, fill="transparent", colour="black") +
scale_fill_gradientn(name="tmean (°C)", colours=rev(colorRampPalette(
c("#00007F", "blue", "#007FFF", "cyan",
"white", "yellow", "#FF7F00", "red", "#7F0000"))(255)),
na.value="transparent", values=col_val,
limits=c(min(bioclim_rcp60_2080_landonly$bio1)-2,
max(bioclim_rcp60_2080_landonly$bio1)+2)) +
coord_sf(expand=F,
xlim=c(min(bioclim_rcp60_2080_landonly$x),
max(bioclim_rcp60_2080_landonly$x)),
ylim=c(min(bioclim_rcp60_2080_landonly$y),
max(bioclim_rcp60_2080_landonly$y)),
ndiscr=0) + theme_classic() +
theme(axis.title = element_blank(), axis.line = element_blank(),
axis.ticks = element_blank(), axis.text = element_blank(),
plot.background = element_rect(fill = "transparent"),
legend.background = element_rect(fill = "transparent"),
legend.box.background = element_rect(fill = "transparent", colour=NA))
```
**RCP8.5 - 2080**
```{r bio1_2080_rcp85, fig.width=9, fig.height=4}
data("bioclim_gfdl-esm2m_rcp85_2080_landonly")
data("bioclim_hadgem2-es_rcp85_2080_landonly")
data("bioclim_ipsl-cm5a-lr_rcp85_2080_landonly")
data("bioclim_miroc5_rcp85_2080_landonly")
bioclim_rcp85_2080_landonly <- bind_rows(`bioclim_gfdl-esm2m_rcp85_2080_landonly`,
`bioclim_hadgem2-es_rcp85_2080_landonly`,
`bioclim_ipsl-cm5a-lr_rcp85_2080_landonly`,
`bioclim_miroc5_rcp85_2080_landonly`) %>%
select(x,y,bio1) %>% group_by(x,y) %>% summarise(bio1=mean(bio1, na.rm=T))
col_val <- scales::rescale(unique(c(seq(min(bioclim_rcp85_2080_landonly$bio1), 0, length=5),
seq(0, max(bioclim_rcp85_2080_landonly$bio1), length=5))))
ggplot() + geom_tile(data=bioclim_rcp85_2080_landonly, aes(x=x, y=y, fill=bio1)) +
geom_sf(data=outline, fill="transparent", colour="black") +
scale_fill_gradientn(name="tmean (°C)", colours=rev(colorRampPalette(
c("#00007F", "blue", "#007FFF", "cyan",
"white", "yellow", "#FF7F00", "red", "#7F0000"))(255)),
na.value="transparent", values=col_val,
limits=c(min(bioclim_rcp85_2080_landonly$bio1)-2,
max(bioclim_rcp85_2080_landonly$bio1)+2)) +
coord_sf(expand=F,
xlim=c(min(bioclim_rcp85_2080_landonly$x),
max(bioclim_rcp85_2080_landonly$x)),
ylim=c(min(bioclim_rcp85_2080_landonly$y),
max(bioclim_rcp85_2080_landonly$y)),
ndiscr=0) + theme_classic() +
theme(axis.title = element_blank(), axis.line = element_blank(),
axis.ticks = element_blank(), axis.text = element_blank(),
plot.background = element_rect(fill = "transparent"),
legend.background = element_rect(fill = "transparent"),
legend.box.background = element_rect(fill = "transparent", colour=NA))
```
#### ISIMIP3b & GSWP3-W5E5
Current and future bioclimatic data for five 30-yr periods (1995, 2000, 2005, 2050, 2080) was derived from the GSWP3-W5E5 and ISIMIP3b data (https://esg.pik-potsdam.de/search/isimip/?project=ISIMIP3b&product=input&dataset_type=Climate+atmosphere+simulated) and is included in this package.
**GSWP3_W5E5 - 2005**
```{r bio1_2005, fig.width=9, fig.height=4}
data("bioclim_gswp3-w5e5_obsclim_2005_landonly")
library(dplyr); library(sf); library(ggplot2)
data(outline, package="ggmap2")
outline <- sf::st_as_sf(outline)
col_val <- scales::rescale(unique(c(seq(min(`bioclim_gswp3-w5e5_obsclim_2005_landonly`$bio1), 0, length=5),
seq(0, max(`bioclim_gswp3-w5e5_obsclim_2005_landonly`$bio1), length=5))))
`bioclim_gswp3-w5e5_obsclim_2005_landonly` %>% select(x,y,bio1) %>%
ggplot() + geom_tile(aes(x=x, y=y, fill=bio1)) +
geom_sf(data=outline, fill="transparent", colour="black") +
scale_fill_gradientn(name="tmean (°C)", colours=rev(colorRampPalette(
c("#00007F", "blue", "#007FFF", "cyan",
"white", "yellow", "#FF7F00", "red", "#7F0000"))(255)),
na.value="transparent", values=col_val,
limits=c(min(`bioclim_gswp3-w5e5_obsclim_2005_landonly`$bio1)-2,
max(`bioclim_gswp3-w5e5_obsclim_2005_landonly`$bio1)+2)) +
coord_sf(expand=F,
xlim=c(min(`bioclim_gswp3-w5e5_obsclim_2005_landonly`$x),
max(`bioclim_gswp3-w5e5_obsclim_2005_landonly`$x)),
ylim=c(min(`bioclim_gswp3-w5e5_obsclim_2005_landonly`$y),
max(`bioclim_gswp3-w5e5_obsclim_2005_landonly`$y)),
ndiscr=0) + theme_classic() +
theme(axis.title = element_blank(), axis.line = element_blank(),
axis.ticks = element_blank(), axis.text = element_blank(),
plot.background = element_rect(fill = "transparent"),
legend.background = element_rect(fill = "transparent"),
legend.box.background = element_rect(fill = "transparent", colour=NA))
```
**SSP126 - 2080**
```{r bio1_2080_ssp126, fig.width=9, fig.height=4}
data("bioclim_gfdl-esm4_ssp126_2080_landonly")
data("bioclim_ipsl-cm6a-lr_ssp126_2080_landonly")
data("bioclim_mpi-esm1-2-hr_ssp126_2080_landonly")
data("bioclim_mri-esm2-0_ssp126_2080_landonly")
data("bioclim_ukesm1-0-ll_ssp126_2080_landonly")
bioclim_ssp126_2080_landonly <- bind_rows(`bioclim_gfdl-esm4_ssp126_2080_landonly`,
`bioclim_ipsl-cm6a-lr_ssp126_2080_landonly`,
`bioclim_mpi-esm1-2-hr_ssp126_2080_landonly`,
`bioclim_mri-esm2-0_ssp126_2080_landonly`,
`bioclim_ukesm1-0-ll_ssp126_2080_landonly`) %>%
select(x,y,bio1) %>% group_by(x,y) %>% summarise(bio1=mean(bio1, na.rm=T))
col_val <- scales::rescale(unique(c(seq(min(bioclim_ssp126_2080_landonly$bio1), 0, length=5),
seq(0, max(bioclim_ssp126_2080_landonly$bio1), length=5))))
ggplot() + geom_tile(data=bioclim_ssp126_2080_landonly, aes(x=x, y=y, fill=bio1)) +
geom_sf(data=outline, fill="transparent", colour="black") +
scale_fill_gradientn(name="tmean (°C)", colours=rev(colorRampPalette(
c("#00007F", "blue", "#007FFF", "cyan",
"white", "yellow", "#FF7F00", "red", "#7F0000"))(255)),
na.value="transparent", values=col_val,
limits=c(min(bioclim_ssp126_2080_landonly$bio1)-2,
max(bioclim_ssp126_2080_landonly$bio1)+2)) +
coord_sf(expand=F,
xlim=c(min(bioclim_ssp126_2080_landonly$x),
max(bioclim_ssp126_2080_landonly$x)),
ylim=c(min(bioclim_ssp126_2080_landonly$y),
max(bioclim_ssp126_2080_landonly$y)),
ndiscr=0) + theme_classic() +
theme(axis.title = element_blank(), axis.line = element_blank(),
axis.ticks = element_blank(), axis.text = element_blank(),
plot.background = element_rect(fill = "transparent"),
legend.background = element_rect(fill = "transparent"),
legend.box.background = element_rect(fill = "transparent", colour=NA))
```
**SSP370 - 2080**
```{r bio1_2080_ssp370, fig.width=9, fig.height=4}
data("bioclim_gfdl-esm4_ssp370_2080_landonly")
data("bioclim_ipsl-cm6a-lr_ssp370_2080_landonly")
data("bioclim_mpi-esm1-2-hr_ssp370_2080_landonly")
data("bioclim_mri-esm2-0_ssp370_2080_landonly")
data("bioclim_ukesm1-0-ll_ssp370_2080_landonly")
bioclim_ssp370_2080_landonly <- bind_rows(`bioclim_gfdl-esm4_ssp370_2080_landonly`,
`bioclim_ipsl-cm6a-lr_ssp370_2080_landonly`,
`bioclim_mpi-esm1-2-hr_ssp370_2080_landonly`,
`bioclim_mri-esm2-0_ssp370_2080_landonly`,
`bioclim_ukesm1-0-ll_ssp370_2080_landonly`) %>%
select(x,y,bio1) %>% group_by(x,y) %>% summarise(bio1=mean(bio1, na.rm=T))
col_val <- scales::rescale(unique(c(seq(min(bioclim_ssp370_2080_landonly$bio1), 0, length=5),
seq(0, max(bioclim_ssp370_2080_landonly$bio1), length=5))))
ggplot() + geom_tile(data=bioclim_ssp370_2080_landonly, aes(x=x, y=y, fill=bio1)) +
geom_sf(data=outline, fill="transparent", colour="black") +
scale_fill_gradientn(name="tmean (°C)", colours=rev(colorRampPalette(
c("#00007F", "blue", "#007FFF", "cyan",
"white", "yellow", "#FF7F00", "red", "#7F0000"))(255)),
na.value="transparent", values=col_val,
limits=c(min(bioclim_ssp370_2080_landonly$bio1)-2,
max(bioclim_ssp370_2080_landonly$bio1)+2)) +
coord_sf(expand=F,
xlim=c(min(bioclim_ssp370_2080_landonly$x),
max(bioclim_ssp370_2080_landonly$x)),
ylim=c(min(bioclim_ssp370_2080_landonly$y),
max(bioclim_ssp370_2080_landonly$y)),
ndiscr=0) + theme_classic() +
theme(axis.title = element_blank(), axis.line = element_blank(),
axis.ticks = element_blank(), axis.text = element_blank(),
plot.background = element_rect(fill = "transparent"),
legend.background = element_rect(fill = "transparent"),
legend.box.background = element_rect(fill = "transparent", colour=NA))
```
**SSP585 - 2080**
```{r bio1_2080_ssp585, fig.width=9, fig.height=4}
data("bioclim_gfdl-esm4_ssp585_2080_landonly")
data("bioclim_ipsl-cm6a-lr_ssp585_2080_landonly")
data("bioclim_mpi-esm1-2-hr_ssp585_2080_landonly")
data("bioclim_mri-esm2-0_ssp585_2080_landonly")
data("bioclim_ukesm1-0-ll_ssp585_2080_landonly")
bioclim_ssp585_2080_landonly <- bind_rows(`bioclim_gfdl-esm4_ssp585_2080_landonly`,
`bioclim_ipsl-cm6a-lr_ssp585_2080_landonly`,
`bioclim_mpi-esm1-2-hr_ssp585_2080_landonly`,
`bioclim_mri-esm2-0_ssp585_2080_landonly`,
`bioclim_ukesm1-0-ll_ssp585_2080_landonly`) %>%
select(x,y,bio1) %>% group_by(x,y) %>% summarise(bio1=mean(bio1, na.rm=T))
col_val <- scales::rescale(unique(c(seq(min(bioclim_ssp585_2080_landonly$bio1), 0, length=5),
seq(0, max(bioclim_ssp585_2080_landonly$bio1), length=5))))
ggplot() + geom_tile(data=bioclim_ssp585_2080_landonly, aes(x=x, y=y, fill=bio1)) +
geom_sf(data=outline, fill="transparent", colour="black") +
scale_fill_gradientn(name="tmean (°C)", colours=rev(colorRampPalette(
c("#00007F", "blue", "#007FFF", "cyan",
"white", "yellow", "#FF7F00", "red", "#7F0000"))(255)),
na.value="transparent", values=col_val,
limits=c(min(bioclim_ssp585_2080_landonly$bio1)-2,
max(bioclim_ssp585_2080_landonly$bio1)+2)) +
coord_sf(expand=F,
xlim=c(min(bioclim_ssp585_2080_landonly$x),
max(bioclim_ssp585_2080_landonly$x)),
ylim=c(min(bioclim_ssp585_2080_landonly$y),
max(bioclim_ssp585_2080_landonly$y)),
ndiscr=0) + theme_classic() +
theme(axis.title = element_blank(), axis.line = element_blank(),
axis.ticks = element_blank(), axis.text = element_blank(),
plot.background = element_rect(fill = "transparent"),
legend.background = element_rect(fill = "transparent"),
legend.box.background = element_rect(fill = "transparent", colour=NA))
```