forked from huggingface/transformers
-
Notifications
You must be signed in to change notification settings - Fork 6
35 lines (32 loc) · 2.43 KB
/
fork-maintenance.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
name: Run Scheduled Events Docker
permissions:
actions: write
contents: write
issues: write
pull-requests: write
on:
workflow_dispatch:
schedule:
- cron: '0 0 10 * *'
jobs:
run-scheduled-events:
uses: Cemberk/fork-maintenance-system/.github/workflows/fork-maintenance-action.yml@artifacts
with:
platform: 'gfx90a'
upstream_repo: 'https://github.com/huggingface/transformers'
pr_branch_prefix: 'scheduled-merge'
requirements_command: |
rm -rf $(pip show numpy | grep Location: | awk '{print $2}')/numpy* &&
sudo sed -i 's/torchaudio//g' examples/pytorch/_tests_requirements.txt &&
pip install -r examples/pytorch/_tests_requirements.txt &&
git restore examples/pytorch/_tests_requirements.txt &&
pip install --no-cache-dir GPUtil azureml azureml-core tokenizers ninja cerberus sympy sacremoses sacrebleu==1.5.1 sentencepiece scipy scikit-learn urllib3 && pip install huggingface_hub datasets &&
pip install parameterized &&
pip install -e .
unit_test_command: folders=\$(python3 -c 'import os; workspace = \"/myworkspace\"; repo_root = os.path.join(workspace, \"tests\"); models_dir = os.path.join(repo_root, \"models\"); model_tests = os.listdir(models_dir); d1 = sorted([d for d in os.listdir(repo_root) if os.path.isdir(os.path.join(repo_root, d)) and d != \"models\"]); d2 = sorted([os.path.join(\"models\", x) for x in model_tests if os.path.isdir(os.path.join(models_dir, x))]); d = d2 + d1; print(\" \".join(d[:5]))'); echo \$folders; for folder in \${folders[@]}; do pytest tests/\${folder} -v --make-reports=huggingface_unit_tests_\${machine_type}_run_models_gpu_\${folder} -rfEs --continue-on-collection-errors -m \"not not_device_test\" -p no:cacheprovider; done; allstats=\$(find reports -name stats.txt); for stat in \${allstats[@]}; do echo \$stat; cat \$stat; done
performance_test_command: 'echo \"python examples/pytorch/language-modeling/run_mlm.py --model_name_or_path bert-base-uncased --dataset_name wikitext --dataset_config_name wikitext-2-raw-v1 --do_train --do_eval --output_dir /tmp/test-mlm --per_device_train_batch_size 8 --per_device_eval_batch_size 8 --max_steps 500\"'
docker_image: 'rocm/pytorch:latest'
docker_options: '--device=/dev/kfd --device=/dev/dri --group-add video --shm-size 16G --network=host'
secrets:
GIT_TOKEN: ${{ secrets.CRED_TOKEN }}
schedule_json: ${{ secrets.SCHEDULE_CONFIG }}