-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdata.py
370 lines (312 loc) · 10.4 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import copy
import random
from random import sample
import networkx as nx
from scipy import sparse
def construct_nx(idx2rel, idx2ent, ent2idx, fact_rdf):
G = nx.Graph()
for rdf in fact_rdf:
fact = parse_rdf(rdf)
h, r, t = fact
h_idx, t_idx = ent2idx[h], ent2idx[t]
G.add_edge(h_idx, t_idx, relation=r)
return G
def construct_fact_dict(fact_rdf):
fact_dict = {}
for rdf in fact_rdf:
fact = parse_rdf(rdf)
h, r, t = fact
if r not in fact_dict:
fact_dict[r] = []
fact_dict[r].append(rdf)
return fact_dict
def construct_rmat(idx2rel, idx2ent, ent2idx, fact_rdf):
e_num = len(idx2ent)
r2mat = {}
# initialize rmat
for idx, rel in idx2rel.items():
mat = sparse.dok_matrix((e_num, e_num))
r2mat[rel] = mat
# fill rmat
for rdf in fact_rdf:
fact = parse_rdf(rdf)
h, r, t = fact
h_idx, t_idx = ent2idx[h], ent2idx[t]
r2mat[r][h_idx, t_idx] = 1
return r2mat
class RuleDataset(object):
def __init__(self, r2mat, rules, e_num, idx2rel, args):
self.e_num = e_num
self.r2mat = r2mat
self.rules = rules
self.idx2rel = idx2rel
self.len = len(self.rules)
self.args = args
def __len__(self):
return self.len
def __getitem__(self, idx):
rel = self.idx2rel[idx]
_rules = self.rules[rel]
path_count = sparse.dok_matrix((self.e_num, self.e_num))
for rule in _rules:
head, body, conf_1, conf_2 = rule
body_adj = sparse.eye(self.e_num)
for b_rel in body:
body_adj = body_adj * self.r2mat[b_rel]
body_adj = body_adj * conf_1
path_count += body_adj
return rel, path_count
@staticmethod
def collate_fn(data):
head = [_[0] for _ in data]
path_count = [_[1] for _ in data]
return head, path_count
def parse_rdf(rdf):
"""
return: head, relation, tail
"""
return rdf
# rdf_tail, rdf_rel, rdf_head = rdf
# return rdf_head, rdf_rel, rdf_tail
class Dictionary(object):
def __init__(self):
self.rel2idx_ = {}
self.idx2rel_ = {}
self.idx = 0
def add_relation(self, rel):
if rel not in self.rel2idx_.keys():
self.rel2idx_[rel] = self.idx
self.idx2rel_[self.idx] = rel
self.idx += 1
@property
def rel2idx(self):
return self.rel2idx_
@property
def idx2rel(self):
return self.idx2rel_
def __len__(self):
return len(self.idx2rel_)
def load_entities(path):
idx2ent, ent2idx = {}, {}
with open(path, 'r', encoding='utf-8') as f:
lines = f.readlines()
for idx, line in enumerate(lines):
e = line.strip()
ent2idx[e] = idx
idx2ent[idx] = e
return idx2ent, ent2idx
class Dataset(object):
def __init__(self, data_root, sparsity=1, inv=False):
# Construct entity_list
entity_path = data_root + 'entities.txt'
self.idx2ent_, self.ent2idx_ = load_entities(entity_path)
# Construct rdict which contains relation2idx & idx2relation2
relation_path = data_root + 'relations.txt'
self.rdict = Dictionary()
self.load_relation_dict(relation_path)
# head relation
self.head_rdict = Dictionary()
self.head_rdict = copy.deepcopy(self.rdict)
# load (h, r, t) tuples
fact_path = data_root + 'facts.txt'
train_path = data_root + 'train.txt'
valid_path = data_root + 'valid.txt'
test_path = data_root + 'test.txt'
if inv:
fact_path += '.inv'
self.rdf_data_ = self.load_data_(fact_path, train_path, valid_path, test_path, sparsity)
self.fact_rdf_, self.train_rdf_, self.valid_rdf_, self.test_rdf_ = self.rdf_data_
# inverse
if inv:
# add inverse relation to rdict
rel_list = list(self.rdict.rel2idx_.keys())
for rel in rel_list:
inv_rel = "inv_" + rel
self.rdict.add_relation(inv_rel)
self.head_rdict.add_relation(inv_rel)
# add None
self.head_rdict.add_relation("None")
def load_rdfs(self, path):
rdf_list = []
with open(path, 'r', encoding='utf-8') as f:
lines = f.readlines()
for line in lines:
tuples = line.strip().split('\t')
rdf_list.append(tuples)
return rdf_list
def load_data_(self, fact_path, train_path, valid_path, test_path, sparsity):
fact = self.load_rdfs(fact_path)
fact = sample(fact, int(len(fact) * sparsity))
train = self.load_rdfs(train_path)
valid = self.load_rdfs(valid_path)
test = self.load_rdfs(test_path)
return fact, train, valid, test
def load_relation_dict(self, relation_path):
"""
Read relation.txt to relation dictionary
"""
with open(relation_path, encoding='utf-8') as f:
rel_list = f.readlines()
for r in rel_list:
relation = r.strip()
self.rdict.add_relation(relation)
# self.head_dict.add_relation(relation)
def get_relation_dict(self):
return self.rdict
def get_head_relation_dict(self):
return self.head_rdict
@property
def idx2ent(self):
return self.idx2ent_
@property
def ent2idx(self):
return self.ent2idx_
@property
def fact_rdf(self):
return self.fact_rdf_
@property
def train_rdf(self):
return self.train_rdf_
@property
def valid_rdf(self):
return self.valid_rdf_
@property
def test_rdf(self):
return self.test_rdf_
def sample_anchor_rdf(rdf_data, num=1):
if num < len(rdf_data):
return sample(rdf_data, num)
else:
return rdf_data
def construct_descendant(rdf_data):
# take entity as h, map it to its r, t
entity2desced = {}
for rdf_ in rdf_data:
h_, r_, t_ = parse_rdf(rdf_)
if h_ not in entity2desced.keys():
entity2desced[h_] = [(r_, t_)]
else:
entity2desced[h_].append((r_, t_))
return entity2desced
def connected(entity2desced, head, tail):
if head in entity2desced:
decedents = entity2desced[head]
for d in decedents:
d_relation_, d_tail_ = d
if d_tail_ == tail:
return d_relation_
return False
else:
return False
def search_closed_rel_paths(anchor_rdf, entity2desced, max_path_len=2):
anchor_h, anchor_r, anchor_t = parse_rdf(anchor_rdf)
visited = set()
rules = []
def dfs(current, rel_path):
if len(rel_path) > max_path_len: # max path length
return
if current == anchor_t and len(rel_path) == 1 and rel_path[-1] == anchor_r: # remove directly connected
return
if current == anchor_t:
rule = "|".join(rel_path)
if rule not in rules:
rules.append(rule)
else:
visited.add(current)
if current in entity2desced:
deced_list = entity2desced[current]
for r, t in deced_list:
if t not in visited:
dfs(t, rel_path + [r])
visited.remove(current)
dfs(anchor_h, [])
return rules
# def search_closed_rel_paths(anchor_rdf, entity2desced, max_path_len=2):
# anchor_h, anchor_r, anchor_t = parse_rdf(anchor_rdf)
# possible_tails = []
# for r, t in entity2desced[anchor_h]:
# if r == anchor_r:
# possible_tails.append(t)
# stack = []
# stack_print = []
# records = []
# # Init seeds from anchor_h
# for r, t in entity2desced[anchor_h]:
# if t not in possible_tails:
# stack.append((anchor_h, r, t))
# stack_print.append((anchor_h, f"{anchor_h}-{r}-{t}", t))
# # Search
# rule_seq, expended_node = [], [anchor_h]
# while len(stack) > 0:
# cur_h, cur_r, cur_t = stack.pop(-1)
# record = stack_print.pop(-1)
# deced_list = []
#
# # Check rule
# if cur_t in possible_tails:
# if cur_r not in rule_seq:
# if cur_r not in rule_seq:
# rule_seq.append(cur_r)
# records.append(record[1])
# continue
#
# # Expand
# if cur_t in entity2desced:
# deced_list = entity2desced[cur_t]
#
# if len(cur_r.split('|')) < max_path_len + 1 and len(deced_list) > 0 and cur_t not in expended_node:
# for r_, t_ in deced_list:
# stack.append((cur_t, cur_r + '|' + r_, t_))
# stack_print.append((cur_t, record[1] + f" | {cur_t}-{r_}-{t_}", t_))
# expended_node.append(cur_t)
#
# return rule_seq
def body2idx(body_list, head_rdict):
"""
Input a rule (string) and idx it
"""
res = []
for body in body_list:
body_path = body.split('|')
# indexs include body idx seq + notation + head idx
indexs = []
for rel in body_path:
indexs.append(head_rdict.rel2idx[rel])
res.append(indexs)
return res
def inv_rel_idx(head_rdict):
inv_rel_idx = []
for i_ in range(len(head_rdict.idx2rel)):
r_ = head_rdict.idx2rel[i_]
if "inv_" in r_:
inv_rel_idx.append(i_)
return inv_rel_idx
def idx2body(index, head_rdict):
body = "|".join([head_rdict.idx2rel[idx] for idx in index])
return body
def rule2idx(rule, head_rdict):
"""
Input a rule (string) and idx it
"""
body, head = rule.split('-')
body_path = body.split('|')
# indexs include body idx seq + notation + head idx
indexs = []
for rel in body_path + [-1, head]:
indexs.append(head_rdict.rel2idx[rel] if rel != -1 else -1)
return indexs
def idx2rule(index, head_rdict):
body_idx = index[0:-2]
body = "|".join([head_rdict.idx2rel[b] for b in body_idx])
rule = body + "-" + head_rdict.idx2rel[index[-1]]
return rule
def enumerate_body(relation_num, body_len, rdict):
import itertools
all_body_idx = list(list(x) for x in itertools.product(range(relation_num), repeat=body_len))
# transfer index to relation name
idx2rel = rdict.idx2rel
all_body = []
for b_idx_ in all_body_idx:
b_ = [idx2rel[x] for x in b_idx_]
all_body.append(b_)
return all_body_idx, all_body