-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtext_model_eval.py
135 lines (109 loc) · 5.68 KB
/
text_model_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import argparse
import json
import os
import numpy as np
import torch
import transformers
from tqdm import tqdm
from transformers import pipeline
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
os.environ["TOKENIZERS_PARALLELISM"] = "false"
class Vera:
def __init__(self, model, model_cache_dir=None):
self.tokenizer = transformers.AutoTokenizer.from_pretrained(model, cache_dir=model_cache_dir)
self.model = transformers.T5EncoderModel.from_pretrained(model, torch_dtype='auto', offload_folder='offload', cache_dir=model_cache_dir)
self.model = self.model.to(device)
self.model.D = self.model.shared.embedding_dim
self.linear = torch.nn.Linear(self.model.D, 1, dtype=self.model.dtype).to(device)
self.linear.weight = torch.nn.Parameter(self.model.shared.weight[32099, :].unsqueeze(0)) # (1, D)
self.linear.bias = torch.nn.Parameter(self.model.shared.weight[32098, 0].unsqueeze(0)) # (1)
self.model.eval()
self.t = self.model.shared.weight[32097, 0].item()
def run(self, statement):
input_ids = self.tokenizer.batch_encode_plus([statement], return_tensors='pt', padding='longest', truncation='longest_first', max_length=128).input_ids.to(device)
with torch.no_grad():
output = self.model(input_ids)
last_hidden_state = output.last_hidden_state.to(device) # (B=1, L, D)
hidden = last_hidden_state[0, -1, :] # (D)
logit = self.linear(hidden).squeeze(-1) # ()
logit_calibrated = logit / self.t
score = logit.sigmoid()
score_calibrated = logit_calibrated.sigmoid()
return score_calibrated.item()
def runs(self, statements):
tok = self.tokenizer.batch_encode_plus(statements, return_tensors='pt', padding='longest')
input_ids = tok.input_ids.to(device)
attention_mask = tok.attention_mask.to(device)
with torch.no_grad():
output = self.model(input_ids=input_ids, attention_mask=attention_mask)
last_indices = attention_mask.sum(dim=1, keepdim=True) - 1 # (B, 1)
last_indices = last_indices.unsqueeze(-1).expand(-1, -1, self.model.D) # (B, 1, D)
last_hidden_state = output.last_hidden_state.to(device) # (B, L, D)
hidden = last_hidden_state.gather(dim=1, index=last_indices).squeeze(1) # (B, D)
logits = self.linear(hidden).squeeze(-1) # (B)
logits_calibrated = logits / self.t
scores = logits.sigmoid()
scores_calibrated = logits_calibrated.sigmoid()
return np.array([i.item() for i in scores_calibrated.detach().cpu()])
class GrammarModel:
def __init__(self, model_cache_dir=None):
self.model = pipeline("text-classification", model="textattack/distilbert-base-uncased-CoLA")
def run(self, statement):
with torch.no_grad():
output = self.model(statement)[0]
score = output['score'] if output['label'] == 'LABEL_1' else 1 - output['score']
return score
def runs(self, statements):
with torch.no_grad():
scores = []
for output in self.model(statements):
score = output['score'] if output['label'] == 'LABEL_1' else 1 - output['score']
scores.append(score)
return np.array(scores)
@torch.no_grad()
def text_retrieval(pos_text, neg_text, model):
pos_score = model.run(pos_text)
neg_score = model.run(neg_text)
return 1 if pos_score > neg_score else 0
def evaluate(dataset, model):
metrics = {}
for c, data_dict in dataset.items():
correct_cnt = 0
for i, data in tqdm(data_dict.items(), desc=f'evaluating {c}'):
correct = text_retrieval(data['caption'], data['negative_caption'], model)
correct_cnt += correct
count = len(data_dict)
metrics[c] = correct_cnt / count
return metrics
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model_cache_dir', default=None, type=str, help="Directory to where downloaded models are cached")
parser.add_argument('--output', type=str, default=None, help="Directory to where results are saved")
parser.add_argument('--data_root', type=str, default='./data')
args = parser.parse_args()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
data_dict = {
'add_obj' : f'{args.data_root}/add_obj.json',
'add_att' : f'{args.data_root}/add_att.json',
'replace_obj': f'{args.data_root}/replace_obj.json',
'replace_att': f'{args.data_root}/replace_att.json',
'replace_rel': f'{args.data_root}/replace_rel.json',
'swap_obj' : f'{args.data_root}/swap_obj.json',
'swap_att' : f'{args.data_root}/swap_att.json',
}
dataset = {}
for c, data_path in data_dict.items():
dataset[c] = json.load(open(data_path, 'r', encoding='utf-8'))
os.makedirs(args.output, exist_ok=True)
model = Vera('liujch1998/vera', args.model_cache_dir)
print(f"Evaluating Vera model")
metrics = evaluate(dataset, model)
print(metrics)
print(f"Dump results to: {os.path.join(args.output, f'vera.json')}")
json.dump(metrics, open(os.path.join(args.output, f'vera.json'), 'w'), indent=4)
model = GrammarModel(args.model_cache_dir)
print(f"Evaluating grammar model")
metrics = evaluate(dataset, model)
print(metrics)
print(f"Dump results to: {os.path.join(args.output, f'grammar.json')}")
json.dump(metrics, open(os.path.join(args.output, f'grammar.json'), 'w'), indent=4)