-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathToWiderFace.py
295 lines (225 loc) · 8.07 KB
/
ToWiderFace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import os
import xml.etree.ElementTree as ET
import pandas as pd
import cv2
import json
import random
def randrf(low, high):
return random.uniform(0, 1) * (high - low) + low
def write_to_xml(image_name, image_dict, data_folder, save_folder, xml_template='XML_Template.xml'):
# get bboxes
bboxes = image_dict[image_name]
# read xml file
tree = ET.parse(xml_template)
root = tree.getroot()
# modify
folder = root.find('folder')
folder.text = 'darkface'
fname = root.find('filename')
fname.text = image_name
path = root.find('path')
path.text = 'Images/darkface/' + image_name
src = root.find('source')
database = src.find('database')
database.text = 'DaekFace'
# size
img = cv2.imread(os.path.join(data_folder, image_name))
h,w,d = img.shape
size = root.find('size')
width = size.find('width')
width.text = str(w)
height = size.find('height')
height.text = str(h)
depth = size.find('depth')
depth.text = str(d)
for box in bboxes:
# append object
obj = ET.SubElement(root, 'object')
name = ET.SubElement(obj, 'name')
name.text = box[0]
pose = ET.SubElement(obj, 'pose')
pose.text = 'Unspecified'
truncated = ET.SubElement(obj, 'truncated')
truncated.text = str(0)
difficult = ET.SubElement(obj, 'difficult')
difficult.text = str(0)
bndbox = ET.SubElement(obj, 'bndbox')
xmin = ET.SubElement(bndbox, 'xmin')
xmin.text = str(int(box[1]))
ymin = ET.SubElement(bndbox, 'ymin')
ymin.text = str(int(box[2]))
xmax = ET.SubElement(bndbox, 'xmax')
xmax.text = str(int(box[3]))
ymax = ET.SubElement(bndbox, 'ymax')
ymax.text = str(int(box[4]))
# save .xml to anno_path
anno_path = os.path.join(save_folder, image_name.split('.')[0] + '.xml')
print(anno_path)
tree.write(anno_path)
# main routine
if __name__=='__main__':
# read annotations file
annotations_path = 'DarkFace_Train_COCO.json'
# specify image locations
image_folder = 'Image_MSRCR'
# specify savepath - where to save .xml files
savepath = 'Annotations_MSRCR'
if not os.path.exists(savepath):
os.makedirs(savepath)
# read in .json format
with open(annotations_path,'rb') as file:
doc = json.load(file)
# get annotations
annotations = doc['annotations']
images = doc['images']
id2names = {}
for name_dt in images:
id2names[name_dt['id']] = name_dt['file_name']
# iscrowd allowed? 1 for ok, else set to 0
iscrowd_allowed = 1
# initialize dict to store bboxes for each image
image_dict = {}
# loop through the annotations in the subset
for anno in annotations:
# get annotation for image name
image_id = anno['image_id']
image_name = id2names[image_id]
# get category
category = 'face'
# add as a key to image_dict
if not image_name in image_dict.keys():
image_dict[image_name]=[]
# append bounding boxes to it
box = anno['bbox']
# since bboxes = [xmin, ymin, width, height]:
image_dict[image_name].append([category, box[0], box[1], box[0]+box[2], box[1]+box[3]])
# generate .xml files
for image_name in image_dict.keys():
write_to_xml(image_name, image_dict, image_folder, savepath)
print('generated for: ', image_name)
# if __name__=='__main__':
# files = os.listdir('image')
# train_list = []
# val_list = []
# for file in files:
# file = file.split('.')[0]
# if(randrf(0,1) <0.8):
# train_list.append(file)
# else:
# val_list.append(file)
# with open('train.txt','w') as f:
# f.write('\n'.join(train_list))
# with open('val.txt','w') as f:
# f.write('\n'.join(val_list))import os
import xml.etree.ElementTree as ET
import pandas as pd
import cv2
import json
import random
def randrf(low, high):
return random.uniform(0, 1) * (high - low) + low
def write_to_xml(image_name, image_dict, data_folder, save_folder, xml_template='XML_Template.xml'):
# get bboxes
bboxes = image_dict[image_name]
# read xml file
tree = ET.parse(xml_template)
root = tree.getroot()
# modify
folder = root.find('folder')
folder.text = 'darkface'
fname = root.find('filename')
fname.text = image_name
path = root.find('path')
path.text = 'Images/darkface/' + image_name
src = root.find('source')
database = src.find('database')
database.text = 'DaekFace'
# size
img = cv2.imread(os.path.join(data_folder, image_name))
h,w,d = img.shape
size = root.find('size')
width = size.find('width')
width.text = str(w)
height = size.find('height')
height.text = str(h)
depth = size.find('depth')
depth.text = str(d)
for box in bboxes:
# append object
obj = ET.SubElement(root, 'object')
name = ET.SubElement(obj, 'name')
name.text = box[0]
pose = ET.SubElement(obj, 'pose')
pose.text = 'Unspecified'
truncated = ET.SubElement(obj, 'truncated')
truncated.text = str(0)
difficult = ET.SubElement(obj, 'difficult')
difficult.text = str(0)
bndbox = ET.SubElement(obj, 'bndbox')
xmin = ET.SubElement(bndbox, 'xmin')
xmin.text = str(int(box[1]))
ymin = ET.SubElement(bndbox, 'ymin')
ymin.text = str(int(box[2]))
xmax = ET.SubElement(bndbox, 'xmax')
xmax.text = str(int(box[3]))
ymax = ET.SubElement(bndbox, 'ymax')
ymax.text = str(int(box[4]))
# save .xml to anno_path
anno_path = os.path.join(save_folder, image_name.split('.')[0] + '.xml')
print(anno_path)
tree.write(anno_path)
# main routine
if __name__=='__main__':
# read annotations file
annotations_path = 'DarkFace_Train_COCO.json'
# specify image locations
image_folder = 'Image_MSRCR'
# specify savepath - where to save .xml files
savepath = 'Annotations_MSRCR'
if not os.path.exists(savepath):
os.makedirs(savepath)
# read in .json format
with open(annotations_path,'rb') as file:
doc = json.load(file)
# get annotations
annotations = doc['annotations']
images = doc['images']
id2names = {}
for name_dt in images:
id2names[name_dt['id']] = name_dt['file_name']
# iscrowd allowed? 1 for ok, else set to 0
iscrowd_allowed = 1
# initialize dict to store bboxes for each image
image_dict = {}
# loop through the annotations in the subset
for anno in annotations:
# get annotation for image name
image_id = anno['image_id']
image_name = id2names[image_id]
# get category
category = 'face'
# add as a key to image_dict
if not image_name in image_dict.keys():
image_dict[image_name]=[]
# append bounding boxes to it
box = anno['bbox']
# since bboxes = [xmin, ymin, width, height]:
image_dict[image_name].append([category, box[0], box[1], box[0]+box[2], box[1]+box[3]])
# generate .xml files
for image_name in image_dict.keys():
write_to_xml(image_name, image_dict, image_folder, savepath)
print('generated for: ', image_name)
# if __name__=='__main__':
# files = os.listdir('image')
# train_list = []
# val_list = []
# for file in files:
# file = file.split('.')[0]
# if(randrf(0,1) <0.8):
# train_list.append(file)
# else:
# val_list.append(file)
# with open('train.txt','w') as f:
# f.write('\n'.join(train_list))
# with open('val.txt','w') as f:
# f.write('\n'.join(val_list))