-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlinear_map.py
121 lines (89 loc) · 3.17 KB
/
linear_map.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import numpy as np
import argparse
def procrustes(X, Y, scaling=True, reflection='best'):
"""
A port of MATLAB's `procrustes` function to Numpy.
Partly copied from: https://stackoverflow.com/a/18927641.
Procrustes analysis determines a linear transformation (translation,
reflection, orthogonal rotation and scaling) of the points in Y to best
conform them to the points in matrix X, using the sum of squared errors
as the goodness of fit criterion.
d, Z, [tform] = procrustes(X, Y)
Inputs:
------------
X, Y
matrices of target and input coordinates. they must have equal
numbers of points (rows), but Y may have fewer dimensions
(columns) than X.
scaling
if False, the scaling component of the transformation is forced
to 1
reflection
if 'best' (default), the transformation solution may or may not
include a reflection component, depending on which fits the data
best. setting reflection to True or False forces a solution with
reflection or no reflection respectively.
Outputs
------------
d
the residual sum of squared errors, normalized according to a
measure of the scale of X, ((X - X.mean(0))**2).sum()
Z
the matrix of transformed Y-values
tform
a dict specifying the rotation, translation and scaling that
maps X --> Y
"""
n, m = X.shape
ny, my = Y.shape
muX = X.mean(0)
muY = Y.mean(0)
X0 = X - muX
Y0 = Y - muY
ssX = (X0 ** 2.).sum()
ssY = (Y0 ** 2.).sum()
# centred Frobenius norm
normX = np.sqrt(ssX)
normY = np.sqrt(ssY)
# scale to equal (unit) norm
X0 /= normX
Y0 /= normY
if my < m:
Y0 = np.concatenate((Y0, np.zeros(n, m - my)), 0)
# optimum rotation matrix of Y
A = np.dot(X0.T, Y0)
U, s, Vt = np.linalg.svd(A, full_matrices=False)
V = Vt.T
T = np.dot(V, U.T)
if reflection != 'best':
# does the current solution use a reflection?
have_reflection = np.linalg.det(T) < 0
# if that's not what was specified, force another reflection
if reflection != have_reflection:
V[:, -1] *= -1
s[-1] *= -1
T = np.dot(V, U.T)
traceTA = s.sum()
if scaling:
# optimum scaling of Y
b = traceTA * normX / normY
# standarised distance between X and b*Y*T + c
d = 1 - traceTA ** 2
# transformed coords
Z = normX * traceTA * np.dot(Y0, T) + muX
else:
b = 1
d = 1 + ssY / ssX - 2 * traceTA * normY / normX
Z = normY * np.dot(Y0, T) + muX
# transformation values
tform = {'rotation': T, 'scale': b}
return - np.sqrt(np.sum(np.square(X - (b*Y.dot(T))))) / len(X) # d, Z, tform
parser = argparse.ArgumentParser()
parser.add_argument("-X", type=str, help="X's monolingual embedding matrix .npy path")
parser.add_argument("-Y", type=str, help="Y's monolingual embedding matrix .npy path")
parser.add_argument("-r", type=int, help="random seed", default=42)
args = parser.parse_args()
np.random.seed(args.r)
X = np.load(args.X)
Y = np.load(args.Y)
print(procrustes(Y, X))