-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunPSD4.m
243 lines (212 loc) · 7.48 KB
/
runPSD4.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
function funPsd = runPSD4(funTs,W,K,mask,runFlag)
%Wrapper of the Chronux's mtspectrumc function for multitaper estimation of
%pds spectra, compatible with MRI data imported by MRIread.m.
% Parameterization is simplified to the halfbandwidth parameter W only.
% Includes minimal detrending to avoid distortions from the low frquency
% edge.
% See funPsd.psd for other useful parameters.
% funPsd.tr reflects the frequency resolution in Hz*1000
if ~exist('W','var'); W = []; end
if ~exist('K','var'); K = []; end
if isempty(K) && isempty(W); K = 1; end
if ~exist('mask','var'); mask = []; end
if ~exist('runFlag','var')
if length(funTs)>1
runFlag = 'md';
else
runFlag = '';
end
end
if ~strcmp(runFlag,'md')
%% Detrend time series (detrend up to order-2 polynomial, since this is the highest order not fitting a sinwave)
tic
funTs2 = cell(size(funTs));
for i = 1:length(funTs)
[funTs2{i},imMean] = dtrnd4psd(funTs(i));
if ~isfield(funTs2{i},'imMean') || isempty(funTs2{i}.imMean)
funTs2{i}.imMean = imMean; clear imMean
end
end
funTs = [funTs2{:}];
toc
else
% if strcmp(runFlag,'md')
%% Normalize each run to a noise floor of 1/Hz
thermalNoiseRange = [0.5 inf];
modeToRemove = 1:10;
funTsNorm = cell(size(funTs));
for runInd = 1:length(funTs)
% funPsd = runPSD4(funTs(runInd));
svdProulx = runMTsvdProulx(funTs(runInd),thermalNoiseRange);
% [nnz(svdProulx.vol2vec); numel(svdProulx.vol2vec)]
recTs = reconMTsvdProulx_spaceXtime(svdProulx,funTs(runInd),modeToRemove,[]);
recPsd = runPSD4(recTs);
funTsNorm{runInd} = normPSD2(recPsd,funTs(runInd),thermalNoiseRange);
% modeTs = reconMTsvdProulx_modeTs(svdProulx,funTs(runInd));
% funPsd = runPSD4(funTs(runInd));
% modePsd = reconMTsvdProulx_modePsd(svdProulx,funPsd);
% modeOrder = 1;
% viewMTsvdProulx(svdProulx,modePsd,modeTs,modeOrder,funPsd,funTs(runInd));
% viewPSD3(funPsd)
% viewPSD3(recPsd)
% viewPSD3(funPsd,1)
% recTs = reconMTsvdProulx_spaceXtime(svdProulx,funTs(runInd),1:5,[]);
% recPsd = runPSD4(recTs);
% viewPSD3(recPsd,1)
% recPsdNorm = normPSD2(recPsd,[],[0.5 inf]);
% viewPSD3(recPsdNorm,1)
% funPsdNorm = normPSD2(recPsd,funPsd,[0.5 inf]);
% viewPSD3(funPsdNorm,1)
% funTsNormPsd = runPSD4(funTs(runInd));
% viewPSD3(funTsNormPsd,1)
end
funTsNorm = [funTsNorm{:}];
% viewPSD3(runPSD4(funTs(4)))
% viewPSD3(runPSD4(funTsNorm(4)))
% normPSD2(recPsd,runPSD4(funTs(1)),thermalNoiseRange)
funTs = funTsNorm;% clear funTsNorm
end
%% Put runs in same structure
if length(funTs)>1
funTs2 = funTs(1);
if isfield(funTs,'normFac')
funTs2.normFac = cat(6,funTs.normFac);
funTs2.vol2vec = all(~isnan(funTs2.normFac),6);
end
% %%% Remove global mean from each run
% if strcmp(runFlag,'md')
% for runInd = 1:length(funTs)
% tmp = permute(funTs(runInd).vol,[4 1 2 3]);
% funTs(runInd).vol = funTs(runInd).vol - permute(mean(tmp(:,funTs2.vol2vec),2),[2 3 4 1]);
% % funTsNorm(runInd).vol = funTsNorm(runInd).vol - permute(mean(tmp(:,funTs2.vol2vec),2),[2 3 4 1]);
% end
% end
funTs2.vol = cat(6,funTs.vol);
if isfield(funTs,'imMean')
funTs2.imMean = cat(6,funTs.imMean);
else
funTs2.imMean = mean(funTs2.vol,4);
end
funTs2.nruns = length(funTs);
if isfield(funTs,'acqTime')
funTs2.acqTime = cat(6,funTs.acqTime);
end
funTs = funTs2; clear funTs2
end
if strcmp(runFlag,'md')
if ~isfield(funTs,'nruns')
funTs.nruns = 1;
end
tr = funTs.tr/1000;
acqTimeSec = datevec(funTs.acqTime); acqTimeSec = etime(acqTimeSec,acqTimeSec(1,:));
acqTimeSec = round(acqTimeSec/tr)*tr;
acqTimeSec = permute(acqTimeSec,[2 3 4 5 6 1]);
funTs.t = repmat(permute((0:funTs.nframes-1)*tr,[1 3 4 2]),[1 1 1 1 1 funTs.nruns]);
funTs.t = funTs.t + acqTimeSec;
funTs.vol = funTs.vol(:,:,:,:);
funTs.t = funTs.t(:,:,:,:);
% funTs.nframes = size(funTs.vol,4);
funTs.acqTime = acqTimeSec;
%%% Detrend the full session
[funTs,~] = dtrnd4psd(funTs);
% funTs.vol = funTs.vol - mean(funTs.vol,4);
end
% funTs = vol2vec(funTs);
% plot(squeeze(funTs.t),squeeze(mean(funTs.vec,2)))
%% Compute PSD
funPsd = doIt(funTs,W,K,mask);
%% Add image mean
funPsd.imMean = funTs.imMean;
%% Split back in different structures
if size(funPsd.vec,4)>1
funPsd2 = funPsd;
funPsd2.vec = [];
funPsd2.nruns = 1;
funPsd2 = repmat(funPsd2,[1 size(funPsd.vec,4)]);
for i = 1:size(funPsd.vec,4)
funPsd2(i).vec = funPsd.vec(:,:,:,i);
funPsd2(i).tr = funPsd.tr;
end
funPsd = funPsd2; clear funPsd2
end
function funPsd = doIt(funTs,W,K,mask)
if exist('mask','var') && ~isempty(mask)
funTs = vol2vec(funTs,mask,1);
else
funTs = vol2vec(funTs);
end
tr = funTs.tr/1000;
if any(all(funTs.vec==0,1))
warning('Some voxels are all 0s. Adjust your mask to avoid later problems')
end
%% Set parameters
Wflag = exist('W','var') && ~isempty(W);
Kflag = exist('K','var') && ~isempty(K);
if ~isfield(funTs,'nruns')
funTs.nruns = 1;
end
if Wflag && Kflag
error('Cannot specify both W and K');
elseif Wflag
if isfield(funTs,'t')
dbstack; error('code that')
end
T = tr.*funTs.nframes*funTs.nruns;
TW = T*W;
K = round(TW*2-1);
TW = (K+1)/2;
param.tapers = [TW K];
Wreal = TW/T;
display(['w (halfwidth) requested : ' num2str(W,'%0.5f ')])
display(['w (halfwidth) used : ' num2str(Wreal,'%0.5f ')])
display(['tw (time-halfwidth) used : ' num2str(TW)])
display(['k (number of tapers) used: ' num2str(K)])
elseif Kflag
TW = (K+1)/2;
T = tr.*funTs.nframes*funTs.nruns;
W = TW/T; Wreal = W;
param.tapers = [TW K];
display(['k (number of tapers) requested : ' num2str(K)])
display(['w (halfwidth) used : ' num2str(W,'%0.5f ')])
display(['tw (time-halfwidth) used : ' num2str(TW)])
end
%% Perform the multitaper PSD estimation
funPsd = funTs; funPsd.vec = [];
param.Fs = 1/tr;
param.complex = 1;
% [funPsd.vec,f] = mtspectrumc(funTs.vec, param);
if size(funTs.vec,4)>1
[~,~,f] = mtspectrumc2(funTs.vec(:,1), param);
sz = size(funTs.vec); sz(1) = length(f); sz(3) = param.tapers(2);
vec = nan(sz);
parfor i = 1:size(funTs.vec,4)
[~,vec(:,:,:,i),~] = mtspectrumc2(funTs.vec(:,:,:,i), param);
end
funPsd.vec = vec;
funPsd.nframes = size(funPsd.vec,1);
else
if ~isfield(funTs,'t')
funTs.t = [];
end
% Compute spectra, using missing data Slepian tapers only if necessary
[~,funPsd.vec,f] = mtspectrumc3(funTs.vec, param,funTs.t);
if ~isfield(funPsd,'nruns') || isempty(funPsd.nruns); funPsd.nruns = 1; end
funPsd.nframes = size(funPsd.vec,1)/funPsd.nruns;
% figure('WindowStyle','docked');
% plot(f,mean(mean(conj(funPsd.vec).*funPsd.vec,3),2))
% [~,funPsd.vec,f] = mtspectrumc2(funTs.vec, param);
end
funPsd.ntapers = param.tapers(2);
funPsd.tr = mode(diff(f))*1000;
%% Output some stuff
if isfield(funPsd,'psd')
funPsd = rmfield(funPsd,'psd');
end
funPsd.psd.dim = strjoin({'space' 'freq' 'taper' 'run'},' X ');
tmp = diff(f,[],4); if any(tmp(:)); dbstack; error('X'); end
funPsd.psd.f = f(:,:,:,1);
funPsd.psd.w = Wreal;
funPsd.psd.tw = TW;
funPsd.psd.mask = funTs.vol2vec;
% funPsd.psd.maskLabel = funPsd.vol2vecFlag;
funPsd.psd.param = param;