-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplotPsdTrialGram.m
111 lines (76 loc) · 2.85 KB
/
plotPsdTrialGram.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
function [ax,F] = plotPsdTrialGram(volPsd,H)
if ~exist('H','var'); H = []; end
if isempty(H); H = figure('WindowStyle','docked'); end
switch class(H)
case 'matlab.graphics.layout.TiledChartLayout'
F = H.Parent;
case 'matlab.ui.Figure'
F = H;
otherwise
end
figure(F);
ax = {};
ax{end+1} = nexttile;
%% spatial average
psd = permute(mean(abs(volPsd.psdTrialGram.vec),3) ,[1 5 2 3 4 6 7 8]);
f = permute(volPsd.psdTrialGram.f ,[1 5 2 3 4 6 7 8]);
t = permute(volPsd.psdTrialGram.tWin,[1 5 2 3 4 6 7 8]);
imagesc(t,f,psd)
xlabel('time (s)')
ylabel('freq (Hz)')
ylabel(colorbar,'psd');
ax{end}.ColorScale = 'log';
hold on
W = permute(volPsd.psdTrialGram.W,[1 5 2 3 4 6 7 8]); if length(unique(W))==1; W = unique(W); end
K = permute(volPsd.psdTrialGram.K,[1 5 2 3 4 6 7 8]); if length(unique(K))==1; K = unique(K); end
T = permute(volPsd.psdTrialGram.T,[1 5 2 3 4 6 7 8]); if length(unique(T))==1; T = unique(T); end
E = length(volPsd.psdTrialGram.param.onsetList);
winSz = volPsd.psdTrialGram.lWin;
winStep = volPsd.psdTrialGram.param.win(2);
if range(diff(f)) / mean(f) > 1e-15; error('variable dx'); end
df = mean(diff(f));
runDur = volPsd.nframes/volPsd.psdTrialGram.param.Fs;
xlim([0 runDur])
paramStr = ['(K=' num2str(K) '; 2W=' num2str(W*2,'%0.4f') 'Hz; T=' num2str(T,'%0.2f') 'sec; E=' num2str(E) 'trials)'];
title(['spatially trial-locked spectrogram ' paramStr])
cLim = psd(f>0.01,:);
cLim = [min(cLim(:)) max(cLim(:))];
clim(cLim)
addWin([],volPsd.psdTrialGram)
addW([],volPsd.psdTrialGram)
addOnset([],volPsd.psdTrialGram.param.onsetList)
ax = [ax{:}];
%% Add to time series plot
axTs = findobj(allchild(F.Children),'type','axes'); ttl = get(axTs,'Title'); ttl = get([ttl{:}],'String');
axTs = axTs(contains(ttl,'timeseries'));
axes(axTs);
yLim = ylim;
%%% delete previous window size visual elements (magentat lines)
if length(axTs.Children)>1
mLine = get([axTs.Children(:)],'Color');
else
mLine = {get([axTs.Children(:)],'Color')};
end
mLine = axTs.Children(all(cat(1,mLine{:})==[1 0 1],2));
delete(mLine);
firstWin = mean(volPsd.t(volPsd.psdTrialGram.param.winInd(1 ,[1 end] ,:)),2);
lastWin = mean(volPsd.t(volPsd.psdTrialGram.param.winInd(end,[1 end] ,:)),2);
for e = 1:length(firstWin)
%%% add window size (first window)
x = firstWin(e);
y = -inf;
addWin([],volPsd.psdTrialGram,x,y)
%%% add window size (last window)
x = lastWin(e);
y = +inf;
addWin([],volPsd.psdTrialGram,x,y)
end
%%% add trial onset
addOnset([],volPsd.psdTrialGram.param.onsetList)
%% Add to spectrogram
axPsdGram = findobj(allchild(F.Children),'type','axes');
ttl = get(axPsdGram,'Title'); ttl = get([ttl{:}],'String');
axPsdGram = axPsdGram(contains(ttl,'spectrogram') & ~contains(ttl,'trial-locked'));
axes(axPsdGram);
%%% add trial onset
addOnset([],volPsd.psdTrialGram.param.onsetList)