-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnormPSD.m
171 lines (153 loc) · 5.97 KB
/
normPSD.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
function funPsdNorm = normPSD(funPsd,normMethod,mask,noiseRange,physRange)
% normMethod: 'psdNoise_to1', 'psdAv_to1', 'psdNoise_toImAv', 'psdAv_toImAv' or 'none'
funPsd = vol2vec(funPsd);
if ~exist("noiseRange",'var') || isempty(noiseRange); noiseRangeFlag = 0; else; noiseRangeflag = 1; end
if ~exist("physRange",'var') || isempty(physRange); physRangeFlag = 0; else; physRangeFlag = 1; end
%% Compute noise floor
if noiseRangeFlag && ~physRangeFlag
noiseInd = logical(funPsd.psd.f>noiseRange(1) & funPsd.psd.f<noiseRange(2));
elseif ~noiseRangeFlag && physRangeFlag
for i = 1:size(physRange,1)
% i=2;
curRange = physRange(i,:);
while curRange(end,1) < funPsd.psd.f(end)
curRange = cat(1 , curRange , curRange(end,:)+curRange(1,:) );
end
curRange(curRange(:,1) >= funPsd.psd.f(end),:) = [];
delta = diff(physRange(i,:));
cent = physRange(i,1)+delta/2;
end
elseif noiseRangeFlag && physRangeFlag
error('specify one of noiseRange OR physRange')
else
noiseInd = logical(funPsd.psd.f>4 & funPsd.psd.f<funPsd.psd.f(round(0.95*end)));
end
% if ~exist('noiseRange','var') || isempty(noiseRange)
% noiseInd = logical(funPsd.psd.f>4 & funPsd.psd.f<funPsd.psd.f(round(0.95*end)));
% else
% noiseInd = logical(funPsd.psd.f>noiseRange(1) & funPsd.psd.f<noiseRange(2));
% end
funPsd.psd.noiseFloor = mean(funPsd.vec(noiseInd,:,:,:),1);
funPsd.psd.noiseFloorThresh = prctile(funPsd.vec(noiseInd,:,:,:),95);
funPsd.psd.noiseFloorInd = noiseInd';
funPsd.psd.aboveNoiseInd = funPsd.vec>funPsd.psd.noiseFloorThresh;
%% Perform spatial normalization
switch normMethod
case 'lowFreqTo1'
dbstack; error('double-check that');
lowFreqInd = funPsd.psd.f>0.01 & funPsd.psd.f<0.04;
normFact = mean(funPsd.vec(lowFreqInd,:),1);
case 'cardiacTo1'
dbstack; error('double-check that');
cardiacInd = funPsd.psd.f>0.7927 & funPsd.psd.f<1.091;
normFact = mean(funPsd.vec(cardiacInd,:),1);
case 'psdNoise_toImAv'
dbstack; error('double-check that for linear averaging')
normFact = exp( mean(log(funPsd.vec(noiseInd,:)),1) );
normFact = normFact .* exp(mean(log(normFact),2));
case 'psdAv_toImAv'
dbstack; error('double-check that for linear averaging')
normFact = exp( mean(log(funPsd.vec),1) );
normFact = normFact .* exp(mean(log(normFact),2));
case {'psdNoise_to1' 'psdNoiseTo1_thenLfSlope'}
normFact = mean(funPsd.vec(noiseInd,:,:,:),1);
% normFact = sqrt(normFact);
case 'psdAv_to1'
dbstack; error('double-check that');
normFact = exp( mean(log(funPsd.vec),1) );
case 'none'
dbstack; error('double-check that');
sz = size(funPsd.vec);
normFact = ones([1 sz(2)]);
otherwise
error('')
end
%%% Apply normalization
% switch normMethod
% case {'cardiacTo1' 'lowFreqTo1'}
% funPsdNorm = funPsd;
% funPsdNorm.vec = funPsdNorm.vec-1;
% funPsdNorm.vec = funPsdNorm.vec./normFact;
% funPsdNorm.vec = funPsdNorm.vec+1;
% otherwise
funPsdNorm = funPsd;
funPsdNorm.vec = funPsd.vec./normFact;
% end
switch normMethod
case 'psdNoiseTo1_thenLfSlope'
dbstack; error('double-check that');
f = funPsdNorm.psd.f';
psd = funPsdNorm.vec;
%%% Define the range within which to fit the low-frequency slope
% lfSlopeRange = [
% 0 0.01
% % 0.17 0.2
% 0.13 0.2
% ];
lfSlopeRange = [
% 0.01 0.1
% 0 0.01
0.013 0.019
% 0.06 0.08
0.13 0.15
% 0.17 0.2
];
lfSlopeRange(lfSlopeRange==0) = f(find(f==0)+1); % make sure f=0 is not included
ind = false(size(f));
for i = 1:size(lfSlopeRange,1)
ind(f>=lfSlopeRange(i,1) & f<=lfSlopeRange(i,2)) = true;
end
%%% Fit a linear slope in loglog space, for each voxel
lfSlp = nan(size(psd));
a = nan(1,size(psd,2));
b = nan(1,size(psd,2));
parfor ii = 1:size(psd,2)
[lfSlp(:,ii),a(ii),b(ii)] = logloglin(f,psd(:,ii),ind,noiseInd);
end
%%% Define a new frequency- and voxel-specific normalization factor
normFact2 = lfSlp;
% set the slope at the noise floor as soon as it intercepts it
normFact2(a<0 & normFact2<1) = 1;
normFact2(a>0 & normFact2>1) = 1;
% set the slope at the noise floor if it never intercepts it
normFact2( : , all(normFact2>1,1) | all(normFact2<1,1) ) = 1;
% set f=0 to 0 as it is ill-defined
normFact2(f==0,:) = 0;
if exist('mask','var') && ~isempty(mask)
voxInd = logical(mask(funPsdNorm.vol2vec));
else
voxInd = true(1,size(psd,2));
end
figure('WindowStyle','docked');
plot(f,mean(psd(:,voxInd),2),'k'); hold on
tmp = mean(normFact2(:,voxInd),2);
plot(f,tmp,'--r')
tmp(~ind) = nan;
plot(f,tmp,'r','linewidt',3)
psd2 = psd./normFact2;
hPlot = plot(f,mean(psd2(:,voxInd),2));
plot(f,ones(size(f)),':k')
tmp = mean(psd2,2);
plot(f([2 end]),tmp([2 end]),':','Color',hPlot.Color)
ax = gca;
ax.YScale = 'log';
ax.XScale = 'log';
%%% Apply the normalization
funPsdNorm.vec = funPsdNorm.vec./normFact2;
otherwise
end
%%% Output
volNorm = nan([size(normFact,[3 4]) size(funPsdNorm.vol2vec)]);
volNorm(:,:,funPsdNorm.vol2vec) = permute(normFact,[3 4 2 1]);
funPsdNorm.volNorm = permute(volNorm,[3 4 5 1 2]);
funPsdNorm.psd.norm.method = normMethod;
funPsdNorm.psd.norm.fact = normFact;
switch normMethod
case 'psdNoiseTo1_thenLfSlope'
dbstack; error('double-check that');
funPsdNorm.psd.norm.fact2 = normFact2;
funPsdNorm.psd.norm.a = a;
funPsdNorm.psd.norm.b = b;
otherwise
end
funPsdNorm = setNiceFieldOrder(funPsdNorm,{'vol' 'vol2vec' 'vol2vecFlag' 'vec' 'volNorm'});