-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfastKleinMtSVD.m
136 lines (122 loc) · 5.92 KB
/
fastKleinMtSVD.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
function [u,s,v,c,f,u5to95,s5to95,v5to95,c5to95] = fastKleinMtSVD(tapers,data,Fs,tvec,Fpass,nMode,nPerm,verbose,memFlag)
% tapers must be [time x tapers]
if ~exist('verbose','var') || isempty(verbose); verbose = 1; end
if ~exist('nPerm','var'); nPerm = 0; end
if ~exist('memFlag','var'); memFlag = false; end
if ~exist('nMode','var'); nMode = []; end
if ~exist('tvec','var'); tvec = []; end
if ~exist('Fpass','var'); Fpass = []; end
if isempty(Fpass); Fpass = [0 0.2]; end
[N,C,E,R] = size(data);
[Nk,K,Ek] = size(tapers);
if isempty(nMode); nMode = 1; elseif nMode == inf; nMode = min([C K]); end
if ~isempty(tvec)
[Nv,~,Ev] = size(tvec);
if ~all([N*E==Nk E==Ek Nk==Nv Ek==Ev]); dbstack; error('inappropriate size for data, tapers or tvec'); end
else
if ~all([N*E==Nk E==Ek]); dbstack; error('inappropriate size for data, tapers or tvec'); end
end
% [NC,C]=size(data); % size of data
% [NK,K]=size(tapers); % size of tapers
% if NK~=NC; error('length of tapers is incompatible with length of data'); end;
% NT = NC; clear NC NK
%% Time vector
if ~exist('tvec','var') || isempty(tvec)
tvec=1/Fs *(0:NT-1)';
elseif isduration(tvec)
tvec = seconds(tvec);
end
%% Frequencies
% NFFT=max(2^(nextpow2(NT)+0),NT);
% freqs=getfgrid(Fs,NFFT,[0 Fs/2]);
% freqs = permute(freqs,[1 3 2 4]);
% if Fpass(2)==inf; Fpass(2) = freqs(end); end
% fInd = freqs>=Fpass(1) & freqs<=Fpass(2);
% f = freqs(fInd);
% NF = nnz(fInd);
if Fpass(2)==inf; Fpass(2) = Fs/2; end
NFFT=max(2^(nextpow2(N*E)+0),N*E);
f = permute(getfgrid(Fs,NFFT,Fpass),[1 3 2]);
F = length(f);
%% Perform SVD (vox X taper) at each frequencies
if ~nPerm
%%%%%%%%%%%%%%%%%
%% Compute SVD %%
%%%%%%%%%%%%%%%%%
% J = getJ(data,tapers,tvec,f)/Fs;
[u,s,v] = pagesvd(reshape(permute(data,[2 1])*reshape(tapers.*exp(-f.*squeeze(tvec*2*pi*1i)),[N*E K*F]),[C K F]),"econ","vector");
c = s.^2./sum(s.^2,1); % coherence
u5to95 = []; s5to95 = []; v5to95 = []; c5to95 = [];
else
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Estimate null distribution of SVD results %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
dbstack; error('code that')
%% Prepare data matrix for fast permutations
% mat = reshape(permute(data,[2 1])*reshape(permute(tapers,[3 1 2]).*exp(-freqs(fInd).*tvec),[NT K*nf]),[C K nf]);
mat = permute(reshape(permute(data,[2 1])*reshape(tapers.*exp(-f.*squeeze(tvec*2*pi*1i)),[NT K*NF]),[C K NF]),[3 2 1]);
allPerm = perms(1:K); allPermN = size(allPerm,1);
if ~memFlag
%% Store the full distribution and summarize after (faster but more memory)
tic
%%% Generate full distribution
sTmp = zeros(min([C K]),1,NF,nPerm,'single') ;
uTmp = complex(zeros(C,min([C K]),NF,nPerm,'single'));
vTmp = complex(zeros(K,min([C K]),NF,nPerm,'single'));
for permInd = 1:nPerm
[uTmp(:,:,:,permInd),sTmp(:,:,:,permInd),vTmp(:,:,:,permInd)] = pagesvd(permute( reshape( mat(:,allPerm(randi(allPermN,C,1),:)' + (0:K:C*K-1)) , [NF K C]) , [3 2 1] ),"econ","vector");
end
%%% Compute first-mode coherence
cTmp = sTmp.^2./sum(sTmp.^2,1); % [mode X 1 X freq]
%%% Summarize ditribution
s = mean(sTmp,4); u = mean(uTmp,4); v = mean(vTmp,4); c = mean(cTmp,4);
s5to95 = cat(4,prctile(abs(sTmp),5,4),prctile(abs(sTmp),95,4)); clear sTmp
u5to95 = cat(4,prctile(abs(uTmp),5,4),prctile(abs(uTmp),95,4)); clear uTmp
v5to95 = cat(4,prctile(abs(vTmp),5,4),prctile(abs(vTmp),95,4)); clear vTmp
c5to95 = cat(4,prctile(abs(cTmp),5,4),prctile(abs(cTmp),95,4)); clear cTmp
toc
else
%% Store partial distribution (less memory but longer)
tic
u = zeros(C, K,NF,'single');
s = zeros(K, 1,NF,'single');
v = zeros(min([C K]),K,NF,'single');
c = zeros(K, 1,NF,'single');
nPermExtr = ceil(nPerm*0.05); if nPermExtr<2; nPermExtr = 2; end
u95 = zeros(C, K,NF,nPermExtr,'single');
s95 = zeros(K, 1,NF,nPermExtr,'single');
v95 = zeros(min([C K]),K,NF,nPermExtr,'single');
c95 = zeros(K, 1,NF,nPermExtr,'single');
u5 = repmat(realmax('single'),[C, K,NF,nPermExtr]);
s5 = repmat(realmax('single'),[K, 1,NF,nPermExtr]);
v5 = repmat(realmax('single'),[min([C K]),K,NF,nPermExtr]);
c5 = repmat(realmax('single'),[K, 1,NF,nPermExtr]);
% figure('WindowStyle','docked');
for permInd = 1:nPerm
[uTmp,sTmp,vTmp] = pagesvd(permute( reshape( mat(:,allPerm(randi(allPermN,C,1),:)' + (0:K:C*K-1)) , [NF K C]) , [3 2 1] ),"econ","vector");
cTmp = sTmp.^2./sum(sTmp.^2,1);
u = u+uTmp; s = s+sTmp; v = v+vTmp; c = c+cTmp;
u95 = replacePerm(u95,uTmp,'top'); s95 = replacePerm(s95,sTmp,'top'); v95 = replacePerm(v95,vTmp,'top'); c95 = replacePerm(c95,cTmp,'top');
u5 = replacePerm(u5,uTmp,'bot'); s5 = replacePerm(s5,sTmp,'bot'); v5 = replacePerm(v5,vTmp,'bot'); c5 = replacePerm(c5,cTmp,'bot');
% histogram([squeeze(s5(1,1,round(end/2),:)); squeeze(s95(1,1,round(end/2),:))]); drawnow
end
u = u./nPerm; s = s./nPerm; v = v./nPerm; c = c./nPerm;
%%% Summarize ditribution
u5to95 = cat(4,max(u5,[],4),min(u95,[],4)); clear u5 u95
s5to95 = cat(4,max(s5,[],4),min(s95,[],4)); clear s5 s95
v5to95 = cat(4,max(v5,[],4),min(v95,[],4)); clear v5 v95
c5to95 = cat(4,max(c5,[],4),min(c95,[],4)); clear c5 c95
toc
end
end
% u: spatial singular vector [vox X mode X frequency]
% s: singular values [mode X 1 X frequency]
% v: taper singular vector [taper X mode X frequency]
% c: coherence [mode X 1 X frequency]
%% Delete higher modes
if nMode<min([C K])
u(:,nMode+1:end,:,:) = [];
v(:,nMode+1:end,:,:) = [];
if exist('u5to95','var'); u5to95(:,nMode+1:end,:,:) = []; end
if exist('v5to95','var'); v5to95(:,nMode+1:end,:,:) = []; end
end