diff --git a/_preview/44/.buildinfo b/_preview/44/.buildinfo deleted file mode 100644 index a448236..0000000 --- a/_preview/44/.buildinfo +++ /dev/null @@ -1,4 +0,0 @@ -# Sphinx build info version 1 -# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 0cf45f8109b8f109f04362e1207dd384 -tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/_preview/44/README.html b/_preview/44/README.html deleted file mode 100644 index 483c075..0000000 --- a/_preview/44/README.html +++ /dev/null @@ -1,589 +0,0 @@ - - - - - - - - ESGF Cookbook — ESGF Cookbook - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - -
-
- - - - - -
-
- -
- - - - - - - - - - - - - - - - -
- - - -
-
-
-
- -
- - thumbnail -
-

ESGF Cookbook

-

nightly-build -Binder -DOI

-

This Project Pythia Cookbook covers how to access and analyze datasets that can be accessed from Earth System Grid Federation (ESGF) cyberinfrastructure.

-
-

Motivation

-

This cookbook focuses on highlighting analysis recipes, as well as data acccess methods, all accesible within the Python programming language. This cookbook also spans beyond the scope of a single Climate Model Intercomparison Project (ex. CMIP6), expanding to other experiments/datasets such as CMIP5 and obs4MIPs.

-
- -
-

Structure

-
-

Searching

-

This content includes details on how to search for datasets hosted on ESGF cyberinfrastructure.

-
-
-

Workflows

-

Scientific workflows utilizing data accessed from ESGF.

-
-
-
-

Running the Notebooks

-

You can either run the notebook using the NIMBUS Juptyerhub or on your local machine.

-
-

Running on Binder

-

The simplest way to interact with a Jupyter Notebook is through -the NIMBUS Juptyerhub, which enables the execution of a -Jupyter Book in the cloud-like infrastructure. The details of how this works are not -important for now. All you need to know is how to launch a Pythia -Cookbooks chapter via Binder. Simply navigate your mouse to -the top right corner of the book chapter you are viewing and click -on the rocket ship icon, (see figure below), and be sure to select -“launch Binder”. After a moment you should be presented with a -notebook that you can interact with. I.e. you’ll be able to execute -and even change the example programs. You’ll see that the code cells -have no output at first, until you execute them by pressing -Shift+Enter. Complete details on how to interact with -a live Jupyter notebook are described in Getting Started with -Jupyter.

-
-
-

Running on Your Own Machine

-

If you are interested in running this material locally on your computer, you will need to follow this workflow:

-

(Replace “cookbook-example” with the title of your cookbooks)

-
    -
  1. Clone the https://github.com/esgf2-us/esgf-cookbook repository:

    -
     git clone https://github.com/esgf2-us/esgf-cookbook.git
    -
    -
    -
  2. -
  3. Move into the cookbook-example directory

    -
    cd esgf-cookbook
    -
    -
    -
  4. -
  5. Create and activate your conda environment from the environment.yml file

    -
    conda env create -f environment.yml
    -conda activate esgf-cookbook-dev
    -
    -
    -
  6. -
  7. Move into the notebooks directory and start up Jupyterlab

    -
    cd notebooks/
    -jupyter lab
    -
    -
    -
  8. -
-
-
-
-
-
-
-
-
-
- - - - -
- - -
-
-
- -
-
- - - - - - \ No newline at end of file diff --git a/_preview/44/_images/127c98cf57b1a0937f9936bdf4ac6b129311ec020321f971619eb8999fac309f.png b/_preview/44/_images/127c98cf57b1a0937f9936bdf4ac6b129311ec020321f971619eb8999fac309f.png deleted file mode 100644 index 41b488d..0000000 Binary files a/_preview/44/_images/127c98cf57b1a0937f9936bdf4ac6b129311ec020321f971619eb8999fac309f.png and /dev/null differ diff --git a/_preview/44/_images/1c5d9e278bc0fc3fe32c19430fdb23450293a40ab751492ff79715c3bad935bd.png b/_preview/44/_images/1c5d9e278bc0fc3fe32c19430fdb23450293a40ab751492ff79715c3bad935bd.png deleted file mode 100644 index e57c122..0000000 Binary files a/_preview/44/_images/1c5d9e278bc0fc3fe32c19430fdb23450293a40ab751492ff79715c3bad935bd.png and /dev/null differ diff --git a/_preview/44/_images/1cbe0040c4a6b400a1c083340ad58556ec02ce780a0b829be2d66e5d4b612cb2.png b/_preview/44/_images/1cbe0040c4a6b400a1c083340ad58556ec02ce780a0b829be2d66e5d4b612cb2.png deleted file mode 100644 index dcb55eb..0000000 Binary files a/_preview/44/_images/1cbe0040c4a6b400a1c083340ad58556ec02ce780a0b829be2d66e5d4b612cb2.png and /dev/null differ diff --git a/_preview/44/_images/2b6ab2b83472c8617de439e282198c76a1564dbe39bc9b28ee50b179f0d3db2d.png b/_preview/44/_images/2b6ab2b83472c8617de439e282198c76a1564dbe39bc9b28ee50b179f0d3db2d.png deleted file mode 100644 index efe1819..0000000 Binary files a/_preview/44/_images/2b6ab2b83472c8617de439e282198c76a1564dbe39bc9b28ee50b179f0d3db2d.png and /dev/null differ diff --git a/_preview/44/_images/2bc12149c77fa3234456e10a7aef3ece7e88386d04c0672f74109321a87705b7.png b/_preview/44/_images/2bc12149c77fa3234456e10a7aef3ece7e88386d04c0672f74109321a87705b7.png deleted file mode 100644 index b1abf16..0000000 Binary files a/_preview/44/_images/2bc12149c77fa3234456e10a7aef3ece7e88386d04c0672f74109321a87705b7.png and /dev/null differ diff --git a/_preview/44/_images/2f59402efe2c987fc2f707efae49eb5acf7545c6c5d7f0820a76525bcbd48de2.png b/_preview/44/_images/2f59402efe2c987fc2f707efae49eb5acf7545c6c5d7f0820a76525bcbd48de2.png deleted file mode 100644 index bc06196..0000000 Binary files a/_preview/44/_images/2f59402efe2c987fc2f707efae49eb5acf7545c6c5d7f0820a76525bcbd48de2.png and /dev/null differ diff --git a/_preview/44/_images/39e2ec5cc79b2824c035a8af05b40136ee1511e8f9ee20f7a05aee75dc17f0f8.png b/_preview/44/_images/39e2ec5cc79b2824c035a8af05b40136ee1511e8f9ee20f7a05aee75dc17f0f8.png deleted file mode 100644 index 5a94f16..0000000 Binary files a/_preview/44/_images/39e2ec5cc79b2824c035a8af05b40136ee1511e8f9ee20f7a05aee75dc17f0f8.png and /dev/null differ diff --git a/_preview/44/_images/3aa6cfc3c9292c2d58babde4b6183c0fdc1cff0e9b3406f9999fe12d2b9fc71e.png b/_preview/44/_images/3aa6cfc3c9292c2d58babde4b6183c0fdc1cff0e9b3406f9999fe12d2b9fc71e.png deleted file mode 100644 index 7c063fb..0000000 Binary files a/_preview/44/_images/3aa6cfc3c9292c2d58babde4b6183c0fdc1cff0e9b3406f9999fe12d2b9fc71e.png and /dev/null differ diff --git a/_preview/44/_images/478b095649ec4638a3a9de134c4a87b0743745559ddb2b965404711aa0b62fcb.png b/_preview/44/_images/478b095649ec4638a3a9de134c4a87b0743745559ddb2b965404711aa0b62fcb.png deleted file mode 100644 index b20d80b..0000000 Binary files a/_preview/44/_images/478b095649ec4638a3a9de134c4a87b0743745559ddb2b965404711aa0b62fcb.png and /dev/null differ diff --git a/_preview/44/_images/5808494c25fd412f677c3b813bad7aa21c31475308a20eafd84a55486b115e80.png b/_preview/44/_images/5808494c25fd412f677c3b813bad7aa21c31475308a20eafd84a55486b115e80.png deleted file mode 100644 index eef6618..0000000 Binary files a/_preview/44/_images/5808494c25fd412f677c3b813bad7aa21c31475308a20eafd84a55486b115e80.png and /dev/null differ diff --git a/_preview/44/_images/5aee04bc8b44818fd65cc3a075626a0cd397a837c4a89f6e8eae7e548dfad6ba.png b/_preview/44/_images/5aee04bc8b44818fd65cc3a075626a0cd397a837c4a89f6e8eae7e548dfad6ba.png deleted file mode 100644 index 9afc0ba..0000000 Binary files a/_preview/44/_images/5aee04bc8b44818fd65cc3a075626a0cd397a837c4a89f6e8eae7e548dfad6ba.png and /dev/null differ diff --git a/_preview/44/_images/6126f537773e8aa11905bbdff19e079cdcef31374783190fa68b5cc6d158ca58.png b/_preview/44/_images/6126f537773e8aa11905bbdff19e079cdcef31374783190fa68b5cc6d158ca58.png deleted file mode 100644 index ebd54d5..0000000 Binary files a/_preview/44/_images/6126f537773e8aa11905bbdff19e079cdcef31374783190fa68b5cc6d158ca58.png and /dev/null differ diff --git a/_preview/44/_images/776bb93bbeee04bd6a6dce60a8a4b7996373c9d6940d353d66268ad0afb9de09.png b/_preview/44/_images/776bb93bbeee04bd6a6dce60a8a4b7996373c9d6940d353d66268ad0afb9de09.png deleted file mode 100644 index 3a1331f..0000000 Binary files a/_preview/44/_images/776bb93bbeee04bd6a6dce60a8a4b7996373c9d6940d353d66268ad0afb9de09.png and /dev/null differ diff --git a/_preview/44/_images/82c5f1c4fb4e292a933254a50f5039608f1be4b7306a99dfb3870b53e9d25c2b.png b/_preview/44/_images/82c5f1c4fb4e292a933254a50f5039608f1be4b7306a99dfb3870b53e9d25c2b.png deleted file mode 100644 index 6e95af6..0000000 Binary files a/_preview/44/_images/82c5f1c4fb4e292a933254a50f5039608f1be4b7306a99dfb3870b53e9d25c2b.png and /dev/null differ diff --git a/_preview/44/_images/84d006b6aeb9ef5ce09f8df321b4ef9ce1083b5455589b7196d442b38c53cf7e.png b/_preview/44/_images/84d006b6aeb9ef5ce09f8df321b4ef9ce1083b5455589b7196d442b38c53cf7e.png deleted file mode 100644 index d8c23cb..0000000 Binary files a/_preview/44/_images/84d006b6aeb9ef5ce09f8df321b4ef9ce1083b5455589b7196d442b38c53cf7e.png and /dev/null differ diff --git a/_preview/44/_images/89890442113b0171d034a08149f548c799b0a701d57d9713549f71291aed93bf.png b/_preview/44/_images/89890442113b0171d034a08149f548c799b0a701d57d9713549f71291aed93bf.png deleted file mode 100644 index be1e0af..0000000 Binary files a/_preview/44/_images/89890442113b0171d034a08149f548c799b0a701d57d9713549f71291aed93bf.png and /dev/null differ diff --git a/_preview/44/_images/91a24b4f21bfa277adb64c9c21efc282e89326fe8f4ea2fe4fef042b6800115a.png b/_preview/44/_images/91a24b4f21bfa277adb64c9c21efc282e89326fe8f4ea2fe4fef042b6800115a.png deleted file mode 100644 index 26b6ab7..0000000 Binary files a/_preview/44/_images/91a24b4f21bfa277adb64c9c21efc282e89326fe8f4ea2fe4fef042b6800115a.png and /dev/null differ diff --git a/_preview/44/_images/971a2ad4b7958692e5d5e956d5dccbda7c586356c248837053b533b0b134972f.png b/_preview/44/_images/971a2ad4b7958692e5d5e956d5dccbda7c586356c248837053b533b0b134972f.png deleted file mode 100644 index 9a4ab88..0000000 Binary files a/_preview/44/_images/971a2ad4b7958692e5d5e956d5dccbda7c586356c248837053b533b0b134972f.png and /dev/null differ diff --git a/_preview/44/_images/9f4d0a987a62ad23f57b5f0377e470253384e1e3902a90cf00f258924fbaa3fb.png b/_preview/44/_images/9f4d0a987a62ad23f57b5f0377e470253384e1e3902a90cf00f258924fbaa3fb.png deleted file mode 100644 index 3c9a95c..0000000 Binary files a/_preview/44/_images/9f4d0a987a62ad23f57b5f0377e470253384e1e3902a90cf00f258924fbaa3fb.png and /dev/null differ diff --git a/_preview/44/_images/NCAR-contemp-logo-blue.svg b/_preview/44/_images/NCAR-contemp-logo-blue.svg deleted file mode 100644 index 3bcda63..0000000 --- a/_preview/44/_images/NCAR-contemp-logo-blue.svg +++ /dev/null @@ -1 +0,0 @@ -NCAR-contemp-logo-blue.a diff --git a/_preview/44/_images/ProjectPythia_Logo_Final-01-Blue.svg b/_preview/44/_images/ProjectPythia_Logo_Final-01-Blue.svg deleted file mode 100644 index 961efc2..0000000 --- a/_preview/44/_images/ProjectPythia_Logo_Final-01-Blue.svg +++ /dev/null @@ -1 +0,0 @@ - diff --git a/_preview/44/_images/UAlbany-A2-logo-purple-gold.svg b/_preview/44/_images/UAlbany-A2-logo-purple-gold.svg deleted file mode 100644 index 4fdfe3a..0000000 --- a/_preview/44/_images/UAlbany-A2-logo-purple-gold.svg +++ /dev/null @@ -1,1125 +0,0 @@ - - - - - - image/svg+xml - - - - - - - - - - - diff --git a/_preview/44/_images/Unidata_logo_horizontal_1200x300.svg b/_preview/44/_images/Unidata_logo_horizontal_1200x300.svg deleted file mode 100644 index 0d9fd70..0000000 --- a/_preview/44/_images/Unidata_logo_horizontal_1200x300.svg +++ /dev/null @@ -1,891 +0,0 @@ - - - - - - image/svg+xml - - - - - - - - - - diff --git a/_preview/44/_images/a4325b9c2fd643a3c1e7d3174bd8fa3a93b44c7e51055108eef80e6df0ab7745.png b/_preview/44/_images/a4325b9c2fd643a3c1e7d3174bd8fa3a93b44c7e51055108eef80e6df0ab7745.png deleted file mode 100644 index e5ebe7a..0000000 Binary files a/_preview/44/_images/a4325b9c2fd643a3c1e7d3174bd8fa3a93b44c7e51055108eef80e6df0ab7745.png and /dev/null differ diff --git a/_preview/44/_images/alpha_example.png b/_preview/44/_images/alpha_example.png deleted file mode 100644 index 6e7d3db..0000000 Binary files a/_preview/44/_images/alpha_example.png and /dev/null differ diff --git a/_preview/44/_images/alpha_output.png b/_preview/44/_images/alpha_output.png deleted file mode 100644 index ebcc8aa..0000000 Binary files a/_preview/44/_images/alpha_output.png and /dev/null differ diff --git a/_preview/44/_images/b0348690270c7f7b37dce64f011c1240fd79aa1110739b4ab780956236240df3.png b/_preview/44/_images/b0348690270c7f7b37dce64f011c1240fd79aa1110739b4ab780956236240df3.png deleted file mode 100644 index cb72ef9..0000000 Binary files a/_preview/44/_images/b0348690270c7f7b37dce64f011c1240fd79aa1110739b4ab780956236240df3.png and /dev/null differ diff --git a/_preview/44/_images/c11fea2b54b611e1f8029f0ec5c4f9110be183e22caeb46954a0eef12274ffb1.png b/_preview/44/_images/c11fea2b54b611e1f8029f0ec5c4f9110be183e22caeb46954a0eef12274ffb1.png deleted file mode 100644 index bab12be..0000000 Binary files a/_preview/44/_images/c11fea2b54b611e1f8029f0ec5c4f9110be183e22caeb46954a0eef12274ffb1.png and /dev/null differ diff --git a/_preview/44/_images/cartopy_logo.png b/_preview/44/_images/cartopy_logo.png deleted file mode 100644 index 66bf2d5..0000000 Binary files a/_preview/44/_images/cartopy_logo.png and /dev/null differ diff --git a/_preview/44/_images/cf7fe39764ec23451e2c46a8c5814ba4c782ca937cc12560aeeedd3781682bbf.png b/_preview/44/_images/cf7fe39764ec23451e2c46a8c5814ba4c782ca937cc12560aeeedd3781682bbf.png deleted file mode 100644 index b49ea09..0000000 Binary files a/_preview/44/_images/cf7fe39764ec23451e2c46a8c5814ba4c782ca937cc12560aeeedd3781682bbf.png and /dev/null differ diff --git a/_preview/44/_images/d449925076c59dab607d2e3f5d9effe5df80364c08afa31767b10a296edacee5.png b/_preview/44/_images/d449925076c59dab607d2e3f5d9effe5df80364c08afa31767b10a296edacee5.png deleted file mode 100644 index c4d9c07..0000000 Binary files a/_preview/44/_images/d449925076c59dab607d2e3f5d9effe5df80364c08afa31767b10a296edacee5.png and /dev/null differ diff --git a/_preview/44/_images/eab59dd0c13555370c75b68fc06b0cf9b0e7d6d74047473cf2f0e0fa49d3e1c8.png b/_preview/44/_images/eab59dd0c13555370c75b68fc06b0cf9b0e7d6d74047473cf2f0e0fa49d3e1c8.png deleted file mode 100644 index 0e3c877..0000000 Binary files a/_preview/44/_images/eab59dd0c13555370c75b68fc06b0cf9b0e7d6d74047473cf2f0e0fa49d3e1c8.png and /dev/null differ diff --git a/_preview/44/_images/esgf.png b/_preview/44/_images/esgf.png deleted file mode 100644 index c55455b..0000000 Binary files a/_preview/44/_images/esgf.png and /dev/null differ diff --git a/_preview/44/_images/esgf2-us.png b/_preview/44/_images/esgf2-us.png deleted file mode 100644 index fad229c..0000000 Binary files a/_preview/44/_images/esgf2-us.png and /dev/null differ diff --git a/_preview/44/_images/intake-rooki-demo.png b/_preview/44/_images/intake-rooki-demo.png deleted file mode 100644 index 22c4377..0000000 Binary files a/_preview/44/_images/intake-rooki-demo.png and /dev/null differ diff --git a/_preview/44/_images/rooki_logo.png b/_preview/44/_images/rooki_logo.png deleted file mode 100644 index eb41e1f..0000000 Binary files a/_preview/44/_images/rooki_logo.png and /dev/null differ diff --git a/_preview/44/_sources/README.md b/_preview/44/_sources/README.md deleted file mode 100644 index bf7ee36..0000000 --- a/_preview/44/_sources/README.md +++ /dev/null @@ -1,81 +0,0 @@ -thumbnail - -# ESGF Cookbook - -[![nightly-build](https://github.com/ProjectPythia/esgf-cookbook/actions/workflows/nightly-build.yaml/badge.svg)](https://github.com/ProjectPythia/esgf-cookbook/actions/workflows/nightly-build.yaml) -[![Binder](https://binder.projectpythia.org/badge_logo.svg)](https://binder.projectpythia.org/v2/gh/ProjectPythia/esgf-cookbook/main?labpath=notebooks) -[![DOI](https://zenodo.org/badge/721319801.svg)](https://doi.org/10.5281/zenodo.11663067) - -This Project Pythia Cookbook covers how to access and analyze datasets that can be accessed from Earth System Grid Federation (ESGF) cyberinfrastructure. - -## Motivation - -This cookbook focuses on highlighting analysis recipes, as well as data acccess methods, all accesible within the Python programming language. This cookbook also spans beyond the scope of a single Climate Model Intercomparison Project (ex. CMIP6), expanding to other experiments/datasets such as CMIP5 and obs4MIPs. - -## Authors - -[Max Grover](@mgrover1), [Nathan Collier](@nocollier), [Carsten Ehbrecht](@cehbrecht), [Jacqueline Nugent](@jacnugent), [Gerardo Rivera Tello](@griverat) - -### Contributors - - - - - -## Structure - -### Searching - -This content includes details on how to search for datasets hosted on ESGF cyberinfrastructure. - -### Workflows - -Scientific workflows utilizing data accessed from ESGF. - -## Running the Notebooks - -You can either run the notebook using [the NIMBUS Juptyerhub](https://nimbus.llnl.gov) or on your local machine. - -### Running on Binder - -The simplest way to interact with a Jupyter Notebook is through -[the NIMBUS Juptyerhub](https://nimbus.llnl.gov), which enables the execution of a -[Jupyter Book](https://jupyterbook.org) in the cloud-like infrastructure. The details of how this works are not -important for now. All you need to know is how to launch a Pythia -Cookbooks chapter via Binder. Simply navigate your mouse to -the top right corner of the book chapter you are viewing and click -on the rocket ship icon, (see figure below), and be sure to select -“launch Binder”. After a moment you should be presented with a -notebook that you can interact with. I.e. you’ll be able to execute -and even change the example programs. You’ll see that the code cells -have no output at first, until you execute them by pressing -{kbd}`Shift`\+{kbd}`Enter`. Complete details on how to interact with -a live Jupyter notebook are described in [Getting Started with -Jupyter](https://foundations.projectpythia.org/foundations/getting-started-jupyter.html). - -### Running on Your Own Machine - -If you are interested in running this material locally on your computer, you will need to follow this workflow: - -(Replace "cookbook-example" with the title of your cookbooks) - -1. Clone the `https://github.com/esgf2-us/esgf-cookbook` repository: - - ```bash - git clone https://github.com/esgf2-us/esgf-cookbook.git - ``` - -1. Move into the `cookbook-example` directory - ```bash - cd esgf-cookbook - ``` -1. Create and activate your conda environment from the `environment.yml` file - ```bash - conda env create -f environment.yml - conda activate esgf-cookbook-dev - ``` -1. Move into the `notebooks` directory and start up Jupyterlab - ```bash - cd notebooks/ - jupyter lab - ``` diff --git a/_preview/44/_sources/notebooks/complex-search.ipynb b/_preview/44/_sources/notebooks/complex-search.ipynb deleted file mode 100644 index e838d52..0000000 --- a/_preview/44/_sources/notebooks/complex-search.ipynb +++ /dev/null @@ -1,1080 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\"ESGF" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Complex Searching with `intake-esgf`\n", - "\n", - "## Overview\n", - "\n", - "In this tutorial we will present an interface under design to facilitate complex searching using [intake-esgf](https://github.com/esgf2-us/intake-esgf). `intake-esgf` is a small `intake` and `intake-esm` *inspired* package under development in ESGF2. Please note that there is a name collison with an existing package in PyPI and conda. You will need to install the package from [source](https://github.com/esgf2-us/intake-esgf).\n", - "\n", - "## Prerequisites\n", - "\n", - "| Concepts | Importance | Notes |\n", - "| --- | --- | --- |\n", - "| [Install Package](https://github.com/esgf2-us/intake-esgf) | Necessary | |\n", - "| [Understanding of NetCDF](https://foundations.projectpythia.org/core/data-formats/netcdf-cf.html) | Helpful | Familiarity with metadata structure |\n", - "| Familiar with [intake-esm](https://intake-esm.readthedocs.io/en/stable/) | Helpful | Similar interface |\n", - "| [Transient climate response](https://doi.org/10.1029/2008JD010405) | Background | |\n", - "- **Time to learn**: 30 minutes\n", - "\n", - "## Imports" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import intake_esgf\n", - "from intake_esgf import ESGFCatalog" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Initializing the Catalog\n", - "\n", - "As with `intake-esm` we first instantiate the catalog. However, since we will populate the catalog with search results, the catalog starts empty. Internally, we query different ESGF index nodes for information about what datasets you wish to include in your analysis. As ESGF2 is actively working on an index redesign, our catlogs by default point to a Globus (ElasticSearch) based index at ALCF (Argonne Leadership Computing Facility)." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Perform a search() to populate the catalog.\n", - "GlobusESGFIndex('anl-dev')\n", - "GlobusESGFIndex('ornl-dev')\n" - ] - } - ], - "source": [ - "cat = ESGFCatalog()\n", - "print(cat)\n", - "for ind in cat.indices: # Which indices are included?\n", - " print(ind)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We also provide support for connecting to the ESGF1 Solr-based indices. You may specify a server in the dictionary or multiple servers - just make sure to include `True`.\n", - "\n", - "Uncommend the line setting `all_indices=True` to include all available indices." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "GlobusESGFIndex('anl-dev')\n", - "GlobusESGFIndex('ornl-dev')\n", - "SolrESGFIndex('esgf.ceda.ac.uk')\n", - "SolrESGFIndex('esgf-data.dkrz.de')\n", - "SolrESGFIndex('esgf-node.ipsl.upmc.fr')\n", - "SolrESGFIndex('esg-dn1.nsc.liu.se')\n", - "SolrESGFIndex('esgf-node.llnl.gov')\n", - "SolrESGFIndex('esgf.nci.org.au')\n", - "SolrESGFIndex('esgf-node.ornl.gov')\n", - "SolrESGFIndex('esgf-fedtest.llnl.gov')\n" - ] - } - ], - "source": [ - "intake_esgf.conf.set(indices={\"esgf-node.llnl.gov\": True,\n", - " \"esgf-node.ornl.gov\": True,\n", - " \"esgf.ceda.ac.uk\": True})\n", - "\n", - "intake_esgf.conf.set(all_indices=True) # all federated indices\n", - "\n", - "cat = ESGFCatalog()\n", - "for ind in cat.indices:\n", - " print(ind)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Populate the catalog\n", - "\n", - "Many times, an analysis will require several variables across multiple experiments. For example, if one were to compute the transient climate response (TCRE), you would need tempererature (`tas`) and carbon emissions from land (`nbp`) and ocean (`fgco2`) for a 1% CO2 increase experiment (`1pctCO2`) as well as the control experiment (`piControl`). If TCRE is not in your particular science, that is ok for this notebook. It is a motivating example and the specifics are less important than the search concepts. First, we perform a search in a familiar syntax." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "7d80531e054547bdb6c6bfc22e94137d", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " Searching indices: 0%| |0/5 [ ?index/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Summary information for 390 results:\n", - "mip_era [CMIP6]\n", - "activity_drs [CMIP]\n", - "institution_id [MOHC, MRI, MPI-M, NCAR, NOAA-GFDL, NCC, NIMS-...\n", - "source_id [UKESM1-0-LL, MRI-ESM2-0, MPI-ESM1-2-LR, CESM2...\n", - "experiment_id [piControl, 1pctCO2]\n", - "member_id [r1i1p1f2, r1i2p1f1, r1i1p1f1, r2i1p1f1, r3i1p...\n", - "table_id [Lmon, Omon, Amon]\n", - "variable_id [nbp, fgco2, tas]\n", - "grid_label [gn, gr1, gr]\n", - "dtype: object\n" - ] - } - ], - "source": [ - "cat.search(\n", - " experiment_id=[\"piControl\", \"1pctCO2\"],\n", - " variable_id=[\"tas\", \"fgco2\", \"nbp\"],\n", - " table_id=[\"Amon\", \"Omon\", \"Lmon\"],\n", - ")\n", - "print(cat)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Internally, this launches simultaneous searches that are combined locally to provide a global view of what datasets are available. While the Solr indices themselves can be searched in distributed fashion, they will not report if an index has failed to return a response. As index nodes go down from time to time, this can leave you with a false impression that you have found all the datasets of interest. By managing the searches locally, `intake-esgf` can report back to you that an index has failed and that your results may be incomplete.\n", - "\n", - "If you would like details about what `intake-esgf` is doing, look in the local cache directory (`${HOME}/.esgf/`) for a `esgf.log` file. This is a full history of everything that `intake-esgf` has searched, downloaded, or accessed. You can also look at just this session by calling `session_log()`. In this case you will see how long each index took to return a response and if any failed" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[36;20m2024-12-06 15:50:33 \u001b[0m└─GlobusESGFIndex('anl-dev') results=329 response_time=1.24\n", - "\u001b[36;20m2024-12-06 15:50:34 \u001b[0m└─GlobusESGFIndex('ornl-dev') results=650 response_time=1.94\n", - "\u001b[36;20m2024-12-06 15:50:42 \u001b[0m└─SolrESGFIndex('esgf.ceda.ac.uk') results=231 response_time=10.25\n", - "\u001b[36;20m2024-12-06 15:50:54 \u001b[0m└─SolrESGFIndex('esgf-node.ornl.gov') results=650 response_time=21.72\n", - "\u001b[36;20m2024-12-06 15:51:16 \u001b[0m└─SolrESGFIndex('esgf-node.llnl.gov') results=680 response_time=44.04\n", - "\u001b[36;20m2024-12-06 15:51:16 \u001b[0mcombine_time=0.16\n", - "\u001b[36;20m2024-12-06 15:51:16 \u001b[0m\u001b[36;32msearch end\u001b[0m total_time=44.27\n", - "\n" - ] - } - ], - "source": [ - "print(cat.session_log())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "At this stage of the search you have a catalog full of possibly relevant datasets for your analysis, stored in a `pandas` dataframe. You are free to view and manipulate this dataframe to help hone these results down. It is available to you as the `df` member of the `ESGFCatalog`. You should be careful to only remove rows as internally we could use any column in the downloading of the data. Also note that we have removed the user-facing notion of *where* the data is hosted. The `id` column of this dataframe is a list of full `dataset_ids` which includes the location information. At the point when you are ready to download data, we will choose locations automatically that are fastest for you." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
projectmip_eraactivity_drsinstitution_idsource_idexperiment_idmember_idtable_idvariable_idgrid_labelversionid
0CMIP6CMIP6CMIPMOHCUKESM1-0-LLpiControlr1i1p1f2Lmonnbpgn20200828[CMIP6.CMIP.MOHC.UKESM1-0-LL.piControl.r1i1p1f...
1CMIP6CMIP6CMIPMRIMRI-ESM2-01pctCO2r1i2p1f1Omonfgco2gn20210311[CMIP6.CMIP.MRI.MRI-ESM2-0.1pctCO2.r1i2p1f1.Om...
2CMIP6CMIP6CMIPMPI-MMPI-ESM1-2-LRpiControlr1i1p1f1Omonfgco2gn20190710[CMIP6.CMIP.MPI-M.MPI-ESM1-2-LR.piControl.r1i1...
3CMIP6CMIP6CMIPNCARCESM2-FV2piControlr1i1p1f1Amontasgn20191120[CMIP6.CMIP.NCAR.CESM2-FV2.piControl.r1i1p1f1....
4CMIP6CMIP6CMIPNOAA-GFDLGFDL-CM41pctCO2r1i1p1f1Amontasgr120180701[CMIP6.CMIP.NOAA-GFDL.GFDL-CM4.1pctCO2.r1i1p1f...
.......................................
1590CMIP6CMIP6CMIPIPSLIPSL-CM6A-MR1piControlr1i1p1f1Amontasgr20231229[CMIP6.CMIP.IPSL.IPSL-CM6A-MR1.piControl.r1i1p...
1592CMIP6CMIP6CMIPIPSLIPSL-CM6A-MR11pctCO2r1i1p1f1Omonfgco2gn20231229[CMIP6.CMIP.IPSL.IPSL-CM6A-MR1.1pctCO2.r1i1p1f...
1593CMIP6CMIP6CMIPNCCNorESM2-LM1pctCO2r1i1p4f1Omonfgco2gn20230616[CMIP6.CMIP.NCC.NorESM2-LM.1pctCO2.r1i1p4f1.Om...
1594CMIP6CMIP6CMIPIPSLIPSL-CM6A-MR1piControlr1i1p1f1Lmonnbpgr20231229[CMIP6.CMIP.IPSL.IPSL-CM6A-MR1.piControl.r1i1p...
1595CMIP6CMIP6CMIPIPSLIPSL-CM6A-MR11pctCO2r1i1p1f1Lmonnbpgr20231229[CMIP6.CMIP.IPSL.IPSL-CM6A-MR1.1pctCO2.r1i1p1f...
\n", - "

390 rows × 12 columns

\n", - "
" - ], - "text/plain": [ - " project mip_era activity_drs institution_id source_id experiment_id \\\n", - "0 CMIP6 CMIP6 CMIP MOHC UKESM1-0-LL piControl \n", - "1 CMIP6 CMIP6 CMIP MRI MRI-ESM2-0 1pctCO2 \n", - "2 CMIP6 CMIP6 CMIP MPI-M MPI-ESM1-2-LR piControl \n", - "3 CMIP6 CMIP6 CMIP NCAR CESM2-FV2 piControl \n", - "4 CMIP6 CMIP6 CMIP NOAA-GFDL GFDL-CM4 1pctCO2 \n", - "... ... ... ... ... ... ... \n", - "1590 CMIP6 CMIP6 CMIP IPSL IPSL-CM6A-MR1 piControl \n", - "1592 CMIP6 CMIP6 CMIP IPSL IPSL-CM6A-MR1 1pctCO2 \n", - "1593 CMIP6 CMIP6 CMIP NCC NorESM2-LM 1pctCO2 \n", - "1594 CMIP6 CMIP6 CMIP IPSL IPSL-CM6A-MR1 piControl \n", - "1595 CMIP6 CMIP6 CMIP IPSL IPSL-CM6A-MR1 1pctCO2 \n", - "\n", - " member_id table_id variable_id grid_label version \\\n", - "0 r1i1p1f2 Lmon nbp gn 20200828 \n", - "1 r1i2p1f1 Omon fgco2 gn 20210311 \n", - "2 r1i1p1f1 Omon fgco2 gn 20190710 \n", - "3 r1i1p1f1 Amon tas gn 20191120 \n", - "4 r1i1p1f1 Amon tas gr1 20180701 \n", - "... ... ... ... ... ... \n", - "1590 r1i1p1f1 Amon tas gr 20231229 \n", - "1592 r1i1p1f1 Omon fgco2 gn 20231229 \n", - "1593 r1i1p4f1 Omon fgco2 gn 20230616 \n", - "1594 r1i1p1f1 Lmon nbp gr 20231229 \n", - "1595 r1i1p1f1 Lmon nbp gr 20231229 \n", - "\n", - " id \n", - "0 [CMIP6.CMIP.MOHC.UKESM1-0-LL.piControl.r1i1p1f... \n", - "1 [CMIP6.CMIP.MRI.MRI-ESM2-0.1pctCO2.r1i2p1f1.Om... \n", - "2 [CMIP6.CMIP.MPI-M.MPI-ESM1-2-LR.piControl.r1i1... \n", - "3 [CMIP6.CMIP.NCAR.CESM2-FV2.piControl.r1i1p1f1.... \n", - "4 [CMIP6.CMIP.NOAA-GFDL.GFDL-CM4.1pctCO2.r1i1p1f... \n", - "... ... \n", - "1590 [CMIP6.CMIP.IPSL.IPSL-CM6A-MR1.piControl.r1i1p... \n", - "1592 [CMIP6.CMIP.IPSL.IPSL-CM6A-MR1.1pctCO2.r1i1p1f... \n", - "1593 [CMIP6.CMIP.NCC.NorESM2-LM.1pctCO2.r1i1p4f1.Om... \n", - "1594 [CMIP6.CMIP.IPSL.IPSL-CM6A-MR1.piControl.r1i1p... \n", - "1595 [CMIP6.CMIP.IPSL.IPSL-CM6A-MR1.1pctCO2.r1i1p1f... \n", - "\n", - "[390 rows x 12 columns]" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "cat.df" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Model Groups\n", - "\n", - "However, `intake-esgf` also provides you with some tools to help locate relevant data for your analysis. When conducting these kinds of analyses, we are seeking for unique combinations of a `source_id`, `member_id`, and `grid_label` that have all the variables that we need. We call these *model groups*. In an ESGF search, it is common to find a model that has, for example, a `tas` for `r1i1p1f1` but not a `fgco2`. Sorting this out is time consuming and labor intensive. So first, we provide you a function to print out all model groups with the following function." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
project
source_idmember_idgrid_label
ACCESS-CM2r1i1p1f1gn2
ACCESS-ESM1-5r1i1p1f1gn6
AWI-CM-1-1-MRr1i1p1f1gn2
AWI-ESM-1-1-LRr1i1p1f1gn2
BCC-CSM2-MRr1i1p1f1gn3
............
UKESM1-0-LLr1i1p1f2gn6
r2i1p1f2gn3
r3i1p1f2gn3
r4i1p1f2gn3
UKESM1-1-LLr1i1p1f2gn6
\n", - "

147 rows × 1 columns

\n", - "
" - ], - "text/plain": [ - " project\n", - "source_id member_id grid_label \n", - "ACCESS-CM2 r1i1p1f1 gn 2\n", - "ACCESS-ESM1-5 r1i1p1f1 gn 6\n", - "AWI-CM-1-1-MR r1i1p1f1 gn 2\n", - "AWI-ESM-1-1-LR r1i1p1f1 gn 2\n", - "BCC-CSM2-MR r1i1p1f1 gn 3\n", - "... ...\n", - "UKESM1-0-LL r1i1p1f2 gn 6\n", - " r2i1p1f2 gn 3\n", - " r3i1p1f2 gn 3\n", - " r4i1p1f2 gn 3\n", - "UKESM1-1-LL r1i1p1f2 gn 6\n", - "\n", - "[147 rows x 1 columns]" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "cat.model_groups().to_frame()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The function `model_groups()` returns a pandas Series (converted to a dataframe here for printing) with all unique combinations of (`source_id`,`member_id`,`grid_label`) along with the dataset count for each. This helps illustrate why it can be so difficult to locate all the data relevant to a given analysis. At the time of this writing, there are 148 model groups but relatively few of them with all 6 (2 experiments and 3 variables) datasets that we need. Furthermore, you cannot rely on a model group using `r1i1p1f1` for its primary result. The results above show that UKESM does not even use `f1` at all, further complicating the process of finding results.\n", - "\n", - "In addition to this notion of *model groups*, `intake-esgf` provides you a method `remove_incomplete()` for determing which model groups you wish to keep in the current search. Internally, we will group the search results dataframe by model groups and apply a function of your design to the grouped portion of the dataframe. For example, for the current work, I could just check that there are 6 datasets in the sub-dataframe." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
project
source_idmember_idgrid_label
ACCESS-ESM1-5r1i1p1f1gn6
CanESM5r1i1p1f1gn6
r1i1p2f1gn6
CanESM5-1r1i1p1f1gn6
r1i1p2f1gn6
CanESM5-CanOEr1i1p2f1gn6
CESM2r1i1p1f1gn6
CESM2-FV2r1i1p1f1gn6
CESM2-WACCMr1i1p1f1gn6
CESM2-WACCM-FV2r1i1p1f1gn6
CMCC-ESM2r1i1p1f1gn6
GISS-E2-1-Gr101i1p1f1gn6
r102i1p1f1gn6
INM-CM4-8r1i1p1f1gr16
INM-CM5-0r1i1p1f1gr16
MIROC-ES2Lr1i1p1f2gn6
MPI-ESM-1-2-HAMr1i1p1f1gn6
MPI-ESM1-2-LRr1i1p1f1gn6
MRI-ESM2-0r1i2p1f1gn6
NorCPM1r1i1p1f1gn6
UKESM1-0-LLr1i1p1f2gn6
UKESM1-1-LLr1i1p1f2gn6
\n", - "
" - ], - "text/plain": [ - " project\n", - "source_id member_id grid_label \n", - "ACCESS-ESM1-5 r1i1p1f1 gn 6\n", - "CanESM5 r1i1p1f1 gn 6\n", - " r1i1p2f1 gn 6\n", - "CanESM5-1 r1i1p1f1 gn 6\n", - " r1i1p2f1 gn 6\n", - "CanESM5-CanOE r1i1p2f1 gn 6\n", - "CESM2 r1i1p1f1 gn 6\n", - "CESM2-FV2 r1i1p1f1 gn 6\n", - "CESM2-WACCM r1i1p1f1 gn 6\n", - "CESM2-WACCM-FV2 r1i1p1f1 gn 6\n", - "CMCC-ESM2 r1i1p1f1 gn 6\n", - "GISS-E2-1-G r101i1p1f1 gn 6\n", - " r102i1p1f1 gn 6\n", - "INM-CM4-8 r1i1p1f1 gr1 6\n", - "INM-CM5-0 r1i1p1f1 gr1 6\n", - "MIROC-ES2L r1i1p1f2 gn 6\n", - "MPI-ESM-1-2-HAM r1i1p1f1 gn 6\n", - "MPI-ESM1-2-LR r1i1p1f1 gn 6\n", - "MRI-ESM2-0 r1i2p1f1 gn 6\n", - "NorCPM1 r1i1p1f1 gn 6\n", - "UKESM1-0-LL r1i1p1f2 gn 6\n", - "UKESM1-1-LL r1i1p1f2 gn 6" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "def shall_i_keep_it(sub_df):\n", - " if len(sub_df) == 6:\n", - " return True\n", - " return False\n", - "\n", - "\n", - "cat.remove_incomplete(shall_i_keep_it)\n", - "cat.model_groups().to_frame()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You could write a much more complex check--it depends on what is relevant to your analysis. The effect is that the list of possible models with consistent results is now much more manageable. This method has the added benefit of forcing the user to be concrete about which models were included in an analysis.\n", - "\n", - "## Removing Additional Variants\n", - "\n", - "It may also be that you wish to only include a single `member_id` in your analysis. The above search shows we have a few models with multiple variants that have all 6 required datasets. To be fair to those that only have 1, you may wish to only keep the *smallest* variant. We also provide this function as part of the `ESGFCatalog` object.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
project
source_idmember_idgrid_label
ACCESS-ESM1-5r1i1p1f1gn6
CanESM5r1i1p1f1gn6
CanESM5-1r1i1p1f1gn6
CanESM5-CanOEr1i1p2f1gn6
CESM2r1i1p1f1gn6
CESM2-FV2r1i1p1f1gn6
CESM2-WACCMr1i1p1f1gn6
CESM2-WACCM-FV2r1i1p1f1gn6
CMCC-ESM2r1i1p1f1gn6
GISS-E2-1-Gr101i1p1f1gn6
INM-CM4-8r1i1p1f1gr16
INM-CM5-0r1i1p1f1gr16
MIROC-ES2Lr1i1p1f2gn6
MPI-ESM-1-2-HAMr1i1p1f1gn6
MPI-ESM1-2-LRr1i1p1f1gn6
MRI-ESM2-0r1i2p1f1gn6
NorCPM1r1i1p1f1gn6
UKESM1-0-LLr1i1p1f2gn6
UKESM1-1-LLr1i1p1f2gn6
\n", - "
" - ], - "text/plain": [ - " project\n", - "source_id member_id grid_label \n", - "ACCESS-ESM1-5 r1i1p1f1 gn 6\n", - "CanESM5 r1i1p1f1 gn 6\n", - "CanESM5-1 r1i1p1f1 gn 6\n", - "CanESM5-CanOE r1i1p2f1 gn 6\n", - "CESM2 r1i1p1f1 gn 6\n", - "CESM2-FV2 r1i1p1f1 gn 6\n", - "CESM2-WACCM r1i1p1f1 gn 6\n", - "CESM2-WACCM-FV2 r1i1p1f1 gn 6\n", - "CMCC-ESM2 r1i1p1f1 gn 6\n", - "GISS-E2-1-G r101i1p1f1 gn 6\n", - "INM-CM4-8 r1i1p1f1 gr1 6\n", - "INM-CM5-0 r1i1p1f1 gr1 6\n", - "MIROC-ES2L r1i1p1f2 gn 6\n", - "MPI-ESM-1-2-HAM r1i1p1f1 gn 6\n", - "MPI-ESM1-2-LR r1i1p1f1 gn 6\n", - "MRI-ESM2-0 r1i2p1f1 gn 6\n", - "NorCPM1 r1i1p1f1 gn 6\n", - "UKESM1-0-LL r1i1p1f2 gn 6\n", - "UKESM1-1-LL r1i1p1f2 gn 6" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "cat.remove_ensembles()\n", - "cat.model_groups().to_frame()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Summary\n", - "\n", - "At this point, you would be ready to use `to_dataset_dict()` to download and load all datasets into a dictionary for analysis. The point of this notebook however is to expose the search capabilities. It is our goal to make annoying and time-consuming tasks easier by providing you smart interfaces for common operations. Let us [know](https://github.com/esgf2-us/intake-esgf/issues) what else is painful for you in locating relevant data for your science." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.16" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/_preview/44/_sources/notebooks/complex-search2-and-analysis.ipynb b/_preview/44/_sources/notebooks/complex-search2-and-analysis.ipynb deleted file mode 100644 index b690d86..0000000 --- a/_preview/44/_sources/notebooks/complex-search2-and-analysis.ipynb +++ /dev/null @@ -1,912 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "d7a787aa-75f7-459d-84ee-3e1f8a89b54a", - "metadata": { - "tags": [] - }, - "source": [ - "\"ESGF" - ] - }, - { - "cell_type": "markdown", - "id": "67a97ddd-9faf-4e24-846d-5ae5677f843b", - "metadata": {}, - "source": [ - "# Complex Searching with `intake` and analysing employing `xarray` \n", - "\n", - "## Overview\n", - "\n", - "This tutorial we will present access multiple historical (as an example here) data available and analyze using `intake`. Put them in a dictionary format employing `xarray` and plotting simple area average time series over a specific region. \n", - "\n", - "## Imports" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "id": "e816d66e-cf10-4b3e-bbf4-20d2d1e6303b", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "import warnings\n", - "import intake\n", - "from distributed import Client\n", - "from matplotlib import pyplot as plt\n", - "import numpy as np\n", - "import pandas as pd\n", - "import xarray as xr\n", - "import dask\n", - "xr.set_options(display_style='html')\n", - "warnings.filterwarnings(\"ignore\")" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "id": "3b313881-d31b-4b9a-b4fe-e6ec0e1a2a42", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "

pangeo-cmip6 catalog with 7674 dataset(s) from 514818 asset(s):

\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
unique
activity_id18
institution_id36
source_id88
experiment_id170
member_id657
table_id37
variable_id700
grid_label10
zstore514818
dcpp_init_year60
version736
derived_variable_id0
\n", - "
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "cat_url = \"https://storage.googleapis.com/cmip6/pangeo-cmip6.json\"\n", - "col = intake.open_esm_datastore(cat_url)\n", - "col" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "id": "97238da5-030c-4c61-a18e-9e443741009d", - "metadata": {}, - "outputs": [], - "source": [ - "cat = col.search(experiment_id=[\"historical\"],\n", - " variable_id = [\"tas\"],\n", - " member_id = [\"r1i1p1f1\"],\n", - " table_id = [\"Amon\",], \n", - " source_id = [ \"CMCC-ESM2\", \"CanESM5\", \"CESM2\", \"CESM2-FV2\", ]\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "id": "a4c82461-866a-4753-a483-c58fa4fd40b2", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
activity_idinstitution_idsource_idexperiment_idmember_idtable_idvariable_idgrid_labelzstoredcpp_init_yearversion
0CMIPNCARCESM2historicalr1i1p1f1Amontasgngs://cmip6/CMIP6/CMIP/NCAR/CESM2/historical/r1...NaN20190308
1CMIPCCCmaCanESM5historicalr1i1p1f1Amontasgngs://cmip6/CMIP6/CMIP/CCCma/CanESM5/historical...NaN20190429
2CMIPNCARCESM2-FV2historicalr1i1p1f1Amontasgngs://cmip6/CMIP6/CMIP/NCAR/CESM2-FV2/historica...NaN20191120
3CMIPCMCCCMCC-ESM2historicalr1i1p1f1Amontasgngs://cmip6/CMIP6/CMIP/CMCC/CMCC-ESM2/historica...NaN20210114
\n", - "
" - ], - "text/plain": [ - " activity_id institution_id source_id experiment_id member_id table_id \\\n", - "0 CMIP NCAR CESM2 historical r1i1p1f1 Amon \n", - "1 CMIP CCCma CanESM5 historical r1i1p1f1 Amon \n", - "2 CMIP NCAR CESM2-FV2 historical r1i1p1f1 Amon \n", - "3 CMIP CMCC CMCC-ESM2 historical r1i1p1f1 Amon \n", - "\n", - " variable_id grid_label zstore \\\n", - "0 tas gn gs://cmip6/CMIP6/CMIP/NCAR/CESM2/historical/r1... \n", - "1 tas gn gs://cmip6/CMIP6/CMIP/CCCma/CanESM5/historical... \n", - "2 tas gn gs://cmip6/CMIP6/CMIP/NCAR/CESM2-FV2/historica... \n", - "3 tas gn gs://cmip6/CMIP6/CMIP/CMCC/CMCC-ESM2/historica... \n", - "\n", - " dcpp_init_year version \n", - "0 NaN 20190308 \n", - "1 NaN 20190429 \n", - "2 NaN 20191120 \n", - "3 NaN 20210114 " - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "cat.df" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "id": "02275f8c-819d-4a3a-b36f-00f9e8d88baa", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "--> The keys in the returned dictionary of datasets are constructed as follows:\n", - "\t'activity_id.institution_id.source_id.experiment_id.table_id.grid_label'\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - "\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - "
\n", - " \n", - " 100.00% [4/4 00:09<00:00]\n", - "
\n", - " " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "['CMIP.CMCC.CMCC-ESM2.historical.Amon.gn',\n", - " 'CMIP.CCCma.CanESM5.historical.Amon.gn',\n", - " 'CMIP.NCAR.CESM2-FV2.historical.Amon.gn',\n", - " 'CMIP.NCAR.CESM2.historical.Amon.gn']" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dset_dict = cat.to_dataset_dict(zarr_kwargs={'consolidated': True})\n", - "list(dset_dict.keys())" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "id": "c7695e8a-be84-4c3b-8b33-d6a1dd25c3ac", - "metadata": { - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Processing dataset: CMIP.CMCC.CMCC-ESM2.historical.Amon.gn\n", - "Processing dataset: CMIP.CCCma.CanESM5.historical.Amon.gn\n", - "Processing dataset: CMIP.NCAR.CESM2-FV2.historical.Amon.gn\n", - "Processing dataset: CMIP.NCAR.CESM2.historical.Amon.gn\n" - ] - } - ], - "source": [ - "ds = {}\n", - "\n", - "for key in dset_dict.keys():\n", - " # Sort the dataset by time\n", - " sorted_dataset = dset_dict[key].sortby(\"time\")\n", - " \n", - " # Subset data for years 1900-2000\n", - " ds[key] = sorted_dataset.sel(time=slice(\"1900\", \"2000\"))\n", - " \n", - " # Optional: Print a message indicating dataset processing\n", - " print(f\"Processing dataset: {key}\")\n" - ] - }, - { - "cell_type": "markdown", - "id": "84f2c176-d741-46c4-924c-7d5121144717", - "metadata": {}, - "source": [ - "**`ds` now contains subset of datasets for each key in dset_dict** \n", - "\n", - "**Let's check ds**" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "id": "c4f75160-ce62-42b0-af9c-1d8b40570450", - "metadata": { - "tags": [] - }, - "outputs": [ - { - "data": { - "text/plain": [ - "{'CMIP.CMCC.CMCC-ESM2.historical.Amon.gn': Size: 268MB\n", - " Dimensions: (lat: 192, bnds: 2, lon: 288, member_id: 1,\n", - " dcpp_init_year: 1, time: 1212)\n", - " Coordinates:\n", - " height float64 8B ...\n", - " * lat (lat) float64 2kB -90.0 -89.06 -88.12 ... 88.12 89.06 90.0\n", - " lat_bnds (lat, bnds) float64 3kB dask.array\n", - " * lon (lon) float64 2kB 0.0 1.25 2.5 3.75 ... 356.2 357.5 358.8\n", - " lon_bnds (lon, bnds) float64 5kB dask.array\n", - " * time (time) object 10kB 1900-01-16 12:00:00 ... 2000-12-16 12:...\n", - " time_bnds (time, bnds) object 19kB dask.array\n", - " * member_id (member_id) object 8B 'r1i1p1f1'\n", - " * dcpp_init_year (dcpp_init_year) float64 8B nan\n", - " Dimensions without coordinates: bnds\n", - " Data variables:\n", - " tas (member_id, dcpp_init_year, time, lat, lon) float32 268MB dask.array\n", - " Attributes: (12/64)\n", - " Conventions: CF-1.7 CMIP-6.2\n", - " activity_id: CMIP\n", - " branch_method: standard\n", - " branch_time_in_child: 0.0\n", - " branch_time_in_parent: 0.0\n", - " cmor_version: 3.6.0\n", - " ... ...\n", - " intake_esm_attrs:variable_id: tas\n", - " intake_esm_attrs:grid_label: gn\n", - " intake_esm_attrs:zstore: gs://cmip6/CMIP6/CMIP/CMCC/CMCC-ESM2/hi...\n", - " intake_esm_attrs:version: 20210114\n", - " intake_esm_attrs:_data_format_: zarr\n", - " intake_esm_dataset_key: CMIP.CMCC.CMCC-ESM2.historical.Amon.gn,\n", - " 'CMIP.CCCma.CanESM5.historical.Amon.gn': Size: 40MB\n", - " Dimensions: (lat: 64, bnds: 2, lon: 128, member_id: 1,\n", - " dcpp_init_year: 1, time: 1212)\n", - " Coordinates:\n", - " height float64 8B ...\n", - " * lat (lat) float64 512B -87.86 -85.1 -82.31 ... 82.31 85.1 87.86\n", - " lat_bnds (lat, bnds) float64 1kB dask.array\n", - " * lon (lon) float64 1kB 0.0 2.812 5.625 ... 351.6 354.4 357.2\n", - " lon_bnds (lon, bnds) float64 2kB dask.array\n", - " * time (time) object 10kB 1900-01-16 12:00:00 ... 2000-12-16 12:...\n", - " time_bnds (time, bnds) object 19kB dask.array\n", - " * member_id (member_id) object 8B 'r1i1p1f1'\n", - " * dcpp_init_year (dcpp_init_year) float64 8B nan\n", - " Dimensions without coordinates: bnds\n", - " Data variables:\n", - " tas (member_id, dcpp_init_year, time, lat, lon) float32 40MB dask.array\n", - " Attributes: (12/69)\n", - " CCCma_model_hash: 3dedf95315d603326fde4f5340dc0519d80d10c0\n", - " CCCma_parent_runid: rc3-pictrl\n", - " CCCma_pycmor_hash: 33c30511acc319a98240633965a04ca99c26427e\n", - " CCCma_runid: rc3.1-his01\n", - " Conventions: CF-1.7 CMIP-6.2\n", - " YMDH_branch_time_in_child: 1850:01:01:00\n", - " ... ...\n", - " intake_esm_attrs:variable_id: tas\n", - " intake_esm_attrs:grid_label: gn\n", - " intake_esm_attrs:zstore: gs://cmip6/CMIP6/CMIP/CCCma/CanESM5/his...\n", - " intake_esm_attrs:version: 20190429\n", - " intake_esm_attrs:_data_format_: zarr\n", - " intake_esm_dataset_key: CMIP.CCCma.CanESM5.historical.Amon.gn,\n", - " 'CMIP.NCAR.CESM2-FV2.historical.Amon.gn': Size: 67MB\n", - " Dimensions: (lat: 96, nbnd: 2, lon: 144, member_id: 1,\n", - " dcpp_init_year: 1, time: 1212)\n", - " Coordinates:\n", - " * lat (lat) float64 768B -90.0 -88.11 -86.21 ... 86.21 88.11 90.0\n", - " lat_bnds (lat, nbnd) float64 2kB dask.array\n", - " * lon (lon) float64 1kB 0.0 2.5 5.0 7.5 ... 352.5 355.0 357.5\n", - " lon_bnds (lon, nbnd) float64 2kB dask.array\n", - " * time (time) object 10kB 1900-01-15 12:00:00 ... 2000-12-15 12:...\n", - " time_bnds (time, nbnd) object 19kB dask.array\n", - " * member_id (member_id) object 8B 'r1i1p1f1'\n", - " * dcpp_init_year (dcpp_init_year) float64 8B nan\n", - " Dimensions without coordinates: nbnd\n", - " Data variables:\n", - " tas (member_id, dcpp_init_year, time, lat, lon) float32 67MB dask.array\n", - " Attributes: (12/61)\n", - " Conventions: CF-1.7 CMIP-6.2\n", - " activity_id: CMIP\n", - " branch_method: standard\n", - " branch_time_in_child: 674885.0\n", - " branch_time_in_parent: 10950.0\n", - " case_id: 1559\n", - " ... ...\n", - " intake_esm_attrs:variable_id: tas\n", - " intake_esm_attrs:grid_label: gn\n", - " intake_esm_attrs:zstore: gs://cmip6/CMIP6/CMIP/NCAR/CESM2-FV2/hi...\n", - " intake_esm_attrs:version: 20191120\n", - " intake_esm_attrs:_data_format_: zarr\n", - " intake_esm_dataset_key: CMIP.NCAR.CESM2-FV2.historical.Amon.gn,\n", - " 'CMIP.NCAR.CESM2.historical.Amon.gn': Size: 268MB\n", - " Dimensions: (lat: 192, nbnd: 2, lon: 288, member_id: 1,\n", - " dcpp_init_year: 1, time: 1212)\n", - " Coordinates:\n", - " * lat (lat) float64 2kB -90.0 -89.06 -88.12 ... 88.12 89.06 90.0\n", - " lat_bnds (lat, nbnd) float32 2kB dask.array\n", - " * lon (lon) float64 2kB 0.0 1.25 2.5 3.75 ... 356.2 357.5 358.8\n", - " lon_bnds (lon, nbnd) float32 2kB dask.array\n", - " * time (time) object 10kB 1900-01-15 12:00:00 ... 2000-12-15 12:...\n", - " time_bnds (time, nbnd) object 19kB dask.array\n", - " * member_id (member_id) object 8B 'r1i1p1f1'\n", - " * dcpp_init_year (dcpp_init_year) float64 8B nan\n", - " Dimensions without coordinates: nbnd\n", - " Data variables:\n", - " tas (member_id, dcpp_init_year, time, lat, lon) float32 268MB dask.array\n", - " Attributes: (12/61)\n", - " Conventions: CF-1.7 CMIP-6.2\n", - " activity_id: CMIP\n", - " branch_method: standard\n", - " branch_time_in_child: 674885.0\n", - " branch_time_in_parent: 219000.0\n", - " case_id: 15\n", - " ... ...\n", - " intake_esm_attrs:variable_id: tas\n", - " intake_esm_attrs:grid_label: gn\n", - " intake_esm_attrs:zstore: gs://cmip6/CMIP6/CMIP/NCAR/CESM2/histor...\n", - " intake_esm_attrs:version: 20190308\n", - " intake_esm_attrs:_data_format_: zarr\n", - " intake_esm_dataset_key: CMIP.NCAR.CESM2.historical.Amon.gn}" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ds" - ] - }, - { - "cell_type": "markdown", - "id": "5fb5b166-33ae-498f-a782-1e07701040dc", - "metadata": {}, - "source": [ - "### Calculate regional mean for each dataset and visualizing time series" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "id": "3a8e373d-26a4-4d19-9e03-3b142cb22b19", - "metadata": {}, - "outputs": [], - "source": [ - "regn_mean = {} \n", - "for key in dset_dict.keys():\n", - " regn_mean[key] = ds[key]['tas'].sel(lon=slice(65, 100), lat=slice(5, 25)).mean(dim=['lon', 'lat']).squeeze()\n" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "id": "dd1bc64b-12a5-40ce-abc4-615aa871cbf5", - "metadata": { - "tags": [] - }, - "outputs": [ - { - "data": { - "text/plain": [ - "{'CMIP.CMCC.CMCC-ESM2.historical.Amon.gn': Size: 5kB\n", - " dask.array\n", - " Coordinates:\n", - " height float64 8B ...\n", - " * time (time) object 10kB 1900-01-16 12:00:00 ... 2000-12-16 12:...\n", - " member_id Size: 5kB\n", - " dask.array\n", - " Coordinates:\n", - " height float64 8B ...\n", - " * time (time) object 10kB 1900-01-16 12:00:00 ... 2000-12-16 12:...\n", - " member_id Size: 5kB\n", - " dask.array\n", - " Coordinates:\n", - " * time (time) object 10kB 1900-01-15 12:00:00 ... 2000-12-15 12:...\n", - " member_id Size: 5kB\n", - " dask.array\n", - " Coordinates:\n", - " * time (time) object 10kB 1900-01-15 12:00:00 ... 2000-12-15 12:...\n", - " member_id " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABNgAAAGHCAYAAABiVu/5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9ebhcVbE+/PZwppxMhDESJlEGvXqVzxHlIuKIA8hFQS4KiIpX/CmKE14FQYSLA1dQFAcwggqIzKiAICBICPNMgBAykHnOyZlP9/7+6LN716pVVXt1TicnyVn1PDz06eze49prVb311luFJEkSRIsWLVq0aNGiRYsWLVq0aNGiRYsWbYOsONonEC1atGjRokWLFi1atGjRokWLFi3almwRYIsWLVq0aNGiRYsWLVq0aNGiRYsWbQQWAbZo0aJFixYtWrRo0aJFixYtWrRo0UZgEWCLFi1atGjRokWLFi1atGjRokWLFm0EFgG2aNGiRYsWLVq0aNGiRYsWLVq0aNFGYBFgixYtWrRo0aJFixYtWrRo0aJFixZtBBYBtmjRokWLFi1atGjRokWLFi1atGjRRmARYIsWLVq0aNGiRYsWLVq0aNGiRYsWbQQWAbZo0aJFixYtWrRo0aJFixYtWrRo0UZgEWCLFi1atGjRmmDTp09HoVBAoVDAnXfe6f17kiR4xStegUKhgHe84x2b/PwascHBQfzyl7/EG9/4RkyZMgXjxo3DbrvthkMPPRTXXntt0483MDCAz33uc5g6dSpKpRJe97rXNf0YzbIVK1agra0NhUIBDz74oLjNcccdh913332D9k/HkfXfhu5/a7Gzzz4b11133WifhmijNZ5vvPFGfOhDH8KOO+6I1tZWTJkyBQcffDD+8Ic/YHBwcKMd98477zTH6vTp0+vbhs4tc+fOrf/+u9/9rnjcT33qU/VtqB133HHieeyzzz4b4/KjRYsWLVq0upVH+wSiRYsWLVq0rckmTJiAiy++2APR7rrrLrzwwguYMGHC6JxYA/aJT3wC11xzDU4++WScccYZaGtrw5w5c3DzzTfjlltuwUc+8pGmHu8Xv/gFfvnLX+KnP/0p/r//7//D+PHjm7r/Ztpll12GgYEBAMDFF1+MN7zhDd423/nOd/ClL31pg/b/gQ98ADNmzHC+e+tb34ojjjgCp5xySv27tra2Ddr/1mJnn302jjjiCBx22GGjfSqeberxnCQJPvWpT2H69Ok45JBDcN5552GXXXbB2rVrcccdd+Dzn/88VqxYscFjMtTOPvtsHHTQQd73e+65Z/1zo3PLhAkTMH36dJx22mkoFjNewPr163HVVVdh4sSJWLdunXfMjo4O/OMf//C+ixYtWrRo0TamRYAtWrRo0aJFa6IdeeSR+MMf/oALL7wQEydOrH9/8cUX461vfasYDG5O9uKLL+LKK6/EaaedhjPOOKP+/cEHH4zPfOYzqFarTTtWT08Pxo0bhyeffBIdHR34whe+0LR9byy75JJLsMMOO2C33XbD5ZdfjvPOO88L3CmgoFmSJOjr6/N+u/3222P77bf3tt9xxx3xlre8ZWQnv5lapVLB0NDQZgEa9vb2jhiI2Rjj2TqvH/7wh5g+fTrOOOMMnHbaac6/fehDH8LXv/51zJ49u2nnotkrX/lKc4xuyNxy5JFH4je/+Q1uv/12vPvd765/f+WVV6JSqeCwww7D73//e+93xWJxq31fokWLFi3a5muxRDRatGjRokVron384x8HAFx++eX179auXYurr74an/rUp8TfDAwM4KyzzsI+++yDtrY2bL/99jj++OOxfPlyZ7srr7wS73nPezB16lR0dHRg3333xTe/+U10d3c72x133HEYP348Zs+ejUMOOQTjx4/HLrvsglNOOQX9/f3m+a9cuRIAMHXqVPHfKYskLWecO3eus01aMkZLZd/xjnfg3/7t3/DPf/4T+++/P8aNG1cv8frNb36D3t5er6TswgsvxH/8x39ghx12QGdnJ17zmtfgBz/4gVjudvPNN+Pggw/GpEmTMG7cOOy7774455xznG0efPBBfPjDH8aUKVPQ3t6O17/+9fjTn/5k3g9qM2fOxJNPPolPfOIT+MxnPlN/rtykEtFCoYAvfOELuOiii7Dvvvuira0Nv/vd74KPze3555/H0UcfjR122AFtbW3Yd999ceGFFzrbpM/hj3/8I77xjW9g6tSpGD9+PD70oQ9h6dKl6Orqwmc/+1lst9122G677XD88cdj/fr14nn/8pe/xF577YW2tja86lWvwhVXXOGd05IlS3DiiSdi2rRpaG1txR577IEzzjgDQ0ND9W3S0r8f/OAHOOuss7DHHnugra0Nd9xxB/r6+nDKKafgda97HSZNmoQpU6bgrW99K66//nrvnLq7u/G73/2uPmZSxuh3v/tdr2QQkMfq7rvvjg9+8IO45ppr8PrXvx7t7e114CfkWiSzxnNfXx9OPfVU7LHHHmhtbcXOO++Mk046CWvWrHH2YZ0Xt8HBQZx77rnYZ5998J3vfEfcZqeddsLb3/72+t9nnHEG3vzmN2PKlCmYOHEi9ttvP1x88cVIkkQ8j5tvvhn77bcfOjo6sM8+++CSSy4x74Fmjcwtqe29997Yf//9vWNecsklOPzwwzFp0qQNOpdo0aJFixZtY1hksEWLFi1atGhNtIkTJ+KII47AJZdcghNPPBFADWwrFos48sgj8ZOf/MTZvlqt4tBDD8Xdd9+Nr3/969h///0xb948nH766XjHO96BBx98sM5cef7553HIIYfg5JNPRmdnJ2bNmoVzzz0X999/v1cONTg4iA9/+MM44YQTcMopp+Cf//wnvve972HSpEkey4Xavvvui8mTJ+OMM85AsVjEe97znqbpfS1evBjHHHMMvv71r+Pss89GsVjEySefjO9973u444476teQMsBeeOEFHH300XVA4rHHHsP3v/99zJo1ywm4L774YnzmM5/BgQceiIsuugg77LADnnvuOTz55JP1be644w68733vw5vf/GZcdNFFmDRpEq644goceeSR6OnpwXHHHZd7/hdffDGAmvbTLrvsgpNPPhkXX3wxjjnmmKDrv+6663D33XfjtNNOw0477YQddtgh9NY59vTTT2P//ffHrrvuih//+MfYaaedcMstt+CLX/wiVqxYgdNPP93Z/lvf+hYOOuggTJ8+HXPnzsVXv/pVfPzjH0e5XMa///u/4/LLL8cjjzyCb33rW5gwYQIuuOAC5/c33HAD7rjjDpx55pno7OzEz3/+8/rvjzjiCAA1QOpNb3oTisUiTjvtNOy5556YMWMGzjrrLMydOxe//e1vnX1ecMEF2GuvvfCjH/0IEydOxCtf+Ur09/dj1apV+OpXv4qdd94ZAwMDuO2223D44Yfjt7/9LT75yU8CAGbMmIF3vvOdOOigg+qgEmWLNmIPP/wwnnnmGXz729/GHnvsgc7OzoavhdqMGTPE8ZwkCQ477DDcfvvtOPXUU3HAAQfg8ccfx+mnn44ZM2ZgxowZDoNPOi/JHnzwQaxatQqf+cxnRGBRsrlz5+LEE0/ErrvuCgC477778P/+3//DwoULvbnhsccewymnnIJvfvOb2HHHHfGb3/wGJ5xwAl7xilfgP/7jP5xtq9WqCECWy7VwY0PnlhNOOAEnnXQSVq9ejW222QbPPvss7r33Xpx11lkiwA3UGH877bQTli9fjqlTp+Kwww7DmWeeiSlTpoTcomjRokWLFm3DLIkWLVq0aNGijdh++9vfJgCSBx54ILnjjjsSAMmTTz6ZJEmSvPGNb0yOO+64JEmS5NWvfnVy4IEH1n93+eWXJwCSq6++2tnfAw88kABIfv7zn4vHq1aryeDgYHLXXXclAJLHHnus/m/HHntsAiD505/+5PzmkEMOSfbee+/ca/nLX/6SbLfddgmABECy7bbbJh/96EeTG264QbzmF1980fk+vf477rij/t2BBx6YAEhuv/1273jHHnts0tnZaZ5TpVJJBgcHk0svvTQplUrJqlWrkiRJkq6urmTixInJ29/+9qRaraq/32effZLXv/71yeDgoPP9Bz/4wWTq1KlJpVIxj9/d3Z1MnDgxectb3uKcd6FQSGbPnu1dz2677eZ8ByCZNGlS/bwbMQDJSSedVP/7ve99bzJt2rRk7dq1znZf+MIXkvb29vox0ufwoQ99yNnu5JNPTgAkX/ziF53vDzvssGTKlCnesTs6OpIlS5bUvxsaGkr22Wef5BWveEX9uxNPPDEZP358Mm/ePOf3P/rRjxIAyVNPPZUkSZK8+OKLCYBkzz33TAYGBszrHhoaSgYHB5MTTjghef3rX+/8W2dnZ3Lsscd6vzn99NMTyb2Vxupuu+2WlEql5Nlnn3W2Db0WzaTxfPPNNycAkh/84AfO91deeWUCIPnVr36Ve16SXXHFFQmA5KKLLsrdVrL0vTrzzDOTbbfd1nmHdtttt6S9vd25D729vcmUKVOSE088sf5dOs60/xYsWFDfNnRuScfJD3/4w6SrqysZP3588rOf/SxJkiT52te+luyxxx5JtVpNTjrpJO95n3feecl5552X3Hrrrcmtt96a/M///E8ybty4ZJ999km6uro26D5FixYtWrRoIRZLRKNFixYtWrQm24EHHog999wTl1xyCZ544gk88MADannoTTfdhMmTJ+NDH/oQhoaG6v+97nWvw0477eSUWc6ZMwdHH300dtppJ5RKJbS0tODAAw8EADzzzDPOfguFAj70oQ853732ta/FvHnzcs//kEMOwfz583Httdfiq1/9Kl796lfjuuuuw4c//OER6Upts802eOc73xm8/SOPPIIPf/jD2HbbbevX+8lPfhKVSgXPPfccAODee+/FunXr8PnPf15l8MyePRuzZs3Cf/3XfwGAc58POeQQLF68GM8++6x5Ln/605+wbt065zl+6lOfQpIkJqOJ2jvf+U5ss802Qdtq1tfXh9tvvx0f+chHMG7cOO9a+vr6cN999zm/+eAHP+j8ve+++wKoNVTg369atcorEz344IOx44471v8ulUo48sgjMXv2bLz00ksAauP4oIMOwste9jLnnN7//vcDqDX5oPbhD38YLS0t3vVdddVVeNvb3obx48ejXC6jpaUFF198sTe+m2Wvfe1rsddeeznfNXotIZay2ThT8qMf/Sg6Oztx++23555Xs+wf//gH3vWud2HSpEn19+q0007DypUrsWzZMmfb173udXWmGwC0t7djr732EueRc889Fw888ID3Hx07GzK3jB8/Hh/96EdxySWXYGhoCJdeeimOP/549X3/8pe/jC9/+ct497vfjXe/+90466yzcOmll2LWrFn49a9/vSG3LFq0aNGiRQuyWCIaLVq0aNGiNdkKhQKOP/54XHDBBejr68Nee+2FAw44QNx26dKlWLNmDVpbW8V/X7FiBYBa17wDDjgA7e3tOOuss7DXXnth3LhxWLBgAQ4//HD09vY6vxs3bhza29ud79ra2tDX1xd0DR0dHTjssMPqXRrnz5+P97///bjwwgvx3//933j1q18dtB9qmvaSZPPnz8cBBxyAvffeG+effz523313tLe34/7778dJJ51Uv95Up27atGnqvpYuXQoA+OpXv4qvfvWr4jbpfdbs4osvRnt7O973vvfVNbNe+9rXYvfdd68LzJdKJXMfjVy/ZitXrsTQ0BB++tOf4qc//am4Db8WXhaXjjXt+76+Pqfz5U477eQdI/1u5cqVmDZtGpYuXYobb7xRBM2kc5LuxTXXXIOPfexj+OhHP4qvfe1r2GmnnVAul/GLX/xig3W/8kw6j0avJcRWrlyJcrnsNbAoFArYaaed6vpk1nlJloJfL774YtD2999/P97znvfgHe94B37961/XNeauu+46fP/73/fmkW233dbbR1tbm7cdALz85S8Xu+py25C55YQTTsDb3/52fP/738fy5cuDSrqpfeQjH0FnZ6cHPkeLFi1atGjNtAiwRYsWLVq0aBvBjjvuOJx22mm46KKL8P3vf1/dbrvttsO2226Lm2++Wfz3CRMmAKixThYtWoQ777yzzloD4Amkbyzbdddd8dnPfhYnn3wynnrqKbz61a+uA3i8cYIGQIRqRAE1vbLu7m5cc8012G233erfP/roo852KWCRMqkk22677QAAp556Kg4//HBxm7333lv9/XPPPYd77rkHABw2D7VbbrkFhxxyiLoPoLHr12ybbbZBqVTCJz7xCZx00kniNnvssceIj0NtyZIl6ncpALPddtvhta99rTrWX/aylzl/S/fi97//PfbYYw9ceeWVzr/nNeagRsck1TRrZEw2ei0htu2222JoaAjLly93QLYkSbBkyRK88Y1vzD0vyd7whjdgypQpuP7663HOOefk/u6KK65AS0sLbrrpJgeAv+6668IvpskmzS3c3va2t2HvvffGmWeeiXe/+93YZZddGj5OkiRiI4Vo0aJFixatWRYBtmjRokWLFm0j2M4774yvfe1rmDVrFo499lh1uw9+8IO44oorUKlU8OY3v1ndLg2cKWgAAL/85S+bc8LD1tXVhUKh4DCYUkvL9FKAIRUof/zxxx2A6oYbbhjxeUjXmySJV+K1//77Y9KkSbjoootw1FFHiQDD3nvvjVe+8pV47LHHcPbZZzd8Lmlzg1//+td4xSte4fxbb28vDj30UFxyySW5AFszbNy4cTjooIPwyCOP4LWvfa3KfGym3X777Vi6dGm91K9SqeDKK6/EnnvuWWcOfvCDH8Rf//pX7LnnnhtcBlsoFNDa2uo8wyVLlnhdRAGdRUXHJAWtbrzxxuDzaMa1cDv44IPxgx/8AL///e/x5S9/uf791Vdfje7ubhx88MEbtN+WlhZ84xvfwDe+8Q1873vfExuYLFu2DM8//zze9ra3oVAooFwuO2zL3t5eXHbZZRt0/EaskblFsm9/+9v485//rALLlv35z39GT08P3vKWtzT822jRokWLFi3UIsAWLVq0aNGibST73//939xtjjrqKPzhD3/AIYccgi996Ut405vehJaWFrz00ku44447cOihh+IjH/kI9t9/f2yzzTb43Oc+h9NPPx0tLS34wx/+gMcee6yp5/zss8/ive99L4466igceOCBmDp1KlavXo2//OUv+NWvfoV3vOMd2H///QEAb3zjG7H33nvjq1/9KoaGhrDNNtvg2muvrbO9RmLvfve70draio9//OP4+te/jr6+PvziF7/A6tWrne3Gjx+PH//4x/j0pz+Nd73rXfjMZz6DHXfcEbNnz8Zjjz2Gn/3sZwBqQOT73/9+vPe978Vxxx2HnXfeGatWrcIzzzyDhx9+GFdddZV4Hqnm07777otPf/rT4jYf+tCHcMMNN3jspI1l559/Pt7+9rfjgAMOwH//939j9913R1dXF2bPno0bb7zR6yg7Uttuu+3wzne+E9/5znfqXURnzZqFK664or7NmWeeib///e/Yf//98cUvfhF77703+vr6MHfuXPz1r3/FRRddZJbxAjVg65prrsHnP/95HHHEEViwYAG+973vYerUqXj++eedbV/zmtfgzjvvxI033oipU6diwoQJ2HvvvXHIIYdgypQpOOGEE3DmmWeiXC5j+vTpWLBgQfD1NuNauL373e/Ge9/7XnzjG9/AunXr8La3va3eRfT1r389PvGJTzS0P2pf+9rX8Mwzz+D000/H/fffj6OPPhq77LIL1q5di3/+85/41a9+hTPOOANve9vb8IEPfADnnXcejj76aHz2s5/FypUr8aMf/cgD7jfEnn/+ebEEc9q0aZg2bVpDc4tkxxxzTG7H3nnz5uHoo4/GUUcdhVe84hUoFAq466678JOf/ASvfvWr1Xc4WrRo0aJFa4ZFgC1atGjRokUbRSuVSrjhhhtw/vnn47LLLsM555yDcrmMadOm4cADD8RrXvMaALUSs7/85S845ZRTcMwxx6CzsxOHHnoorrzySuy3335NO59XvOIV+MpXvoJ//OMfuP7667F8+XK0tLTgla98Jc466yx85StfqZdZlUol3HjjjfjCF76Az33uc2hra8NRRx2Fn/3sZ56AfqO2zz774Oqrr8a3v/1tHH744dh2221x9NFH4ytf+UpdbD61E044AS972ctw7rnn4tOf/jSSJMHuu+/uMAcPOugg3H///fj+97+Pk08+GatXr8a2226LV73qVfjYxz6mnsdf/vIXLFmyBN/85jfVbT772c/immuuwWWXXYavfOUrI7ruEHvVq16Fhx9+GN/73vfw7W9/G8uWLcPkyZPxyle+cqOw6D784Q/j1a9+Nb797W9j/vz52HPPPfGHP/wBRx55ZH2bqVOn4sEHH8T3vvc9/PCHP8RLL72ECRMmYI899sD73ve+ICbY8ccfj2XLluGiiy7CJZdcgpe//OX45je/iZdeeglnnHGGs+3555+Pk046CUcddRR6enpw4IEH4s4778TEiRNx88034+STT8YxxxyDyZMn49Of/jTe//73B4MrzbgWboVCAddddx2++93v4re//S2+//3vY7vttsMnPvEJnH322SMCuAqFAn7729/iIx/5CH71q1/Vx/eECRPwute9Dueeey6OP/54ALVGG5dccgnOPfdcfOhDH8LOO++Mz3zmM9hhhx1wwgknbPA5AMC3vvUt8fv/+Z//wVlnndXQ3LKhNnHiROy4444477zzsHTpUlQqFey222744he/iG9961vo7Owc0f6jRYsWLVo0ywpJkiSjfRLRokWLFi1atGjRNj8rFAo46aST6kzAaNGiRYsWLVq0aLJFpc9o0aJFixYtWrRo0aJFixYtWrRo0UZgEWCLFi1atGjRokWLFi1atGjRokWLFm0EFjXYokWLFi1atGjRookWlUSiRYsWLVq0aNHCLDLYokWLFi1atGjRokWLFi1atGjRokUbgUWALVq0aNGiRYsWLVq0aNGiRYsWLVq0EVgE2KJFixYtWrRo0aJFixYtWrRo0aJFG4FFDTZi1WoVixYtwoQJE1AoFEb7dKJFixYtWrRo0aJFixYtWrRo0aKNoiVJgq6uLrzsZS9Dsajz1CLARmzRokXYZZddRvs0okWLFi1atGjRokWLFi1atGjRom1GtmDBAkybNk399wiwEZswYQKA2k2bOHHiKJ9NtGjRokWLFi1atGjRokWLFi1atNG0devWYZdddqljRppFgI1YWhY6ceLECLBFixYtWrRo0aJFixYtWrRo0aJFA4BcKbHY5CBatGjRokWLFi1atGjRokWLFi1atBFYBNiiRYsWLVq0aNGiRYsWLVq0aNGiRRuBRYAtWrRo0aJFixYtWrRo0aJFixYtWrQRWATYokWLFi1atGjRokWLFi1atGjRokUbgUWALVq0aNGiRYsWLVq0aNGiRYsWLVq0EVgE2KJFixYtWrRo0aJFixYtWrRo0aJFG4FFgC1atGjRokWLFi1atGjRokWLFi1atBHYqAJsP/nJT/Dv//7vmDx5Mtra2jBt2jR89KMfxeOPP17fpqurCyeffDKmTZuG1tZW7Lnnnjj99NMxODgo7vPCCy9EoVBAoVDATjvttKkuJVq0aNGiRYsWLVq0aNGiRYsWLdoYtUKSJMloHfwjH/kIZs6ciR133BH9/f149tlnUa1WMWXKFMyfPx/t7e14xzvegXvuuQctLS14+ctfjueffx7VahVHH300/vCHPzj7e/rpp/GGN7wBvb29AIAdd9wRS5YsCT6fdevWYdKkSVi7di0mTpzY1GuNFi1atGjRokWLFi1atGjRokWLtmVZKFY0qgy2yy+/HIsWLcIjjzyCp59+Gt/61rcAAKtWrcKsWbNw3XXX4Z577gEAXHPNNZg1axZ+8pOfAAD++Mc/4qGHHqrva2BgAP/1X/+Fjo4OHHzwwZv8WqJFixYtWrRo0aJFixYtWrRom5/1DAzhvFufxR9mzhvtU9msbWCoihXr+0f7NLZYG1WArb29HTfccAPe8pa34FWvehXOPvtsAMD222+PvfbaCzfffDMAoKOjA4cccggA4D//8z/rv7/lllvqn0899VQ8+uij+PWvf41p06YFHb+/vx/r1q1z/osWLVq0aNGiRdsabcGqHlw2Yy6WdfWN9qlEixYtWrRom9R+edccXPCP2fifa5/EvbNXjPbpbJY2WKni3f93F9589u24Y9ay0T6dLdJGvcnBsmXLMHPmTDzzzDOoVqvYY489cMcdd2DChAlYsGABAGDbbbdFsVg71R133LH+2/nz5wMAbrvtNvzf//0fPv3pT+Pwww8PPvY555yDSZMm1f/bZZddmnhl0aJFixYtWrRom48de8n9+M71T+HUq58Y7VOJFi1atGjRNqn94q4X6p9vemLxKJ7J5mu3Pb0U81b2oFJNcPz0B0b7dLZIG3WA7dOf/jSq1SrmzZuHI488Ei+++CKOPPJIdHV1QZKHo98VCgV0d3fj2GOPxStf+cp6+WionXrqqVi7dm39vxTQixYtWrRo0aJF25qsu38Ic1Z0AwBuj1npaNGiRWu6VaoJBoaqo30a0RQb11qqf+4bqIzimYyOreoewB9mzsP8lT3qNv1x/I7YRh1gA2pA2a677lrXYHvqqadw+eWXY9dddwUArFixAtVq7WEvW5Y5hbvssguWL1+ORYsW4cUXX8SOO+6I8ePH15sfLFu2DOPHj8dNN90kHretrQ0TJ050/osWLVq0aNGiRdva7MVhcC1atGjRojXfBitVfOCCu/HaM27Bg3NXjfbpRBOsoyUD2HoHxx7A9q1rnsD/XPskjpt+v7pNS6kxeKhaHbV+mZutjRrAtnLlSlx22WUYGBiof/fXv/61/rm7uxvve9/7AAB9fX11kOyqq66qb5P+OwAMDg6iu7sb3d3dGBoaAlBju9G/o0WLFi1atGjRxqJFgC1atGjRNp7d/+IqzFrShb7BKo64aMZon85ma3NXdOMXd76ABat0FtXGsrEOsN381BIAwJzl3RiqyEy1llIheH+3PLUErzvzVnzz6sebcn5bi40awNbV1YVPfvKTmDx5Ml7zmtdg1113xamnngoAmDBhAg4//HAcdthhePvb3w4AOOKII7DPPvvgK1/5CgDg6KOPxn777Yfdd98dSZI4/x177LEAanptSZLgsMMOG5VrjBYtWrRo0aJF2xxsbgTYom0F9tSitfh/lz+CW4cDxWjRNlfTAIyxbkdcNAPn3jwLn7h45iY/dhsF2MZYiWhX36Dzd59SCloqhgNsJ172ENb1DeGKBxZgeVfsOpraqAFskydPxlFHHYWpU6fihRdewOLFi7HLLrvgmGOOwcyZM7HbbruhVCrhL3/5C774xS9i++23x5w5c7DrrrvitNNOw/Tp00fr1KNFixYtWrRo0bYo4ww2Sec2WrTN3Y761X248bFF+OxlD8XSpGiblQ2x8fj4wrWjdCabt61YXwNi5ho6YBvLOloy6KNvjDHY5ix3fQDt+gcrGzavdvfHisHUyqN14MmTJ+Pyyy/P3W7ixIk4//zzcf755wfve/r06RGAixYtWrRo0aJFG7a5K13neqBSRVu5pGwdLdrmaV19WRDXN1TBuNZRC2WiRXOMNzd4fMEa7LfrNqN0NtEk62gduyWic1asd/7WAbYNY152D0SALbXNoslBtGjRokWLFi1atI1n61l2uW8wli9tqTZUqeLvTy/F7GXr8zfeiq27f2wFyNE2b+PARM8YA3C2BNsaNdiWruvDl654BEf/+j4sXturbvfCslAG24b5Buv7IsCWWgTYokWLFm0rtaj/EW1Lt1jG2DzjZR/9Q1tHcDEW7Xcz5uEzlz6Iw3/+L6zpGcj/wVZqsSRp7NhLq3twy1NLNut5izPY+mMSY7OzdkeDbct/PgNDVRz847tw/aOLcO8LK3HF/QvUbeezphJako2P41DrigBb3SLAFi1atGhboV3/6EK85ruxs0+0zc+SJMHa3sHc7Z54aS3e9r//wGcufTACbU2wGPxtPfa9m54GAKzrG8KfH3pplM9m9CyWJI0N6x+q4LAL78WJlz2EX901Z7RPR7UBltTs30CgYnOyW59agsMu/Beuf3RhU/bH1/JNvba3lrYuDbaFa3oddvpLq3UGG7/eUAZbKKONs+THskWALVq0aNG2QvvSFY+id7CCKx5Y4HUOihZtNO2E3z2I1595K/70gJ5pBYDP/f4hLFrbh78/vRT/mLVsE53d1mt+8LflBxdj1QqkydtYLhONJaJjw55d0lUXxv/x358b5bPRzUtibAVz7GcvewiPLliDL13xaFPAsAprBMEbQ2xsq5Br2BpKRPmYW7quT92W32uVwcbY7j2B3VZjrJFZBNiiRYsWbSu3GIRE21xsbc8g/jFrGaoJ8PUcduXCNVkmdt4odBsLta6+Qfxh5jw8s3jdaJ+KadwRjxpsW669cofx9c/Pj2WALTLYmmLT//UiTrzsQa/T8OZiLaUtI1zlTJ+tgcFGbcX6kZejc5BnQ8sRm3F8DvZticbHnAWw8W1DGWw9yjzL719XZLDVbcuYsaJFixYt2gbb+n47q/Tc0i7c+8KKWIYXbaPbYHXDnOnNOdP841ufw/9c+yTef/7dm3XJiR/8bb7nGs223bbtrH9+fmmXuW2SJOgNZCBsadYTk0cjtvkre/DdG5/GLU8txclXPjrapyPaUGXL8E229jL8F5aPHMznoMyGCupvqFW3AlCNGgdxlxgAGx+fml81OMQBNnk77u9EDbbMIsAWLVq0aFu5rTMWvUVrevHBC+7B0b+eiVueWrIJzyra1mSzl63HO390J4777f2mw8wDpRAtNkDPoG4ONv3eufXPzy/dfNlEoxn8dfUN4uhf34f/+s19UZi+CVYiNaLr+obUhjZJkuCoX92H1515K/4xa+mmOr1NZnEsjdyeIwDtYwvWjN6JGLalJAM8htAWct6h1gyAjfsAo8lgA7Z8Fhsfc119Q6q/5JeIBjLYlEQGB+hiiWhmEWCLFi1atK3MuMNitc7+2R2z69pM377uyY16XtG2XvvhLbMwZ0U37nx2Of44c7663RBjsM0NLEkK1QAZbdtcRX6r1cR3rjdh8Df9X3Nx7wsr8a/ZK3HO357ZZMfdWo0/y27l/Xhi4VrMfHEV+oeq+NT0BzfFqW1U40BiLBEduW2MezjjhZU49+ZZWLxWF1xvxHg5++bKtt/aGGz8Ps9ZPvISYu4DbOoyWs5gG401O4TpniQJ7nl+BZ5eZEtPSADlsnX94rY+ABymwabNEZwZbcUaY80iwBZtzNiWkgGLFm2kto5lkSwHYhmhk28pOifRNj97aN7q+uc7n9UbEvDs9dyVusPe0VKqf95SSsFGK4M7WKmaaxxvcABs2uDvmSVZkPCXxxdvsuNurVaphmnpbKY4xAYbH8dbCvC+OVuzy7r6Biv4+K/vwy/ufAFf+OMjTdknn9s0QHm0jQMTW3rcwcGvZjRU8TTYNnGJqJec2MQA22cufRCvPeNW3PT4InO7S2fMwzEXz8QhF9yNr/zpUXU7qWJAKxMd5ONzhBpssURUtxhNRdvqLUkSfGr6A3j9mX/fKkskokXjxsvurKB/eVeW6dp+QttGO6doW7e9goiuP2eUSfLstSWqPa6VAGybsbYZtbxseN9gxXnnmmGL1vTiTd+/DW8/9w4s69Ica98J35QMtl22GVf/vLonlpGM1LgklaaxVi4VxO83R6tWk1xAYnBo9NknW5s1G2CgQTZNvIzEONCzpmfkYvsbw/wuols2g40DKJaAfqWa4MI7ZuPCO2abZZeNNjl4Yfl6vO8n/8QXL3+kKczFKtvHpgSFXlzRjb8/vRQDQ9Vc8PmJhWvrn695eKGXOE9Nun/acwptcsD3qTVK4wmO2OQgswiwRRuRPb1oHX5+52yHBbO52dOL1+Efs5ahZ6CyVZRINGpzV3TjkfmrN1tKfbTmmw+w6Yse7Qq1QwTYom2gbTs+GzsL1/Sq8w13ri2HvYMCbFuI47bGAI/6Bis46Ed34s1n34Z7nl/RtGN+69onsLpnEMu7+vGLO18Qt+GZa6B5DLaegSE8OHeVGVRN7GhpyrGi1Ywz2DSx6i1FHL5/qIL3nf9PvOF7t+FJElh621Xc69xS5oXN2UJ1MENtY/iaHAiw5tnRtK2tiygvzbXKia9/dCF+eMuz+OEtz+JPDy5Qt6s0qMF2/G8fwKwlXbjhsUV4YO7IAVs+J2rA1cawVd3hwDAfSyuVDq4SA1BLPPASe62TOD+2lsDxNdjifJxaBNiibbAlSYLDLvwXfnDzs02jgW8M05D3sWBL1/XhXefdhY/8/F7cYZRtRdu6rBGAjbJpJrbHIHhztWXr+jZrtgYvNdBYWty51Rw8AOhsLdc/bymlYBaz4i+PL8bitX2oJsAxF89s2jEfIkGH5sBLQUyzgr9PXnw/jrhoBr5309PqNv5z3zKep2Xr+4fwwNxVm7wLHuALc2v3kzNGR+NcQ+z6RxfhuaXr0dU/hOOnP6Bu5zErtpB5YXO21Q2wwfoGK/jdvXPxyHwd6NgYJX98rlrXZFAwz5IkwUPzVuWCkb4G25Y9Pvm8YsVTVz6QgWqXzpinbsc7ieeNl/mreuqfred+7wsrcOo1TzhNOySrMAB47SYEaxthi/oAm6ar5gPaWrKLb6slZvgzUTXYYpMD1SLAFm2DbaBSrb+E989dNcpno1thy6mQaLpd8/DCOmNkLLL3xqpxJ8QCZuhCuqm1MKKF2Z3PLsObzr4dB/3ozs22m6bnaCljLjQzCrjlbZsyyzwSs8ofeWlKs4ze6+3HyyxUsUS0CcFf32AFDw6XgdFuqtwGGPNo3soeZcstw5IkwccumoGPXjQDP771uU1+fB5AaYESD6hWN8Cg2JRGA0+rhNovXdo858NGrH+ogu/d9DT+92+zmtrRMEkSPDh3FRatsRsNUFB+fFvZ2BL47g1P4fQbnsJ//WamuhZJAf9IzWOwNQlgq1QTfOXKR3HMb2aalTi/uOsF/OcvZuDQn91jPqOtjsHGte+M962daKZawCK/fxaDLTQhkCQJvnj5o7j8/vk48bKHzG358ZvhWyRJgplzVmKeoSkLNAZm8/uysoHkmcZcDi0R5e/wul5Fg42XiEYGW90iwBZtg21LKT0YyzYpluWMSfMANmXR49nYTd0uPVqYHffbGqNjeVc/7p29cpTPRjYOlGnAWSOdLOka0+wypmZakSRxLAd6U5RJjlMCZCnQa0bwpzn93LjDnhf0b+7WN1jF04trjRsuuksuy92Y5r1HgWLVyxUWxGhbKHuaj6OtgcF2yT1zcfE9L+Kiu17A5ffrHZgbtfNvfx5HXDQD7/vJP01ghAJsnW0ldbuuvkFcMcxS6hmoYMnaMJ2nZrAmfQ225qwH0++di2seWYh7Zq/Ar++eo273g5ufBQDMXdmDZ5foDKl+DrBt8Qw2HzDkZYaptbdkkIKVvOGxo+V3vrDc1XPVtFiXdfVjxfDc9uKKbsxaonfe5ABbM3yLGx5bhCN/dR8OOf9ulWkG6GWekvGGGRo7XXq/OHNZ21YtEWXPZFW3fE28ssBKmI41iwDbGLJ1fYO4/ZmlTWNA8EkyanxtfrbNuAiwjUXzSkT7ZQdiBXMEIoNt5Laub7CpJQfcGWxr2TyX7V7PEQ/ThLIcceoMbsoyjkatk4BaFsDWshEE5/n4CO0KBjSHwbYqMGDgQVQjmfzN0fhcuakDiypnsA3Iczd/3/ICvDnL1+P065/EzDmbFsgPndf4ONoaNNiuf3Rh/fNfn2hOh91ZS9bhJ7c9DwBY1zeEOct1Zk2oLtTfnlzi/K0B9HyusVgts5d14dAL/4WvXvWYCcTxuSoPFFnW1acCQdSueyS793cH6mJaSSEOTGzxDDZhjdDKRNvKGTjbZ1w3B3+se/T0Ihco61XiV94s6YZH9Q6dGwNgO+VPjwGoAf6X3aeXxzakweaBXA0w2BSWped/KWPZK09Vjs2Z0wOV6mYrQ7CpbfP01KNtFPv09Adxwu8exLeve7Ip++N19JurRk4zKfdbmnGtgTjxjQ0L1WDbGJnmsWyL1vTiLWffjjedfRvmLB95O3sAnuD35jqfccdXDfirYRlUwF1juvqHNttrp4HF6m7dWd8YrG/eJEJbhzeWBttKJbPtHb8SFixsKcbv5/PLbN2fZtuGMtjyntdHL5qB382Yhy9esWl1dUPfDV5qvDnrUoZakeiYaIFxo3bns8udv7USYsB9Fy020exl7pqmA2y8vEyfEy+/fwEeW7AGf37oJZx5o67h6DHYevX546bHF+HNZ9+OD1xgl3MCwDOLMwBnn50mmNvWz8VYs/g8tzUCbOsVkCuYwcZLRA2/cwlb37RExlwGsD25KJzBppU/NmJUishq3BTK+Ab8+9JIkwPeSELbVkvIha7X0nPeXLGATW0RYBtDluqkXfPwwpwtw4w7RJtrRnpzAA0WrunFhXfMxvM54puAn5keifGFZOHqLbssB6gxJeet7I6MScM4oKZ3FGqsm1M0235863PoGaigf6iK0294qin7fIIBbBtD38ayy2bMxaEX/gv3vmBn93kAp4quN8JgGwoP1EbTKGhoNTnggUUz5voFq1wtM12LayMx2EJLRLcyBhu/n7OMsrGNYaEabHzMrejS7/vansF6ALh0Xf8mXWN5QKe9GxywsLoabiyrVpOm+mlUa7JZ++XvtjY++ocqjp6Z5QPwfYaCupbGFRWkv+y+eeo++fcWK+4Lf3wESQI8u7QLDxr60JVq4rwfoZIqJoPNA9i2bLBBAgi1cmOqwdasElF+LK1E9EWmfbbC0HHkWqjNYLBR7dNl6/Rja6WWkvGxpP22IQabl5gJY6Fq67wEeG6uOsGb2iLAFm2Djb+Am2vb7M0BNDjxsgfxw1uexWEX/kvdplJNcOQvZ+At59zuZNVGYnwh44vQlminXPUYDvzhnTjT6FiX2rJ1ffjylY/il6OgkTOaFuqM8nd4c3hXtmSj+kYc+NhQ488ypOylWVapJvjO9U/hsQVrcPSv7a6XngZbYMBvZfj5+NzUbJU7n12G065/EpfdN89M1FDwyBLfbiTwDLV17N1Wu4JtJAYbd7w1gIBfu9UMYjRt5fp+/PfvH8J3b3jKBJg8gG3x6AJsoWDHKgPY5CB6s9hUIcbHpxb0ehpsm7hL/NqeQRx83l044Ad3mKL4jVip2HwGW2gzmReWdYMOc4tNxMeYymBj31tgGAe1tDmRH0vTleVm3U++RodKZPQYY46P48FKYrLolnf1408PLjAbe4ymiQw2ZR2m12kNY85itwG2MI2vF1kJNJc/cY+/EQC2ie31z5bOJWe4W2MjtMlBqAZbteqPxdDmOCsU9pwEeEYGW80iwDZGrRmBNJ+kNteM9MZisK3tGcTTi9YFZXmfXFgDzLoHKur2tz2zFDNfXIVlXf34lNGmHqixuJ5cuDZ3YeAlos1yCEfTUgbmb/81N3fbb1/3JK59ZCHO+dssr9Ruaza+OGqts/l2W3o5w2hby0YIlLjTP7gJg95G2CE8E6oz2MK2A/xr35QA26ruAXz20odw6Yx5+M51T5qaLvSZWO8QT3g0o0zSYw5qJaLCOtiM95073hq7gx9/c+1mee7Ns/C3J5dg+r1zcePjuh6WDxhu2uvxAiXlufuAlP4O/YsDbJuQLcvvpxYgc981FGhplv3k9ufw4opuLFzTi+9c3xy5lRKpL2tWp2H+3LV59tmlbjJ3sKKz8zydzcDyMot5zNcNLTbxk4ZhoEjBkL3kQEDofLhe0bQFfGH62n71Ne7LVz6Kr//5cXzhjw8HHXtTm1QOq80hoffP7yKq3x++5mvgzXwGlq7sHlDHMf++GYmuKUTv2gJLeYl+qAYtYJSIBjLYuKyTdXxJM1W6nyKDbRMnPTZXiwDbGDH+YlhlLKHGA6XNNSMtLXgjtb7BCg4+7y4ccsHdDZfcaosQzfItVrozpfbjW5/DB396D/Y/53Zc8/BL6nZ8IVs/xia+W59eWv/MS+22ZuNjTBtz/B2OTQ5GZrTUp1nBKXd0NiWDLZglUKl6Y0dl1AQyb4DGxLKbbQtX9zrXZM0f9DwrQpY4NZ5VbgbAxgG1RhhszSkRdQMGDegZGGo+uLgx7MbHMlDtX4boOb+eTT13hnbj5fOF9U7z0qZNeU0+wBYWTA5Uqpu0DI+ynp5uUqWBw2Br0rrhMdg0gG2JrxWqPXevRDRUg80AMPiz03wVj8EWmGyx9NI2lMFvrUMiU1g5h4GhKu6ZXZtjZr6ol7KOpknzigawhd4/r0TUmGe8ElFlfeFjs1JNVDY5nzubIT1Bd2kBbHzdayTB2EgXUUmDTZIXCWU+V6qJ+B5L72ssEa1ZBNjGiHEmk1UmEGr8ZW0GaLcxjNPVm2H/fG55PcN6ylWPNfRbbXHqaNHbo3ObMdzhq3uggh/d8qy6HV9IrOz1lmAj0YShTuzmaAtW9TSNbRnqOPIFPJaINs+0Nump/enBBXjnj+7EVQ8uMLfjz3JTskp4EKMBR1KgpWl7+Aw2KwDiCYJNl8ThAenCNbJ+ZaWagE9L2nvErycEZMpjHfMAKLTkA7AZB/e/uAp3Pbdc/ffU+DWEasBtroz38e1ZR1griPcaxGziudNnsCljjm3XZVwTXw82JZjPx6fWjIE3OQA2LYuttZyFTc1aL6lv0qxGLqElos8u8UHCUIBNY7DxcWOJyPN9aveUHys02WKVqzVSqkitkXkB0OfZuVuAZEsjXUR9sDRMJsK67/xea11EeYwL6CzYjdFFlF7DUDVRQSY+Hq3mI1yDVqsokN5XicEmzefa2JT2KZWoSqy2WCJaswiwjRHjE0ozssd8cbK6p42mbYwsLGWq5BkHhbTJh0+0ltgtnShXrB9QgSe+jy294xZ3whsBpJopStxs+/1983DAD+7AYRf+qynC0r4OiAZ2xC6zzTTq9OeViH79z49jzopufO3Pj+doPY0eU4YHMZojKgVvoRpsvYNy2bzEBNuUDDYeWGgNYqR3RgsYuINrrcO9AxV8avoDeNPZt+N0oxTN075TS0T97zUA5ZnF6/CxX87AsZfcjxse00tjAd/pDs2Ib66M9wkEYLPAqNHuwBzc5ICdl5Vk40ybTanBxgM9la0x5J/TpvRrWksbF2DLS8yEGr9P2viYs8IHeXSQiyVHAoNzq5yTJ1hCGWzhAJv1Dm+YRIYF6MoAm3zveWOUTZ3gHKpUc/1iKQGmAT38/mn+QoUDm0bS0APYlHEsvTZaowO/i+jI1yL+jLX5i5eAN8Lg19YYzqYG5HlEBOKUey8dS7omCdiMAFvNIsA2RoxPKM0Aw/jilJeRnr+ypym17o3axnB82xtgm3kaKGpmw/1+aZfOXKAL0kClqk5o3EHe0gE2vog1MpGPxtgLtW9fVwugn1q0TnR4GzV/YZZ1VTY0g9ssu3f2CrzrvLtw3q06C3NDrHeggplzVm7y66GNXnoMvUVuVknBqJaIsvmikVbtoV1EATmwkebtTTl/cUd+0dpwgC00c29dz/m3P49/zFoGALjJ0ALj56kyyCQnXHGuHyCd9754+SPmOOZaahqTytN06dYTQ6NpE9oIg81YMzxtxE3c3dfvBhcGbFpjzr+m0SsR1QCUfuGcmgG8P71oHU695gncn1OqRxlszdIsLY8ig01aI1UdNM5QCmTLWgyhUAZbqAYb/73FENrQLurmO9QAm/s5BrBpz2hj2NqeQRz04zvxhu/fhhcNn7ORJgf82jXmopc0bKSLqHKPJO1CrdkAB4W6Byojnuv43Kk9S785jX5cqWFGyLGl4wDyeq8lUSR/QdKAk+KK0ejsvDlaBNjGiPGXqBklojzQsxbRu55bjv/44R044Nw7NjnQwSepZjgwbeXwV4dPtFoGmS8c81fqXQh9/Tv5efJM0ZZeIsodWut6ePDWDBr4prCSpcobaNKCKwmc8syh5eikjTVCQI75K3vwr9krcrOj377uScxeth4X/GM25jWxXOL/Xf4IjvzVffhqg+XbIzU6xgaGqsGA0DNL9A6EXtnWJmSV8Ey9JgMgBTFqiagwDiWNGhFgG0UG25qeQXG+aaT0km9rBVQPEpBL6x5WO88wx14CJqQ5AQBaSu769vD8NerxQxkGXqlzNTEZYqNl4SWio6vBFsqE8MqsG9CP2qRNDgIZStIa1QyA7chfzcDl98/Hx345w9xu45SIZvtsWhfRQIaj5A+Hglz6POd+byVCPdBOSU5IGmwSQM+BN+vYfP4LfYcbYbYC+jU9u9Rd9/OAiXV9g03zY69/bCEWrOrFqu4BfO6yh9TtRAZbYJMDncHWCMAWxtCWxrGm49jImA81/ntp3CVJ4nVXtQBgPh41fVdJnkCau0O7jWrb9g76z12ar3o2w3V9NCwCbGPEvCYHTSkRDQ8WPv/72gS+tncQv79v3oiP3YiNpKxQs0Z20cMmJU2/wAPYVhkAm9e0QlvI3L+3dIDNX8T06+FOkKUD0qgtWdu30dhRzegiFpqVbqTJwW//NRcf/Ok9+OAFd5ssqnV9g3j/+f/Ef/1mJv78kN6AA3DLU+42BMUbsUo1wW3P1Jpb5JW3Ndu4Q6k5eNxmGWLZ3HnalEwZrnmmlfU1VCIqCe0KAYh0nZuSwSYBFosEHTbpXdDeI09/zhBn58GKqn8XzGALAzEB/3la4Lff5U3TifHPf+1mWCba2ZoBbNpaDUjvZfPWgxsfW4Tzbn3WLK3jYyn0fWuEfdOscsUQ8xlsYQwloDnzAgXpLGZlaymrXmgWGEYZbM2SsuDjUy2tEw6nzguBGmyhDRaA8C6iPAlTTWQQg4OtpgbbhjLYDEBXAh01IJIzwq1zfXFFN9541m146zm3O402NtTo/eRAHzW5yUGYBptGpvA0ggX5gtRCu4hKfnOoBpt0To0af8bSeUrvWiMlotp3oQw2EWBrgBUnJULFEtEmNE/aGiwCbGPENgaDjb+sVienbjLZ8JKSjW3+eY7caWzE8eTBihaAcPFODTQDwgWjOYNtU2oYbQzzGWz6mFvFwI1mMSevf3Qh3nLO7TjkgrubVs5BrRlMCJHBFpDR0kpJAeDMm54GAMxd2YNHFqxRj33Lk0vq7/vXr3489JSb1kVLAkE2hQ1WfMbaSsXB48Ex12Lh+7X+3pjG5wtt7pYCKFUAO7BVvHSdm3L+kkBDqdEBZ4oARpODQGF6aR/6usE6+2ldRBtwrvnztJgIPEBWjy/4B80qsWumdbRmAIq1Zmys93Luim78v8sfwQX/mI0f3/qcup3HhFBlInzmj2ajWfbq63Zp5WUSwNZcoHZTawiVaPfpjVQiyrsNpyYBE9p7GaqXxucuC0Tg64R6bGH+kMayB7AZ491LMCrH5oBrw00OFDY3vy9WwvibVz+O/qGaHMwv//mCul2otbW44f8yRZJmJCWiWkI/lMGWJIm3j0aYmKHHB0Y+1/mlyf6xpeNajDxpKgiV05DmkZAYwPpeOrbY5MCIy8aSRYBtjJivwdaMEtHwWvIW4kBsaufFa+veBKe+EWCFX+96ZfLp5qWkpjgrB9jC2lFv6bXx3gJuXA8vq2oWtf5LVzwKAJi9bD0ef2lNU/ZJTdI+aHgfgcLr4oIbAB5LWgyp8fIyy141dWL9My2J45YkCc752zP4wh8fzu1WbDE/ua3tGcTHf3UfTpj+gBkEBO1LGF/amOPBpJWRHs3OftyR1oB8yeltpJultHaMNsAmCXhLjESJGaYFiY0w2Phz19ZNvo/BSiJnvhtgsPF3QRvH0vzbyHPfGAmKkRo9pYbAqCbM2wBw33CHcACYfu9cdTsOnIUCqz0DFfW+c7BjU4L5XKi7EQZbs+cF+7lvBP+VXHozGOxAeImodLzQLqKhZcl2ieiGMdgAeYxwUNxi0/B7FKyd2UCZNaDfJx9g08/1UZLUtBLLocaP/YgiAyDd99ASUe29DO0i2j9U9bbVQEhpStP2O3oMNgFgUxNS4cCXWJ0i+PHSb7W1QJa+8M9V+n1sclCzCLCNEeM0zmaADfwFthhsHaQpwKYU8gQ2Tqa5EQ2B0CxVqFYb4IObGujAswvNWJhH07wmB8b1cBC5GZ2CuDUj2+yJ/DaDwRaa5WqgAyK1tb06yNWIPiG9exZo9/hLa/HLu+bgpscX4yt/snXV5jag5XbGjU9hxpyVuH3WMlz5wILg30kmzamhwYLF5OGBp8SY2ljGAwmN+SyxIxppciAz2KQS0ZG/w48tWIN3nXcXvnOd3pkTUMpehblb7NalAWxc4NhYCznYoa0HoeW5IoNNGUt8n5q/IM2/GisvtNxlY9oV98/HF/74MOYsX69uQ+dEC+vYGNITADCONFmwLFQsW3rftMTUaDLYQpscSOO42QCbVZrbLCDV2Se5pqYx2AJLRBvRowpdt0LLl6vVxDuWFkdIyQjpufNnZ8UboQy20EYhGutIT2SEsZQB915vN75V3S7U+DzdSAOjUFBIAyJDpUmkNU8tER2+8bTcWhufoQ0AGrEQDTbpuBq7UbsnoSWisgab3OSAMzQ1rTfpXCXQ0BrHY8kiwDZGrNJgO+onF67NFR3nL6vFYBtHdE2ahW4PVqr42xOL8YyhXwT4k8/GYLBZYBi/Xl2DjWm1WeKsnMGmdIXd+rqIhjPYuMPQDFCZO2/NEF3nTmIzAjVpjMvU8g0Te7VE1xvp0UAdrYFKVXWunyMaIf+YtcxkvvDmIBbj69pHF9Y/z1pizyN5JpV0a04SfxbWPffE4TchKMHfrzXKPNMIg42XrQPhJaLNmL8+c+mDmL1sPS67bx6eeGmtup0U0ElrFwdAa9+FOceNCBxr66bYYEI6z41QIio9j0Yy8puyYcezS7rwzWuewE2PL8bP7pitbhcKnPk6Qs15Ly3QlRqfA3UNNuE90jp0jmLH4mCAbSNpsIUcG/CfczM64dL3gPvqG2qhXUSl05fucaWaeNce2uRAbbzSQAdTmcHmPyeutWsF+54Gm/auszleKx3Xzj2UEZgHHqXWjNJ6Pl9o7HTpWNp5egw25b0MZbBJ77WWuEtJJJTMofmTkm7YSOdvr0RUAtgaYLBp605o8rwRlh5/Htp20liIDDbdIsA2Rsxnm+mTyd3PL8cHf3oP3nXeXaaekVeiYDDYxhFdk2YJIP5x5nz89x8exqE/+5eafQE2jiPcCHDlA2xhXURNBhsv+VU12MKp7VuC+RoP+lha08s12EZ+7c8vc5kPzdB14/toBsAWqrUgdxbNP/6ydbK2GNCY88fHcWhJwf2GXhtnsFnXQ/2dHSa0q9uFWCh1X/reYv9KOnnNsIVres15E/Cfx+J1sk5LI11EJQaeVI4pBtJNeIeXdWVj12I7SkCHlPQQGWxKGZkvq2Aw2AL1bKTAU2SwNdLkgANsigSBFLw2pgG36QCcKx6YX/98zcML1e3489S0UDeWBhtfD6T7WRWYMmqgJrxvoRpKmxIA9dgv2jk2ABhuqDXSCKIZYAcdO1IQvkH79BiOI2OwSWuU/q6HHVv6Xruf0vGl5+SViDbQRVTVlBOSHRKwqrOO5GcaCrC9tNqNw5rB2JS6ZEsmjQ/teXLWtfZe8n1q9116vpoEQrrPdhJrSuM4SZROnMb8nQfgVwXwWSwRbeBejrxENJylZwHNeYCltMvIYKtZBNjGiHEapxXQfePPNWHywUqC8297Xt2OLxoa1RUAxrXREtHmvHyn3/AUgNpk8JfH9W6Bm0KDzQJa+ASqsa5CmW6AP8mGtsPuHdT1V7YE80pEjbHEKfDNYLA9z7otNQO046WrzRif4V1Ew9k3rURbbclaGWgB7HmAm1d6odxP7vzNXqY3BVjCwL/Q8+Giv41aI1o2fBxbz5z/WzMC+QfnrsJ//OAOHPjDO0z9N+5YaqzmRpxwCVQJbnLQZKaK5TiLrDxhvmlE1NrrvN0AwNYIg036LlQIGQjXYBMZbMp5NnL8jWG3PrW0/nlSR4u6HZ8TVR3FjdTdl68pi4W5VgJhVD2sQMZXkiTemNukGmzsWI2whPIC4MFKtSGmWSNdIpsBdtAxt7FKRBvpviitW9J7Hcxg0wC2wMYnSSKXXkqlvPx52CWiYUwqfj2VatIQ+1/7nieWtIYM81a5665VwhxqPsCmJOnJ+Ggdlv/QxpLfqCSsskYbR3q1j/99epqUzCGK8iuvlwY+feGPD+O1370Ff5w5X/x3QHtfApscNMhgsypRqI8eqsEmbUtZtOPbs+ozKWkqVSREBlvNIsA2Rsyb0Iygk27JWUDOPr2yU/2lai8TBttGePks8IQvhM1gsDXCDOPXq+mGedsp4FGS+Iu7xmCTnLUtudFBIww2vnANDFVHLGTPM4l5um53P78cF931ggnA8oBqpEFNkvjZNG2/jbCuJnZkC+1SpeMU4DvNFqDL5xAtUOLOn5mVDmQY8PkqtDRLM6k3hCXea/1NzS8RHXkAdsUDC1CpJujqG8IpV+madnxee2l1rzhmGsnMSnNSsAbbJtRakpxJadyJgZbmyPImB8o6nCS+NpE2b4saOWIpawMMtkANNmn+baTJQTPGcoglSYJFa8O6C4eWt3mlpE3qiMrH5MLV/nmL+jiBun+A/B6N5vOpHd9nsEnzitzkQH+P56/swVvPuR1vP/cONTHEj2MB+fzdbkZ5Kg1wm5UADQW5RIBNEupvQLw/9B2S5r/QMjRtv/zYpq8glLxKQKw0T4olgKpgvDz38u216h5+rGYkdv0SUfkdovdj/LA+pHbtfA7R3g0vdlSuW2+moJdfOowrYXxJwBMgr9l9gxXc9PhiVBPgW9c+If6udj5hvkIzSkQtYLedJIllDTbNL3G3pWtGZ2sOg02MMSPABkSAbcyYJ4hrgGHjiciu5Tx4ZacGaEfp6lbp44aateBsCg02u0TU/bf1KoONabA10GJaA3oaaV29JZjP6tCvRXL+Rppt5vu09rdsXR8+cfH9+N+/zcIFBhPUY7CNMKjRmBShXUQ1cIAOpaUNMNhMwehA1gJnsFlOc2jzFQ6W5gH/81Z243f3zsXyLrk8NjRQqZ1T+JzEx0NIl9c8IzrAuP/FVWqpHp/XKtVElA2QhpyuCRUKsPnn1Oy5ywLsZAZb2HmGgh2hXfgAPTETfp7ZPtNGJCPVYJPmX+l8NNHkZozlEBusJE45+NreweAOc6EBULM02LiG1MI1PsNUK+uTAKlQLUO5CcamY7DxMZ8kMqgsXbu1Dl/xwHysWD+AhWt68T9KkMzHod0lMqwMrhGj114RRMc3xELnmtDui42Uc/IxpyUS5H2GARO176XvGGhl+IiylEbYOt4z6O9X6wArvYPStWtzPL/PzWjY5SVRAkpEO4crkUIlCFSAjb1vKsNRbY6hn2dbuVjXAe4Xk4HiLkUfKLT6QR4fUomo/1stsStpu2rHSufuDgKGyWWwyvjkDDbyW6qfLjICyVcpw7FZVWpbukWAbYyYV/NuTBwTCCXUcly8JgcGaEcnhTVN6uZIuxVaCw7PLDcDYAvVjgIEnYVQDbbAzLl0PqlJjsmWrMPGx63FxmtEMyTUuKNoMdNmzFlZ//ybe15Ut/M02ALGp+WAq+KoI2Sw0Xu3fL2lwRYWnEvHV0tEGZPWKq3zmbXy9cxnpZHWPgHg+OkP4PQbnsLX/iwzvhoD2NxjSY5gahtDg41meQHgxRVy6afkIM9d6Qf80nhUuxqKTQ50p5FaszuoWmuRGABJGmwNlAr5gacWUPnfN8RgywmA0jIaDUDpZc+jkRJRKWAIzZxvqA3llABKY0ljffMxpgXoG0uDjSckpHuvrfehjSxEgE0M3DYdg01mpoWBGNa9p02wbp+1TNV1yjuudp5dTehs3IhGcqiFiK4DChsyEBDSkldS1UioNIA0DjRQRAKUeZMIMxkn+T+B3+Ux2Gh8Iv4+cH0BGkvshlpokwN6i8e16Ay20PcXCJdK0OY5/r7QcVAsFuqlkhIzTlvzJL+qX9FS5RY8PoS5S2PLNtRFdPjeU79O1GBTrt1nsGXbdbbZjEB6TROGyTlWZdFYsgiwjRELrXkHgAntmT6JBcbwxWmwImepa8fLXri1vYPiwkitZ2BIZYqkRnVULKDDyzQ3hcHGnayRdxHlE7LG1hCF6bVsfKBzvaUYd/ysiVwK2kcKsHGH0nJ0QkuhOWPBChYq1QTH/GYm3nz27XhyodwBsREdENHBDGBdDVYS9R3m990C2EKBap/BFt4AREsmeFotxtioVBPMWV4Doe58drm4jdiNLbAT1IBSmiJt2wxheH6toaUcgKzD1ogGm+TIipphSknjSNkdlKFtdcMVATYpIGyEwVYJCyzEjHgDZVYiwEbOM81K15hdQmDBft+vlNdLjIu8Y1OzxvKc5etx5QPzcxvJPDJ/Nf6/s27DERfN0P0P4ZxWKEkCv4xXeUZsu2rSnPI+v+mNv0997g0LKKX7Ebo+bCwTNReF9aARZgbgdxN/domv38nnmvUGaOaViDZZgw1oTMdUM6lElL/roWsOoPlT4SCAVGIqzZNiiajKYBMANvadpcEmJWxCmf6WDhgAtBOwg3chBeRnrPk1vu6fPj6XrO3DL+58wem8LhmfK/JKREvFQp0h1TtYETqbShUjYZU12jjS5lP+PQXdS4VCHdxsBKwN0VLV5kNpPpWepTRvaz7vhiTKW8tFlIfLE8TmS4GsbZ3BZoPKncO+VWxyULMIsI0RC5kMU6OihlbppYSQa/ulL3aS2IDYL+58Aft97+94yzm34+9PL1W3cwC2XiPjuBEyzXwX1oIXEswmSeIxFDSATQp69UxPWDC7sey+OStx4mUP4q7nZFCiUeML2bWPLMRMwhSjFsrsSG2wUsXiHJ0ej8FmgEeWY0eNA1BWqdE/n1uOe2avwLKufpzwuwfEbRrRbhAdzEC9EK28qxEGW7gGWwMlop6uSlhW2HpeIUFUaDe22jmFZcmBjcNg4/dPey+kAEYSXZemH03PRrpPUvZcus7EADH+59oncMAP/mF2mAVchvZKg4kZ2uSgEQab13lbCSyksSCtB0mSBJeIUh+ANvQIFV6W3mOxyUEgeAMY61alimN+MxPfuPoJ/O/fZonbpHbMb2Zibe8gHpq3Gnc9t0zcRrqfK9cruqWBDBgpaG6Gb8EDrkbWe3lekfw0CdgIY2duLJOekeRXNcJgS5IsMWJt65WINtBFtBmawl45p+Gfb+g+q4l/j7W5VOwi2hCDLYzRE8pgCwVaAD/W6RGAxdRCE4yhJZ50vXQZbGHXro0l/r5q+oQA8MXLH8G5N8/CJy++X/z37Pg8ETogr9fD3xULdgMBaU7R3iOPya1cd2hcQ+97sVhA2zC42QhYGyL1oDa8EX4rarCJAJvSpZocm0p6WA3MWstFlFKArYF1w9P5FcqCAa1pRAbApuMjNjmoWQTYxohJDDZt0ZnQRktEw5lhgB4whE5UPQNDOPfmWegbrAX0/5ilA2w0UDLL0JgjnKeV8sLy9bngCGewWaw4vi/JKak9D/c7rRW45BRoDqbkjG5Kp/nMG5/GLU8txbGX3I85y9ePeH/Ss7v+MbmDbKj4N1Bzyg678F946zn/wBX3692CfAabPu5C9aL4dtZYouN86ToZHNBbzYexhETnOjCrK21rgd+hgQ0vEbWYiBw01O6HB7AZ++QJAen40rumPovAewxIzk9+EJ/HPOHnr2udhIFHmvaMzDbxf79cGMt6xyt/n7OWrMMfZs7HglW9OPGyB8XfpVYsZN6qBrIA2Vo2vq2MllLtN3KTg/BMMX9ntDEnsxukY8us8fzgzy4lkeZJaY2VMtWh96h2bPn7Bat7sWgYyLW6twGulIIKWArPgzOb6ucaqA8kzafN0GHjc410j3SmXhgLTQTipDnemGu+d9PTOOpXM9TOwo1aqFacqBmm3Pfl6/u96gJZcD68RJRv24ymUV5SqBkMNomFxjqra4RLaSxI74H+voXNSaFNDjQwSXoPOIBSqSYNJaDF9yCQUUzXQYfBJuqOhu2ztq37fTXRx939c2sJpiXr+kw/gD/PwUoiytKkU0CxUHBKEPncLwJsynsUqnMpdaiUfk83KxVIiajEym2kRJT5+1oZrfS+BpeIKveIzmmdhEXG568qGd8tpYzBlud7pT4NIACWDWiwpduWCoU6g61/yE/Ij0WLANsYMb5AJUkYE8IqJZWAmhAGG6AH0rzkzwK6aKBkMeK482Vd058eWICDf3wX3n/+P81sNJ+QrG35ohlKNx+qJsFMFw00kxyIZmnFhNjTRP/kx39/bsT7kxYyDRwQHULl2T+3rAtPLaqd6zev0bsF+RpsunNtlZ+5+8wfH42YymATnN5QBzO0pAjwr0cDv2tizu53TWlyEMhg43OLtU/uBEmOViOBX2iAK21rvb9JkuALf3wYr/nurbj5ycXqdvzd6B1QHNlAXTktABJ1QITxvUyQA2ikRGI+0YXTSl1So/fTekfT8dHeUqoHFqFNDiTwBfCde02YPpTBpjFd8rLnlF0hsk0C2RXrhRJRsWGFItiszXUctAl11ss01U9Met/0ElEW/DXCYGuC/ASfa6R7pLEwpPEg+mmBgvWaX/HQvNW4+J4Xcd+cVfj8Hx4Wt2nULGYGNToW0iBRmzs5ew1QmB287LMRBlsT9IYa0TMOtRAtMS0xIjOuwvwCIHxOkdZm3kQCcMd7Cp4ACsAmDIVGunuK5xTIUKJzOe3oKHdlDSsrrJ2T/3tRn5Bdp9XNUZrXeLd2IBsjxULBEdHn1y/rhlaCSrqHqkku8N1a1jtkugy2jKEtnZPa5EAqpWf3fVX3yBhs0lqvzTV0zHQS0gsfS/Tay8VCncGWd98pAOxpsLH7ns6zVolosegyHGOZaATYxoxJgY62iGvZHm5SdjM0g6xlNvhEpe0PcBfH1Uag1IgG29evfhxATch7xgty6SHgT14WKOJnisIWdSBcVFsLRqUMUDNKzEKNtnievXTkDLZGmFSiNpHicFhMFvf44Qy2UIAtZHykxgEoUWyW/J46o5JwcaigrwRMaufJnxFnn1m/l+aFvsGK0D3WAtgYg02ZQ/h9t1hx/DlL40Vim4Y2ObC2baRE9MmF63DT44vRO1jBV696XN2O3z/NGQote9WWDOkZS+vLsi6/7FTteCUcP/RdA9wAbnXPgAoOps+ovaVYz+JqLDLvt6o2Udg6HKrBRktraAAiBbN0eLYZwQoQXrolgX7ynKT4GirA5jbS0Er3OTCizQvSuWtjxmNXqM2GwteixWt78dlLH8QPbp5laggmSSKUiAogk8YeFsad5KeFJu60OZ4CoGliaqQW2tHaYQkNMzG185TGTch1WpIA/N6FMNjytF/90vHml4gC/nVKYGVtu7A5IZR1DYSXiOYx2Og8F1IiClil6GGs89D7QQ/jMtjCEsN6iaj/vQSw8TnNqqKQjs8TmYBbAkgZbPz32liQOwGH3Q8tKWRpsBUJg03UlVQQthCAX2OwhTI+G2Gw0TFHyzStd7hYKKBl+Nrz3n8KhvF7QvdZLhbqjHexycHwtuVikQFssUw0AmxjxMROQYHCkio7oQEGG/8+BLUH7LItqi2yrm+ogQA1LMtsdZjj98gC7fjC0YjGhLRASguEDrCFg3F3P78c//mLe/HLu15oSpt4ACgTgMcCo4AaC+X959+Nz1z6YEPaIBoNXi5JkMcT15XStvM12AwGG2FIUOc175ysscQ13+YK5TmUWeEszCNocjASBpvktAGyAyDNC9LvbeFizmDTzpPNNRuDwdaUElGeXdTHR1oeAtgsDH6teSWiDlCbwzAoERaR9B7T+WvicJm/VO7ciJbgglV+Z1PNaICdJPoak96jjpZS3XGUggVRTLgBUX+5TEpiA9h6Z1PGtYrfp+YEKzT4q/rrY0i5DCADs7IGm8zs0EqA+Lw2d4X8fPm8rYEd0rmHAmdSYwugMUDqwjtm49anl+Lnd76A256RdeKAWlDC3xlpnmyEwRYa3IeKuwMueBBif3pgAd74/dvw63/OUbfRmppwo8F0ylTRzlNKhMiaie53NoMtnPk8MFTFZy59EK/57i248gG91Jmfk+VXhFilKpeOe+VlAlgpbQfoDQkkX1H6vZggkLpH5+hmUV8qpMkBoK+ZoXN3aMKjEZZw6LUDcqwm+dNL17nzoTWOpTlA2j69pkKBM5TC/FYJQArVhh5y7qcOCNEYtcQ02Pj41Jsc5IOtGpEjdG3UNNjy3iHamIlralaZ75VpsNn+fodRwkzvb6mYNY2wNO1qGn3ZeUaALQJsY8ZEgC2QwaZ1yAwNFoYqVS/4DBa/zBGld85TAXCkjn0hZmV/GikR5ZOSmJVVfi4FDNJCoDEBGgHY/u/vz+Gheatxzt9m4ed3viCfUINGj2WVUwLA/1z3BJ5ZvA5/f3oprntkobiNNGZDmVSAHkwvYZluCbiS9tk7WFGdN+rcF6ADbI0x2Nx7OHeFf56ULeJQywNLi+XmJeHBZKhTIgVUkjMmZ3qt7saMwRbY5MAsEWVd5ST9ptByyto5BQYWQqBkMYwff2lN/XNBH3J+iWhOkwMqii+No0Qp4cmbq142uQNArYzYL5V2nTzp+9QWrLabk9DzDGFD0uYBHa2lrHuaxM5qoNw3NLCQxoe0HtF7MbEje9cl0WhNgNsrT9tAXbgpna3q793MOdWTCWOwafPxfAasauV6jWjx8GfUCINNA1Yvv39B/fONimYooK330rwQHoiHsnTkElH5OCWlFFezr1/9OJZ39eP7f31G3SYU2KDzYQr0aaW5y4UyYOm5N8Ig4+dp+Yk/vvVZ/P3ppRisJLjygQXqdvwZP75wjbptiKnl9ew+0cu2SvAA/X0ZCeNL0yPm5jLt8kpEwxlsImsy0NcRu0QqGmyhDCddUkJIEAi/50xwLc7SmuNI15ReUrFQQDsB2EL9Vmn+lMvW7XnOYrDRv2kXUcC/p3QcUx8ppNvyqgYYbHKJqP/bwYoiBUS+o2umVyLKwMWsi6jECJbHJ5/nfQabVXKbMRwpABuqQb01WwTYxoiFBs2A77xJdfkAxA6EodoeqrDjULij42WaVUc4nG1GzSoTaITBFqKhpGlhcE067fcqY6IBgG32sqyE8+qHXxK3adToQrq+f8jU0rn7+RX1z7OWyGUnjWTZG2GwLWJMCAm4AsLHNwCs7M6c+4FKNdgBsYSyOYNt4RqhBIZk42nmS2xoEFjCJwfNYWVKmiaWVLokvXMScKUFvUniCxprzyeUxQX4jAIJYBNLRAMDndp5hr3rVonow/NX1z/vtcMEdTt+7ZoGW/qIOnKCBfpeO4FaDts2BdgAYDnTYaP3riOn3IYz2KzkEX9Msq5aUk8KtZdLdZHhoWriXX+ojmG6X24jAe3oraDvuhQ8OV1EnWDaTxpIljdXpE2H8srW6bPUgnafwSbPx/y5awy2RljjfHzpAFv42vqqqRPrn59ZrJdUhibPNMAgD9xMLbzJQfhxNOPvonQ+SZIEA2xSGZ42z0oMthAAxZImaaSL6A0ETH1kwRp1O/48H56nb5uaVWWgjQ9Lgy2PcdVIY41QDbZQgEsDAkMBNu3cQxn8omxGTqMjK4mh/b4RBpv0HWeCayDHgEB6AGRNzdT/KhULGNdC1hg27tXxYeh2UctlsLUUxe/pOQJAgQNsHFRWWJshVQULVsmJPGk+zWs0RE3SHnaaHLRZTQ6yz8VCAaWSrsHmMNgIGGYlcUvFYp0RKM2LzvgwANixaBFgGyMmdrhTnAju0GndCkUGW6DjpmVW+ERlOTr8PFXnmmuwBZaIasw9QNJgMwC2kBJRFWALZLApi1uIwGhqNDPYjOyD5DRboCW10A6VgB6kiV1EVQabC7DN0QC2BphHHITRHPFeNsYb0WDL063ZEAZbJTAg086TlylpAL10bOmdkwIJrWxLTCQocwg/T7vJQT6DTZpjR6rB1kgZGuDO1RpoD4Qz2NJ9UGdMbtWefc5jQtA56WWT2+ufeaODipJtlcb8S6tdoEVrrCFmmgf9MefoGJaLzvXzwEICrjVQV2Z9h4H2Yqkg+a7TAdjsNabVYrApYKuVvQayTme9g373a3qPqBOuzfO8q6z2PLmMg65hFA5Ue00OGhBy15o5TJ2UjfPnl61XwRGxrKcBwCB03ITOP43IL2jGg1LpWUoNb4B8Pa40kB6oyKWKUiMLOenI3gENoBeACctXotc6bZsOdTs+5h6ev1odI0mS4MtXPorXfvdW3PLUEnEbjdFnCaS35cyxjQAooRpsoTIzDTU5kEpENTB9BGz93BJRmpSSfKpGALZA34D7sdrY1Ob4HrFrb+2aigWgo1XX+VQbZgT67GLXTeoDlHVAiB66VHTBTX7v6FhoN0A76bdXPDAfzy/tyt1O25/2DkmEE7dEVAcCuTxHS1HXYHOunZaEG4zAfAZb7f/FQsFh2kUGWwTYxoyFOlmAPwksXCPrn4ykO5VWzulljxui6oc5whuDwWaxSvj1V5NwnTu5yYEM6Ej7aKRElAKUzaifl45tdXvNKwMDFGdOCWrELqLKdS1iTLBlCqgsZh2V8gF++RoTgr8z2vUAfnAijQXqXOcBbKEi9KHXDfiAlkarD50/pMNo97IRXUiPxSUAA6lxB0gE2ITzbCQjLTIrGgh6q4xdZSUSQtl7qfOWx2DTMvdiMEu+mzopCzqXMf0Y+lvq2Etjlos7r1VYk2KpTk6gVGSZWQ7IhQZpQAPvlvjc/d/S++4w2KTyJaKlQ4NUHuxoa65YwiMcv5r4Y2/QeZZ69zLtHLQEFH8/VMZGA+8Rvx+NNE4I7RrM2ZqpyfOxzSai1ZrSWErvMe2wKs4/QiMKnSkX7lPxjrBSwkVtaJLTQTUF3hPBpwI0Dbb8dVCbD0O7BQK186H/1ohu6KruAbGzMgDMfHEVrn1kIbr6h/CDm2fJ+1PGIb+f+rxtjzk6f0hJcJGpK67toQnL7Lu8ElHRD1bB9A1fh8USQHKYPE07UYOtAb9XOk9eIqpVCmkAskR8oABKh6Gxpbkbod2JxbkrlMHGNdjKekJQKjEHlAoP9l2SAH99wge1pWeRJP5Y1EBIKdZ0ZBUMBhtvcmBpsFW0++mV0fL7mWmwcR853SdnsEUNtgiwjRmTFjJVVJsDbIq+jRRYBDPYNkqJ6Mj3SScIS5SfT/BWMCuBBt4kqUy80sKqZ+PCwBLRia9UnQW/d0AHG0JNOrYFsNEAILQJBiBfd5IkchdRjcHGgvtQ3S7tnKTjaAxLvq1dIpof3NPfW5kv7feyXmPYe13bljPYwktE88TZ6fmI4HED85wIwCpsN659F8pgkzq3AkpGO5BlowWjfJ96J8tqkM5UkmSskvacbLzW5c0S2m0pFTCxo6X+fbdRctJhHJ+eZ2paWbKoyyhqpRAHs+CCQtxxbKxkPzDQCpzndAabHvwVCwWUiVA4D3boHJc2oQCU505+Su8RZ0ho5alagG0FUNRCZSJkFoUSdFf1+2EdW/sO8MeYNj652D6QXyLaSYJei+kyvt3eLrTUD/DHl9YpGqh1ZKcmXXsjpfTppXOgWJoXJQYbFwmv/ZbNnUIgCcjJL21d599rCWCNvacBctc/mpWdvrBcZtprpb1WeVluiSg5SZfRHOYT5QEo2f6keS777JSISk0OAv0CQGl4IQDN4V1EZXbUSBqN1LaV/AX/96u73XdLSzjQsUXneBk0TBlsBYxr0UsAtQYPoeyu3MY8xrrBQSY6Rnj8pQJsok8mJZbDn1voOiYBoXSfna26/+M2OciICnkMOquEmd5f2kU0Sfxt0+MUCwUHCIwAWwTYxoxJ/ovKWmCTl6TzBDRS7uJ/p5VfNsJg87PXYY6wtU/KAtCcYMC/R400OZC+c+vos8+NMIdEhkNgiSgvuRuqypoojZj0e6s7FnWWJccYCKfv9yuLk+SoJEnigUAa0BJK1ZecY02AuyGAzSsRte9HZ6ue+QLCS5IaKhFl925Nz4A4DqXxKgMD4QzFUEHv2nmGlxBzsF1yiKTz1Ep1RE2VQBAztCRaZe4FXjcvE0i7t+WVuLvsKN3JKxULaC3prFWHwdais54kp1UrSw4WI05ch32cUSIqsyDCGZahTQ7yyqFcBpv+PEuFAspFPfij44vuUxqzVOC4Izj40ktTtHPXwDAOYGsBZSiLQgI7tMRdIxps/H5IXYi134uareR+jGuj65vOeHeBuDC/QmUYsmekMUYBYL7HYBMANvJ8XDBdB7+LhQJaDDHzJEkaYLC515kkShJEOB9tXedjsXewIq+Dynyu+QG3PbO0/nnHiW3iNqEloi6DzS4RdcvBbcmADSmp1M6Rb0fBE+l+SuuwCtAH+sehzMWqAt6IgGMgMAk0UNLNrocnrVKj89F247MxJM2fdL12pRLcbasKABvqw+Qy2Mq6D8DXa6vJgQoyBfq90lqk+ahWpRKt2JHIHPQ4DTU5MDTYtHXY02Aj97dUKjhsNz4W02uvafTRRGQsEY0A2xixRhhsfPJ6SWOwjaA7VXMYbO7xQx1hS9eNBhRakAb4gGWjAJvVLj0vI605vaHlftJ20sJqlTSEmKixFcgK1Epo6PhIA/m8jkSTx7XWP4cGs1qgEipoHtqhCQjTdEqNNzmQggUHXGzTF2YgXMw4VDybHx+oMQ7yNCZSE9lEivMi3U/xfihzSCMMR37+YimFcJoqMyM4W5ofDKbGrye0uQOgAGzUaS0W6u+bVg6RWp4GW/rcW4pFE+hxOogZmWaJxcC1uVKTAnZJz49fu9V+PnQd1LYVGXASczkn6KVaKZIGW52JUEQdLAX8NYIeJ4+pQkG7DkPgeEgJaqT3VdLE00q8OKNIZ7CFgXayOLv2LMOTDh7jSwGk5A6XI2Owpc+zvaVYD+qCWZOBGmxWMnLeKs5gk0pECajbbq9ZdMy5DDZ323V9Q8GyCMElfML5qAw2YY2QQBXNn9PKmqlvFMrsrO/TABvymMf0K4etGshMk97NDWGGWXNX7TzDknmAJsEQ5uOJgKGicymxJqXGQpqWYGhcxX2lEK3rbToz/1gay5QxajG56X2nQItYhSM+d2nMER/AaG5B/6QljYCfGGqkRFSURWhAn5DP53R8TCbsfck/dhj8rYb/45WIZhpsXjmnwrD0zlPxKwC95LZcLKCzTR8fY9EiwDZGTFpv9S6i7kuplYiGtDXWjqOWAHLtlkoiLvaSgL6UrZEyXKHdTTTtKEBgsBm6WSEisM7iFJiR9vcZNvGHAmwjnSCl4/BSu9T6hyrOc1khZJ5r29X2WSpmWRWxwxO559t0ZguZyN4RrjNUeBwI13XSMp4hXWaB2pjn9y+vC5fTRXQEHepkdpXCKhHunfQuacfh76zmvIjdHwPPHdDGgjw+OTAsA2xhjnntnMIy0o0E8XzMascOHe90iiuRsgu5VJAEFoa+V+27YYes5DJQtNIDIK9E1DuEyqiRnHhJl5Ffe3sgO6t+jmrJSNjzlDt22mA4ZRiIHcwog80AJqgTngfQU9DOuUfsnjpMmRb9mUu/BQxZBM8HaIDBFghmaXOC3PUybK5aq5RUSr/PS4JQf0H0NYavs6VUNMWqG2kEwceXlYzkTbKkbek61JnDfknHUqEAtJZ1BuxKwoLfZlwL2S7sHoeK0Gt+khQ0S1UWGvgjPQ+uwbqud0guZQ1MwtKf5nW9pD4vnRfCGWwSiJBtlxJ6ugd8pp8LBGbjQ2YEbjgAws8ptdAST0dsnwDAEnhDfdQJOVq5oYx3fp0akYFuN4nKNAjjkzKULJayUx6b8w5vWBfRkvg9359XImpqsNls+1BdSk3ih1+nc9/JnCRJ56j+j8FCrTU5yOZEi0FnNTryuogamnZ1RjFPRMYmBxFgGysmMtgCO/EtXNMrLuKh5ViNdBGVqdRhjrAEEklBr8WKo4ublmWWjq8xVSrVJBcEAdwJmk5SooBsQ85CmPMlLawbA2DTGGw8IF7VPWAy8krFQl3sViy7Iue+DWGwScF0aMlcI1o8oRpsUkZbc457BipCO23bGcwLkKVxGzpXhDLYgHzWAjV+T3QGWxj43AiTKzRYkhxXkcHWQImoHLCHZdgB/74NVeXkhHSNYkmhw+LKHLI8h9kSIwaI6HqpaJaIOiBCq55pFktENQAjMPDjTit1xPk8IDnXoexwQHkvQ0saGdMudcTFYDbJHGHqhFsltx0tdikYBe3GGQy20NKU2rlL4GBYckMr1wu9n9L70lAX0eAS0bAmT9p5uu9Gjr8w/PuWUrEOgo60HD2UkQcAy5nwurQtPQ4VUpeYPzTgp4L33lgg44iy2OU1M4xRI80fWlmy5FPJSaHwxB0fNwOVai7AVSCSI3YX0XANtnE5DDZaOp6aCC6ScUz9NO4ruRIENoNNlGpQ7nGoxmk4YEiBnoxtJwO42XcTcliboeWk/Nq1sUnPk2qwWYnDYqHgsGX5vrX1WhyfwnM79Zon8OIKt5xc12BjwBHTIaNrjFVSmactKzLYpDFHvqPvm9VUZJyhq8aP02F03naSbKTJAWADkW7JrX6PPAab4v9wHyAy2CLANmYslJUC+BNI/1BV1EwLzepI2VK1RDRwn+KCJ+kHCIutVfpIndk1PQMqEOh3EQ1nqkjbJw04L1oJocSiGwmDbaQlopKjommwSSVdkn5KUl/sbeeFOiR5JaKhYveNMNik5yYtOKFlKID8jKRn7jLY7EV8JAw2TRtIOo7cOS4M+NKqr0WATTx3rUQ0XAOFO7gimC9mQJUxE+jMhXYV1H4v6gMGvgNc18QC2OilW2VbQHb+5SLTAmP7VTXYDOc6Nan8Rjt3sUSUOcz0+HzcSMknbe6UQZmRvG/Z51IhA9isxg01nRadZTjUQKBEg6+OUAZbTrfCPCYDtVAGWygjUNQn1Z5lINsM8O+H2vhlA5iLnUYZb5IkWQlPiXSDC1zf9C6v7rYaoD1UqXodfiVw0dFvatFBM8AFdVuMuUYbc8EMtkBQo3+oKgKz6/v965TGp1oiGriOctkIgCXZDB1WTYNNZoFln8fllSUP/36CI6BvA1KU0cP9bo15E9rkoBEG20jmBU9WYfhcZRZq9t24nERo6NoeWiLqAGyEwSYmm4a3LRTglABywFRNzBgALLef3v688ze971Z3cs5gc0sa9YSY0+k1sAw3791oNbrcOmXWTnmqPWYtBn+VjTnawMg7fmC3d6+LaEs+I5Az2DT9v7FkEWAbIxbaGRCQJ5BQnYW8bij17RpgsIlZP4mFJXbC84+htaiu7Tc7fjUBbieCstSCATZFv4WXgtCfd+ZkpLUAW+4iGhaoSfdupCKVktOpMdikgMNyyKhQd172mWodSON4JN8BcqdIKcCXAGApmGwElJGeeSMMNjF4EzXtwkBubU6R2WZa8BbGYBNLyXL0+KjJwL0S7LDrWj8wFNSCfcQMNgWQkUAdMbkhlUSGAmzMybI02NQAyGSwsRJR7gxS59rQYJOmQ6m0A2igi6jHYNMBNpmFJc+dobpfoWU1TkBXyDLy0rqR/px3EfWy7Ao7SgbYhvfJBbC5Bhs5htu5LTBwVQIy/n5oYFgoeCQCfso+Q9fWJEkExlcjTQ7s4IsG5/y50/FGmQiyLlLY9QD+PZH8PgBY2T3g+WBiiajC1pDmv3R/hQIYg43Px9lna/4AwjWhtPlcAunXB1YFqHppAQw2QC4vo2PGZcro73q5WKiXaYpgvpIElsZSuu3Edr1LND/PyU6pos6Oos9cbHIg3E7N15A1QsMAOlmL1AV6Wow1c7CqPaMwsDeEXaUlHOizpDIi0phNd1kqFBx9RA8EdZoc2CWv2nz+9OJ1bLvsty7z2QaZrBJROtfklYiKYztnHW41Ekg6e85e86wSUXp7S0SDrXZ8/X23GWzZ37SLKCBpLKeJO7BmULFENAJsY8RChcsB2dHqEwADGUDxX6pGmhyEZhJDKdsyuyEMYAOAvz6xWNzOB9jkBUNlPYVqsOWUEJaLeokVIJetia3mJQ22QK06zUQGmwqw+U63uDCTMicrO0jH9ri2Un1bSbA6VG+tEQabNBYlB1MGjxUANVBDTXOuQwP5cA22sHdVO8/QbphatjM0wJXeISnoBXTHj19/kvjvRyMlohIwKjPYtGsX5vPAMSsyKXNAjZoG23B5WZ4Gm9HtC8ieUblYdASrQ7uIWmVO2jbW91bHTSDVYKMlorqDm4KQ0j2mbCJqoUC1VFZD3w0Kcg1UfFZNPdNcKKCFOuGG/kpeIE07zJk6dVoAIiYnBJaPBrCx+6SVROUFuNn5SPNUEgx4SiWN0rPUGWxh8yS9H+ON7qA+s0MvEc1rpkCNH0cD2Jat85sVSXIBejCps4S4mLlVYu421gh7B6V1Q1sfpHEXWhUQOrYB+d6tFaoCQpNs9NBFos2YC+rmdGZPt6XgjVhhQsY2rTTg44nOHy15Xaob6SIaCP5I+5TWcAfsICXM0rxQ0UDQwHVc7rDr/q3FWQ7wXirWjy89I8pSntBGWIb8GZFjUxaq2H1aSZr+286T1PO0pCc4k9vpIqpohgEBJaKB86QGXFmlrHlde+m8b/nxFeYDuPIP3FfKPrduKINNaWBUKhSc2DUy2CLANmZsJCWiQLhWlMRQ0roshmaFJDaQXOYY5hBZXUT5NT3x0lpxO0+DrQEx89px9AxMXokonTRptjcUxJDunUQlH3mJaNgzAuQSUYspUyoW6uCiCAiT+9ZeLtWddpG9I4yvUCF4oJFS6bDtdIBNWuxt5yWvVXyoILDcuj48IJOZO/K2/HlQ55bqW4jsqMA5ZaBSlcHnBvRwuIMpscq0rmAiGCc4zFo5uMy4CCtpCi0R1cpdBob8a3I1cuwS0fTay0xDycqidrTqJV6NMAdDS0Tp8ymw8kerRDTN8PcPVYOTMHmOfQpCyp39XCDQWTuMTHPZ0TEykj05JaIUtHPuES8RVcAOCeRqBPjm40sr15PBwbD5EMgvb6ufTyCgrZVUbpAGG21yMCg/c8ANlEIE0rXzAcIZbMuY/hogy0S4ekN2Yx5Xg00H6LV1MLSpiNgoRAEGJL9G8qnkElEtCSuMG6lEVGSwjSw4z5trHGarMB+mm7aWi/V1Qwq46ftGGWx+iWj2mQIDIptI9AuUdVQE2XW/091OH5uAK6tg6QkD7v3ka1SSJPWx2J5TPs3XQq1SqMrWjRSElUBhWgLY3lIkzSh0EDRPu1MD2Gi5Oz02YGuwVbx5Tk8MuQw2ncUFaExyPfHPz9MqZc17ls62BgDL9eeoBpvV5CD0PGvSArJfkSRJnVHMS0RHGj9uDRYBtjFi0gKhsk0C2W7pokGDXmmx10reJKc1VOBTYmHJDDb/uFYXUb4QqyAkWyC0a9R+zx1xF2CjzovNasljKEnlflJQIzKujC4w81f2YPay9eq/A+HgHhAONFFBzTQ4l66HgqjtLSVTm0gsB83pspbX6Syv5M7aLrRMsfad7WC2ljKHyNJgI2tyuHBwoCNaOyc7cKRziCWQnpe9DnWSJEYuPydqIZ2QNadR1EoJBAK1gE4CAkP1L6VnIY/X7HOpUEBbSQe56GnmlogO75iLlId2EfVLRGVgUzLpfuSXiLolZhY7y2FssDlVLe3P0VFMr72a+NfKQVCrk6feRdS470bgVzunDLSjIKhXIqoFSoEloroGm/D7wORGaJMDQAZLQgEp6d1qRIMtT3C+02Cw0VOkjK9K1W+AElq+DPjXJOmNAcDyLp/BlivonQciDH9VKNhNDrTgPJQJLiVilelYnHtDk5aDyjoYXCIqarCR8UE7iRt+Z7GAesl+HrOrs80C8rPPpWKh7is1pMFmMNgcjSsxeRX2fLXvRabwBvg/eTrBbmMPHZAaqmaAJS25FUFydp7aPOMy2Ar1dcuS2SkWau9cuq2VYNzQElGetHXXDZ1M4HURJWNE63oJ5He03hAGm+X/VBUQMi+xEgqSl5j8g89My37rMAL5WkCOXesiKjPYeDMEek1aefJYsgiwjRETGWwKk0tsoWw4vRPaynU2kZTJDM2CAjIrRt4ujB0lBV8aEylJ/I6fandQtl2jGmy8zEoTLRaBJ4c6bGd7aTlFfTsRLAhjtQA1cO2dP74T7/6/u/Dg3FXiNoAM/jRyn8TM1/BXRZK9znNeWkpZ6ZQEnIV2DKXfTSCOTijrMrThhsq+CWSw8aBbK/tIkqwhAQ3MJQBGdDBzxO6dbXPYlbRNPX8eDniTo78S6iRpOoxSgD1U8dlIgB9AKUM7uLxMHu8KsBBYRiIzVfz99Q1WTfCmxHRNrBL3PIZS/R0uuAwUa58WA2WkJaJ5gV+pWHDEkP0SURlg4+92I6X9FSX44ut4wp4RdXD5ddVLfXLKSKrKWtQIg83SUXRYA4GaZ6FdRAG53DmUvaslN0R2fGDQLV2PFviKpWQiS4f4AG1hY7NQ0JkIfJ+phepkamLqywSALQ+8scrB6ba8yYEn/q0CbGEgplUS7W8r+aOC7IboR9PEnQ1oyww22+e29L04w9HStdU63XPfzWfVpuyoPA02UiLqra2uPycdy/outEmKvk/ptxIQl32ma2YuYGk8Izq2aEOCPC1UoFZSnHePioT53N0/pLLT0xiiDrAZOnl5TQ7SQ0zqaMGn3rZH/XtvbXe0O8OAq2LBBY+srt95IFfoHMCT2qlZQGBedQnfZ6GeKNf9tGLR1WCzmixYJapmF1Fyrq4GbMHpuK519B5LNqoA209+8hP8+7//OyZPnoy2tjZMmzYNH/3oR/H444/Xt+nq6sLJJ5+MadOmobW1FXvuuSdOP/10DA5mDsqNN96Iww47DLvvvjs6Ojqw44474j3veQ/uuuuu0biszdJCMzCA7PRK+j7p71tKxXq3IInBpjklkrMR2pFxRBpsgxWxbKuRDC7fVivl0gJ5k8FGRYtFMWIlWDEW8fYcBzPUGQSAqx9+CUPVGjX4mItnitsA+dox1GSdPX0hoyyMJJEWEnfiT++TNOlrXUT5GKELC+2OFcpaCNVB1EBdaYyJ5UNO9ikLpnkApS324WWjYSCi9vsB535mjqPGvAFs3Yjad2HBk9rlsQE2FM/gqgy2wBKJvO6c1OSESRiDTTtPPtfw1vOtlq6JorFllVOUS3aJqFbK4ZeI+tcSqn0JyLqMfP7oMJIe9HZSEWjOBtBK++X3KPtsZcQdzZ9CARM7suOvZcwWqpfmMNi8LDcJQFrtQCndlM6xQPg7HNrkoJFOi6EdoEUwXQHyJABJbq4RNserJaKinyXMc5ShZDHYHLADKhMBUPwfbb1m91grEV2xXmCw5ZVD0eDc0HvkoL8XJKodMsPusdwoRLsfAoNNuCeSj9pI197V3WEMNq3M2wfYss804SFKT6jnqYPpxWLGdpMTGdlxJo+zmhxkn/MY0o11EQ3za5z1rWSAZo6cBamyqCQe+OUylHRg1U3s2gAs97+SRAZlOUM7ZTkOVRNVxL4wjPCka5wFsOU1bahrKReAY/ffrf69pcNqdbnlDZko04+XpIcm7gA58Z+n+9dSNrp4OsfO67ZOQa6MRWbJL5QKLHlmAJFWN29fg02el5wqh+HjputRz2BksI0qwHbXXXdh+fLl2GOPPbDnnnti8eLF+POf/4yDDjoI3d3dqFQqOOSQQ3D++edj2bJlePnLX465c+fizDPPxHHHHVffz9VXX43rr78e69evx5577only5fj73//Ow4++GDMmDFj9C5wMzK5nCo8GBb1KKpZoJQGyJKjRXc3wSmhCQPO5DI6ASTKaZudWpKEl4xoTAgeOKpNDpxSRcMZJLsb16JnpGu/DctOAtlzdxYS4flKzo8GsG0zjnblVGg7CBcTBsJF9KtkYbb0V+hjLxaycTdQqXpjWe0OGujohGqrSfcjdGzXvm8c5EqzStLxHQAjx2kVASEpg8tAGes86fEnGp1eXYHjbKehpSAyqBLOYNNYqNzBTBSQSSwRFc49dP4CtERE2LlLyQVpn5zd0GqUY2ksQ4k16YjtG9tqGfGQEtFGmLKSqL47f/AmBzp4NMEoEVVZOjmlRk6mmYPkLHu9DREK5ywpCoY5c6fBZMrr6EjBDovBpgrOB5YrNyJSLoHKdLy2Koxe7TtA0SYKTFqKTUUGZVasnJSy54+2crE+x3sMNkWDDRBK0RoomfUYbArAJnZLzgHYcjsW1wN+W++R3t68UrBQHVV63ykLNURCAMgHj52GBMI5SU0OpKS2wxil84fXvd71FVqMd4Ou11ane/4sU/CoZ6Dig0zk78lWiajD5tFF5LXv1PL8DdA8TMeStJ3DKGZdbr25W0lk8DHvMNhySkSly1zVbXftLRWLDoOOjlFHY2t4uKdjtGfA1dF2u4jqupCAm+xpMd5ht4uonriz1kH+zlQUvze0+kH0jzUGm9HttMNIGvLjlEoZaMjfd66jSKuVtEZHQJ4GW/Y7n8FGSkTZ+gJkjOrIYBtlgO3yyy/HokWL8Mgjj+Dpp5/Gt771LQDAqlWrMGvWLFx33XW45557AADXXHMNZs2ahZ/85CcAgD/+8Y946KGHAAAHHHAAZs6ciRUrVuDJJ5/EtddeCwCoVCq44oorNv2FbYYmMlAaEP40AbZisZ457+rzKcZ08qEZ/lANttDuelIHHE0zQ3T8xABCWcTZV5qYOZ2MnLLCip71K5ey7noye0/OFFmOgQOwhZaIKjX0NJsBADNeWCluJ93PxvTFDIAtd2FmGS3C7OAgsAaw8e9dBht9llJQFcamFJ+vptsXWNpC3zcqJM/fd3o6LTnMMJGtkcPMcrRSRICf3k+9RJReT4tBvwfk+yGWh1V8x0Dbp8aG8jXYss/tBtsLcB3M1Jau9QXBtRLRUFBXZoCIuzRLNEuFgslgU1mGBtuMi5Tz42tMKutd185POwYgB73ccXRLRA0Ntna9RLSiBCB55UNWB0TOUJpEgGoeWKTbFguol4IBfhBAT6elVKy/x3mBUnuLcY80tmygJISq2RMKNJN1OA0AGmG6WOLf1KS5WwPz89b21LTOpqnVxKWzEi9qriaUO475HCLP0fL98JocaGLqYmLGTgqVA0vrcpscKO9Q6DoqAmxkM4vVCsgaRHlNDvK6SUrloHlNIyi4yP1O6rMWC1nzkzy/osNgsPEEn6vXps8Lk6wmBypDWvLNw8dxaGMwiQ05WBWa/bD30ko2OVIvRrlgfwMMNul9WykAbD6zVT6+s16nDLY2ytLOnhMdMnlNDjLQLlyHtZEuohSs5Ykm+tuWclZ6Garfm8dgs6osnBLNnCQbL9NMr4lfD3/fLA02JzFjrMMeg81hPmfnygF6ABjXkgGwY91GFWBrb2/HDTfcgLe85S141atehbPPPhsAsP3222OvvfbCzTffDADo6OjAIYccAgD4z//8z/rvb7nlFgDACSecgDe96U317w844ID657a2NvX4/f39WLdunfPf1mqNOE+hHeqy7jKot2+uVBPvxdJFoMPK40bEYFMcZmmfajenwE4yeZ1anbLCIb5A0AktyzrmdRHN07PJADbbwZSCGm2C5Pfp47++T6ShN5IRlxbhfOc6rDykWCw4gBjvdEv10uhCYmVmqdMoNzkIYyJI910DdEIFVzk4kII4XDdQFQ7O0V9JLQ8YyCvnpM9sYiAwkQvaBYItdJ9OFlN4RhpYs97IJObpa6Sbjm8r1wOLRWt7/fNsAFgQNdhyyh+pWd05aRfR2rH0BIFVIkrfAf4Om11EDWc0NIivnXfYO6iVmAOSRqC8vvH1SNWpE7QqtaYAVsfPUg6DjWrplB1gggcB5BkRYFUsNyagnVPaZzCprMw5kF9GR21DGGwp+0Zki5H9mQG/A/rbenpaObrkg0jvdd48Wy5SdoMO+hcLnMHGS0SFYwvfJUninbvUPZ4fn3Yh5sYBw/SeWnNnqVBwEkMWYJgH6gazVxwdMhtEkIBescmBwgyTE0NSctRO5rnJVR0QoszB3MYahu4fL9ej5Y9ch40+i8njLA02+X0Tmxw0AJynY95KYvB9ptuGSJPYTOFs7nRBUH0cd7SU6oCQlDyTrnPlet83d9lRRec9os9eAlBoHEOZhtUG3g3KYrdYqO6aqTMXKwwodgC2XjnRBLg6jlJFRjpH5spekK9arWYMynuZNyeWioX6etQ7WHFBUAouFu0uorpWnH7fa+Wp8vPk8weQJbB6B33G6lizUW9ysGzZMsycORPPPPMMqtUq9thjD9xxxx2YMGECFixYAADYdtttURzOuO644471386fP1/c5//93/8BqIFrn/zkJ9Vjn3POOZg0aVL9v1122aVZl7XZWSO0aVGDTQrUUoe9YDOE6MTrMtiaC7DlaSfk71MJZgNp5HnO/gSD/s+zEGl2QbrvWnc9aYFIt20hIpmh90kLDKTjzF3Z430nPyP5HucFRak5GmyBQt2lQsEBcPj4pGOBBqgc3NQ1oUKDdu8rRUcsEd/X0PtJN3PKPoxsVh4YFlqG5wRUOWwzp8kB1WDzBNLJPqmjEwj65QHkecEXHZtTOrPxYZWIWl3BALfUeeqkdgDA0nV9ZqOBvLLT0C6ioSWiXN+r1QhmNW0PD7Rj+zSz1+Rvt+OVPo61a8l+G7a+uM0D3HnWbHLgAMUclMk+t+eViGr6UTmJhG069cy9W5qrszZ5h7n0eVrMI57ltvT8ykWbNSAyCgNBYUBeM9NzLxepzpQwf5DvTE0opQQvVIMN0DpKBiZRWGCTBr0c6PJKRMsGCBqYnNDApDy/ot1gpXHWtQXGpdsWeAme4VNtUJODnHlhnKF9B8j3U2yWQdeiHAabNNfxRE9tn9lna67hmmEp8J5XJtnRol87Zz675Yd6Z+XJHXqJKJcrSF2/YAabsB1tamY1kuHHt5hUXFqg1Rh36T0uE5Yw4D93Ph9njOIwSYlV3b4OosdOV7pucj09wAWB6byolbyK7wZZN6hmma3BZjDY2Do4njTe47qFTtIhB1RO70VnTqWQViLqNWNwYgh7TuJlmpNIExCqr+rM8YUCY6frAJtTNs+28zXYlBJRicHWqicjx5qNOsD26U9/GtVqFfPmzcORRx6JF198EUceeSS6urrEQCBhCwK3M888E2eddRZaWlpw6aWX4t/+7d/UY5966qlYu3Zt/b8U0NsaTQ7YZae1UQ02zhDiNeJOiajTLTCsRDQ0qyt9p5WIhjq32vHl8hAhOCdOrNV5kjvM6eQrAk9KSYEUrKT3vqVUNPU1RGdQKREVg9TgYEFhlkhlPQaAUyy62es88V5rfNKxTYMqT0eogVIO+X0JZxPJTR/CMto8g5w5zToI2eI4BXb2OrV8YMDeJx2HNCvK753WAj1UVzIPIM9r8EAdThdg04FAN+g2gOJiAS+b3AGgdj9WMGfYKcvJ6cwlNUSRwb3ssxV4WuUu1vvWajGunFJ4u8QrVINNmrZV7UxhHOcBOpz545eIZp8tjVFNFymvPMQsuWWBEnXCvRJRymAzS0Q5KKOXiGZAsV0i6jjspQJajG6F9LfpsdV1I7RUejBjqqQNHvIY1jTgN9mIOckWjQkemjjMAzsowNY/VGXsBvcd1rrBAe4zSv200PsLyDpsEpOqmvhrEWewtQaCug77hYP+CvsldB2VGnvRec4C3WvbNr4WdRhMJnp8GvDnMdjaDD+JnmKpmJWO15pY6cE5ZbB5zEEGdnQYDDbK4qI6rH6TA3e811n5YjLQ+yq34iSvm6RT2mfM3S6g7fpVvgRCBvq3KiWatWO7a5H1bkjxjlQiys+zVQG53O6cbpMDwGUaqhqjYoloGju6cgUWw9L1J+11sEDKRL1mP0pJpTQHpPeCrm15oK4LwG6YT1P7rTvmKaN6LWHlcXDRJB5o/rnVRbSkrxu8WQbgJh60GHKs2KgDbEANKNt1113rGmxPPfUULr/8cuy6664AgBUrVqA6PFCXLVtW/x1lnA0ODuL444/H6aefjvHjx+P666/Hxz72MfO4bW1tmDhxovPf1mpyMKpk+YVtJWcwndRqDCG9BI8ehgbSUjZPzphK28mAoeUUUJOCUV1cfsMBBzoZUXDRFuXPghWRwUZ+a2n5JElSf5ZF0k0ymMGmiLuH6pXklQVSk8A0Sc+GMticbjk5zI5QDbZQBpvV9QnQhLq9r1QR+7zmFtZ33HmqNznwsn7Z51wGm3Cacpt6GRiQGmsMKQCb1YHQAQIDAdy8ecEtD7Hf4SnjKMDGM6NKdtJgYRQLhTqDDQAWr3F12LSAbiTdE9Xgy2xyYG+rlh7wDCp55r7+ipW9NpocNMBgk5iYItuUzR9tRKvF7yIqJ5AsqYS2vPGhllTawSxtQMMDi3pyopBXIkqc6yItEZXGcbZPtxGEDnaUaOMV4X2l9y1NjDTW5ECfJ1vKxXoAkscInhioCZXHRHDXl2yfcpMnYc3MAQfKhgSCy1ThEgj6PJsCKKHrOqABPdlni0nlMdjSZKDJ/g3vItpSylhPoX6JlVQGAlg6YhLWftfzgIl0n20tpfqzlBuLKYF8HngT2HRmXKuVEMs+5zHY0mOUi0UHtLNKRIuFQh3sCW9yYPsfHTksdu19t9jU/H5qzDTeDZf7wnw+TtfC0MR/SJMDbR2mu0vnbEcGoV8uEXXkAnJKRE0d1uG/CwWmE2yMzeLweaYlx5oWae2aEEQ8aKTCo81isDH/OPUpJOYzL9N0AbZsjvfWVkODTSu55WsM1yjWmM/8HAHGYBvjOmyjBrCtXLkSl112GQYGssH/17/+tf65u7sb73vf+wAAfX19uOmmmwAAV111VX2b9N/Xrl2L97///Zg+fTp23nln3H333Xj/+9+/KS5ji7FQzbBqNRGzIFapIs2gApIOiByAhLKeQhlsgD2hUeOtjgHdcQxmsOU41zTzk8cWSRfxvG6UVicaeoplwvgKBdg0AFZaiEZSxguEN52ot/fOaXLAF1GHwcYCT6dElJRYWaVgeSVecomoDrQAYDR9ibkYFhhwYeuULWI5JXnaZmKJaM57kSdGHFoiqnURlbDa0DJvF+zIY7Bl5+N2O+VAT/bZynLTbSmDDQAWMx02TRg/lDWZN3eZ5UPMcbOaHKjlxkbQm6ujWE2DL35sfRxr15KdZ/a5WMi29dmd2ec0I57pYur3aXw7BVB03a48Ro3GkPLFnd1nFNI9jc+dJpuokBPQETaRG1Tp77DDqhWeHQWexg8H3Y1osInACJGzSI+dNydRTSiLUZMnF0C3pfNHnv+T+gB5Wk+lYtHVRaKsEg4UG4Gv1M0ytIseoAA9zn3SmSp8zKWMHpHFTkBdiyFEz7NW/qiXnYaW3Gs6U6KESqCPSL/Km+OptED6zCVgM3SO54CQK5Cub2tpbPF3fVyALmUaxKd+SF6JaAqSbwiYlhoFFfJY7KEJOc/3CljfWkpFu4FQ4r7rbUbCQ9Rgy2tyUIQKBNL7nlaM0RiOPicvMVPKP890bW1Rmmukz6LMmFncl5aYdikDuWegYpY1WsQDep4WazK8yYG7XrcYcxJnsGmNG3js6N4n+fi8A7MfG2TnY3YRFYBNS3NxrFk5f5ONY11dXfjkJz+JE088EXvuuadTojlhwgQcfvjhmDZtGt7+9rfjnnvuwRFHHIGXv/zleP755wEARx99NPbbbz8AwNe//nXcfvvtAGqstM997nP14+y33374+c9/vomvbvMzKd7Io6W2lor1BdlyNjyAzcucU4DNzuCGan5oQM1QNQGJXRrSYNNYD6FlG3nZdKsDEK+jT4O5oWqCoUq17hym36Xm6kcZATLtJhlYIqo2wQgU6w/tiAYoJZEWtbwA555Y2daix7BkGmzk3GlQ5XW8UhxMiU0pB3neVy5DqbWEgd70fQsDmvM6XrnBbCAoEpgVlrV0ss+W/gjgOvtWF9HEAdjsslOrUYmjZaUFfjkA/yQHYNNLAB3RYgOY4Ay2RZzBprzrYkODQPYvnRKt7sJcn8fKxmvdY00Hc7jUp1iovQeac81Lwfg4lqZ4rVGIy9Ip1+eC3sEKJpBjuA577f/tLUX0DlbMTnihDDZ3zNlBoiXA7Tq4NQCnUKjdE+qE865xThmJ8YzKpaw8tn+ogiRJHGkOCtrRZ+SDkNlnGnha62grkTWQGq8A4f5CHZQh5bFpGZx0PQDThPKaHGSf25133X6W7jznAyP0HehoKdXv42ClilJRLlMqFd1xR9e3hAWeWqDE95nub2Coimo1qQdP/HqoSY0OVFZLpQIgu79+cJ41OeDPiPqdDvtlSJ8XSsMB5cBQNbiaI4/922EAynzb+jnmJDfde6Qn5IqFWufYFesHcpmDlgyAD7CF+VSp2H6S+HIFDku5yBhs/bIGW+qjjG8vY1W3f030tEuFQn08ik0OAjXYnES1o8EW/owsqQSuL+Yx2Cry+mbLx9jNQtLz7Gwt1cHMtT2SRp8L2mlyK3zdADLwHcgB88u1+HHA8EHS59hSKmKwUlGJB7QsGLCrMdJbSX35tT2D2GFiWqLu+iAmQzvJtisVC6hUZX3k0MQyv0fpnJSXmPFLRMna7oHPlpwFAQwNMN3sIqqViA7vbpzBWB1rNmoMtsmTJ+Ooo47C1KlT8cILL2Dx4sXYZZddcMwxx2DmzJnYbbfdUCqV8Je//AVf/OIXsf3222POnDnYddddcdppp2H69On1ffX3Z7o1c+bMwcyZM+v/Pf3006NwdZufycGoPVFQxpVFgS8VbQBD22ePpME2QgabteBRE7uIKhuHZoryylvdJgdsgWCLqKNnYwS+lqC4JmSaB4zU96fo3kgBYc9IGWyBWWU65loDs601DTbKsGQabOTYtITHchzzyvVkXSd7HHXmlJyENzlgTrNaIkqBKz3rxbdNLS9YyO346XQR1YErV/+kKH5f32cgC5U+y7wOYv0qwKZnr/NKfeqBUhHYcWIGsK1Y72qwuWU5jTPYLN0sIE+fR3ZEpW3p0HYbEhjBwnDQXFaA//R9KXtdL/X5sH5+Woko2XaCwabmjjCQzcl8W3p4q9TZuUd5DEcNYPNKRLPPxeEse/ou0c7ONnPQCugyAe5q4r5fPPii2ln+O0wy4iUyJ+XM8Vp5e3p86XurtM9rjsN+T8fghjQ5yBOrdhn89nxOmQAWCGppjHJgwgmU2NxAx5bFUNI6w+UyqQJ1pvhco5V+FhkLwx7HttZS6Diir59zjwwGm3WOQGMloulpFguFui/d1TfkSSA4axGVEfG612efa0ymMMH5EtFlshhs5UAGW/pOpu+HB7ApOlOhHUPzknGNlIjazJ/s70LBHfNa117OELLfjYzBZgFsHTkSJhqTCnDfN3or6xpsCsDGtX+zxIyVYKz9rSVcMgZb0QGOLEZvncFG5u/VCuOrRN6j9f3+e5Q+ozzWZGiCkTPO03kuj+xSLEAF2PgcP22brCLixRXdzj7TbalkEGCPY95FlM6LEoPNLQmPDLZRscmTJ+Pyyy/P3W7ixIk4//zzcf7556vbTJ8+3QHcovkmllNJrBSyEHW2lbBq+P30g4rEWezbDBYIPYwjAh2swRYGLAD2REEtVONK+z5Yg01pcmDdowJzhPsGK86iprFavDp6HtQoNOza8YWx0MD9EEtuGwDYQppb8DFXNhxXntWhpTmeBhs5d1pixUHYIcVplTJ06VhoLRfr15G3MHfklJxIjL68Z1kLLNxSI4nqXh7uMpskSjAbCGJoVHmZzUgCT6fJge6w57VLH2IObvpTq0TUeocAHWDjDjO9bXklxDSTaDH9GmFMiI1Ccp6RVd7mOG5emaZ+nq0lvdyGAz217eUsLmWwOaVggSWinPnCt+20GhIIQGB6/7WsMMD0aXiJaAO6XaHvEQ9qgFpgsbZ3UA0quHaVFyCza+dszJY64OYHNe3D852/Tzjbap2NAVYWZJRzagkgSV+VlrKWWTKBvALOnDTJEV3X2V55JaIug00vIea/7zAaGPE5foLSJZsHQFaJaKaL5M81eV0WgXwNtjaDtemBumxOTP9OksRhv7QYc6cPyugM/g1Z3yiIIY259JLaWrJKkLyEWK4GG60aacv0CfsGq84z0pKwnr4XYyk7zU8MfbHScOl436D0rrvzQogGW2n4uHWAjZeIsgR0HvDOLa9jcLshTA+412Q1NeHvJZ0bPOmLdJ4r8eSV0ZWVMNhk0sPwORrPHODrsK6vysusAZ1Jz+f4kBLRdN2ol0oqIHm5lMdg89fBbZySStoUIPtdoZAxwyrVBN0DPNbKrsfSDdUZbLZPVS+NFe9RBsAWCgVM0kpE2Ty379SJ9b+fWdzl7JPqpmtVUfxvv4uoPD7qflIr9asigy3aGLDQcirK7OhsNYJeB+EOX5gdBptUIjpCBlto15RQzTDt+HLJnA260YAut0TU6Mim6UHY2cmcElEhoNPKOaX7JN/PMEcHCGOwuTTwPKHu7LPHYFM02HigYo35PDZROu4swVP+HR0fUpfIDe0w5zI2sn24JTQ0Qxc63m3mDe2MJXYRpffTclrJdi2GUwC473+nkcXVNVXsQGtSBx0fRpdIxSGpb1tnsLnPxwo823OCL7mLaF6JaBhwxUGZDdZgY+K5AFT9lcy5LposELnbuAZoZ58tgE3KzKaBlccoDgTt/DXTSHgMb8u1UqySk1I9c19LEqzrG6zvhwcgNJHARbD98hA5SLRYfnz+4sc39WzSIKBUqAfeUlCjsRRF1mb9fYPJ3qNzktXkwH0vc8BSCrC16fMH//04A9Tigc1EBWCzGpX4jJoU2Cwy/4OP93A/KXHmRIPBxs5T14TKfkNZ+UAO+FzIGO95z0jbH7+eUAZbS6lYH+95x87VYCPj2O3mqMuyULCDB/KcpWwyhb15obZPj6nLnqWlyeQx2IavaaBSdcYn1+hLgRmRwSaViOYk+NrzGGzkVrRbCQ92363GL/R9MzXYOPhMGcVKvEMTYrkMtmJR7eadsGcJ6GAcn+PT9VKeF2r/T5+j9m5Sll+IthjdJy0RXWOUVE409JmdxIy5ZmWfQxuvUC1UuVonO0dAZ7BxJvkrdhhfZwbOWrJOv57Ad73MfAAHYBOATdqsZKwz2CLANkZMXmBsAMQBGww9qiJ7WS2xWadEIkeDJLU8DTYy73oZ8VC9odo+NUBJuk9hoF+oI67RqwFJTF12Wv06+uxvSgPPC+jajO0AedyMuMmB2CnWZlZYQbe5iHINtuFzby+7gQV3HN0uonpzCXqueUL/TkbcKAsG5CYHcjYt++wJF5N9uE4JyQqLGX7vK4UJkH22qPKAC7ZYgYVbyprtU2y8UNGekezcAraOIeCOzXFt5fp94u9laDAJuKU+Lmiog8odRtkWIAd5EhNSY8BaAti14FzXB3Kee2DXy/Q+pplUrzyEaNRQLRvLGaSWV3pp6f7RXdbZWS1ZwEKPSXUhqXNpBZ7UueaJEcBlODqZe+Pa6yLDw880SbJ7wK9nSmdrfb/Lu9yyZHqe5VIB249vq/+9ZG2mEcgbQQAZS4nPXw6bumizqaWgqpr47/ugkwykc6fd5KBkBGr0/raVi/U5xCoRzesGp/lUeV1ErbI17n+FdRHVAyW6LdfcsUr2aWA+Eras1dWQvsc8kDabHHg+agrW2gCKdo6142efrTJaeq60U6KVjAPymc+0g+oERWwecN8VenyLpZxXclt1ti2oTRY4EOcG3FyDbRhkGj6/CW0yGOd2mc06AUtgmihHkeMruB0VbT+tzWC7cd/LSpRvkAYbZxQr60GpWKj78VKFBWfFaUkH5x1K5/gQwXsylkSmHQF6AEMmgtyjUA22dB3sUO49v/aJSnl9kiTO/SwVjflDrbJg56nEMDIImq2DgKsJ6paIuu9be0sJL99+PADg+aXrnTUt03CECViaGmw5JaIOoB4BtmhjwcQSwBymitXxkzvXli6BxmCTOoykEw09tqxHJTuiVhtyS8umdt7Zd86CV/GPLzpkDYjiWiBksVhQFwe+rSWWzSdezcmqnefwsQkgo3duEwC2wK6sg5VEZJxI4IApyFuEzZpki72lwZaOubaWkrM4+JR+OeNpZZrzGFf0PN2uZGHl09L9tERP6X3iAX+6XagGW273wxxmmAYuWu9GXjMG+l47jEBvXnADaWuf9L63lYv1DLZVKpg3PhxNKAUABfj8YbPi5OYjDQhg5zj2TjbeYGe1mMxS32FvVbK4lN3QYqwvUpAF5Jd4meubkLnXSnRpw4pxLbpzydkN1nxMgy+nFD7HYQfcADCdV/n6UioWsG1nLcPPATZ6f4sFt8vtojVZl1sJLM06reqgjNXZGNCDKv6c6fOlAJPFJiqy+ZCPT3o+5WKxPodwgM1NiBUJWJrjUxmgbu18st93GAkCnpDTSkR5F0BpbKRGS3Othip0nukwtqsdP/vcXtbnLxdA0dmy3AdopcC7sU/nfcuZF+r7y9NLy1mvMzYRzOSmw34pFbPuxjnrxnilcyzfp8Nmsnwqr4soD7pdkDx959b3Dzm+M5/jx7VarF4XROhUQEPOcKw3OQj0VWQ5iey7llI2PixdSMDuAG2ViHoAG7l2S9/UlfJwYy3+DlMARXvmfJ8eUK0wRtN77sgLkONzMK6NJKQ0HzVrciC/m44Gm1Pab8yHUinroD4+J5KqhHW9dO7M9p/PYCM+qtXkyZu/9KoiKpEBQE+iCEzyvXecAKD27Bes9tfsfFCXkDM4wEbHB/lZen9oHCP5n2PJIsA2Rowj0oDGYMveGCpOagntc7qpx8KgGVwjqAFkgM0CMACbxaVlB6UJzSnPaKMBsn2f6tvlMtjCWDo1QMhoGuEEyIaGEmMiZNo5OsWa1uY3UiKaBwhZ2RIgrDTYAwxph6ac7HV7S6m+mHEaeOpQlYsFswPOkOJkWRoX1BmRHD96K6gjmsfadDVDDGC14HZao+OWO9chZVsAzGw8daTy2Hs8SNRK5tTGCTmlIFYZLz1EXnlIPwfY6qWCI9dgo0wmwAakxuUIF0t4uNhsI5HHcd475DhOSqfXYsHu9MpLDwCo4uPUwaTzh9+MAaLlsUXcck6dhVEUHPY+x2Ef3q5YcIJu7lyGBr30PEtFV4zYu58CyOWwj4bHqNQNbvsJNWbaivX9zr9XWCC9MxFNXkgBNiF7XS8RNcAOq7Nx7TsSVBnrBp0nghsyeU0O5DGXnmfKjONNfCrsfloNhOicQtf1vE7mdolo9pk3OaDBl1e2JYwNfk1UwB6wE3zumiWVo4f5P0NsLGkagfx6TAabwtKREstcUJx/Jx0/D1ykY65VYegA/jxrd4nMthtvMdhUtqwNCFm6tk5DlWJBLaHm+zQZbARMB/SyVz4fW76KnHizfYVa45X8BGOxAFOahCd2zWZlhL1naWLy8lhrzaYMx9ASUa9EVWA8pfsEdJ/Ba4pE4g16nxwdxeFbmafB5jHYjCSbVMpK56bQElHuR5u6fw7DkUijWImRnKoiKpEB6LIjErg4pTMrj10vaHKm73r6jLif6CaaahpwUrdVieFI1y2JRDOWLAJsY8QkZklepqaFOGReR0UvOA6j6re3lOoTldRFNH2xKcCVV3pgddJUO+bllIg6+k0j0OxQ2SJW5otnVRjjyukwZ3Ts40wETWeBHr9YRD2gk64bkIMiKZB3Mt05JZXp+Go36O8eAySQwZYuOmmwxAOblBXSUiqai4OrBZbjCFez7bRzBHiwYmfE6TOj49NiPRWLcB0TcjwnQ2d0G+XnqQXRgPte5nVP4+CAdj+1kqSKCJIr77CRocttckDAlLZyKQPYzBJRe65xACk6jg1AKg+0S39LnWUpiE8Sef6wWDK83MVjIhDHvmw5wgIoo2lDcpHfPK02bpb2HcDlCmzNMMB9pnT79H6mDSvS8/QaJ3gMtnznulQooGQFdCzoBRj4nzLYhOtJAbahauJo1PBtd1YYbBJol65xlWqilhqViiBgus/AVYMq9pzpO0A1yCwGm5cM9BhsLqtFnZM8AENnI+pdRG3Wd0cLneNtYERvcgBnO2lsZMfO3rdQDVg3EZnH/Amba8qMwU/vk8W8sRpHUXaW6KeR8VEP9nPmj7z1mrJ0QvdJ9efsElEORhkAm8NmMnyFQE279J3UdP88Bhtl9fZzFtcwiDC8Bmplrxyg18AOCt7kdUan44WC+RZz0b9Hxpgr6qzvJEmcBg8Wm8gp2efgs9IQKleDjTOp6DVpgPbw7VQZbOwZUQ002h2dA1d0n1rpONf5tjTY0mYMmjC/H2sp2mYKiSSPNUl1l83kN1k3hqqJJ4HAwWdt7pYYbHReps2WMobjcBltmkAyEow8caeVBafbWVVAY80iwDZGTArUrA5eQG3iT19Ay8mqTeZWmVP2uUYZT19qnV1RLtr16S7IpDNQHIArR4xYExiWSgrk8sccpl0go6ZoZFVq21KnlQbd+mTOy6xUgK2QdeaSANjaufvXLpa7kO2c+2l0ahzfll03Pw7XALEAQ7F8SekCmF5nLduqB0CeLoEVINcZbNl1yww2+R7lNX3oMO6nB35r+hoO2JHdJ8mBoKeenqfFFAHc9y2PFecCDnoQkNvkwGHg6oCUy0a0S1lpiXhruZjpTHFQhrLiymGBZ17ArzImRG212v/zgnhV88dz7LPPpaJb6qNdOy/Bs7p9pQGNlr3mJRJakKqWiIrvZfY5tESUl7IC7pqQaS3V/k6fk9WZlDL9rMRMsegmEvI0XQA5cy8xEai2Gi0T5SVJFGCjDDaxi2iQ7k3RmZP4a0yDKqdElN0nrURU7ujoAyj0WKkNOtdeVINUnYlg+1SO7p+owVY7DgVFpP3yIDWoi2iBl/own44EdCHdRgE3iSGXiJL5y/B/OEtHZeR5PgAFJvS5hj73StUAdR22mc4gA/Ruit4+Cds+T1ahxjzSxeGprhu9R5zBpunVcj0u7ne6yRGFTTT8rocCE+MMBhtlcQF6F2YOIqTnwEEJrVQv771sKdnSKBVtfbO0EQsFxw+g8yE9RLnod2rWzpPLx3iJofQ8c/S9uKadxqKXmNxtCtuNs2p3nTKu/vf8VT3ZsRkICWRrYTVxj6klW3ytbWkdVIT5yXnSLqKAS2bg/n5W+WW/w1blhsZWBWyJDKA2RtNb4DDyBB+Agtp0nRli++xUYvEhNj6A7H5S31NKRFLGKq++GmsWAbYxYo6odyCDrVzMFgitxTSQshZ0JpXj3BezRVR6+agDISHm9e00ZprBbrDKKWvnTcCOtsYZbHnnqQm4AnZWhYvya9fuOUTO5KcvooBcQqOViEoMNpFxRcEOg3GVJEl9AaRZUYsJmVfOQB9PgQW+GnBWLrllcN1GVofS6i1HuJWCJzkg07icLqJa+ZClncUZRZLzwrcTGyfQ0rrhZymBPDRucRzcHNDOKo2pKs6LrAsnA5bWPq0Sc4Az2Ir1OVHLHvN9+iWNiah5WDt//Vk61yPoQmZjTqf+Azqr1tSFLLiOPQ+UtBKavBI8IGMaaAFdurZoiRlJ0xHIDyzsjp/ZZx4EALIQNBf59YJJL+CXdWdqx1cCC7OMt/Z/KXNvMdgAYFlX1ryAzs+lQgE7TWqvz6ELBT2X2rF9ll+fxm7IS45Q8Nko59RKRKXGHnqpERuflMFGknycYeA/S511RK/daXJgzPEtJbezn9UspFh0gS6HscCYTFZ3Y8omskpEHZZdTidNJ+kQ2FClzBh56xRNOR+ENBJNjPGuJXGKRWQJxhymCmUJ5ZWIWuNDK+OV9pluWiqyJgdGE46icZ78fpYNH5GC1IAuDs9Zk51GF1HKmgQYK09jsNESUQ6UaqV6OU3JyqWiKY1Spc/SaLjDgR63RJQCHZQ9x7fj49jdtjPguedJELjrMPQSUQEMc9cXvfRylylZYmaBA7C5Yw7guq3Z8dP7xNcCS3pCkkroH9TPU9Ng42x7S4ONno6lE6wlZgCdvZcCmwVSHqyurQLIJa0H9UYQik/l7LPEGWzk+bAqKUCfF8aiRYBtjJjE+JIWEvqSl0oZxTlPBNrtIiqDN0BtUkmpw2t6BlTxy7wFgn7lMth0B8JqCAC4gFBnqw3GSZOsyMhjgXwapK7pHXDPk4GQFGjiDDYdHDDue1FfxADGmDC0SgB53IjlLhX5PPmx6bOgDlYecGSJicri36l2Fg+qatu2FIumIC8HBzRGDS9nSINTqeulw2DLyYi7DEsCWBosIV6+7WphZL8pklK0PLaZpkHGt3MzefY75GTZDRAht8mBco+srnVWiTnANdhKWTfJittN0mVr6Blpet9LRR74WaCdvk+6bamYaYFJzFJt/uDdLPkc72qwyfOsDxjqc1LqkGnZa14iURecN7TNqOVpsI2nHT89JoA/f7QoQQgNeoGMOWk5rZSpImo4UvaLxXAUGWx+M4Yqe9cBF2DTGGzpOrzjhHYAjMFGA2k2x9JjAz4gRAMLTUTfa3LA2WZaieiQD8BSQLvFSHo4mfuSrk3Egy+txInvkzK0eaMQ+vvWUtFsxsDXGFf7Tw8mQ7uIWuwsl8EmP2/p+FaJqAPqFgus/FAvX7bK9axO9yqoSxJNeU2rSoVCPVktJcSoT2Wx4rx1sJ5o0hO2tBIE8IEWvrZTWQc6dvyuhvo94oziIGBiuDlO6gP1sHK1dFM+x/Nr4s9dY9s7QEcO252+Uy3FTOvSSjD667W1vrl+gAaKlEs60622bfa5WLQ17WiiiwroW0w/PieqTUXSElGlyQIfx5TB5gjti0k2+T1O54VyKU+DLfucSSXIawyPizRAiEsgWF1ENWkUi8Hmz1/8GQ2Dz+TZpD6gu7Zmv5E6efYIJfa8nLNnYMiJxTkADGTAqg6q1v4/aZxefTXWLAJsY8SkgDKviyjNlvQMVJwX0HPCnS5vOpuoWMy6lw1WEp+dRSaATP/NdnSsLoD0EvMYbNSh6sxpsiBNsj2CoCNn6aR05LW87JNRyycqtGW+bbuSTQK401pk5RRagAxTqwSQAc+8jmjjDMCSnvd4gzlogbpm9pqxKwaYkzlEFjJXg81isBHw2egmSTNveQy2vK5kjr5Ym34/LbYIXTj989QdiPTdLxAWxGAlMR0IBwzLFXdGGIONlpZJAJsa/On3yALo+fm0kiYHtf1SXZXsN+1WIOuxBvSA39lnAyVJ4xRtDYAlHawmKV6gpAv41wOlgq2V4jBVSi6DjZ/DEHMwUyaE9V5Sy2MTUTBfC1SAzHHUOmVT1jXgMu3omsmD3tb6POt3WXMCfsthz83c1+6Bm8CRGGwEYHPYRLV9bTchTYoN1s81t8ECDb5Yd05LD5WWjVnlxvQdcEpEPfA3+8wTDnxeclktBafEX+ueRufYvC6iDoNNBNhq27aUGYMtZ45vK2fdJ3uV0lza2Q/wQaH02unaBuRpsIWXiJqgHRtLWpMnrRMvEF7GC+ilfW6CUVqvs8+1rqyGHqnAYAtqchDAhuTlZbb/Ywikszmp7IBS8v1Mx5kKTLC5s1DIWGzdQrkakK/BxssPNYBN8z+kNcLVWyzWE4wWg61YQAPMUhfQpu/RoOebk/I/o3s9Z7DRtdBpHsBiMrMzKdOAo2NJkgFoU5io3J/bhQJsKoNNAtiS+vVkoK7d8IbLL/Dz1AA2L9bq1UpEi3U/IC8B3WLEo3wcWzEZB7QBiAw2sUSUNmvr98Fvvl01sUBIN3Gnbje8z/Gt5foz4HHuWLMIsI0RkzR/5C6i7sSbAh5D1cR4AYtsYdaDqmKhgG3HZ+KXq7ozJhfPNIe2mbbKnEIzqPy8O1vlRUQ6fmqcWcG3q7H3ZICNZ6RdDbYhcdtCAY6Q6Joetk9WdqEBA/Q8aQAiaZUArmOSjg8ZYCOOOO2IxsYdHVfjWrMmGHldRO1yhuxzvXxJCJao2Gy5VAv80uPza+IMtnRh7uobVMHnYqFQdyJEajn5qpEuoq4Ath50F72SqOzf1C6iRhDAyx4ktkhqeXppfgCUAQ7SsUP26ZYv6SC5qsEm7JNeYxsD2PoUPQpL28zPHocFSnldROk7rOmA1c4z+9wW2FSEgnaAzvgqFGzgWyopkK5fYjekc81gJWHAJh0fesDNr4myiXoH9DFXqJ+nfF0ewDb8blaqicp6ol0Nk0QPFH3tGTugA2TtGXcdqv1/6qT2+ne0eYGr+VP7fzr2hsg1SaCdqsGmgOmApb1XdK7dZ7C571sagGlrG+CWl9WOZQWeBVV8XCsRzdN66swRgE7X1hbO2DCAhGKx1gQkYyOMnMHmAAPG/JXHuqa3o9UEVbO/raYNXIONMsT9uZNsyxn8CnjklG4HlHO2K3qcAAftMh/AAgdcBpt7/MRZr2EDhmyN6Qh6L12W342PLRavJ2OwhXVfBEjSQQj2AaLB1i4z2Ph9T8+hmkD1vfISfPRdLZeKdWaa9dy532mx072klAJ8twy/v1rzJL/kliaBFZ3LQo6+F2cUK+8m9yUBncHGY5hdtlEANvYOA/LaSl8TrsdpVm0YWqTetjzWMoBiymDTKq+KBThdvy25JFqlBeiNXyiwKLHIpA6qrtSNr/2XMd0oG1IGv/n9pAQFLkOU7jtNkEQGW7QxYRKAIk0UfNELEc8tFdxJwGyXXig4LYRXdWeZc55pbgsQewXcgMISCc8rBaPnTTOzvHQqSXwnCfCZFYC/kKVOSd9gVXV08rqIUrCjs7VUX/BWM4CNA0LawgzQDJ1NW6bf0aDbKncBbJ0rXoIX0i2QMkCkbaUsWYcAEPBFvEBKL3ymjBsEpAtzNeGLGAMClWwrwDWhbAabqsGmOE8S/d7pIsqyfjbTbni7Iu8wpzuDeSUaqo6RIbZPr0XOJMr3yJqTnLGZMy+0tRRVdseGAlehXTdpuYnVIbNWmiLrDfJ9tgcwidLztLqIOiLyVndfwRmUstcuiyotH1ICi0Bgs3b87HOnUyIqJzGAzMEsK4yAehfR1Lml+x3Qg1lLE7P+LBkwYJWIZgwDP7CQgDgaAL1ES3gY2wxwE04pU1sqH2oXylP5eZYKOnBVrWYsjDJ/NzjARpmlJT1A5V2VrRLRQXbtuqC3e9+pxpbvUxGmTLmgaoHWfp8GVUWYGqPC+JTeeR6cW00OKGOi3WC6OYBhjm4o7ZZsJTj5eWpNDviaUXDuvQFCBrJFaDMosUSUrZkSq4NvS8F0IP/a06C7mrgBOvej6bthaYFxoKdPSU4UC+6afe0jC/Hski7v+JkGm6yTJ801WXm/rEPGkygAKxFlyYl0zPN/c6RwnMSZlFCnDDa7SyQtzbXmD5M5SOYl6drT8+XSG47fWWAMNqMRhMUS5k0ONAabCxjW/t9SykDtfmN8drSWsN1wIx0qLSAxn6V3k9+jQiBzUSwRVRKhRRZrrdWAYrYW8SFC3w0rKcTBsBbFpwDcRFNq7TkssoxFLzc58BhsbTKLP0sayvdTSrKRS1ErtcaaRYBtjJhLV9cXCK6FoS54nNZuiO1zB3dbArCtXJ8x2LQMTH7pQdix3Y6bwoJLS/AMQXGXdSRnClLjoqeTlKwf3WehkNdFtPb/NHOdsuJWdw+w7dwFapyyMNPjU4YjIDsmtJSknpmUsvEa2MEAywEHYMsWe6tduV/qY4O6ABfgrjjXkl4PPVdLQ6lc5OKo+sKcLlBSt0P6ncNgE8qiHQDYAdi4k5cdm15X7d+oo5H9xtI1AQiIULCDtKoHIqRsWRskp3MIFxTXmhzIZR/0foaxyNpzHHH6LFpLRb0zmALacS0detqUOQj4ZUluF9GwsvVysVi/9qFqYgZfWrkH4N6j1LlNnz0HB2gAYjmYvOwCkLPXUomCVhqjgaW5JaJmkwM7CHA6rZFrB/Q1ga8FmqYb3ScvubWYTHLmXnCEh7fbbnxb/X16aXXGMJACIGntkObYNiWg9LRnlOBP69xWO557j+i4billYFhex3MasPgMSzfo1s6TA8VWMoH7VJY+Yl2DrVxkTAj+3LPP6T3KWKvyu1FgINd9c1bhgtuf97Ytl8KYbkB+52tHU9cAuMIZbEIgreibJWzMUZ9qdY+sget0s5YSYnTuLoY14uJsojytOK20zwPorS6z7NqdzpNCwJ1uR30FAPjHrGXetrkMtoo/L0iSBUMOmF3bjj739UY33CKdF8i1asz0PF+hTPxJ8bkTn9tlDtqJXY056By75LJ/rfmrJmMiN43gYFirsA7Uj8+AERfoIb6XsL4USIJEax5QZM9TY9WKHboFHyD1EdKx14jmMqB3EU2fUbpfHdS12dSUxW5JfvCEWKvRMKM+HwsMtr7BTH6Cs+IAN8kngbB1BpsyLwyRRE92bHI/B/1nRN/JNM5d1zckVkGNFYsA2xgxymox20wzEGG8suDxCc1iYfAJdUpnpv1CS0TpdgWyQFSqiQmgONpq3oSWfXaaHDQgIs+dFxqEU6dNZLCxCXUycUrW9CqCmsNskfT6uU4d7WgEoM4IXMWaRtBbVmYMNq4XR4NEq/QSyBaNllJWLpfX5KDDZLBlv20tF7M29ZaWHw9QLZ2r4c0kYMRt1Z6yNfK1nrjD7rSpZwu4xWDTghWpgQAFNlsNUIiPj5IDYNDx4QIoZhdRktGyGGyc1WKDdtlnr6MS1YprAGBzGV86wDak7DOP2VouFR1HQy0RLVsAqOuUFAo6EBl6PYDrPHUYzTrobbPmRP586Dn4JaLZ9TjMCmVs0n1KTB1Jn0dL9tDzpPPMg3NXgZtbIhp2j9JsvcOYFRz2OlO2hWaPdR0hi4GbBqk+w1Fnv9TnOckRFkCzYrGAaZNrnd4WrOrNtNUkcFMoJZECKmeOHdIDeQ244v6HFaxwMI4KuVPzmUxhAHC5VNRLRNk7bHUW5HpHVvl2+tsao0YH7SSgSUoMcVC3wMCe8/7+HPqHKo7eUbmos3T59TgMNrHpTe3/BT6/5zLYCMDWL5dt1Rk1SoMJDgCnOoIAsGI9S0ZSBq6ljagww7geKdfDCmGrpuepvRscQHGYwl6pM922oK5ZXhKl5IaEUzpbvG3TeVvtIkrHHNPPHKwkhKHkvmuAW7avgR1lQ4+Ljo+8hkh+F9H8ZCDXxOSsSQ6gaMxBDt4AUBm4Q2yf4wMSTXmAdijQw8dHarRcUDw+A844Szk7du3/0vshJeMyXzp/HVRLRNl9KhRosxLteniiWo5xeXxtM9j0Z+Tqz2XHTdfXapLdH4m958h5DPjXnl9KKh07O9eeYca/BMACWQOUSjURiSdjxRoG2Pr7+3H33Xfjsssuwy9/+Utcc801ePHFFzfGuUVrotHyIUcjp8onc55JJFT9flkAslxi2TQF3U/3SUtEVyoAGy9nMLXVjCBRa9udp8FmBbP0llEWEy+7rB0/+0ybHAAWHXl430odOy8B3GZYh21gqMrq6LMTLRZZ5osz2NLxUXQ1BMRmECQISO8T707Fr8ntIupuRxe1GoOtUL8ebX+8lJV34uPZawCikznkOFlu9sfSYCsXiyobMbTjFeCOY4cNIDDY0lLllpwOc16JqAKo+xoTheHv4T9LAt5YDDb+rqfHzmvwUCzoJQ1uhybdyeHH6TDed3p9tfupg4u+liEJPhVtD6vjJ+9OVdvv8H0ykhOtpawbm9ixjzhPWmbSO0+ryYGk7aEA6lSDpFjMBJvNBE5Jyl4PO40V//0NYbDRZ/7ru1/EC8vXq8engQoHEfhaBPBSax9Yzc5TLqW1S0QVBlsxHGgRmxykXUTJ7mmgtPM2NYCtd7BST3Zx4AoAY02kDLZsnzJLWAlWigW0lmSGOPc/NP1IwH8vNQYbv0fBTQ4CgUAvOcAY2vx+pmumJANQ72hdcpsc5MluABDX4rxGFMBwl0Fyyr5eq+4j5jVeoSWiwRpsBb3JgXTdLZq/wN63tFwNAFaQph61/Q5vR55lkvhrDC+pdJt66HpYVgd3U5/QEB63tC65/0PfS+rX8CTKvBXdzn6oT1slPgCgdxEVRdeFsnkOpgOuBpsG2hWJr8L34ybjSuL3qbnJ1SyRYfk/tblLT3jQn3FZhT6nRJQcm72X1lpULhZy2UlACprp7xv3ZZ35WGmCQe+51NxD6mYp6WiLJaICwFcRGI4qg01gxWlzk+TXyNfjzh8h2p2NaHxa+rt8Pk6tTUh8SO9bpxPr+dpqKWCplYjSkvnUdpiYzZ+L1/Y529X26TPYgLFdJlrO36Rm9957L37605/iuuuuw8DAACZPnoyOjg6sWrUK/f39ePnLX47Pfvaz+NznPocJEyZszHOOtgHmaOQY4qicNt2idvVhEwUN+A0NJavJgV/KQRzMoSqInj9jsOmZvMQJJu2MlsYm8mvjwxls3LmfTFoY06YEfHEEag7MivX9ngYb7+bkatoN1ANR7sBogR9AxgenOEsMNtIUoINl6GggptH1/S6iBGAjzL28LqJtBogh6RJITibX3AGyYDLNtlImZf34Jd7pVX83LIDNHXMk4DcYbK2sw5wGHqXjQyv55U6Jk3lLEhSR/Y6KQNsMtuxzLSNuZIWZ06xl+WkQkNfkQH2HzRKJ2pgfqiZyt1OFKQPoGmxmkwPBwSyXCsCgxPiCs21rqYj+oaoiKJ69wx0O40jvkGlpxYnvkKLtRueP2vUUMTBUNVlHlsAx18cBXIBNE8CmjjoAPLN4Hfbcfry4rQbYAXIgrzEXKLgIuMkZt4THBVYtUEYtObFKweolon5gIWnfAazT2+pebDu+jenz6BlxqTxEbXLgMSbk8iWtbIvvg29bKpKOjp4upHuPTFYc2WdLqciEwuXrKTOfyu7Yl8kq9A6X+aSAZ5JkDSQoO7x2TXqn6qwRhasx2tlWFt/htnIJXcjG++BQ1XkHeXLTYrC1lGpz0kClanZ75yAkT4jxOZGC3+ucLqLZb9IxlzWYMBIZHGBb7wJsqn9cTUBeJ4+xQf2/Nb2Dme9lgOn5bCL53bA6qJos6YKbeKBjiXe03nfqRGc/UrlxpsEWwGAT5o/ugSFMGtci6pB1ttaalQxVE8c/5s8yHcu1f5OvW9MVS81JrgqN2lqLvv9TLIIlN/VxXChkjMjBSsJK8PxrpwxcOi8MsXlWY7BZAvp5FR6OTEVFG3PZ7+slogozLd0f9Z0r1QSlYsGLBwFZo1ACb7RqECkhps1hom6pUOptVWn5xx/eHwO+887TrcLJ/k16N/g19Q9VMQH571vKopcSuzQR2yM0zKDVL7uyrrD77bqNuL4ADGDrGcTOw0z5sWZBDLZDDz0URxxxBHbeeWfccsst6OrqwsqVK/HSSy+hp6cHzz//PL797W/j9ttvx1577YW///3vG/u8ozVoTgmgkxW2As+iroXBXmpLt4tTgjkglG0Hsh1nyuiUYIsdRbdrM4Le2rYEjAvsAji+vVxnlfBAFvAXKA3ZT4RFJ83iru8fcu6hx2DrlLVFODAgsRD4tnldDel3rSwI8HSZSBbEAnXp/W0lQY3HRvRYEBbAln3OSrd8J1PKoo5TwAknoCsUXJHfXqP7kOAoZdtmn/MYbDT4Cgm6JQ02uq0GBPJ/o+fpvZcWW4SAdiFdREPKsdwmBxILNfuOlkl6AR1zYMwOYmwsOULu5DlRAMUJkgyguMAcTBNAKcoZ4do5ZiVJlCUDCGA6nTupLuUQf+a648bZnbQUDMiy8pZGTfoopRJRqUxxvNLkgO5ztymdzvHWe+X12eeWUqZVx8vwpbILvUQ0cbYbR0tEBxXgPQeUcUtOAtdWkcEm3E/iCE/bJnN8Fw43OhAD3zY/Iy4FX9qazefZMA02V/cmr5Nm+nzyOq2G+z862GHpZnm6bux+pmtmpep2meWMGidANFmw6frmlzzLTEwXhB6sVD1mqQaUpudN92nqkBG/winFVwDldJ8UZOtSOvulj1HTbOU+gAWwUfCobDIHs8+FQgHbT5BZcU5ipGCPD+9+KvMCX4csLTA+PrVSRV7m/YHXTnXu0/p+if2izzP8eiTR9dSnkjTYaprCtfjASUAbYIeWNKTJIym56XYRzZlnafxkAJtS5US6xtL7ziuAANYQQQGuKEAPyB0i0/PUWMJ8nxxUdgA2YX0Bsns7oJW9GskzaZ9ioyPBNy8pTH8xIVbMmPQaUM3Hcr+yFpVLrnan1tzCl3Sw5zntvkv+DyDrykmxjqTTl6etSnW00/FPr2VX4lvNX1nTbJXuJaCD72PNggC297znPZg7dy5+9KMf4T/+4z8wbtw4599f/vKX49hjj8XNN9+M2267baOcaLSRmSbSaZVztpSMJgdsEXU7GllBYsFtckAZbLw+vayDXFp3UCugy8toaaVGvsPsTvx1za6cjn21jjWUwaaDYUDWpSlJgC7h3qfbTSHUvtWGU2Iz2IbPUcjgcqtrgZV0QV76W6+cgYtVk7/LJbcjG7XQksLa9QiOjuBkujocNr2aPyOXwaY3OUizQLzsgH+nOcGppdfYWuLvsEJXr7OjZIanUx7igeTyvODpuZj3nXQmlZhhRjbPcTYU4ErY5YgYbPx77Tw1fSL+vtXBMKPEnDqDgDB/eWNeYemwc3RKRI2SE6tsXpqT0nlxqJqAa4YAGZtGY21K2jNSiaikwaaXiGb7P+CV2+FNu0+p/91lAGelYkHtdiUlPPKCkHp5hlYi6jFVSCCvJBM4iyuoyYHQAVICDAFgglAmKz13KekgzbEasMvvu1oOztZWizXgbauU9vH3rWz4P5w5aXU7pfs0SwCNALlvoCr+rhEGm8xaSJ9l9pv0VvK1f6BS9YDN9sAmB6VCoT7e5BLR4WPzZ17RQTsueK+WiDKWjKdtxsC47Q0NNsr6dhpW5AAoFIxaTgA2rUO2fJ7ZZ6u0j+/TGse89NNtcqAAKMOaYb897o317ySGlCN2L6xx0rwgdbCXNNgA1Ks81iqyG8Wi3uTAqWzJ8WPdd5137VUAFAaW5pUAAhnrW9P3Sud3DdQOZbCFsoT5PoMTCSQxIzHYJFZtax6beniXeSz2PAabyxzMxqfkL1XY+wZA3s6IcbW1qJao1oFdTxsxsNlPahIrT451ih7xQwa+faYbAEcDNjXKYJu/qse/HgqwxRJRAIEA20knnYTW1tbc7RYuXIhXv/rVePe73z3iE4vWXNNLAO1sqwawcV0AKtTtUfXphFZ0afXrFWDCZ7DpDlmbISjunGcpY+nI4v2E/WIw2Hj2J52kxBJRNvlNJmCYptslTX4SxTndbhsCWNJOos4k7XUfkhlsfsMKgSVU7zCTl5XOsiBuORRzSlgmkzrM1KHl99JyICTxTUkfSGpyoC06dHyUi3qTA48ZZjDY6HOnAZ2owZYy2MpFkxHIx4ebmZWd0WLBXUwryntUKvLW83rgR9uqWwy2QgHO/AHoGdx8Blu2beg7XC5mTlFeiWix4DrCvUqJaJEwEXgXUatNvZfwUICJPPB5nMVgI4ewQGrJIaOsQPfa3eArux4rOMfwtj7QJDPYAtaiUhEnvfMV9b+7eHm9wijmTqB7/PQ85YC2npxgWliA3j2tVHS1SBeu6a1/TpKEJTz0+Vi6T2KJqJDhT/df39fw+UlsgE4pIy6MD637NX/XtcSM43+UGtOzcZN8yj490I75PxV3LIXoYeXp6XkabLQsZ5CWarrznKVvRo9fEPwFSYQ6fdacaT9YSbw1WNL60a6nHpxajVcKrFOhEfDzDoQag42zf32/0z3P7ce31//2GGxKiagFlhYLYI0T+uXtinYTDMuv0YCrYoFp5ebM3VpSiK4F6WV3OkxhX+OLvpOtwhonBd15XYjpO5k2AlvfPySynriPSl9hPt4teY5BNuZbnHlBBkGLHNg0Kma4NIkGmnGmW21bi8FGWEcKk5uy3YE8HVidYekmmrLPaWJugDQCkUovpQSFtG5IbG6ZwSb7kzxZnJ2nz64VWd9ku/r1sPeyZCSgqX+s+dvSPjWdTUmmAWBru9DJM72NhUKWZLXYzOMUOQva8Ca1XaZkbPcUYNPOU9OnHmsWBLABwJe+9CXz3xcuXIiDDjpoxCcUbeNYhrBzDQEZiQeGATalRJTrnwCGUDebUGlJRZ9SYlUs2G2mneYFToMF3XkpGiAg4C6ONEiyGWzFeuCX10W0VHCbHFhdRAGoLb65o6OX3LqTX6fV5CDJAqCyEvzw7yyNGsBlsLVY7Chn4nd13TQGGWXzADY4kMaTUjmrq8NhLzrpsC4UhoFiTeSXL8xFncHGHfF6G25Rg622LRfA9sDnwBJR7oyGlki0OZ0Cbcet3h1T6kzKQBlNp0/TVbE07SyWTO18GpkXsn0WGBtA6yJK5y+pnLO+XfqMlONrSQeLsVkuFepZcyCnyQG5lhlzVmLeym5xu2xOyu5pr/Bu1kHd9HpySsFq+/TnOc4SBjjII79vxQIcWQOtA3MK9KTz8cBQ1dQMA+AyLIXMvdTBq8c5z+w8igXgVVMn1f9+atFa8dhcNNlk6RT99yhjDWS/ofujYFt6XOorZAFyGINNy1zzdz24i2gog62kM6+d0rqiXeLFmxxojZZCtXToedbnD+XdHGSMGrMUP5A9KAGr0jV7HVmVYJ8fu0xKWfk50m29ElHDR0yfeQrW9g1W62NEYv+2EPaxI6XB3uGJHeX6+rGcNTmg4t9lAfDPrif7XCwWsL1Sdsr1jtxyPZsRqIHP3I+2Kg04m0hLCklArZrIqGbHTk1a42TRdV/rib5rdE6SdIorbP4qKr4KXzfMhDrTW7SIBzQBbbFVeQwDkBJRCrAJfqcGgg7x8VHOuhtrVUV5/g8dH+ViERrDUpMWSJOHSUJKOiU2tTB/SmuWlIAXu4iWUsDUSjRl30uln9I1pdtVk+y4XpWDkYCm4yM0KVQq8GYyGgCbXZDUYEvTQUtB7R5BMzUD2OSEKa+CAWqSRWmsuSBlsAnPHIgMttSCAbZLL70UZ555pvhvixYtwkEHHYSddtqpaScWrbmmZsS9LqLuSzjBaZutU7aBzNGxWQtuxsBpXR1YRgLopXU+uJd9pplmOZDOvgvNHheLWVef7oEKeFt36vcUCmE6Qumc1tGqOUXpdrUNKStulcJgK/IS0X7ZYffAMJHplwE9JgiaZkFKvOulXUKjMfLcAJVlenOywoBWIkqDhWEGm5BtrZ1nxsgDWJbGYGKaLC62QGkACr3GllIRkzvksuDa8bNj0+sCLAFbW4ON7lNzBGv7zD5TcJE7JIDvsGsMB7pPp0RUuJ/peKVaR4DP4uLBeea4GaCdUIJHr5+XFaolosK7rpXSauwGDqryd90tEdWbHNDOpADwzaufINvR66n9X3PIaCkY3Y6zZaQS0XZhnuMaeQBrciCIb6fbTlACRMAHejRNTFG7SmFI0e6tANMbMkC7V71sYv3vpxet884R8NlRHrNCABycElHBCaddRIvCO8+1lgCNwUaOXUzXIvl+0vcS0AE27n+E6N4AgjaSUrrEQTuvyRPZp5dAcoK07Dd5Glv82juUeYn+rrXMdbPyfSoHqE6DKqU0mNrAUNVbg00GW8V9h1uFIDY1V5pEB66k5ifU/6kHkwb7F7BB0EIha7CllYiWiqxE1GCgFAsFbDchsES0LI9Nvq3ZRdQrEdWBHp6w1coPEyFA7lT8n7ouEzlueq9oIkXsPi0kdzUG2yTi26ztHfCup1gsOMG81uSAJg3z9FprGmwyQ5leU2j3Z8D3O9OmJrVjk+1K7nYAi4skYKQec8iJJoslzPeZNjlIH4HGmqTrhrTGcPAZkMey4yMKTLe6TEQDXUQ1kEli18qlrMJ5GokuNQGds75U2bEdMoHQZADIZ7BpOmgpqF1PiAnsSpdMYHcRBYCdJtZYwMuHkwn8fUut3YgLx5IFA2w33HADzj33XFx44YXO94sXL8ZBBx2E7bffHn/729+afoLRmmOaSKclwlhmDDYqGC1nEvOp+umEli4mfRpDqWiXALolorRcznBeCsQhEEvBss8bosFWqSb41rVPOtvSDnO17LUmgJ39RurI1iuUGqWT6Q7EyVu6ro/sk52n4jjRbXmJhCSqnW5radQA2djK63jFg6ptNUZeAxR4ySmRul9KC5mUbaXXk2nkKeVQHnBVO086FrXz1ASb6bblotuJd6XREQ1wS/AcbSLm6FhaT3SfUgmatP9CgYj3G+Bi3ckJAAItJiQ9fqngluDR5h/8PGvlITrwzs8zL+sH2ACbFBzrnfCyz3SfaaexbDt3HNFz/PKVj6llQYWCCwzOmLNSvR4ADLT0y4dSHysF83tY0kEKvnIZbCWfWdGtMsMK9eYwgF8iWgeKBZBcA9hyNdjI2grIWlh8n6ViAbtNGVefa55enAFsfG01M+LC2prvhGe/d0qtWIkoPa6kwSaNj8k597MOsCnBn6+rls8aqG3LkjhVeZ9et2SvRLT2d6HgzseADnZw8EhLIKX3WmOmU5CiXCyKejupucFs7f9SWbhWGkytxmBzAe020qna0zFk+6x3b2VzUu08s3mBjssFq3vceUF43/PGcXo5LjNOYaoM3/tUM21Vd7/z7xR4N4ErBki5DDa5eqDoAbDsHnEfQC0RzX6T14yKz19awliTJknvbdrkwClbz2GwSfOCpEuZp8EGEAYbG3MOm8hZByFuJ2sJs/nDYLAlZByb8hzsGQHZ+15NZAH/1PfQurNL47iu+0yT9Bz0b9A/zqRZdJA6NYn8UBXWjdwS0eF/lkgfXC4ACOsi6gJsPrtWmhMln5bfoxA2NU0qS9vxyi8akzkN1QQAFuCNMGwGWwfTBs/T7ZT0YnlShsv3aMxBa+yNJQsG2A444AD86U9/wimnnILLL78cALBkyRIcdNBBmDJlCm655RZ0dnbm7CXaaBmdAELZRCVS/ggwOrKQGa0LhZtis2mgljLYKBMg+00ppwRQ6xY0YInSFsIZbDR7aor8skny8vvnY8laH+SqT2hK9lrSDOvIofWn+3wZaYG8aG2vtx0AlEjHPH7s2vFr/y94DqZ7P92GBEWz7IMGFmbHK+bcb6Mw8jwA1gD3JEenXQhYeIMFQGcvZtdT24/e5CA7dqmYLTwSO4qDHVpZIV3MSsUCtiWO/cr1MniUjo+SkpnlYJjlGNAA2dJg08pjxRJRxgxrUdkiriOcnqZUcku7H41rLdXvJx1HfJ+0LCgPtANcoEfrrFwoQAVLrRKJvFKfFBBKErcsmQcgdP4CgLufX2EeXzKpbF3VhfRApnL9etTyjOFxKTF6JAkCGqT9/r75eHZJl3eeNYBNfj5Ath7kMdgkLR1nfA6fnxR4aiXm/H4WiwXsO7XGYntpdW99feXMCotRLAcLfmJKK/WR3nk+zwEyq0Uqh8pr4pNXIsrZUS64qL8btYSLfJ+8xisByZ40mNJY0rwE0OoImz7PvKCG/s5vcmAwlOqML585KQWz3AYrCZtja2yvNIHEu8CZlQYK0FPr4tmK3betCWU//tJa3PLUkmyf0jiWWDLCdhp4Jb3D2w0npqpJlnRJksRh4IZqsBUKcLqIhjc5sBMuWmKZs7jsboXZ5yKTNfjhLc/i8ZfW1PZJ/aRiel2kcVf/kLcdfSfTuSmvyYGk/6uxdCZ3SCWi7jh2mbcWy6/oHSs1t6lITjMZGj8Z84el7wVkfrxUHquxRiW9tnQtlDTy0u0skEPap9RczE3wZZ+lMcrneL6dqcEmyRoIJA5NK1cFAoUGLFI8Kul98/tprkXk2ilYvKxL1npMj60CXAJ7r3aePgirgYtp8m5gqIoh1ina6u5L98mTMm5CTgf3tKTHWLNggA0APvCBD+CSSy7Bpz71KUyfPh0HHXQQJk6ciFtuuQXjx4/fWOcYrQlGM4mmHhZb9LRghS5qZTZBm7pudbDD1yWwHDcL5KJ6IT54k32m7D0RYCOnXTbYRPweUQcP4LTt7NiA0WVNmKi0TDfteAXUuo2mQf+iNTKDrVTQmxx4wYIBwLq6FTkMNscp0en3PJh22FmKphzXwuAlc27QXfu/VCbBdTgAHlRJOlO1v9vKxfrY14AWWuZUqSZ+hl9xri3AsFQs1AMFAFjZzRhs7DwdBpuRnbTEWdNrLxRgdpjji31ZAY4At+wCMFgtzLm2Sm7rjk6pFiSmHXY5g43rmmj6kdJ50jmRls0n7BmpGmw0qBm+5bREVWWmFQpuQLdeedeLBey90wTnmI5QuPBuSCYlUbTyNl7uG9LprM5gE7sfuqAq3ycAXPXgAu88S8UagJFel1ciyt4NB2DrySkRFRgOUuCpOa10aKXlNlNJciRlonLWYnAX0TRQywkWaHBKnWIOsNGxMU5g9WrleulzWiM0fkmz8WrXOra2hmqwlRiDbcgBWnS/gmtdZg18hLVABYrtLpGcwSaVRNd+l+2/ViKqn2d+F1EfGCkW5Jfd12CrHTd9N7hItVdOajYbyo5dKBTwjfftU/+3e2ZnoL/EqAnVEsxjltJttxM007ifFNrxMy29TEvSzSYHVrkeezdDmNyl4YRY+ki5T8WvnY4lAPjv3z9c204JkDmAowH0aZdIjcEmJUd6BP1bVYNteOx55XrkHG58bLF4bEeeQ9RgcwFtLZHBkyiWfywlyicKgu8SuOjqHurMZyBLePQOVrx5Oz1Pq0TUAqq1Du503ZDID5zpD8iJB+4n8f1Jna/5HDdQ4Zqp2T6lEtGhalJ/3k4XUWmuEZsHuACb5p9z4PuJhWtx6Yy52XZsny6DjYKq8rshru3C+wbwEntfBgAAdpyYzYezl60n15P5+9Q4m14DNq24cCxZQwAbABx99NH48Y9/jBNOOAHjx4/H3//+d0ycOHFjnFu0JhrtLKhpMgFSh6gMRHAFNeFsB1glotlnXv7YR3QJ+AJhi3Rmn2nmx9TMMECz2vFZmYTQ/ad2jGy7YrGAF5avd/59QMg60kxJOg85IuFCqY8bePqLXnrfC4UCXja5Vhu/cE1vdj8Td0KljlaPcmyeoeOOyaDnlMhgFJDde87C4BokvCPtFEWDjZ9ngYwRqwmGXCKqNzmgiwNlDtTZDcP/TgXvLYF0culgw1PNdOdR+rftlEtT6D4zBpsMnNkabLJDVisJkjOttd9ln2lnvyQRWHFV9zw1NmSinKeUlU6vPT1uque3untQLUkqkfHJ9SOl83RYvQqwSss5Byu6+Ham76WwMNj4oCVJywzGxF47TsD7Xp1poqqMHiXoBjSWjN3gIbT0AJATCb1CiagUHANZ6QPXiSkUsu7XXnkbA0snCcEcwB3h2v+lwFfS09NFwv37uQ05/mqBrcEde7MJRp0JEd5FlO47vRY+zwEyg03LXkvATGiTAx5YmOWx7Bk5zBKjRHSiU0LMOmoynSlnLTBKRN1u2lqiqbbNOEX6gSd7pBLJ1HizDkApERXWwU+8ZTdnXwMVOfiaMPwcu/qHnPHDE2IhWrnp9LbP1CxWoHOnDBTbHfPqXURDOr0ODw2qmbaia8A7dl65rwRIpQlBNxmY/SZPGJ+/m9r95OO4QMAey6cqFlzfB8i6Fqv6TcPv+3oJYKOBNEkIan48AHS0+ECC1MgGACaRCoaUBetpM5L7ef7tz9dF1zlbNdXNlJp1UVCyXNLnWQ6qUj09u7Nx7f/bdfqdZqXyWK1EVFoLJRkEq0mc1eSA+190W+57pSbNi8EMNqOiCbCZWRQQooxRiW0PKE0WRDDfLhHlia5DL/yX2OSJSzoAwGnXP5Vtx3wvV4NNTkTSd0NiNfOKmdR4kxzpmU8e14rdhlnFTy5aR/ya7LqpOZINVVYiqj33yGDLt9e//vXYb7/9sN9+++E3v/kNWlpasGbNGhx00EH17/fbb7+Nea7RRmBOG3LqtHrZVtfBpSCGtdgDVKhbKxPIvpN0Cfji2K5MPoA7SdLJ0dai0Fl2/JpqmVlfIFPajjsvklYLBcMkAfBEmPzyOj/RyS8tEx0YqtYdPZFaXq/L18VRrXIGrlvhLqDuPU3HAc/w5zXWmDJOZrBJY05jCUmBp9T9cVBYyLTFgZdeAhkbQesmyUuyNZApDZTSY1sd0dISwJQCzjXY+PjQugZz3b+yxWx1SkTDGGy5ATIPujW9o6p8P0WAjenkTekc7hJZqaodaWtaT7V9SkAgLxtzdCmNbpYhOlO862bteMq2xYJekiSM94P33UE8Pr28AnOggGxMik54jiZVLsjkgOm1fXUIZaeSg1ksFnDt5/evfz8kOcwFNwDhGmwcLFVLRNmcCPBmIXowOSFgfKS7ouXwaTKB77NTYQPyfYrlLoOuwwxYDLb0//48J3aoVILz9J6u6clAbSp2D2Rd6IAcDTYH9Jffy9rxiw5IrZeIFkRGCf+dyGZWyvXyABTOYNOaF/klovkMNhrUSOxSKQD66nv3dsC4waGqC5oNX8vE4XGcJLypCEtEBjCa88rr8xls0pir/d9pnmA08QFkBpsPhoUxlNKhma6HVkMCq2SKd8hUy5IFNlEmbWD7P9xHzbbLPlP/PH1O3f1DNXkKlalCx73kxw/7nUIXYuddJ/d8G0GDzfMr2Lr1wNxV3j5rXdn9Z5Oaz2CTE/X8HaL+FPd5pXlWkvMQGWxCSTTgzjVlxi4FsnXLGnNaDFMkAL0UGzngImWGSVpgLHkFyL50aLWOxLTfYUJ7/btlXYTBL7yXgAZI+XOi3LRB92UB4MoH5nvH5ww2bryEWGew5QOG6XlqICifl6XyZQB43S6TAdTekVmLu5x9clkB3nRInRdiiSgAoJy/Sc0OO+ww5+9DDz202ecSbSMaRaTLDYAdwHCGcKCisl8yR2d4gubBueCwtzHnsbVc9BwirSMZ3SfgTjp5Gcc0+2RpQgHDi3M5ZbDZbKKvvHsvHD/9gfp3km6GAy62lrC+f0jMgADZpK8BbJwtAgBTJxEdtjW92G58m1MOWGeWtJWwstsV77eyrRxoofetpWR38qSBBV10rBLicqmAKeO1LqKyE94F34GiNHQ5S+Z3KyznBFU8UAIQxmAzgkQTZKpU0V5MKe70PDPHrXtVjwNCAv74cJscKEAgO09NvJcC7vy6Ad8p4mUXtMqPB91akMpZcelpSgBbBobVzpEDGGngwLvWueOzilIxe/c4C5UCKOv69BJAGkiv7x+qv89SiYQE3gD+M9IANqvpDOAGE3klov1DVXS0lsSyC8kRpRpGGZsmQLw3ZepKGmxKiQTtmJyVxsDbNn1GnKHEM7NaO3kJtJMCeat8B9BZOul9chlsA8I+a5pExULt3Pm7Lq0b5WKhvn2eELLEWpXmOUk7VLrvQFbiNVRN0DNQQWdb2WM3hHQRLZeKnkNPjT8jTZyeX7vb/dkdH+l7kpts8VhP+jrIu7I6jY6ULqLlkgtcaUxhGijRd65PKLNKx9ykjhZ8+V174ft/fWb4uIm7vhT9d2Nd72Cd+ceZ8Zwp4Z6nPnd2qYyN2v7cuUZ434Q1M79EVGITufc9tESU62daSRS6z/7BGtsrfR488A1rcgBy7IqtSVXwS0Sl7Vz9pnL9mH2DVc83To2/H63lotgRdpzQhVgDESjDdK1QUimBHRKrnY5NLiECuD6OD+ZrwCbvMmsBsKmf5msKSxpsWqdXac2UmsnwZxTS5IDexzqLX0luUkxTSrRJTQ4kNmYixI5SB1UJdN9hIm3oRvwftZRVYNoJ1ULSdpypy4Gztb0+O72muawDbJxw4TRUMzqjpyYltzWQi18TPStaVfPv0ybj+kcXAQAefWkNXjNtkkjiAFyfoMIqM9yxpIO7Y8mCAbbTTz99Y55HtI1slKofKtKZvkypw6OzSmr/Xp+glRJR+rLyxWRie4u3QEwm7brX9MplcHxfZlefYsHJ0lAnh19TjZkmL858u4P22QEf/veX4YbHFnnbS2BYmj3uVTQE0nNysjoSHZnsc+fJWWZn0ZpevHbaZC8zCsgMNq9E1NCYoJ3OWkqcwaaXxlidl7iwtcZgkwRXQ3TyLMDSYeRJ3cuE4M9hdrT4z9LKfPFOojxQ4g5res4OgFLPjLZi/qoerOkZxGClWr/HfHy4pQ8EvGFASwjTjjNLeekSDzzNAJmxnrRSH48RmF4nu5f0vDMGm+vc7jJl3PB2bkAZyt4DauOjtVTEQKXqACgJux4J9ObnXRf5dcBNnb2nda2TAmTtmngQ8JtPvgGfvvTB+ne9gxV0tJZEtobkiEqA4fg2Ci7mlIgKjB6tRMIBQoe3kToLpoF8/1AVA0PV+nvFHcdJCpspj703WA/4/WtP2Ud9g9X8ElGn023t+G7pVBHFYq1sfsX6Aa+hiTMnFtN7UANnegcrMjBBYm36OR12Q4JzXS7Vulr2D1WJ8LkcfNF7uqZ3EJ1tZW/uDNE2a4zBpjOPPAab0v0ZyMZUuq+Qcr083a46YFny13VVg61UFN+1+jUxwBIAOlqz7cUuokIwnR5XAjs40DFtm9pnT0ZEAMJSy4D32v/T7qSDlcSZOx1QJg16czoQFgSwlvonUpBK5880QcE1D0PlLDiLPi2ZKhULfqkiuZZvXvMELp0xD9d8fn+0t5S8sdRakpt7idICaZMBL7EMZ9sOhcGmAmyMgUzfQxqce3NimxxDSAw2SZ4DkNkvVtISyBIp/F5SCRHu71MiQEup6CS5LFF8ul5Z+oTpu+nIeXT7un/pM5TKJAH+DusMNq9JnKX7J/iy6TPvHhgSx7HDjhLeeYlVm9tFVEh+p3I4dLpPn9uOlMG2LmOwaRIIoYyv/M7b/pijY5peu1QVUN+u6p5jiCY39cul5LaWPOPJUDoHURDyFTtk+vnpPZVidsAdL0PVxKuCSS1qsNVMTmtE2+qMTgBaKQUgZ5VaBeDMXUhq/9fKrDgDBJCDdL5ASO26+T4BxmBTgvja8bkgrn7tNQabXCLKtwOAvXbMJim5dMoHZdQuovVMN1l0Bu126TtMzBae5XUauu/ApAyevsFMJJRnf1oMAJZ33aQlAhrIxbuI5nXR2sYBRWSdKa43ZGmw1R12wYFxdG8EYWtXgNtlNwBZiWivoyWYnYcHsCldbiUAQ9UmEhy3lOknjQ+tPJeDz5pWG+DOH44YL28uQQGHgluO7rH3OKtFcQj5O5xelyhczNg3Tkda2tWQnifrIMafUR0EJe9bWiYqlQCm93HaNhnA9tJqubuvXCJKwbDsPAoFvWudWD6klAbz5/6uV+2ID7xmav27XqFEwwJGpPKMcbT0QWOqCIBDn6DPQ0HassDGlOZOSaOGbpsONa1ElN93gL9H6bvuB/wAML4tLVH1G97Q85RKRKVSjhQoXtnd72oJCowewO+epjPYyLhPyzkTFxBKjZfja0GNu267rLw8gM3TWjLmJP7cNeY1n4/HOwxUOUDOfJ98sKNcKjAWpsyKq7PIhaYegK9vSlkoHoteSNxJ5+qOuexzC0vkSID2xA5yn2jHYk+DTWfa8edO9RE18DljsAlagsK7rrEHxS6iTpOYYbDDG0dhDCVL2oCDYS3sXXp68Trc9Phi7/jFYr5EBb0erTmPy1z0NdjSd1Qr86YJku7+IXaPsvOTSwBBtk3HPNVw1EXsAbkJWx7YkTLDuI+Yjs0kEfx9xhila+tCZb1OSy9T5jHvEukkHYZvjdO0a70k31LbUGtywBsyASyJoWh3BjHYyLy943AMUU2y8ktdxF6YawRWrdQwTPTjBZ9SSgrtSOKcpY4GLci2FGCztdXkztsCQ7vgM9iyigS3C7FlXJNSazynlojmsXq1ax+squs1ne8q1cTT8qPmVsMkrlyAAmyO5RLRIIDtfe97H+69997c7bq6unDuuefiwgsvHPGJRWue8RIeTe8HkJFzqROglU0D5E40DtVVQuLZRMEz4c55km3pJK7pvwFpplk+R35NlME2wOrXpQydxnqSFp3Uwe4nnV0kx01iXElBGuA6eWlpqAQEvmyyH/R7TCaltAzws+xarX2SJKyLKM0c6oBl6uCm+i+re+yyLY3BJm3rPiO/FE0StpaCP5fBloHKWjBrM9hcR6dFObbkjLrlLmkgC287rTsoZ1JpbBE+f1hNDnhJNr32JWv73G2JbgUQxmqhGheiBpvBYHMaZjDwucUYnxILdYIEsA3/LAVaKMBGHXbJcdQaz/BxTDWEljtd6+BsB8hdL/nx00ty5hohAJIcYUmrJA38OAMiO09/W5HBJjBLAZmNKTnMeTpo9Q5vGhAnrW95gsnEGZXGh1Ru4wBsPb4+T7rPFEzvG6yqmW5pPegXkih0O+oUp9fCAaHU0rkpDea1AHkSYZ7z8iWJDeiCCDqztMLWIq+ER3mHpPk47fzIpSfS39XXgkDBeSsZyEtu24Vy29qxs31yBp3WJZs+ohDmD98/ULuPnEUOuO8GBSL5c+902KpKUxEhOUHft6GqPyeJGmwCi33Du4jKmodlZ2zK6zWQvcNi0oHtk3eap9tqncQB15ekrgNPzHhAINsnB9jSecetnMg+dzgl/hU2z2TbSf6KtG64XYjtDrduN2AZFOFalKuE5ARvyMTfIa4nvOf2nfW/56zorn/mDEcg0wJb1uUmPCQ/fttOCrANlyWz8lRALv8D2Ps2/LwnCfI5nFEc0uSAxiUvm+RWwQDy+wbISWgJtJPOwR3Htf9LOqzSvaQlosvWyU0OCtp5phps9Pj1RL3OyANSUNd9h9Pzk/wPzbj/USoqjeeEGBOQy4g1H4AzoLX1mjcu0N7L2u/c5IMOkkcGGxAIsH30ox/Fxz72Mey77774xje+gauuugr/+te/8NBDD+G2227DBRdcgI997GOYOnUqHnnkEXz4wx/e2OcdrQHjQbem9wPIVH2xNl9YRPMcHTpBS+ARd0ook2mtwmDjC4kPmmWf8wT8+UTltKIm20rZJ20hlxYdmrUQr314Vx1S0KtM5nShTB+pBATuOlwiB6Deecksd2EgxhALfLUMP/0ZZ7D5La7980y1ltY4rCN/MteaHEhBPwUc0n8fFBydvKBK00QQHYMip1Xbjk5Q6dTwdYxv83WuJKab1hWWa2Fo58nnj3ZD1Jpn4+lzP+SCu8XyR7EETwuUCGgnlYim511nCJE55Kf/mE1ABA4u5s8LboY/CxLrQu5snnMZbD3Z9QjAN2X6WV1EJ3W01McxZbA5z72UPvf8+5mBXD5oKoPUvsMqBSCdSumD1ORgXE6HOccZFMqYXbaZD/C5YurudqqennDtzjPKyR5Tlg4fH3TbbTptJkImlO2zIOg+CwWXQdfCkmKaE05jhgoLGHiwwJsYaeCNo7M1fE+tjsFOEoOJ7TfEYCvK85wEaE+sdzrlbLPathKbWWPVlooFRxtwdY9bxut1EVWaHLgMNjfo1krxHVBVuKc6A8WdG6SSNbV8miVhNRZo7fi1/9OxOWGY3Sm9G6ViVmIlzTXSu6Gx6KV3eHJHS/0+rEhLRNn4aFUSE4BcDu8E8RUZ0G4RALb0nfaYRw0k2dQEYw7jK/13qbkW4HdfVIH83KRDFhuk23YL5cv09Nxk7PCcxECRVUyLcpXUIKZoN+DgesJ7bp9VobywbH39s3TfU6BnYKjKtDvhbes0Oej2q0sy6Qk5cekwRgUGW1YiysDFsjzP1I5f25aCNzT5vmhNLRkqvW/8d3UtVGFOahHA6jz5Fqtj8I5akwPNXxASp7JWnJ845M+IM7olYkgeg00CNjvrTe8oa9EfH4BcgSUxdQEOgla8d0Pa/2AlUcuCAf+5hxw7dhHNsRNOOAFz5szBd77zHcyaNQsnnngiDjjgALzxjW/Ee9/7Xvz617/+/9n782jfsqo8AP3273ea299bPVRr0SpFIyKBCEoiQbrYBIyiokYCTw0vRDEyQhSw98VnnhAcQ6JEEZOgwzx9CpghBh0kGEKUJhRdhc4qLCiphqq6de89za95f+yz955rrvnNNddvnwtY96wx7rjn7LP2WmvvvZrZfPObuPbaa/Ge97wHv/3bv41rrrnmfI/7oFSUDMU14QKEhWCzSFytQzRByhhcT3JRl9IyTyetkta1yTjYdMhrTkrLBR0v86QmhmUk9mtK0AFs/ii57x42iC1tpdc33kjlyCJotZRUaWC7pU9tPrSjQ0Q9BFuWRTQxQqYHhJXBc+gjVaqAFAHipX+X/CeJ8UY9UzcO3aeV5CAVLnOovvTiWHw6eh6lKJHk0XPFkxhFtEEIIHBxQ8CzPMJ6nJnn3lFUDgljTCmroRbsO8FNtltE76l53BvYHARbJww9UHhlP3XHGfzZTZ/L7l2bqCxvKjOYZ2DbnS8zqH73fa46Nay1JETUWOsMNaqzzE4mAw/b3yQcJMN4LQSbNJRbBjFzHhuKhaWwFIn+SehDNy0PGaHwzJFghdJa/R9ZzwVmWberd2h92q+50yQhgedAskjkgWF+zBfLfr+znikJYSYoDEChIM7k2WO1MUyvEcsIqe/rjc/GfAeEgc1574AiAZ+rNtW+DQBvvfGzuHUPMVHHwabRbmUEm0Y46hDRrs1unq1T481wTy2CLXWcDXNOh4gCw1mUJzmwlNnh5+0KBFvLwZYrdCdIMgi9hj0D27Jfb8O1DsEm985unqRhRsZeQ4w38lm6YoXrTSZDZET37fNwzpgTtpdBTKU3rSfRr/34DOO3n+TAOjfSNdmP01jv/0Bkld6d+fNDJ66I1LMRbMM4OqeLKfMSJ4rOFN3NTZ3sxU4Q4/MDps7iCa48dbh/9xLBZj17ms3SpjHpXtOJQ2v92rRCRHuqBMbHZeyzlvFbz2MZ8qpDWa3944HCwPbZe9r9mGWotKKgdPgjUDb6d99dRjSdc1DXJw6v9XPucyTJAQt/nKm1Sbna+vN6eA7LcLZFqI2s0vXZh5KKet13v+Wus73RkCHY0mgU34min4mNU+uOFkrXal8b45jhXcvTF1IJGdgAYGNjA9/5nd+JP/iDP8Bdd92Fz3/+8/jMZz6Dra0t3HjjjfjFX/xFPPzhDz+fYz0oKxa9YBJBVB/MhlFGe8P1zxYXhgyzssgvS1DXyZ4nsxNcc6F1qOeFvGovmSX863F2z1Qiu+/qAbaxA8jD4IAAMs0SxAtwYLlhd+/GqnuNgWDTIWOpgMPnhw6t23aMIpaxcKibKkrAoABZBgz5PJS3yxAgLPSLhWCzDlvZppVFFOChdVNnfmZZREl4iIXyszg7LGGM8XtpwfEEQfNoo+7m2rQX8G67V4V9qu+ueStSFEjXZv7saZjkcH/TDM9vGdi0EfSrrr0oCaX97D25Z7Zd6zyUxBLIrBDEbjh9OMPxzX59vP2jn8OHPnNP9jymMcxAsMm+O0H4rjM77nenWUQNBcjek4ZxaoM2IDh3DKXiKMkiysK8u2nSPQ/z4KZOHEPp7p6nQB5shfvKkDUrHEsqyb2RiQitx5JsiV0Iz1B3yLY67d9ppyRayleCgrhPhjrn5wtgGMOIwTIJX1eGM+2x11QRLHzIomHQnvtNgXwGgB///RuTttux+VlE9fxkyZssY2lnPNqZDVyky+Wyv8/KKM324+mkSQylEnWtqRIAB8GmEggBAsFGKBAYamDXMnYkiqcwHDIONnkeSASbCq3zDGxzY5zHDeO7FYZvRQUsjHVJzw2idHfPZxq4CiGi1t4ZQQ4eMgxsmvOwGydz8FmIL8bBZsk/r3v+47LnYvNDI9gixnQW8tqVLnKjyyJqfUsgD1mT/3ft3XlfajC6sw/3Ha7pd/nNv/xOfOSz9/a/p87i1nH3oEvbMNGb7zzTny8WJ1WazXKQgZbGnGuapg/x75wjM7WGgNQpVcooaRn09T530ZH1HiTQhXx2xZofaYhoZ+gZ7mFGGU0ZUEpyYBmKzUgQ43yROuG9Brdq9+z9mB2DlDQEyr2GITG1M9mTvZ5+wxVmXWufk7LSt/zyn2OWJZ0ZxuatjW6c/TMp/ZXJVBolbqF0+/4zBJu9L8h628pJcSGVsIFNl5MnT+IBD3gA1tfXy5UPyhe1uGTABR4yYBDG5IIqkc2m2Qrb/1MEWwGdpaDQLER06gjWbZvDz1mGKPLsk8bnmrI2FRkqKY0ylkJ3xFD+LGGjaLxxvBBsnNdekiPYdL01JXzLousy4VYbIa1nMevuPVNHEg7IDFHDPRZ3ghnOKcNoxVnR9Snn/7qhVO0IIctCdhzayJF5+mD2EWzp83BEYC5AHDJQgRYMnBlM9UGaKEpn8zA0YJhzXTjBbfdspfyEah7foTzNch1lWURlFi9HUeqeSxvYFkI46KbwdNLgFf/wEUO7ynNvrXUW9ir3L0mi32XDk+F6Xf0vu2Tgdfn5P/po0p5sM/lG0jlh7J0SldcbDA0ve5Jxk3z3XsA1lH6Lh0wjGwBgaaAmjyYk2QT9Ox0UEJ34hSl0a4bBxUKRWZxysl3pme3RTCQMzjKClkLwEiPCVo7Y6Oo2TdMTZveKkvEtLyYINs3potvX4Tvt34Z6cl71e6IyUnel+14Wei9BoBgIIJmFGEj3OQD4s5tuT8YL5Ai23Nkj0cdpaF2yhowQK4tfLAmTNAyBjHB+OkmNUQlvqBhy7xghxl/plNSZBTOnlGWQMsbKlKV1hTCwFLoTxHCmFUpWDxBOFOac2OqoDYznsXieCshSaRBjyp+mGPCchh6nr4VgGzjYhnumkwZfee0p6GIqyBOOYDOd34IiI0l+Ysg/a9NJb0Da6TMqpuPsyqYK2WMh+1ZECHvv3ZngRW0AMCNStFFE7oeAdE6kRgRpZLjjvh1832/8Rf+7fKbuOa7fez+78yV1xgHAFQId9t3/4X/jr/YQbwzpd1KFpFvvUxrY5Jlp1bWM2um53p4tnZz2mbvPJfNDI4oBHSK6x8FmOM/aceTOasvZYyIcDXnBBFyQ8+WokSSFInWN80NHGrTjzPW3mdoXNNrZk7lf+x1f1Z/rQA6QkLrIESErfeaeLdx27xbloLXOQxbVpB0UEZmq5WCz36W+b7bgoeNNM+xjBxxsB+V+XRbqEPUQSpaV2wyNMRbWGhFMrDDJhG/ACm9rOk9Ne5Ce3p7RxAnpgewIRJMY/L97P4xryjJCao/f0H/6PICNrrCU2ajSq3+2EGzdMz3gxKFegLQMbNoI6aH8Jgr5kwiDChlmofGG8ebPlPL45CSu3eOWQnPl+dA0OUG+hRaxPdJDOxTBRpCYFqxbj7N/nggHm2FcHEigpTKZPlfbvxDC1ftMURjE2LDXd+ft3J0vccd9echa1+bNdw6hFkD67TW6gT67EgwGdI4K+TDmO2ALed287uolBnKCFknCnAyOrx7+L773v37WV/Q/d2Et1jxmTgKdZRZIBeHPWqF103zfnhmI4rbd3JhvCrh7/ZfIgK0kByw7Vhom0dbvjGGawL5/tkTA5IgJtt9Ix0xXOmNpEo5uCK3WOcPCKY4ZCEdtlOlKZ+yx9rnu2SUK884zOYJNe5qnao0wBUS+z8VyaRqpdd3eyUY851bInDbaaQNbV7QyKUnpb7z17qRuhmAjxjiLJNzKkGlmUE/2DttQ3KGeOiObNDJZ8hSTKyTHbddvp/jNFooCoTO8S2VyLTcAsznncbB175Eh0/R5wLjaWDa6YwGOPoARpOfn27qB3GvbHPpMM+dy4/Nk0lCaBkDJ0s65pefH5toUb/vhr0vaGtbRcK1pPJlG1tvb4xWiZKibyz/AcCbYoaxDPTmG7RnPQFhETUpZqdvjd+d7+4zdtxWRog2GP/FNNyQULnee2dnLoJ7OzU21z0jEfbeemmaYE5Lr0nR47NW7XGSzBIA//tBtAHK6la50a3N4ntyYLnlLzzDUt7M2LafQVXuywtmducqSnRvDLj++2X+HzrhIjTIWVYOS5wA7i6hlwJmKddcZriw0IDDIXmeS8xpm3TVDBiqGiM5sA5/m69xyZO6NtQm+5iGXDnV3U4O2fEfyPGjb43KSZ9hs/84dFJZhU/88UwY2vX9oBBtDCQPAZr/XHBjYDsr9uKRKQJr16VNKAfZCRAGbNHkgkbcRbNaGZoUMWgfzKSLkySxak8nAy5RB5XX4YyK8KONR74Fpf0+USYFKk0KzyYdlKHRy70lCRExkWvu/qfQSQSdNcpAbj7rHnk6a3vvXCRAa0eKmqRe/eskLtEfcyzxpGQfMEDzj2UshPFzxNAxsnVJlPBODV1vfSAsl8tvIvwH52qAExwbCIA0RzYXbfv0SdJQWdJKwA0Lc2833B54S4QQiO6h+9pvvHMj9AZvwvufXEN/cWutN0+5fXX2NBuSChpFSXvXtZRuzQh+sEEArHOrvf/nlvSLQE3qb6Cjp9PCRmEkoh4dgI4Zyy8BnIUytsItoyEdiYNuxw42TdbSRInVYvcmk6cds8YtZYXgJ+tjYF7q9ZrG0Cbi7uvKc0cgK1iZgI9gsJcRCgHT1pKFJcs8MAjuSsiZQ5944U2qBZbJ/rGkEmwpHY4q0NPTszrVyno9BFk0XcMOVJ3D5Hlrkv3/sjsRYq8Pmo5l4ARvBZiFaInxYQ9hWe67KJAe24bvp5YHEwGaEjR0qUE+wcL2aLKK7WUjSnrHhqG3U1WdmxBCXZBGV6PTt9N2zfXsgHrf2JGFYNJywut1S+LSXBMzkYCsYEbrmHnbFcfzMtzyyv25yGTYNRbHb2adzQ4esq9dZtzZ7ZCkLEV1Pn4m9yzTBA3d4AIMBablsjROJMYqEreu9pvvmN1x5Eu9++T/AV+0hA3dmi71sp6LNSYpM16VDO0r56JTIgNzxPluO/8sFgg1AzyFpgQmA1LApoyHkM8nkZ2cTBFu6JwLted2t905Ws/bjK0+KTOYiTLTrP+H3mk4G49VOLnMXI2asEFHLWU2MupsKrcsI9LuQysXSNsbJY8uaS133E7rXGPN4kvN1eiGigE3hYqHnJCId4CH7+mdPF8+eyeFRzI1mMOu1z5faAixO3a6sHyDYDgxsF0LRAu7jv+zi3rr9tg/dliw8K310ElZpeOjMeg7XEqC8uE7WupOEPFgrSt0Y3GxKTZMIY0UEmzSeEO91j3qa2oKwpdAdMfiJtBEBaA/l7rks4nGe1cfyXk9E3UnSVo4Q4gKmNi5G+E/W9jyJ3V6tDWxWeIqFEDIziBFh1DJMdGNp/94hmaTwsocaMNKlW98cSA3FFnfVVCMrFun71J7EmIENe+PMjZaWQDRlhhZVlxF1WwaZB57MUVR53QbPftQD5eMm4XoafXMp45lSgptG5+h6QPqNLAVIC5gMiSkRPXK9WfOTCdfdd7A8jhO1f8mxyWdKQkQNBJulfLGELl3zcq85XELL9o4EP8lBN0zpjZcGIWYE7Qx85wzhOl/DCoVheFwZB1t/FpGQNRstKw0TWkG1x5kaEXxlpZufu/MWQWYZbyRqUSpK1vnS/r5nDCt4ueXPiyXnVAHEsy98RVpn5GUKiFW0oWcyafD0Gx4AoF2Xf/7xO2jd9QBStzfmG6ir5CyYDntNZ+QqZZntQoLuObdrIqS7b9I0QyZm6YyTa7QPETWUNNm//pbdZ/CM37L9rl8dbgu0RshuX5KcV9r4LDOopiiZ/kcVXp8bn63nsYnH8+dhUQkMnaUpBvT88GhErMQJ64bTljlCk0zmpP9QiKjx7BH5R/Ip672GhfZt7y7MMwsg6D2y3qXce9/2jKJ/PYe+bO/kkfVkHefG/DREVJduvUtZocRt1vX/iCtPJG11a4AhijX4QI5TZq/v5D8Z/mg5OJumEZmQ7SyigJ0ZVI5Tc3cOzstubg5/S0NE5RrhhivLAU8NUnsygJ3QTRjYDA5Hdm5ZZ4L1jSxHvdafHv9lF0OWbYMSJkXlS/k8bVO+dpkAC2jfE3tHaaRS997tuhrBZsmI+p5uXxieJxlaxgHHIqoAnuH4QioHBrYLoOgFeHRzDX/v4ZcBaHkJ3nPz5/u/l8iyPf4VK2OL7D+BxRb4o7qmSt7Rbowd6ein7jijCEL7H9EU0Fl682Nk99ZmbimeaZu5MgnIjDl77SmBqFc8e2TF8LeUX0xufPk4U0/VnoGCeLmjAqaEdQMOgm3aJDxLXojokOQg52AzFX6DO6Ed597zEAGiG1+CGjCMpQOCzT5ED1khomptTIxDUf9uhSQxZaE3BBpeN5ZxqhvyzXcNiNXEODBpcPKwVJRyA5ds8yqm8Cth8F8988uT55WE4trYcfLwet/+HYlCl9brhcBl6rmck7BCL4THMtRaBnKAhwZ39S34PzDM1W7t6PcOOJnwDGFQeqU/c08eItop8gly0Qw7Lc3jfJxWKIWlABzdHLJ9/eXNn8d7b/m8MU4pjA7hQ8vlkjoS5H1mqOLe36znkXWlt9Xaa5j3fEAiWCGiwsBmGREYCkQpyZaT64oTh/qfk4y0RKHrtvDlEnuK9PC3JIuo2psY15L8fbncQ7tRpSZVJj2jnS6WI+ORVw3K7B3C8J4nVIkYWjrjUW4gtxBkwLDePit4jEy0/Z6SvVwOhlpNldCVzjmSItiEga0LEWUINkNRa5rhPN4xQgD5N1qYIdmTyYB2lw4Pjag5ujHt7yk5ZgAbnW6HbfE9Vo6zhDKUjoRuzLJPbTzyQkST/k0Emx8mKfcSjaDrxhlJrCGdsH17Bs8mCxEFWkM5kyf1GJgsWeKfo6i42QIsQ6U0FGsZVSdNmjbp/qW5JnWIqCzd+5fvROobdxuhl904j2ys4TXP+0rRd+pwadSLz0KyybMfUTx17ThzBBtgob6H/ro5d9VFg6zw158fogmshF2AOFv3xrckZ5Z8Z/ocZqHoO8oQB2gZZO95HMcdABwTEViWgS1FZ3FUr5c1V7c5bRq84EnX4wnXD0a2GgSb1vPknnBWcVJrhwelyLCAFGS96TXMMrPPFzyhif59ps92PefXUlnpQiwrGdjuvvtuvP71r8fLX/5y3HXXXQCA9773vbj11lv3dXAHZX+KRQL9NQ8e4sM7Li7AVuTTQ9lQarqQpEl6eOs2U29Fjr6xhJJUkTUUpb2+n7wX774zX+Ddn7yrr6cPiPVEGFPGjr26XYiARbwpn6d9ZkvxHJ696z715OXoCuZR6njYvBDAdszpJgl4cfypkUlzYSS8BRnKb/hZe1slMb2lWDADmzXOYwaqxDRsFsIpcg/MJGlLCi/dPE8yo3aHMlGU5Dy2kT85BFuWLEQ0kuSg6YwIxhoyPM3HNtfw8CuOAwA+/Jl7zffZNKlwmRB1G31bRPtAvt6uufgI/s1zH9Vf04JGV68br6XQaYJjLVR3hQmiFrq0qzus3zLfYsp3JPY6JRBqA1v3a9eUJTgy3kM7i6iV7cvYj0n2WsuLmoQ6G2GSniGSJbz5tq++pr/+u3/5aTrOtv+23eVyTxic299SPpeZpr5J9xr5PID9Pk8kBjbOgwYMc8kOER3GaGdKHP7OeWoW5jk4nTT9d7/VUJS0QqeTQTC0mXbMeMYwzWeTGu2GnzdUiGjEwHbZXshVaujxz2Edts94DK1vaXEEpmdBvt7O7Mx7FJtl1JXol27/ZAbL7tySCDb57N08owg2glwciKU535GsB7RJDpgBpctee+eZ7cG4qPaFphnCRC2eJ923h05P3pERtm9RadDkWsZal2OxONB0iKiXRb2nBymEwbGsvd34skziBV5Z2Y7FSZm0qebH5lr6rqz32dZLaRXYOWg5BClPsLhvsbBlgK50z9Xvs4ZRBEjl5fkyT9bhGdi68a4nCDbhZNwL9WZccZcfH87h7tVbHJ+6j3ZPFM9ghD+eSc6s9v+mUehBhRCyvtGDLhuSLP2vT97Z/zxj77NzBhpOehrGu7DnMVAXInpYIdjYuWHt3WyvsbJuWry2JW7Z6aRFxf+Hf/L4/tqWE7YO2DRIloz40yJsHGjfU+K0nJD33iP47bo6xJ4Z/XWbzBkHGFlEHUdoN+cPEGwV5QMf+AAe9rCH4d/8m3+DX/zFX8Tdd98NAPj93/99vPzlL9/v8R2UfSh28gCbmFYjjwAWIiranPB6gG3ssBAGlkerhCzp+v66h17W/+0d//f2oZ7azL0kB92GZQlOsm/L2LFhIDvkOFPosJVF1DYI6SxiltKr29eHPWBnomEhEkn2QWIQ6vrkCLbcA3OoR+Npo50VnmJ4uY2DpBROwTww3be20CJWBpz0HQ19JgZgIhhoniNZtEeLznfjW8oDdMtAE0lBp4O3L5bA+265e+/ndJwba5M+tO/uJIsoknrAoBADafiQFZYj17o2KOtxXuoodDpEFFChYEyZNTLNdu/JNNQWlBpgIHAFRFp3soYHxJ2hoPbGMBtZa2VglryUnafbQv9yg0PaN2CHiFrfyMzspwy1XXnh117f/3x6yw/l0BxwTGgEcg4ljVJmz7Nc2uG+ElFzr8mXJvrOQkTt5zliEFane/fQ5qYy1rI1fPWpI/0Y71G8OyyLKGAjO6x6OkRUGza1EZg9u+YTZGgNGUa8rs4k2T83fqfPsUEcQ1b2aSvMKDkLRFtJOHyPGBVt9iGikiB9hz6PfCaKYJvmCLYtA0WvFeQBwZbuc0ABwaYME13pkmvszpf92rCeyTaw2X0fMpymxRBRx4jAEGdWBmYg5yf0QkR1FnUrY5+N4oops9Y4NaK179uUuXPnt+zfDVXUKDL67nkGQvPZA3vNfFkiU08docxgmPFHqbkpI0u60j2zTnQEkOQBAaf2gE4vv3ed8TU1HrXjPZNkyGzfa44Q2ttDzLOo/f8xV5/q1/A7/u/tWQZXJh8P4YfD3xhv12zveayz1XKAMxlAhojKCAfd97GC8ypFfOXGctOYb0WDWE7ttXw/Zue1lcnckhGf9/hrcN0lR/rfdYhoIn8YWdStKIf2mSQqjycqkZEO8wVPPqL7mC14m0A+Py/EUm1ge+lLX4p/8k/+CT72sY/h0KHBgv/MZz4T//2///d9HdxB2Z9iCQXHjRAJAGZK+1KIqHXYJ4SrhjB4yBAcLd4di6Bc1u3a/GoRH/+pO+wwOJ31UpNWahh6kumUIdimeV3L0JN4NpzkBXqT6jzYdpKDoZ7Fwca85x4/z2TSJHNDGk903bUJ52CzhPDum29nIaLDz904TY4rYzOn3l6igESyiAICYWB4qYpZRJXQWoVgC3Gwpe8TEBw1RHB7vIC2d+F6ltev8+Am4dhGPfl9zhoIIWCY85J7xeLXkJ8oUejOpeiGnq/MEGwBnkXUS1phhRltE77FREFVKJ22bvc86ZzLEBMFJIKFwpCCjgyhsZSaPmQ/ES4lqjZfG+V53P5voQGtsC0g3buZMtv3rwxinuDWGT+sNPVdm14YPpA+u3UWMgU5GiKahNBY4XqkLkOwAcDVItzn1s+nhp4cbZYKwhSJoELWEo7NTJlNlRUacjKRz8N5Wt74T5+Q9C3/l3UtpC6QOmYy5JEhf8hxyjCjM3uE4vL8kusx5THq3nvuQJJJAf5mj3eQJccZzpfh79KY0n2/o2LvTJ0etlLVh+XMrPU21Ms52Ox6khezC9u3vlHHB3V6a+DWYmvD2uusEECL/sEyTEgj5OmtHHmdG5+1/JN+I9mvNHQA9plZTnJgG9h6o4wa50QY+Vg27e6RmFO7N3YUkVT2vpCHiA5tMEOtl6RF/zxf+GTqvSNjkZ6tLoJtkScPsBBsGYq9xMEWcGpr4402GK4r/cByRAKDrHR2ZzgD2R4vncBL5RyRdBpPe0TLYbm1u8C7PnFn8kzaidLLKspgqMep91p2FlhZmBm3WqfrLJbtXGLcZhaCjb3PxMnozCUzi6ihG6wJXmwLVcscCX3Yq6EPrk8neM5jr+5/35nPefi0gchjuqM2GlrgGf3zbmFd6tBgi0akKzJEVD7PhVSqDWx/8Rd/ge///u/PZuK+DwABAABJREFUrl911VW47bbb9mVQB2V/i81BkmfRAuzNwsqqZAmYcjM9Z4XlEOFpi6RF1m16WbSkws8QKJOmwcP2QuWAAcnDxlniVWvrTrLnMbPQiL3H4s2w0mYDRoa5AMy3T16gFJCuaCPTMtlQW36tTpH+5O0qy6zqnyHILI94p0TnHGy5YmN7qXIlwBJu5Tgpgq1T6IwkB8Bw4FocbPJAOpQkObDDQxjiSj5T93lqCI49JACQHo5SOR/SuiOr2wmYd5/dNbNe9kYzYmBLjC1GuJ6VoVK+n0Sh28uupJUFi8emfR67TSuMWXv4Gd+ixS8G2OS9SzLnunfWvUdLSSsRdcv1K7mWzCQchiHSyuosh5l6W3mYU9M02dpgCCX5HrQirf9+eD2dT8wwIJ/PChHtmrRQwkwJKIaISoVBheVQTkxjzbO9W695ZlyUfDpZ1jr1jhJFfuGEbSnSdZ0lWhbN/8KfJ1XirUzNAPC46y7CtRe3nvtBWcjPAppsSO41Ux0iahsmurkkDVdnDBRoYmA7aYRkL/O6V1+c8x1RBFvPwTY8jxxzN8+uFyFen7j9vuGZCgilAcFmG7k06osh2JJMovflqLyuf4n86dYQQ0JYYVuWI7KEfun2musvHd7R//0b8Y6YDCB+XSyWmfFI8ot++q6UgDxByhh7t8VDZslegBFaZyDDLKehbJMhnxnCURvErOcBLOXcNhR7/Ka6rtzHF0uNlLHHqeXj/FvyfW5t0iR7R1c0b5f8JqcMDja2x8v7uvF1j5ShiTQvJdk7pdw7IMlTZ2Df5pr+lvb7lAkZPr8n13WvqZTkgJ0b0VDBaNZxIEfrMvoFC31c4lvsxinrUkOxkajE4qu1uMM5iERxsGVoLyUDkHVpcbAxGUCH2POkRPIdccQ5oBFspSQH7e/LZa73XCil2sB26NAh3Hvvvdn1m266CZdddplxx0H5YhcLYXDCEIgAWyC0Mm9ayvkDhCB6a5JZMK0H2LwqlkGqhAyzjHsstfmkAR7/ZRf1v//vT90FWVylm2URdQyBEV4AnY2OewH2sj6RTdJMckC8CxIGrj1fHRKgE1r/6s4ziRFKfyNLuOza7p9XoUpmi2WiTFge8eOG0mtxCVLDCDnIdBZRGVaRZJ7U/BaEg62I/FEGtoU6aPRhz8JDLMN3irDkYQJADgMHbDRAZ2CbLZY9D0hqbMifO00qks95mU3JNHaI9yMVujtObyd1LbSXfJ9Mkd8w5kiOVhVI2cJ7B+zvRENE995DNzwrZC1BHFkItkx44UiqktHO4gHx+EJ03e59bhd4ntYVikqPM0WwpcKo5cToShbiZc0563wxEHlAGcFmCeJ9eAYLHzIE+9SRwZUQhqqVyS1uuzfl3mPZktuxcmOY5jN0EWwqIxsNOVHzjiER5Dg9BBtPNpQ6kOQeV0pycNRASO+yENFTsRDRay4awnw+vcdrywxX3X4jk0DsCk7Y7h0+9PLBIfixz7XGIytBTFdcagP6jfi3vORYTgVgn9dWVuVhXAzh6JHYW6hiK3T8AScO9ZQSN912uv+7lQgi63+RI39OHlnvz0HJTyzHCRCnmJHZmFN5pEYMOU7tWAVsBO46c6IwhKP+7lKmEnuilrsjyRAsJzBD77UINtsAK+vq+eGFiM4W6d45aWwE231qfspvIvWie5wsovpnfb55hs0W0SOeVdRNqAV0AhDPwJZlibT3+MXCpwHodYMewTb8jTrPgskydgzdMeVhTelWLHkfsNHH9Bw0wSGWgY0brnTdjLaHyNwWfybjhdT6I4vwsOQKjmBTKNTIPFZnAaPn6Ooyw7t+pguVh63awPbN3/zN+Kmf+ins7rabT9M0uOWWW/Cv/tW/wnOf+9x9H+BBGV8si3TCO3NOZqwRi7DnYMu9ZNbmIwVMKZhYmdtSvpRcUSqFbmmhZDoZQvGSeurZTx3ZwJc/oBVaP/SZe0zjouk537UNQjbRLUfkAXkmJ9k341QB8vAhxgcx79vMQ07a/tNN2hrngy9vDWy78yVNgtG9827IJaMZy+yXHvjt85oCu6EEUMOqMefkWCwEm/wuWsBlB4mpyKsDykOweYbi3RlRJo33aSHYuDBoGSba/0+JTKKfP5MjFmToQSdo8BDR9n+JThoSQWCoxxQ61b/OIiqfpa1HwrGmufFspt47U+LZd0+THKTCaE4cvDc+AxFohcLfa+xJNDzE4QJjIfs9IpCgRYakM+IZkrp73BpmmvrhHq1Qyf8BLlyfywxsSEq3R9iJBnIDWwk1aRnz5TKVn7MLDbaoEhry7NZ6i2bsY0ZQTRjNkAhdv0xRkvvjfOkrX2vacJbMD1EvMXRp/jei0BnvqGvH2ud03emkKRqpZX/yfCklObjKSCpiee47NB4wyD8UwWYoH7tG/w+9/Fh/7WN76KzEcEUMKCW+o2T/yuSKob1LjgmHx95+vDC+0bGNHNFMQ0RVSJKsyzP75SGi3eM0TYMvf0CL0rnt3q3MMJIjioefF0vNJdj+f93et/zMPeeSOScJ0htLBilEL5joPWOcnQGYUjX0zibbqNyPU+2dmfGbIXWV3B1F3wIc9aSNixZ3Zj9OJacxY6kcS8shmSJgTQPbdipPyq4PrU97uebuvUzqzNiR7rFI6mYGNoHq9ZJGJOGPah15xtIdFcabRrcM13UiCCqrqLmp20x0CGePtxzw7H1qfYsZ/e0kB/kYgWEetc/EHaGWM5InqOEINkZ7oQ1s6rUrqh1+XptyBXHC6hB7NufWlPNdRzTJoo3KLFkHwOluLqRSbWD7xV/8Rdx+++24/PLLce7cOTzlKU/BQx7yEBw/fhw/+7M/ez7GeFBGlqoQUSOscC1ZKJYxrP3/2ktyDy4gBAjpQbU4jIzNnCLYLFh9n5lLGib6H/tnf8zVpwC0m7JlPLL6Zka7AeVnINiIp8bKGEgNbDrDHPEuWAi2JCObs0kvDSHrIZcNgv0nRJio/kZWuFo7Bt8glGaDy40yNqqkv9S3KUN97pVcgsRTpMlzrSQHgIEEYIaBjVyR12vDCt8FbCQCzSI6zw9xywBMD1ElEAE5PyGQvncrNFfOuSHj1fDerbAPS9BgAtmlUqHbQ0wMKL+8vnxeyqeXJDmwhVa61plnNjF8p4ZVLTx176xP2mAodFKR/vBnB4Q48072XGDGftzN46kwficoVEvAdMhzu7a6ovmjmMJvCa3MyJUiIud0Hsv7BgQIsrqlpA08Ex43ggKpcW+55MgfK3zIMj7r/nWoD+PNmqkzk+1zgI8289ANHlpkbiB/hudJz3avzcHhwZUa5ujS7VI0j9GmpaQlCDbx/qQBtk8qYnyjy45v9mvj03scecm+bXB8AsN+I/vv1s5FRzf6PbFDsLGzCBgMZx0vU6IsEQXZU/gloviuvRDRVEFv/z8iUSV772hJ5rFW6No22++aJGOaTvrvZYXCy2d/+AMGpN9Hb7s3qZujJjmCrWvzukuO7j0D8NefH6IxrKRVpSQHnpFJ/i/rdVm67z67OzgIDKMdy6BKkVRBQ0+UIL347ETu1Ai2bK9RSOFIkoOZMtpNpymfXldOq0Q2+h11TsaOgy2SEbY33hBDoD4L2VlwdNNAsO3V1Q6P7Nwg48y578r7cdcWC/OeeihQts84DjEgDak8tzuncoUZIkrkJIumwuJnttYRe5+biks6EiI60G7k9QCVNEvRRMj50YiIGI2A9RCOXqISedtsoZGlvgzgzSUvoeCFUtbKVdJy4sQJvPOd78Sf/umf4r3vfS8WiwW+6qu+Cv/gH/yD8zG+g7IPxRJ0jmxMMZ00mC+WSZIDS5G3Q0RlvbbRB5w4hPVpk6CeWHYZ7eUGGLIjN1zJ/rVQcHZnnhgmrDC4k0ekwJx7xIsINkNonkxaQ9POfFEknLc2nqUyIshn6ooH1beSHPDwpVTAtTxfDxYK/6fuuA/AFX193efG2gTbswU1COkQUQDY2rEVpW5s1iFqGWAvPZ6HFMo2GbLDCklKOdjSLG/MeCNh4Ocs5E/TpGFYRjZHOS6atMEw6lqoowi5shXeZoVODRkqxThlOMPmFHeeAc5u+0kBrHBSJpQkHCRZ5qW2nvxOkuvR2rsAluSgW2/t3yj3HQsRtYwyRGD3khx0nvuHP+A41iYNZoslPnjrPf3fmWc2R1gSAXfS7klW+FCUPBdQAmavxBeQKnLOzfP1lnp70+/uKl97v9uOmWGMTdMqyOeMbF/UK2yEeLG5pD3NXtgFYJ9FQI5aZWvDTDZEhGutzDKFThv/PeONPrMjWURLBjYv3NdKIMSSDU2bxkTa63pWkpYhi6iNYLPmsRX22jQNrr7oMD5x+xl8+q6zGf2CbOeQwe8qEcvyWR582THccd9duOO+bdy7tZvMwYx3R3M9GcYwAFk4rfXeAR06nzsnuvUuHV3decC4fDRFhhfy2sl0Qzj68De5zz30ikFe+as7z+AJD7rElDu7cXdFo2+6ujKr3813nsGD9xyOloJsOYFZeJtcQzrJgWzzAScPA/g8gBaVd/2lR01Hl2V0B8qOGaAzygx/SzIby/npzA8ryRVzyOm9xstWqLM1M4OhTnKgAQLSudYVjXrSe9KpI+stEvJcnuSAG0uH57LazM4N0mbCDdnJvXP72XPeLmYMG37RmaIzdGcnqyzz/XjCzvYsm+TQXtM0vVxT4nXTDngrHBtI925thPQMm14WUZ38A+DfvU88Z1Bk0OdRdf1wyjnENmc6GOeLZf48eu9MONg4wlF+I200085iz7BaCnu9EEsVgm02m2FtbQ0f/OAH8fVf//X4l//yX+JlL3vZgXHtS7xYgk7TDNkiJYLNUuQtwdVaWNPJQBD7158/56ZatmPe87pWJik5zjKCLT90LJ4DWdcK+0xDU1IYelc2ldLL4+hz5ZxtkhpiHeK32KvCjEfa2GIdopeJUL3Pn7U5+nrUlUHIWzK0sBBRGd7WDbMX3Iw5d9mxIXznDpHxtBeutZKoFLoZCaPt5lKH1GCHbYqOysNYppMmNV6Iv1lraJ0cSiVkh5daHNAIJcMA2ytKQ5v3bfvcVUfWh4xXXbHWcIomst7RcI9tREjbk8LBt/37dw3IMObBnQzh45r82+JgS5KpUM+sFfrQPY+t0HV/t+bxofVpj8L4+Ofu6w2RJc6O3RlfG8Awp+U875XExOhuCJgFxJXNNZk/d9u/IbBLA5siBK4xyrBkDN1+c85EHdlnkUYiNI3KDromn2mhlABbkZ4bZyZFwGQINjLnCkZdjeyg6AbHECf3w7Z//uzpnEuVGk8I1xkdS0hdy8nWNN0at9E81vvcXBvQUVaSg8QhlVA6+AbYLkx0e7bA7ae3i1lEgcFouEsMfDKz4daOvza0wYNxsMk9MTfE2cYwjbaXfVsINib7aRSERNkxFEaJ11YirzWa20O1zAkKNQn3vVPQnRihl+m6NNBm0igj7vPQWTKxxsD7lz87S2RDHTNyLiunqPxbEpGxm3ObWfWKCDaFlmXzA8gTcfXOb7Un6SQHOvmIGyLah+ulbXZOxu3ZAjMnq7Pt1LafxwvNZSGinVzVvfsMweboBtSw6ciy8vfBGTj8jUZELGI0AMN8H/4m372mW2HnoJWghlElWNQ5lpG8MzIBfkQVMCDTun2TI9iM6BZiCMxR7MPfSmvDkueAPKrKy8wuv9GqCDbt7GHROBdSqTKwra2t4brrrsNcZOs7KF/6hSk1XZjovYLnwVLkzRBRsrCu2RNM7tue4fNnd0NCuLeh0SyRhpDXKcmUGHbSGRHsDIg9FLv3nJc52Czeit7bSg4yHULTPk/7uz7stZeKbeYWXD397kObuYCbGzssXiLAVlZkOua+XcNQa4Vt6XHKsXVzRBsh5fNIBNvtBoKNHSTdc6fE1lxwtFB2erzM+KyJxLtiGWBpkgNjLsmwqCKCTRGU6za7/hMBz0yBnitVkjPL4uNKkYs+uiFJZ08yiN11ZvjOnzu93XuaGaE4kBrfl8uBh6RXuFXGpa6k33JoLw19SJU/vYa7XxfGe5ff6FFXndxrB/jIZ08ndbUnsRPYtwvC4LpaQ0DKI9QVM9sW2ec6dMO2EYYmn0cKrdbaSJKFqL0hgqTqwtuZQNgb2MykDfaYOwNKSFGa2fxNAFGkCYIuS3JAwtZXR7BxFFmW5GBuv0t938zJhKfXBkO0yOdbLrsQ1dx5ZWVjA8R5XUDzWMaBpml6Z8IZA3GVIr7zdtmeeJEIqTy9PaPz3TLoy4Q7ch9cU2eCl+VNh366hNUCJcSNurkBRyP9AS1T5ZypXvSCR3bfy3Rm6OVQb0PybCoUmbc2tKG4G+fF8juKCA/LoG2hmZlhM0GwqX0hRbANBrbb7ml5/6x91uLzTceJpOhQuG4fabl05R6fnodsn7OTHAx/9ww9HlKm3+MLDmj9LTWS2wwR3dYhounf15WsxKJGLKc24/7VyEF2FhxJHJxqnNr4rBBK0RBR3+GhDWz22tSo3kgiG+280v1vJogvboRM0cc+Msw622m4ceeMNDjBGfrYMwQeVtyhUlbK9DwlA3gZdjWtAtN11qaThJc8kpl9vuAZTPXzaXDGmpa5D0JE6znYfvzHfxwvf/nLcdddd52P8RyU81CWZMF0Xr/TW7MMBSLh/xZ8lhmPrjgxCAZ33rdNLdyW4LYwhCdGdGspQIMSzZMcAKm3tTvEZDhHV+8QU7rJhrqpEHTUuGhk0aLQYRfdAPFzriCzzS8TMI13ZHGgZc+kDGw7FHHV/n0z4SSQHGy2l78nunUQbJccHZB2EsHGiD+1ISEJCxLvSBs2WWibZRDSiqf1bQCOrOjKLkEEWopaz20mhUHmbXW4MI44KdB1m1KpsjKoDkrA8A7O7hpGO6rQ2UaE+8R8BGCGcmhPt0SXJgJEN4dZNlxiHLC+04CaTLoWWURT441uU+6dA9k+2ReEUdsLRVsXSnRXrL3TE0T137MwNM/j6QitKYF/6vRwEWzaI0/e56EewZbvH5TkV6N0iHEPMPZjimBr60RCRD0kgjYgJeega0RY0jnnoRs0YkInzWCGVS1Ys+y+1jjtLKKEu1OFTllOOyD97rL/TlG7r+BIsFBc1CA14c+eZBFdz+Uaud/LdyiJurUyuyqCDRi+p+Z25fO4C0dfZPXSqADfoK1RJSycUj5PKbOxFW1AEx1p1JMxPxhqsqtKMyUaiGJGOK+pGuS3fGCCYNvLGGy8TysEDsijMbqijfTdOllXGrcOe42ErXfOd47ekwYpH8HWn1uL1Inj7XOL5TLL9h7JIqrXUBZGG0CGLfS31M8jnepOxk+LooMj2NI5Sp0o6h2xswAYvsNiiZxjNGkzPQtqEGw066bSD5gR0uOp8yKAtHMkS4jgJIhhyLQWbZ8/K5Drrh5Sd91db0nVLPM2MxjKMXhJDuS9GYJNG+ISLmftnEjrHmQRXYGD7d/9u3+Hj3/847jyyitx3XXX4ejRo8nf3/ve9+7b4A7K/hS2WDsE22yxxLndOY5srPWHNBMgSkiELP07Q6o4qdplXctDZinIQB6i2dbNnz3lC8nDGfqwMRaaQlBPXX1rnIkH18iiFYvN50kOUkWp/Z8ZhbTCYL33GgNb997P7CnG00ljvqPDBicBa7O9bwJg7nJ7bKxNcOrIOu4+u4vbhYFtIP5EUlyFjnCLbM/mfL5bxlKlrDADm2esBFSSA/LdD61PcN+25Iob7illH1oYgoFMgX6250Ab6rGshme3Zzi2uWbO+aZpcGR9itPbM0HYLPomaB4d/tg9wrc+7mr8n7++p6/3+bO7uO4SPo+A1AhszmHlDe5KbJ9LEROUg22ZrnX5THrMPTE+QSh1vJjLpcGFkRhWUyQAG2fKw5HvX1F0g00ovjCF6wTBpoVWD/WkEAbMcNXNz1JijXQ/TveaXGgUdec8RNQMjyXfPUpWnZ+tEPXScWq0GftGmYKavKP04TWSi8kVXoio5/DQaKJu7nZI3d35Uhk7UsUzCXNO9tmhP0uZPVNwJCRGMwulnDhc+NnKsogOSQ5kiKiNYPNCc/V92zOd6VXvIYORnobBORk/5XlpGQbYuaHRL8ukXjLEfm143HeyHmAg2LQyqUOdC44uadS1EtlYCa4Y0m5qGN6tPb7lYGuLGyIq57wh97ry5HxAy65P7bnRPRPbty2USixElH9LYJjzy2WKvnbDfRf5Hm9xsN23nTqvPDTRrnZ4kPNa60VeRsWMv5IYqnU2XsbDCnQcbMPfZPeaK85DjKbnAajxO08u4Z3Xk+Q5WJuH1lLEV4TbbDCm5+3p+7SsoJ+92ztLTpQEUR00Pm9nyOO07w1V97Czb081urMzwGohAK1OemZnnq3hHL03fCMpm5fep3cWHWQRXcHA9i3f8i3nYRgH5XwWJjxpI8qRjTXzsE8g/UbWOo9fgwmik0mDSdNu4rZnoxN0cg42tqg3e1RH63mZTBpTyEu8rT3PQY6iOpR4IEjWS8M40I2THWSWEWE4mJEUTRQZEV6sEFHmfWIcKCxE1Or/wZcdw//9m/uwM1vgI5+9F4+86qRp3LNCBQEecqvD25hH69Jjm7j77C7uOL2D5XKJpmkcbqL02eXzSEVKJ9dIDFeJoSUXcLVCZ4XfAamRyTQoEy4wG8GW8kvoehZfiHXgH9nIEWxsrR81hEEmNB/aaA1sWyskANHf8vlPvA5/dONteNcn7wQA3H12Jxsny7iVh/sa+0yBS1CPU4eI6jXczZeuKbqGlbLgkX9HQ8ctDrY+RNTwTs4Wy0yZ1cKYXhtWWHDWv5GMgYVTnNuZ0/ne/q6856R/GSKa8YHStZGeRZ4Bwwuts9pkSki2x1MEWzrnqlB+oXNDn9dJkwohxrlnshBRYkzX42YINqBVvnbnMzP7tEUnkRC+k/fZGYXO7s03ZoiTssrwLYe6DA2ZI9jyfRsQIaJ7jTaNtyfy0FzAN9YyhVKHkrK+deZaOceOlLg7ieKpERMMTWSFwlO0iJapKtaGyf1rGHU9BGo7zqG/ibPegNyBBCgOtru7ENH82WXfFheqF0K8Ox842GQ7QKtYb6xNsDNb7HGRkX3O4FJm9DE5gs2up/uQ0SM+UjffE60Q0S4DNEOcZ46M4HkNgCLtvMQv8hNZ884KyQZK2aftcS70e9f7sZqfDHWlUaiRPd4yksu6Ots827u086gba/u3pGvlAPcNQhrtz6gaEkNgFiI6tKejHLz37iessMfZPUu3L3sIthKvrfxGngE2jx5w9u4DDrZ6A9urXvWq8zGOg3IeC4vnPnF4MKLce24XV5w4ZApPFt9QFA3AMre17e5ln3TIUW0Em30w67qHJlMTqn/MzJRoGPcK5MpAKlD36ZuN7Ho5Mqsts0zIiivSHH6fjzNBGHjep2bod3MvO2iCYDOE+yc+6BL81w/eBgD4X5+8E4+86qRpxGAcbFLAtIxXJim/qHfZsU18/HP34dzuHGd25ji6MaUC5kQ9e4oMG+rlisrwNyZk2VxxTWLQlAlFrDUkja/nAkbdLGU4RSIYc87YF6y1wQQIGU5qEoVL4UnxYYVCTkjWp6Zp8LRHXNEb2AYONjvUGBDGb2UsNZGDZK1zxMTSDWPpfu05d8g30lwp0iDkhbH4HEqpkRrgypdGm7EwySSz4MwOuU3bzGkAmkYRHG+k857Nd93H3DH0dHNuvlgaxgZ/bcRCrBQ/D1FqtNEO8JBpHMG24YQZ5Z5mZYQMKb36zOIItrljGMkyVHqec+dbJo6E9dRADwxzyUKwSeWIvc9jav/yQmjWpq2xQWcM1s+k+bhKCZGAQV7Y6dFE6XvXRhFPmU2UupIRVihqzBBoKrNGVsNjBndnSEFWnD858mdQer2kWVbGOiZTaSOC9S1LvH80i2iBQiXZFzqUsmG0O3Vk4IDrZAZrfl5z0ZCM4a/uOJM8F+AbYL0Q0e65dmYL7Mw4oriUYddzAnvfXXMJWm3o33W4b2tgy58rO1uzcE6+hpKoEcupTZxsXthpYig2QscH41H6LF4YbyqjDvdkySUcg6XOOMrWcE4TkTSZk/ITeSFdcxx9u6bGKP/PecjSvcZFxitZJeLo8lBcWodYOvNd79se0k6H3DI5DZAOVi4nAYKOZ+Eb97RcweQ54ADBBqCeg+2g/O0rzDMrhaLTCq3CwuVKJL9ulhFy6JghNJ2RyxBEmdBood0spSYxDGzzNiWCzRKydP/ds3ee7oiHX4eXZWiRIMGxiVASCggLX9IcKCnCsTXAJiS/xmHyxAdd0l/7X3tGDxMRKAyWb/nAZ/ufB44JpdA5/E3yMLn0uOBhO71dUPjV/CRtav4ExsPRNE0SagPk7+iGK0/0v8vntuaHfEd//vE78Df3tt7rJERDzJ/Om6aVCv08JUHYRHduG6g00Y6JYEuU/v7Hvt2S0c5KAGJlfZKZ9T5/poxgk2TZltGfZQyOZHTcLQhP035faCuxuokgvKyD39Nw8MmgoOpn4nxppTBJjqrVQlaWDc5w4ADA4fWUg81HtYg5suDcJoekR3xHKyD5GAH57O3vRSQCme86yxpgI1aBXFFKOMum8ls6RlVHsVgsfd6ufn5qZcFAOPb9a3J40b/MUDlTRqa871Rg54ivwUAu68t6VrZPgCNqUi6fuR8+NEnXBlubei4lyJ+ETiJXpLu217MziyPYPMN7xudH9iXvHEzDY9s6FifUkSSzX04tQJ2wCjHBONiWy3yc8tE9KhE/rDBFLg5yJ8sqndYD9Ds3wtGZ7KXkGk+ObtvMx/nQK4711z72udN7Y7T3OT3W3dmQ5Mk2sA2yBc9SbTgnAs73DqHdP48TaSDfv57vGhUXN7A5xgYnSUvJqc3OVtdIXjC8M3RWNIto4rhb6jXkr40IxU+m65DzxUuuBaTIsHOaJoKsIe0sdikItEOM7DVMju/bVMZf9t59ep+ka6Pu8LdS0gh9DsrSjdtDIwLD2aSNz0xGBNJER5Zx74CDbQUD22QywXQ6pf8Oypde4VD9/BDvDCNpeFkq4Ok2GTqr6L1WCp2leHrcGvp5EsVvbiFl2v+PJkYEjmBbm076nyMcbJ7SXQ6Dy59HP5MXymEhJnQITT9mdUCxg+TEXghxgroyBIOHXn6s9z7dvJfS3jJ2XH1q4BX5049+Djfu8WhZYcnAcIhbqEl5QF16bPD23qESa5SyTkVCFfNEEEmTuSFQjfPRV5/Elz/gOADgPTd/Hp/a8zRbCt3RzTU86SGtwXJ3vsRvvevmpO12nMPYuvfehYwxBdlG1OR/T1AdikC2HefQjiSmL/IYOfwWDMHmGZ8vEh7+uyuyiO7MbQTb2qTpv0EIwaaEW8+R0CmNi2WaTKXtH+I+Ltxq+UXD70u8XRYBtm4zI88lnlEv4xUzynTvXBPTd0WHh0TCGboxsvmplRUmCFtrg+5JmaJEFGnxcyl0ystYzDLs7moUhvOOSqExUgj31pAmVPc5Xdrfd1XGPO99tvuXrUwfUkhdIA9hTr4NCa+Xz35UJXTxZZXUGciTNymHGDH6e6Fg3juaaSTmxF+bEcOqR1K+pvoGBFok4WCTzpb8LEj5m1LlfJkok8kQ8/DYCucqTXQk55w2PveOLt/hwox7OtOq7t9CsFlGmYk4j7q2LHnh6ouO9Pvcxz53X9Ke7g/I52e3TjQHG5AatSMcfToaQ6NavPMtk6nEBSl7++G+eUKVpmnw//m2xyQOOS0n6XNQ88rNiVHGcmpbzkBAzZEZd8ykCV20/KMQbGqOJvoGMUgtCu/dDeOVbXo8qAWDUIRbTYeIyjabZuA11uc14/Lrxuk7J1J9VBq0Pf0twplaCvt05cmCwbLnIjXWcE9PkslJaT2Zmd3n1E3nfLc29BiBPBvvhViqQ0R///d/P/l9d3cX73vf+/Cbv/mb+Mmf/Ml9G9hB2b/CvH5W1i0L/m+FiLL49Lr0zQqSayieFrcGExqtjKOJNX6v7pHNFC2h+9ahHGd35n17AA/Xy6DDISNCKpRkoW3KwCa/RTEkyfA0A7kXgnksOo6++7ZnPaedpQBNJg0OrU+xtTuEHFiK2t998CV4zDWn8H8+fTeAlrz3UVefND3icpxm6IGoe1iF8nrCE+NfmTRcCeg4O/q+zbCxOfV8NU2Db3jEFfjoba2H+ZO334frLz1KD/t/8dSH4c8//i4A6BFsTEHeVMSw1IhQUPi7P1thn8zrJw3V5yzUgiHkdcIYU0B8Drah7ZNCYL77rJFF1FlHicC+N8aOc2Zrd2Fy7shn0O3lSCZtwBh+7pAYun/dvuZKcZGtM27EkNnY5Bjacdn7sTYUZwKeF3Zhro1hn+v7Vm1qDraJmIdFoZmcbzoTIENMrDsOJF/h5+Gx3n4MpO9e7/FScbK+JbCnpFXsc3KcJnHxPEcIeRk/Ne+O9d23dheZkclDTMwWCypXdN9SJsfpPfd7babcfGUexSQLsspcS7MaGvIP+0azOTdYmkgVgmLXRgyGxAQKvEzEsKr551gG1W5tWIjzBMFmRAWkcqdss8Q3pBXP4W9J4hUnTFMb/WUfEoUh61qGDsAORStlEeW8Xd1ek/8NaN/vzjwP2ZdtTicNHnzZMXz4s/fi5jvPJsZAIF/rjIONhYgCrVGbna0W+pcml1AIbW9PknNEPpOXzGW+0DJi2+FzvupqPPwBx/Hsf/fOfnwe4txzJMiqpmOGrOEor5s27C4E8ihb655jRjpXNYKNyGi6j8UiRXzJNrOEN46swgxCuv/UwLZI9gx9Dk+bBnMMfLHMOaGTgHhOy1wftZ09OQ0AMT5PGjRNl6ijEAqfhZOWjWEaSKENsIBwnmmZm6GZ534iCI0e7PdYA8GmDeoXYqk2sH3zN39zdu1bv/VbccMNN+B3fud38E//6T/dl4EdlP0rpZBGIF+sLGOeiUBJ2ky9k+6mooRWawOwFONozHs2zr26CYLN4I7SKZnP7sxV1kubV0V7ez1Futt4tVCiN7TkEJ3PMZ0MYy+R53ZKhiW4ybqlENHlsn1Pxw+tO3OpbCxtmgbPftQDegNb5n0iQomVuZaFKXh8VPp3iezQ4akaNWCFkei6Xoa5i48OiKuOM4wdzBKRp3la9DMcUqFGTHAzk4oY4zxmKUpkfqTGuFypkstdI1WY0S5VqDi32anD0sDWhoiy8DIgVcAkt52strk2zQxsTOGfiveZoVXVPpeFaJBvmYcu8efJkR22MCizsc0XbYZfFsaSCcIBoTVkvEGugHgItrO782Re50kO0rW5FHsnU7rbTMBiXMQbr41hvsK/pIZVnYgBiBlrd+aLZD9jqEnN0+Luc4vYnjhf8hDN9plSY4tlmNBj9TJp6t81qsVynnUKjZzH3fdbN4xB3XN1hWfIjL0jC6XsIvjJs2tlsnt+q+8MFeegG/IQ0eFvWgeS350mOUhkBe2EHdqyEGwMwb8KjQhQ4K4yElIxQ4/u3zKCanTQUL/9vyHr0oqySPZ4Q05j8o80fAO2sxhow0Q//Nl7MV8s8Vd3nMW1Fw+8bCX0cSd76yQH8pqXUCXZ5zoD7Nx+Hq1wMwMskK6jhIOt0CZLmCXHqVFcpfUWSh6wSNHp7rp057FyFi/l/mGj8rs2vZD9rswXWkbj54bWDdj7LGYRVQYheQ4nWUQV76Fcg6W10cuI2TzScqfz3bszZrEwIg2kjJrKH8zJ1tHHbO8lCvESzngZYT05TRpg9dkq684XPNu6vHemnS1B3dHrG0hlnwup5LvqiuUJT3gC/tt/+2/71dxB2cfCFqt1OFrwfzNsixo7mqTuqmEXXV0zBToRMMMcbBuSkDc3IshnGLx4wiNOBUflpXIUkHVhkPII0jfEM+3OdKaz4efJntEOKIc5MS8EkHqwdJbZtk3RZyJk7hmZHASb/rmrY4UlA8P86N4RU+TXtVAQVBITBJv6Ptk7iqB0ugy7xvyUiKt79wxskcQJ+lvqvyeKmkKw0fXmhGke2czDp5kClHKwpXW1sUO/TzbOPDzD3mesENHE8K3cvUnyCJFtzVLSkhDRgDKrU6DruTRRggabS1kIjYMQyjg7Ak4UvXdrhVsnFWHGMC1cM6Ou7F+jO7U8pjMMsz3W6p+NUyrdW7ucrNp8RwSJsKHQe2zvtIx2c7J/eeEhqQNHny9De34ohx8i2lXNOdi4kqifnXG1aBkgV5TSb0mziK6nSN2uvnyephHcb2LxREJ4WkPgMC6mWPQJdwJt7jrPYyHYuteUo44UosZ574xSQu/Hcjy5kcmW5zTHVvJ91qb9ftI7W8g+p+VOD/2ryb8Z+sVCgDCZKguDM5yBeu/oipWBWSrc2/N8fiRIck/h18YB7fAg7/OKE0PG0Xu3dsMcfZJI3kWweVmqlSFfjtNDwC6WGimjxinqyvdf3OfksyfRHsM9Wp5j5yCQI4WZsVQn69DPrpGD7CzQETsMlQb4mSflOOU7y9972qbH1+YayR1us4kzj70QUWagl/1rWcWTFbIQczLnOmckRfVO0r3GcxBII7Vn1PUyiWdIu0ByGj3ultPXfh55b4maJJPjiUFZ171QEWz7YmA7d+4cXvva1+Lqq6+uuu/Vr341HvOYx+DUqVPY3NzE1VdfjX/8j/8xPvCBD/R1Tp8+jR/6oR/C1VdfjY2NDTz4wQ/Gq171Kuzu7iZt/eVf/iWe/vSn48SJEzhy5Aie9KQn4U/+5E/24/H+1heePS0Xniz4v03KP7TPlBUtQDAuDM9o14VuARJ+j6weYIcJJN6avT9vrE36Z+oQbBKpohFsADiCLTFEpu8pQqSahRk5AvO2k+RA3qtRTzWogRTBlhvYStx7vRAudnMWUjCgRfL2gNxwRj2JGWny0EYpC05vhMwURG5EYF4yjxz1pEBc3XMu5zZjntF+XRIklWtEIMKo5Uns6q5PJ/2c68mqiVBiJkQgxg4vTX3KM6UFUXtunjich4iysC0gRSTIhCUWKW3CuRMkxfXmnBxKm+nMrqsVEE9Ryr3Xdps6bB2Q3l4iZM3TdVkkujUUVN2/Fq5zxW/gVTmn+FdKxMWMB0QbZZjDwyQUJ8/uzeMSOpwhAjWfXiT8MF9DSZP5PucYgCWSyVNAMvRvQJH3OGoA3xAov2cU8aVpBbrnssaZPo8/zsH4nJ6tup0c+Wyfg262QOcdZeFYDkJJKpSW8iXPg2gyF0BwuyqUzJG9b2Q5ZuQwtVFGKtJ6mDqbJENIa+eqN4/dOWfInRZlgOaE6t67iWBzIg3c0DqhSMv/27pDPW0QinJ3dk4xwEagdO90ueSJBiRXXIm7UyvcidzrGN7leawdZ1mSg7n93hMjU8F55fH+6TnfO7WXHHQA5I5DSnOj5JQUAasQbAp8wPqXc6X83uV74lEB8tlLIaJZFlFybmkDm3u+7c2Drsrc2JMAzQMWR/96GaB1iGiEW007QUsZN/1MnsP7TPiE9WJXdf0Mqt35VkieRPZO63yRz3iB2tfqQ0Qvuuii5MUtl0ucPn0aR44cwX/8j/+xqq13vOMduP3223H99ddje3sbN910E/7Lf/kv+NM//VPccsstOHToEJ71rGfhne98J9bX1/GgBz0IH/vYx/BTP/VT+PjHP47/9J/+EwDg/e9/P77u674O586dw6WXXooTJ07gf/7P/4lnPvOZeMtb3oJnPOMZtY95vyrsYDb5E+aW0JpuKG2bLEwy9eC61n2VfZEj09p04ZqrRI/TChNIhbeh7tHNNdx9dtcUBi0DRsLBRg7x3CPuGRcnAOZFeLWX5EALRZNJAwjPi/Ut9e8zJxtcFyIKAKeNVPHJXNLGUnKIm8YjimCTCiVX/nRGI9cYFjwg1tXa8ISSdWced3VTA5sRIuqEM7A2gZIRwf7u3ftmkPGjG1PszBZmAhCm9HZhl8zYkQvXTFlIBVGmfE0nDU4cWsO9W7M+RNQLRUsQbLuS08Vf655QMuxfmjTZEVqXjqE4Ub74/AB8Al2GQNmdLYBNz8g1hEh0Y23rJdXy/cNFKA0C3nLJ0WZN0+Dw+hT3bc/aDGKeoUcJzd081vU0J6d8Z6WsZBZSBdChSzwDYsLzpI2LBeGavc+UK45zygG+o4uGiBYUfk1a7M1Ptja0gjxVxtrSOQwMBnJr716fTLCFgVuqrTf0l3LvibWRPXsyzBz9u9d30yg0tdq/OILNSHLAUBhKpgrLC/M5dXjIexdLpUgzhJJ6dv0tj2yu4czOHGe3uxBRYuyYpHQF0XA9j/4hczi4CqqSF9jZ2smdMoM8UeTXpg125oNcnDhcxFxiCBCzTXVeRxIDZQlvnDV8ViC5rRBR6exiqG+gnZ87s4VAxu+NUcunGqEdRJFJRLm3zy0WDhJTo673Yc4B7byeLVtjjIdiX3eMMpxTN90/irqBmHPR5BJaVskMloUzZnePZ9Kbx0wG0P0dVk6UVdZGMSuq4zDNsmQna1iut1Q3cM9BAQ5JEHmeDKApR4gxDEhlVTfJwZI7ymUfi6UvdzLd0TpfZB+y7wupVBvYfumXfildvJMJLrvsMjzhCU/ARRddVNXWm970Jhw6NMCbX/GKV+BnfuZncNddd+GjH/0o/uqv/grvfGdLTPl7v/d7+If/8B/ita99LV7ykpfgP//n/4yXvvSleNzjHodXvOIVOHfuHL7sy74MH/jAB3D48GE8+clPxrvf/W786I/+6AVvYGMIJdvYkSsB2vsC8JC1PMuIYw1X3mZmDNtcm+A0bAJZlha5T4hADrKjG3sGtp003ES32Qn2W7M5lsslmqaJKbOKBNomxi9nIPSITK2NdweDkGd9y65eVzwB0w4RlXWHsWXGUmaAVfNDtjmd2u8I6A48W4BZc7xUzCus67pKTSGMRYb7ts8z/K2bx5aBjUH1rXXJs+tpoUT0XfAksqxCRzbW8PmzuyLs0x7bRmJQTo12jEAfKBPDdmXHyRoHtCi2e7dmuHdvbrLkI0C6N0hlQTbZCbcdIX7TNAVUixSe+Br2wy5EPSXcem1qhZKjntI1BHAC/6meH2T/yJClAeQP0CFB82ftyuGNPQPbztwNfUiN32miElm0snKYzI8utHAmPMKMv8lDKZcQbCw0d9NxomjDRDdOvSdlqElHkWccgW2IKOc7SkP7lPGbOEe0kalkCCwhyQEr6+YwruOH1nB6e4Z7zw3oHBrmNJWGlphCl4UQO8+jFWmLeqJ9nhQpnIWCKSN5qnypuiRszFKAkrEmmRpl+1KmSc8N/ezHNtdw++ltwcc5/M1yMHZGGWYYAKxsyfbYpmJt6IyKOWJz+NkLn95cnwJbswS91aN/ydlqJmRyUMohbkSjTYpSLoTByTP7jECwWSGiso9dBynTyZ2aK9dz7GoklYeSZug5IN/nmIFezoE8O2bSZGJY3ClEmEz35px2iHlGOw+JmXLq8uQSQK7vhLjiltoYljSZGUUSh/5Uf/cJdudz12Gqx90a2ez+Eg62PX1rGGdhbSzzZwUMxLkXFSDrOhmYdYioZwxLoxy4ATY9232+Nt0/6xtAEnY+C7aZnsGqng5xJ05YfU2+9wupVBvYvv7rvx7XXHNNdhACwC233IJrr7023NahQ4fwh3/4h/i5n/s53HvvvbjpppsAAJdddhke9rCH4XWvex0A4PDhw3jWs54FAHjuc5+Ll7zkJQCAP/7jP8ZjHvMYvP3tbwcAfMM3fAOOHz8OAPimb/omvPvd78YHP/hBfOYzn8GVV16Z9b+9vY3t7e3+93vvvTc89r9NJeL58g5HeeAMHCRD+17WKS/dsEwNnJNKDvWk4ivHCKQbiFZUdF05Zbvwts7bypBhm+sDTH53vsTGWqNSgQ99rqtNyveS7Qlk2gip6ulnctEiTaogW3x6bR96nHkbQIpgu9dCsBnfvSe6Jc8UNeoCPvcMU2Z1hqYoN5HOwKOh5ak3HmndteFbArZCd8JCsAUEIiuck6E2t3bn1KAsn3FXCSVAOpeObQ7ZY9t69oGrw2jlePMD3D6Y27qpsWNj2mZP0+nsGceWtdYzDjaW5ECM67Ljm8BnW6Hls/ds4cpTh+meJNsshXnLcS8XoMbaJMvaohAi6oQF8ZC1lMswz9w2zI+lUEJKvFmuoqT5lshaBwYP9jk9jwv9s2ynmjR5sRzEHUv5my3yrGQeamC2SA3a2hjWNHuJbPR+7CERsrDopCrWpkIIdwR77cjwjBgyRNQLs/azWdp7d26ETJ9He8Q5P4+HYBvau+TYJj5zzxbuOrON+aJNhsCQaZ6swhS1mdqPvfmRJT9Jsog6CDayLtv+fadlimbyQ3jkWmWKWmJ8LnCb9et3J6UL0H0BqVHG5ZRzHF2W02G2My86Iv3w6XzOJUkOiHMio8gIyj++w1S1Gdjj9b7g8fl1/MO6DauPjl/WHmcq+zFUSyLXZA4kfm6kWURtmRfIEWws+Zo+W71wPR2Kr4+twSlVyqatv5H9Pr2wz1z+GfaQndlCZTgdftYINs8gpOcnQ7YCqdPBQ9VGUZtZiKizH2drg5zXGoG7cL6ld74lSf8UGlE2k+1JMkR0weccoPYvZ34mxmeJYLMMbJN03vXjdL6RNGhnfRPn5kEWUbsYdke/XH/99bj99tuz63feeSeuv/766gF87nOfw7vf/W585CMfwWKxwPXXX48/+7M/w/Hjx/HpT38aAHDJJZdgsregrrjiiv7eW265BXfccQfOnTsHALj88sv7v+l6Vvn5n/95nDx5sv93zTXXVI//b0Oh2dPUYgGGQ1wu4sRibhC5M2OHNt5knqJgyInmYAslOZh1iJqhPznOLgPi2T2+H0bKb3maE6FIvicnwUMOgR9CTtwYfh3y4Rx4mrPD4tPT49TvXTapuQYA/e5Fm9pYKjnDyDvqjUcklFWHMDPjkUYieIonO+xdxa8U7qsSVlgK3YlDeZID1qZtYLMVoE2F7PA8X+tqfjDFpkt00MH0aSiryc1IBB0tYLrozkbUc4xMe+u92xfYGgbSvWGLhIg+4soT/c8f/sy9xTa7cWoUqpuZSyPYnFCOeCgYV7q1gSsaerBYciRCxsHmOVF0UgBiZAJSBd03ItgKg5fkYDvLzJX2nXHFBYz+u1mIaNrmgBhNw8Y8ns2cBkDPOWG4Cih+QNnZI5GLDAGix5J/97T/dWGsrUGwUTSRsX4H9PHQ+SV7GZgXyyG7MEX+EONv26Y9j7swJzY/mEFZP6vFCRlREjMjE3HcAZ3hfa9evtyStellapTOM3ddCkJvaaC3+pdGmaWzLr214YVjRbhqgRylY805SbLPEIHD8/gyaoImWvhcYN1UGhymw99kVT9DZdJk0r/kFbYQbPJd7MxtpxSQGxcptYB67x6SioXBuQYU9S0Zgm2mjUzeHh8IEQXKYfjR5E1N09DkEno/3lS6AZPTPNRkzheb7sceF6rUN1yeTXVes3MjzfRe4LUVa8OTebW8H84e6xg3k0RHGTKN7Ena2UIMbF3fS+fZU2MYD93W9+4SJwqgzgJpiCNOeiCVF0pJDg6yiAbLkryo++67Lwn3jJYXvvCFWCwWuPnmm/Ht3/7t+NSnPoVv//Zvx+nTp82+lolA29Dx6HpWefnLX4577rmn/9cZ9O5vhSkB2sAlUWTMq2KFiCaoFpXWPQqb9g6y4cDxSde1MQrQYXBD3S4D4nK5l30xGecwRotcOcTBFjx0vLCH7JmiCLZlarjyDh3NHZF4Rg3vBxMitKc5lEVUG3WJMgnkUH25pl0FJIpgc1EDPkpnw/nuXd1D69N+Ht9TyCJqhZfx7HoapSPGSRRpM5tTk683IO5t7eZHV9VH1BSURIEMc8NdtELnCKM8RHSod4MwsH1oz8DmZgKeDv17yqT83UtekAnCgRBzwA99yMLWA0pv3yY1Iqj9I/lGvE1p6LGO5E2BGPHCKVLj0cI8s9r2Un7CiJddK7Pe/lHKDNavN4O3SxZNAzAjZ5GsW0Jc1WQRlc/ucf7kFAgxI6jksMozCyo0kXhHifNMhk7tGVr6vUY0ecnRzf7nO8/s9O3qZ9XP43GR6nHLM4Yh04G90G3S95EkA3Mq1/hIbv+964yBKyHYdP+dA6lEEq7mnGc8kkaZSDIooGzskIYJz9ihHYzJN7IyyBtJbxgnZhdGy76Rm/WSGLS10V+36ZHye88uz8ENw8AmZSyJYGNJs2ZKN6hJcsDQ1IA/NzWtwow4IjOjasA5ALTP7aIhhZEpjCzN+NLS/gcuWB/FpXUDhgjU791z/CcoeiWrMIeLlxW+/V3ohAq5qNGy8tlT4146Ttq3eiCdWTr6jbxnSulOSsnsmKMJWZFot2iiAS98Wl9LEGye7Je0yevJ87qEnrtQEWzhENGXvvSlANoJ+8pXvhJHjhzp/zafz/Hud78bX/mVX7nSIJqmwbXXXot//a//NX7nd34HH/rQh/CmN72pDze94447sFgsMJlM8LnPfa6/75prrsFll12Gw4cP49y5c/ibv/mb/m+6nlU2Nzexublp/u3+VDhPjC3ctn8TB7gRIioFt8TY4RDTMyGrVDe17PONT5Na62eXe4AnlMj3YiLYolB9z7jYHRAFg1CWXSaiKBUMV57XL1VAUsG+q2+14ykrpSyiMzGXZNHhbcxTtaY9Sq4inXpg+nms+d+UEp9kj3I8dJ6x4+ThdXzu9PYQbhswtFhhpyn5N4fV8yyifvj0GvFS6TY1kkm26a11HRbEw8t8IXxTCeFR3q7EQyeu33Dlyf7nD33mnuR5rGfaFIZAF4mQCffymYafazLMZWndGQdbJgzKvvk8lgpQTchHrtCJ/hfcGAYM72mxTJ0YOQLXPre0kJcan2PZLDUHWykEUBZbQR6EZWqUcdCIXGD3PfwZatIzWBIUhn6fej+OZBEFfCWAGRyYkUfXa9sY/nbpHoINAO64bxsPu+K4Y3xOZQDfYGnvX3oaa1qD6cR+n0c3BtG7M7BxPlAuU3kI7eWSo1D1tQiCTRvNXJLwIj3IYJSJIP2BLnx6+JuLYAvIScMz2XU752r3zqeTgX/XQ4EC/Gx3UcqO4RvgcnyWodILLxP3SSS3iWATl1Ll3F7r2nGXJTlI9iSeZKltUxgRHARbRqvAZFmH1iAPoxXzuGB4l07tiNMQSNfGpDHkGsH9x851INcN5NnE5xxPPqLvK6HoJQo16pyYF+oe3phie7bIsoh6TiFvnwHQ0ypk0ULOnPOydKfn9TKZgx46XRrqLU5M6TD2kPEcwWat4XRPZv1PJ7Zc40VjJEkOjPd+kEW0AsH2vve9D+973/uwXC5x44039r+/733vw0c/+lE85jGPwRve8IZwx3feeSd+67d+Czs7O/21P/qjP+p/PnPmTJ+cYGtrC295y1sAAL/7u7/b13nGM56BtbU1PPWpTwUAvO1tb8Pp06exu7uLP/iDPwAAPOpRjzL51y6kEiHlnzlkxGaIKEU3pIKwB3XNMzX6hrPF0ggllYKGUlQAnu0rI1cmz24h2KjxKBN0hmfND9ymr+cdOG4oGBPylr7hKvdoDX9LM6LlmzML0dDKSg0HW68gaxJVbZRZwVDsIWo8hc7LhsuQTIBvKO4SHZSyiKZhJMNzWXUPKWTH0hmni2BzvhEjq9aJC+QzeUJWbpRJx9l78grhLhm6kyTWaO/Nje+6zesuPtKHKX789vsA8HcEDN99sdT8Fuk4J0rQYAbtLINXwNACWEZdUU86R7Jw9HScOryNJUPIeDgCijTgI0Z1Xe99pnNpyBiplcSUMiBFd3phcIBAE7lr3TdYdl3ofa6kKLmGHhE+zQzksl7Xr3du0GySzhoqZb+W72mLcB7qPuRew8Zo9z3Uu/SYQLDdl4eIpudGKn+wbKNAjnqKGcMcBNvmMDf7TOYFdBRQRpHJXxcCLWJFcfD1Zp+FNUbVbJxkD+kiJ4Z6XP7RxON6nJKr1+MwijoyPOdq9jw6izrjKHYM3wwtMji1h78xp/asQL8g17DkIpXnxFBXzI+A3Fna51wUmXMWpUYEPUZP9pNn63DPYmlHGXQlm3MBlPJiwSMSgBzZ6hm+JfefhyDLdYPhb36IqKiX7R/OuUGMLaXQS1eeVG0eEmHZrjNQGtic997WFWi3mqgA8Y1k/xsaSOEYw1KOZL7HAsP3zOks9LPbzisLRRYOEWVngXcOFjjYDrKIViDY/uzP/gwA8H3f9314zWtegxMnThTu8Mvp06fxPd/zPfj+7/9+PPjBD05CNI8fP47nPOc5uPrqq/HkJz8Z73znO/Gt3/qteNCDHoSPfexjAIDv/M7vxFd91VcBAH7mZ34Gb3/723HzzTfjQQ96EDY2NvCZz3wG0+kUv/ALvzBqnPeHQg9mh5RfLiRN+A5IL1XaV57qOCiQOZ7ZnIdjaIOmuO4RbO3vpXTDNdm+WBiNzm6XEo0m3SebftSI0AqOok3qRcXe/0wJUN+dHKJmEgzqRU036GgWURmW7IeHcK9jlqnQC6MlipqPnltg0gzvwvV4OpwMnYHt7M58jwDbFjDlN9DrDUjn56FkznMeDkDMOSPJgRfGwudHfigvCwpI13+ER0inQC+FSHjGAYsvrh2nFMIbnDi8hnO78z58JhrinvC6qU1Ro4mY0KoFEs9Y6mWeZM6RUoiVNlyxdTmtCoVP95que0MeS+ZBIgx6e/d82deV8wHIEc0ucbAOx2JIKnVmNSg/e/ceh2dX81ijdDzlTyWiYH3rUPwQCqNgiNMOMdd5RhBsLLysa7M7N7y5qZEqco5fIhBsd9633T9X/0xkn9NOFL1/sUyNJSNTI84NOc6N6QTTSYP5YjmEiBKZKkdyD3+zQqK6IlE1JRLqBMFGHKElMnP9jlwS+yREVI4pHaNeG5GM65rDqJRYgyn8Seba3QUOr/MED+v6bA04UUro3yiCLUtsEdzjzxUQbIly7oWNZcZFe87J++ba0OMo8tvO3GS8bk2Tvus8PFXuCenz5HqJfAb7G5Wy1+cow/ZnC8nUG4p3UznaQ1Nv7y6w2LT7zwzKjmNGG+N8+aebnwv3HeVZRHmbnXGxnOhInFkOOhuQzjM/kyfTR4sh+8HvnjiaDPknCRElDiTdR02IKMvQDSCJ4JFteobvBKBg9j38fKFmEQ0j2LryG7/xG6ONawBw6tQpPO95z8MDH/hAfOITn8BnP/tZXHPNNXj+85+Pd7/73bjuuuswnU7x1re+FS95yUtw2WWX4ZOf/CSuvfZavPKVr0zQco95zGPwjne8A0972tOwtbWFu+66C1/zNV+DP/qjP+pRcBdyiaQMz7goEt6sdIOU/7v8PMUQUW2YgKg7/KyTF1Ajj4Vgowil9JnY5pOG4HUCxCJ71rbN1CDleX80asF6HqteKERUGa5KBx4z8Gnema5+V5giP6tAsDE0oNUmE65TZdLnRNAGPv6OdN+iP/fA5QaUkyqTKBNeugyE7RiXfbtWm5s6DC4gtOo1DKhQRcf4LF+TZ4D1Q6x844AMEY0YG4DcMKHDChOhxPHQZQlVgp7ucw7PlLxNh4hyJYDzRwK5wM4yG2fOiaBSIw3VnqEly57mGWVKApkYjyc4aoN6p/zpTHj63IhwYnaZEruqJWM6Qw7KcevwaYtHSCbMSOaxDl0XIaI1XJOeMaz7Ztr4659vJc4hocgTzkMgFewTh4frEONccZccyznYmMND7l/zAqVDlnAn4BTyzsGmaXoetjM7LYKNoqnV+RbhYQXKIaKM2Jo55HJjetpeTpEhxkXeZ+m8ZqiStn+13tcH5LOPxEyNCKXICaDl6fX2Tj9ENKnaP3tO9E/ekWVgI47QEieUfD6JqLE42JIQ4mR+pHXX1LP3xiP13jMCfQf5w3imvBBRaVDOEez6bLPHpe/dUc5iLnPDDefMvhHZPwCoJAf2uGS9bpxMTpuod+Rnmk+/UcQAXHTgaIO2YyTvjNpb2sBG14bvkGrrSgSbt9eoPZ6CSFKDtksFNLVlRG8/zvYkZ356/KYAR7CVOEZZvWwdEdS1vibf+4VUwgg2Wf7iL/4Cv/u7v4tbbrklCfEEgN/7vd8LtXHq1Cm86U1vKtY7ceIEXvOa1+A1r3mNW+/xj3883va2t4X6vtAKM6DoDSXJ/EgE0cxL5QjhuwvtxUzH5SUFSLO2pEoi2yRTxEKKQMk9NQ56Tww0DcHr2uza4Arq7nyJpuGCcOqhGzbJjI/BSXKQKXQCiSD3s5KwwZAd2nAExMKNM0FY1nO4dLzDySMUz7Oiimf1FDohGJQPkqjnS3nERd3jh4bt9r6tWTG0TpJps/d5SIXBSaMCF9hztBkLOck9hOybK+HaOcBL4VgyeYBnGPAQbF5YYcSgbRnYck6qoZOzO1x48hQ6jaDrShYi6q2NLPlJ/jxAboRkKC7AR3dOlTAW5XSRiERTEDYUfj032zbTcXZzTxtVdQIQLyw5DXexxw/ka13+XlI8PePi2mSC3fk8kKmx6ftOeP8q9vj8e7b/62za7p4YzCIK+JnOcmfPXr0p71sn1pBtXHJUcrDt9O327ZB9Tr8jb73tivdUmh/snAJaHrbTWzOc25ljueToqHRd+IjRJBTOWcOAh1Cy+/f4Rdt66hz0DChTsd6ceexl7c0QPVKZ9Yy6eh6TfUEjYH2E4947MjhTTYP23hyKoHSWy9wYJ5vcWEu/o5dVMeFg2ylwsBHlnBmAS44EbbzxznY5l6JJUqSjnKF0Aetd6j02nccNhr9zJFVFtM7MdzRtCi4uL3Q7j26x10YifxTee/KelurccFDf0eRJ2miXhYiuD2HeMzLf5TMtllw21v2XsmnrxBo9dQ3JHg90+9zwtwydbvCCW/WA4f2WOAIZgs3O5Dn87IWIpjKdQxegv6WLYEvn3YVYqhFsv/3bv40nPelJ+PCHP4zf//3fx+7uLj784Q/jT//0T3Hy5MnzMcaDMrIwA4rrFSahFDrzoy8w+yFemdIdMqBwXqZkM+tD1sp9zx2PuEZBdM+l2wByVIkXIpGGl3HhxeNg87yoMwda7mcBtN97t+nOiBHWQ9SEEWwZWiOdH4xIfl0ZSz3DBDvsi3274S7pe4p4mluibJj1AAP9khiAh3Y0R6AXbiyFkoU4HD3CUzeEWCErgOEgzWDtNcqszCLqwe8zDjb7Hel7vWxKG114RudI8BQ6odh4CDbNwRYNEfXmRx42b78nP9NY0mTO5cOMpRX8Xpqbke3Hup/uG1n19NrsOdiyEFGFYHNDRIe900dmpc8TNdoBwqBtSF393r3010Y3rzMSeVep4YTNbd82QsndE4OJSgB1vjkK8kycW37mWlBZRXKw3dGFiEqFkjh7dguGq3xtMPknbXPmoFo6HrYz27PwnMvD5pOqWYho954sdING6rD+EwXVQ4AoOdENEQ0q51r+8ZBHm+tpwp/+eYIygG4zOVt1ZmNiEOpQgwxRLPvPSPkLDo9IiGjpzJS/J2eWhiMiXSs7iSKf1huMpX6CGA8d5Tnkwgg28Y5KTmWPfkHLsu77FE7tKDpKOouNZZmcW9Jxlzn4dORGQK7Ix5n2rVH0ksOaGf7LSLd0Hi/Jfgwop1jQaekZf+U4S2g3drZne5Lajz0HI09ykA0zMah73yg1PvscbNoZOlxXbQbl4wyNuLDXur52ECIaLD/3cz+HX/qlX8Jb3vIWbGxs4DWveQ0+8pGP4Nu+7dv6rJ8H5UurRDm2GFojWaSdN554RmsIsKPZ01yBKDGG5RsPNyKkBy7ziCcItt2Ug80z3swK3A1JliTHw5+l93YPskFJixhvumdh40yUBYMLjKGZZoulQkNOzHpaEM0QII5RRj5SOj9LRiaF0qEhxCliIRqq6GWjS+b7zF8bUnDrxjrUHeptapSOa0TQiFG7b4Yq0X3rzFgAD3PSRlAv1Kjj81sulWDvCi9xz/2OI7DrjMWe0p3wazjCYEYcTJA/OpQjju7kipoXIurtCz4hrl5D8hn4Pief3UKwJf3PYvWk8rWhJtKmQh9HskRqL7fuPlGUHDR122a3hlM0pB1O0f6/WMTnnBdGm4dEDcpCTvo+/OyHkSgFxJ2ftiJfcsixPUmOJeNMFXWPHZLZObvkAcwwIc/ruGEi4edxjO4eFykwZBI9uzP35SQdmhsMEe0cKVY9fc3bEwdjWA2nrr/XpCHZYkyeYaKQHTRBsMk5ZyHI9krGienIk16maK14ynWkEwgMSBXO16rbnCuHC+XZdORjXVfKFFUINrKGe8ddvzZUexM5N/3MxmtTe25m31KdrQxZ2jTNsMcu/RDR3NBS3mc9qpWu/4E/c+GuS6lzdOHj1jh1VlZ5DstxTtz37rQp36dluNqrq2XuEl2Bt4alUdt79inZuyxkmMxy6yatSvS3Ya8rOQ09Y1hCI7LD9yQgXZs77jks5B9nXep7/eyg9X3vErBF36ZyGF+IpdrA9olPfALPfvazAQCbm5s4c+YMmqbBD//wD+NXf/VX932AB2V8WZCN1w0jEQdc0zSZssA4BBhioa2bjkt7PHlWQ20YKBsMu80kkgkvN/QQIUuFjXkcNaXsoEkmmN2YESEPBeOHvUSwZdk5FayeKZQbKgNhV7/vz3n3TBDPwjOcTVoTtDNPUaLEZ8gO74BYUESNR+jthwZzIuiM6NYRNKSxFIAyAAsEm0LpJOMshGiwteEhW+VatLxeTHBkni/9N8BLHpCOMwt/dNdGuo766xoF4SKU+Dg9T7P8tQ0FI2vDCWMp7gtknB5JeBYaM5HvvYxoAXzPuR7LbsnjKe7thDwTwTaxhVatJB5S/Jle6Lj0ckcyx0bqTsR+LP83M26J9c4UJSBV1lOPuL/WvVDBRFkhjhFAO0f8LG9RhAHLSpafrbHzusQbmiK0tWFi6C9HZ9nOyBJfmscFdniPg222WIbXW+nckONeCiN9FMHmIUZLmWM9xVNPeWmUSdD2rvPKJymXsprcj6NhTkD6/IcUIs7fF9J5vOuso062XiwR2pMAy7g51NMhop7MrUOv+zasJAfG/AAKcm/Ca6ueWxnDXCMXyZToOXui+5w28ng8mzuKB81zahdDFY1Qa+sskAi2c45cIfvRWVkTB7QyuleFiDrntURceUjdjJbFWcOHCHovp/ywDULGNB6Q5JpLOTtbbf3NW+sZqlY7XIgsa4aIyn0+6DwrcbCFz2HmbHF0A0+Obu9N592FWKoNbBdffDFOnz4NALjqqqvwwQ9+EABw99134+zZs/s7uoOyL4UJOloocI0d02GTAgbvl5cVLAsRdYxxntIdFYi0EA6MV/i1kCXb1gKEJt/2YOjrhuEOsA2B3WvbiRplHG+nfj7Pq6OVBYCH23ihU14WUY/zx8siOiGKUonIlB4QjtCYoQbUN/JIhr2sm26I116bFoItnZ8KwUaQbm2b9pz3w7E4ulMjKwDOwZbtNUHExraDYPMyafpKKhcGs5BsR3iSa/jcillE5TMxA2j7t6TJcBiLF0rqKV9SaNWyk+uY0ftcwj0jBTJkxRLySgYhLxOeh2BjSvdiGZ8fu7NSiNewHwOgHFvAMA9apcZL8GA7ZkrfiK1Lfc3dE7VDLGi0q+F06dHhJecA2Q91OCWgw7zZ8xQy7OpMnuRbalSvF7Z+dGOQLU5v7dK+a0IA5a/SkFBCgvbrzQyxavtfqrWRU2Tw880zjKQIlLTvGgL/TYIW8ZREby5p56rLKZcleRIINs0nKBBsnsHSOw8SioyKRBCWEm6Nse1/+LlDFOu+dZvJ3qma1MhBP8usMCI4joQM9U1k8/aakI+D8lz7jcrGjsVCh/UZ71NEJTCkLpCeW/dtDyguc5/t5xKfxxqV5iGudF0WcgukMvJOxR7vyWny2T3EV1SOl/3rtcGM/m1dB6WszhhvT5LywpYjy+p+dh35i4VPm3O+SZ/J6svvO63XNE1fN1mXhiVJr80LsVQb2L72a78Wf/InfwIA+LZv+zb8i3/xL/CiF70I3/Ed34GnPvWp+z7AgzK+RJBhGvWUI3oGeLNs0yPk3dWGCUdw3JlxDzIjptf1dAhLO868XluXHzryb6mSVkCwedm+Mg/d8LvHF9I0zUD67mRQlb8vlnDr5YTzzMOffksAYCEvus39yCLqcc/I15l5+IPP7mVO0wdOPNMZ92TqpA2ecN31YSIHEyVA8sTUQfUHBBt/9tnC/5bdr1nyE9eY7gtZDMHmkfxm4Y/O99x2QgpcbjMHXbHl8NkkvEgOUkYrIB7fkYdgS1CTFRxGck/yhNYk+2LBoM3WW1HhdxA18v16CDatIPucZbbCX0LARrhnuvUzhMdmj9R/M62oeYaJhFrAQVJJpaZGsHcNPRItEjTetOOy3xGQOnuyd6nWkLcndVV7oz8735yzyDMUe9lO19W79BBsRzaHcNbTWyIcqmDc89ZbGg4mZBXTgJLWtcYIaIXOmXPKMOEhZVgGU3efKyCKE2XWkakYulM/k+R0254tsHSQTOlcUiGiajJJowwLdda/a8MEM7DtFJxX1vcFcv5K3YcbIjq1907vvWvElWcEjSLYvPBUIDVweREJuRNl+BuTlUpoZkDs8UseWQMoJGbJwNbPJT6P03Xuh4gm++zS3+Np4qgV5cm2TWK0K5zDrB4w7DUl494GQ7A5+1zG3ek4Qr1ojPZaeh6xZ5pO7bVhZhFdwWhXMlh214r1VETGhViqs4j+8i//Mra2tgAAL3/5y7G+vo53vvOdeM5znoNXvOIV+z7AgzK+MKXbVRaIQJSFuzgb5LxEiqsQNYyAmxkGdP8aHQXAMSKkAjMLU0gMGIqDzYMYa2HQM8oUM8EkysVw3YN3e0qiJpyXex/PIpoaUABlPMo893aIqptFVIeyKoWumx9N42e9TI0ISZMKXu0pkzHhVtd1kzEEudoAiajxDWyaI9AbZ67M7tUrCPZemvq16QQ7s0UWjlVSQDxDjwx52XK4dLLswh7CgCh0pTY9YTCqBEhharl0HB5KIIkqSrsKCZE4CDIjZNkg1NXl9dL9Q/7ZNbAV9jmLE6rEVSLDSDYU15FGH/vGMCawp317RnI25/WZWUI3eHv8xpo951yEtlC6S2gzH9Wbnq+Dky1rMvlu3jiZo6s059yzdTLZy8CXGjZ1O4lBqIJaQDrPvDDJkgMpRbAJRVp9og11DrphySrEizkY2378udAVhpp0nasFbqKV1tvMPzc2CaLY/ZbOPpsa6Oeuw1TzxSZIP5IRt2RsyAyBxCikEWweMsz65roN694wJ5SHNlNyLJM79Xg8OU0OW643jRaV9861kcl1mHK+R9mmNGZbbSb9F5wTSZIDx1DsPpOoK28rhebK9ymNdl6IKKB5pNN6Uf0NUNzUzl7DzizTwCYcXVEOSXkeeLyymprEc9huOVRA7TjJmRldbwXd0c0iqvbuoe+sSaxNGuyg/N71/nUhlioD22w2w5vf/GY8/elPBwBMJhO87GUvw8te9rLzMriDsj+FCewer0kuFHQINqVIO4KGVvw8Y5wOG+OoJ86JYCGuBs990rVhlLGfPTVgpDxTOcovFcKjISflWHZ7nJlwTQ6domc0YLDsEYHMeKQEZsbJkClKTshJnslzrw0HrZEJ9t57ryD09tBR2usWCdfb1dwe1DPqG9iSzGkFFFcW4sXQIpnxmRtB1/cO284A2xmqdciJF+btIVu3HIU/Q2dFDShJm0k1AxVXb2Dzsoh64SmJQLKMJypZOsK9NhhGCfyjAt5svsC0Geagh27YLuxzJQ+s1UeavTX9mDohgIu0Y/uxM+dKoc5yDS+XfL3Ja1pR8pQAj7tTvsvFcknPQX1vHNUbR7B53C/McOadl5IbCDDOt2mDnfmwJ8lMeKkDKZUr2LjaNm3UQo50U+egh2DbkAg2HiKqM5h6nFDyV08GaO+1jCrZJRWuF3NO5HxpfB77iWzS9+mFuMu1ebYi6UwE4eiFaAJ6fiz6uQekfGLy3nkhrNDLIsq4XYvzY9KizrW+a3GwRZGtUfSLi6RS39JCM7f1/G/J9g95Tcsf3jm4M1+4kT3MqW0i2IQThTk3AY1g8w1s3aWFYziLyh96PPI9WftHdA3LNnOkcFQ+T/uOOoXacdp1S2h7RoOUhYgGUXFeNIa+5mfytN97GcHGx7lOkIMeV5znVNZ9H4SIBsra2hp+8Ad/ENvb2+drPAflPJQIx1aZ0LtTFjpkWHu9nIEwtpl65PDRtOoaPSfH6XrE58vEIEQRbDMfwZaHwQ1/840IfvrmAVruh7GsEv7ohcZYSSNCaIAMUTMRP6ffcuahoya2wO57pEs8dbbCXzLuedwNmdJNlACtfEUTVsj/9Vg31QHuCY5TpVAOiJq0XmZ8dpXZzvC+SIS83EMWh9XTEFEvfKiQYY6tDTdEdK5RT+k4o0KeRpWwfU57+KPZAr19Ng95tcdV8zw5siJo0A4qIMn9Rr3Eg+twsE0mQ+a27d1CohJiLC2iG4JzTiIcbGF0r57ej13kc4xnShKkW30zBTnbExUFAtuP2+eJfXfG2eqR92d7LGlTh+ZWOWYKaHuaLTnjw7KR3ABwRCDYJNeSl/1Zt+k52Tzuu/be7BKZH2TOZe89jghMDSj8W25Mh3dU4p+jyqxjTPeQYVpGjGapngsE23TS0D1xrsIKGdKta5P17yMH/e/ZFTOLKFHOPSoPP5xTyWlBJGZq4ErHqCMimGwur80XS5owCzD4TR2DJTME2gbt9n9pXLS+j0Reny1knpSOmZVCRB2E41zoMCVHV3yPL1FKpBEZrM3EuVlBPeHNz1SO5wmZ8kiU4W+evJDuSdkwedhrUFax5/zws59F1P6WnkxWAoYchIhWGtgA4AlPeALe9773nY+xHJTzVNjBnIbBcaMIMBziQ5KDxV49W+Hu6noonY1so2IHBPfkyQ1Ek7gDkvfG3/QZDHxDhT4CTmZSz4Ci6kah0HLsHlIFcDZJ54DQz85DRHNDTzqXpCLvc+T0bWqvm2PkkoKjF/5XgoFTPpmCsZRlftRtpoZA/j7zhBXqmRwDW4JgW5v070PzTHn8QJKHxOVgm/NvKZ9pV6F59P6R9u2jiXiSg6Say8HmpiEPClkl1FMaBudlEeUCLhWEHWQFMBhkAF+4zjnYPIcHM974ayNqZPLIzNvx5NdMgVlysO3yEFFg4NDMQ7zSelEeIS88xDN2yLBoUxDu0A36W2rEqPh9ywmdyowIrnHPFtg9JMJ8yZ1swAhnDwu9JNkC2zbSvoc9aQ9VO2eKktzn4qT8Mvt0SfnysusdJRxsudFOn4OgdbUhchi//93ZGPW9abiequdl13PkHy9r3bpGsO21qdGI7Xhia1hzDyfycSKraDlJPo83P5b93DMNLQLJxBy7+t7MEerIFYxqZXiu/KKV5CDhYAuGo7tIJuVA8p09w89eggV9DkYSr2Tf0jkHNd2Jj+qNUb2U9uMUiSn2BYdHMUOmifdSk71Vo+g7PaqEOPcpMjz9zZPPY2gzLyIB8JB2ab0saoU4e1w9z4mI8Iz+7djtvdv7RlulLKJyDTtnEee0y5rs18d2Yb6ncm/ezoVQqjnY/tk/+2f4kR/5Efz1X/81Hve4x+Ho0aPJ3x/96Efv2+AOyv4UhjBIDoeFr0jLOHZgOBw9ouySx5FlNdR1ox6QdbWRA+iFDb3xaQ//jAhZ1ubMCKPXtQfXUzyJMuuFiGbKefCw1+ey3sjl+5TPYBoshWDghdswxBXj8ZHPObSZepS6ql7Y1GxeMrTYwmDpwHETVjDy74LyJf/MvmXXFkP6NU2DzbUJtnYXOQdbQdBhnFDeemPKn7d+9e8l/rmNxPjMjaBJCGBNcotgmNOqIaJ5FtHh58UyVSxS4/NwPTO0OPuXRD01Tfrda0JEeagPrzebLzAXQmSWuZaR8psKkI+isPrfchBsQItAPo0ZtnYLIaKJQYgLwm7GvuCcM40de/2simDLUU/pHt99djPkIxHCOeJKDnu5LBjtEuU8JgPMxVnEuI6APIy25AxkmfC0oVi+Gjd0qUDo3TStM0wjn/U4jzAONnecBQSb+NUL62vH4yt5Q/9kn3P2zjKnXY6Ot+ppZ4uXrCNs1FUGB3m2ssRN82WJv0m32db1Qi9z5LFdr63L5ZpoRmnrufrxG0kO5Hg83lKW8dM7L3WSA/05G7YnFdrsEWzOPqdlGl01izRYBfXtoHpLIftsvVWdG6Ju5hhxkJh5yG3e3jBO5gj15MkS13euw1ltTpUxjNXT/fvAA/HdHdR3zgvJn2czQbDFkXau04HtxwUnikvVMCX1rL1i71o5PHX4+UINEa02sH37t387AOAlL3lJf61pGiyXSzRNg7kQTg/Kl0aRBzPzfM3nfIMGRNiFChUshg85wmDOazL8TW5AOerJNt7obKPdGHR7+j4vDE4LLwB/9poQwCisXo5dK91ukoM5V/j1gccMq+vGIUa595RCx3grsrCLsAE2mPWyZNgMet38xAnOd58t6JzTc0mOhRkCByRmVy+fS5trU2ztLrC1Oy942dXaDKzhzFiaJaIYlFmPw9HLPLlfWUS9NpnxWcs5OilAtE1P2GC8Jrr/xOPnIEv1WJJvqedclknT7g/ggr273koItqBy3rabXXKRCECKYLMNbB2CbTVjaQmhFDUqe+9T9rNYaodYWi+K7tTomyhfWlVosGPsYKFTpcQrLCwn69s1FHfOQOUU8lAQ8wUmgkvQJ5b2Pffre4lfdgro36OEgy2K5LbajPLpAb4RQj9PV9wQUeVk8xLucGSrd2ZW8P45aNkMNRmVO13nVTqXegSbhzpa6vlhG4r7/oncq1F+pRBRCwllGgLJXHJD1hwjgnYgLZ2ziMuyjtzpyDTA8NweihzIDShzYoDV/XihzrKuNKxa32edOKXcxAml0M9J0+s50XNQvqeSoTaMUp6nIdneXsfayPsuEP2zcXrOs1nMUV7aFxIEW/Bb6nF6SF0vAQjAnWeN4zSVDjHLIbdm7BWl936hhohWG9g+9alPnY9xHJTzWJigk6O4ysawLpsjE4R15sdEeNEbVbLxcjRTZhAiUFfN8QAIDraCYM8EYRl21CPYlt0YnWcvxeYTgd3a0LprOq27d5B5CJRMwGTv00Cwscxx6yoUjaMRuaHF554ZhKfM40iUtLbvtG40nIHBxdu6qn+FMGBCiRaEJ+KUY9+yW5KdkGcpFofWJ7jnnBXSmNbTXqrei+octvNsbaSVu2ffmS/oPNK/y1Cftn/9nmyvX+YddBISeM8U5eEoZYnkCDau9ErvtX4mD6WTtakE4W6fdY2Qzh4L1Hh6vXA9vo5K+5yH3mVtnhPzwzOw7cz8DLssjMRC/06a9gzQhOJRI4KpdAt0xX4YLGsUz6iXm5Fllwyj0YQ7Huo6R+R5CnKz116HYNsbf8GJ4oXWJWgNZ08C0sQvDMkNAEc2Y1lE1xXai3GGteOOfcv23piiFEX/ehk/o4hA3b1ODLQgMkB7b+zZmRFB/y1FV2pnS9q3Vro7GdVSRuXZ7vPFpnM+EmWxO1+6XJMAQbAVlGbZpocE3Z5zudNzIHnhpDPHcKXb7BGwzh7bUn7YbQAGStl5n4kBI8hJ5Tk39TW513gItmLIbdNgjmXmLNbncOoMHAAVNeOMghnsuWkcJvBl2RJysEnmEpfTGDrdkvs6GSCTZaPOYlOusee8Z1z0qEn0vUmbjj7sJZcA/LXFrsm980Iq1Qa266677nyM46Ccx8I84hqhJDdoRvquN2g/Q6VPAp0fZPamopFpaT0R0mhsJjKDGB8nVxIton9mmNBhki6RO4nNt5WV9n9p2NTj1L/7Xr9UQWbGxYRrYOYj2HR47Ix8d23cS4TBDH2TCswsRDQLNXaQg0zhd5McFAh5E/4mx8uuFRA5FqYgd4bNbj5bQklHiru1O3e54jQHG0M9MVSJHNfQ5qQfHwu1AfIQGk+4jhK5exk/fVJtx8CWea9jgs6OFHQ0WXWiBPBEISw8Q7ehf5dCq37vnhHS2xc8T29qLF01yQGyYiv3ftjoliCB3jAEv67N5RKu5zxqeAfa+bm9h1DyHR4MpcyV2VIo2gYT2J3nkfPD0l/ka4siESQfaBEVF2wz3Y8ntN586Tvuuv24R9sTRUk7UTbWnL0zGAYH7J3tO3PMFkt44TaH1+0kB5kRITHq+lEB8rV5Slp7LbtkK71BtP26g7jKUWRMofNlRD8T7/DzTtDZoykyPFklkpQIaOXe7pm8ENEiOtzhimOO5RzBlnVPvnFMabbuT5zFDqImW8OOQVvO41WyEHso4ZxmJq03nTQ94itDaIdl7qz7BKXMKHaAuhDA3lhbODcmEwDz3MHnIQe9pFV6nKskVTN53Yx52DQ+BYK31nU/Xjip5lZjQApAyAAFp/YGcRbbiK9c17Ta5EAK30geRYIW5Z8glcdBFlHUJzkAgN/6rd/Ck570JFx55ZW4+eabAQCvfvWr8Qd/8Af7OriDsj+FkmpnvBHlTTKr525SetOHW1caw+SG6hvD8jECLXoOkAkJYpu+7s9LcjAmKxklDjZRHMPB7CEmWOa28rPbhpHEAKvCbaLhIZMmrevz6SVNIs1KxrPWaYV/GTW0uOEuqcFQvnd92Odk2XabWXiZI7BLYWwpvOyWl0qGwXlcccxw5h222gDLhJIyB1scZSgNJZ5QIjPM5Rk/feGpK24WUf0+g8aBHFUy/NwiJobfG6LQaYGZzQ+gNRwxMuLkHaksopnQGhTsa5woNRmvokTssp4METVDF/aqzpc+MowpCywEEGjn0YycG/p3DxUHDGtAojAmhmKRGJ/dcKx0P2bG9LZuLOQkMQCLeVxCI/pIYVLPQR6XkqR0bXYyAFO6Pd5QN7tdcR53qEkfwcZRk5biOcw5N6shCa2zQxX9sMBhnHINR7OIlhLZ2PuCfp16XfYKf2Eee7xua2qfjZLDe3KFlmU7464XIrpYlnimuIyqeVgH1KZ/ZgG208IyBFr32uOMGUtzBOzwtwxJRdCIpdDcrnjZp7WDz9q/uve5M/Mje1j/pSQHvqHYdjB6HKVFo6HRd3u/bm/4WVLSeHoJ4CcaYOvNcvZYIaKlvsvJk8Q4nW/J9iRrLnXrpZQALU1KVAoRHX721hGTqUpJDmSJOqBLoaxuPWWsvRBLtYHtV37lV/DSl74Uz3rWs3D33Xf3nGunTp3Cq1/96v0e30HZh8JixD3PF0OqAL4g7KOj7PAywFcCPOV8ogSN4RBVIaKOwj3XqCfRpua8WTqKRU1WMrbpe9lYSmFjnKTcU5A5gm2y58lrn2fZj0G3AeTKQtemh0TQyDDPaCeTB+RCuA5ZE/05gnBN6JL33qPQcs3B5iEc2TfyPF9ZVlbn2RNepoLHMeEnzDjYOsVv2Su07fgnqh5/n7mhh6A7S8YwN1wvpsxmIZWOUSYaBqc9eSxEgqGO2r5B60pPc4mnzg8RZcjBguIXRXcGecjSvrJLSR8lDrZJWLEQQmspBFAos1FeppKn2coiWgrLiXq5E760wjv2lFT5a1lJjJ1FqZE6RpA+X0ApNWnf3TzojBwslFU7UaJ8oCUDm0z84ieOircpFbq54+Bk5PAlhc7re40ZYLX8k+ydfqgim8eeQXlHJDkwFWlxzUMOZsZn8o1yA5fsi8vHM5E9tqT0eqgnxplqPVNv9J/5jgTrXnbNmjN237YRoXS+LYP7R5L90HWuBuXoRTmMdp0YtPcjyYFE71k2TL4v5HW7qgvxPi3HjOzbM2wy7s4Sx5a310wzZ7WDYLNQWGa9+HuXl9LsnGk9aii29kRm0Pb2r1LoJXEQ5Ojf+LnBjeS6b/t9WrebRtDCWXKB2tfqDWyvfe1r8Wu/9mv4sR/7MUyFd/yrv/qrceONN+7r4A7K/hR2QLhIlRUFzOmk6TeEWcGIkBNGk76JsqDHJX/XBiEvm+RsnvKQyTbzEAW7Dbsu33gpx4RzQGQhog68O6rUZOi9LExhOEgAHm6jw0Oi6KhoqKDMImoJOXLO7QfqyB9nUpUSn9dkICwZMVh4rByrNsp4KBDZv2+I85XEaMbP/H2KcTnz2NuTtPHI8yRyhT+pliUF8JQaPpfSRuX7TbIvuh5+UMVP3+sZS30ONv6NvHfkGbQ9rkkvO6d+JveaaFOGiNqCX3tNIwI9vseycN0ZcAr7MTUeZU2moaxkXbbjFG1WkH+zvTMfJ2+zaZpBoVvREJiPkyHDlIE+2T98pabbvxbLFBFYSnLgrbd1ss+x8KG2zfQdeTKIhwyTz5Qh2JxMr9IwYfPzxEJ9EgOKM84op27bJnF4ZOeLOjP32aibI3+EfEwcUoAvV8xEiKhl9I8a3qOGQNlPiRMKYHMhpjS3bfJ7o7yQUqaylHh5zUWQNXbfJoKNJDmw+t9I1jBvt8bY0b1PaeDz1joQcMyYRjvnHFSGWi8RhTwzPf43II64koZiGx1u9GMZbyqyXkaNsDVGu8GgHTfA1o2TyxXRrL1s7FbdGkeoxyspi7z1IEQ0WD71qU/hsY99bHZ9c3MTZ86c2ZdBHZT9LewwSVFUPtdSVJkEBC+TI7wABqqFCMLMMGC2KfoGILxkUPXSTZ9B9TfXUgHPRYAoxJVnmKDE0s7Gu1j6GeboZu6899ncN6D0aIC9Ogui/OnwkAHB5gmiywqDpZ95aTAE+sifKNeAXhuuYYKgs3LDRCqQRDnDEk+iIzxl4dNBAdc1wGrOH+e7bzmEvH7SCL42PMFtQ3kHPU4XnZEt1GaF8OSRzWr0DQuRSD1+fhiLToEeMrCtmEXUR5/EOWpKGa+iip+sJxV++az6/s7Y0l8PGhc95S8P4+XjTBGOvpe+27vNZ08ynXHkD9s/iqE+hbNooCtYJjQAWT21z7M2OQLEb8+bx5raYEEUOk1M7691ZghEVqQxbEbWZVuPKTVGm4Lr0tuPo6F17b15P0UDrIdgczh1vfnpITElil7KALacZCNAomcrkK5ZjebxELBp9MIg+5UMbNHEHqUQwF7hL3DQ6v6H9mLXLEMxm8eezNvuH+3PVohmOo/HO0yBYb5qvcQMce/nXJrkIOs/6NSWdT0ZTd9b4meeJM9kjzHpe6lDGu32unGugmArOfS9JAcmj1jBSBxFLgJxbtlSUqJhvanQcU/mLyV5UuvdGn9bjyCKg0bypvGjr1IHY35/3EAv1vsFCmGrNrBdf/31eP/7359d/6//9b/iEY94xH6M6aDsc2GhDzqkMvWQ8XDOBKliCGldH8WwC+LZqEETsVA0TXDsbVLagCLbzFN2xxFXnkInH9Ej3pTXsgyEnrKywoEHBN4n+UY6PKRX6NQEaZpBYNZCo350hjDwFJAMbRYUyPShIXlNStkCMy87Q0wkynGcIF0SRtvPbgsbHkpHCpl+ohLfULxG0A1evXkWGpw+TxLqU4M28xC41ouD8S2zsFMuaEWFa9lFwkHiIPdyhY7X9VA62mAYTgQR5M3SaCIP7Vbi9ogqg8zTaymz3RrIQsf1+6SoAV9R8vbOVZQ/YHgmO4SGCMLZ3qlQhg5qIHpuyPvnC34W6HEmfTlG3SitwUIjdV0HEjc+y19LlA4s67f17AP6Zdg/PE4owFf8gDQsOYqq9cLWASShW6w9ID23th3Fk3HqAoYxLrjXyHtLRhmW5EA/kpZ/2Pt0uX+9s13IAB4HG6Dm/FTvH1wGYApyHiKadV/cU91r1txM1oYTIkrON9uJEds/ahBCFkqY1WVRAZ7zLNp/cs3c42OoXkCg8qThyjlbdeZaN3Ji7s+jdP/0QA+2vBBNclDiWyw7xOxn8mREjyIDGOTEDPnsyNzbjgMJsOcMkOtF7CyKcth6qGugbAg0nQbOvg0cZBENlx/90R/Fi1/8YmxtbWG5XOJ//+//jTe96U34+Z//ebz+9a8/H2M8KCNLCX3TpRX3EGxVZNXTBtjd86Z5ITTkwNVrVQtEqcKv+u6Mex3iaq+qu+krFFdCdDtJUzJ73A06i2mUjDiFwCMrXdVFQcijCnI2Th3i5RlBB6h8V9+qp8NDZo5iMZ3sZWjSBljXYMl5pgA+58JGBFPImmB3Psds7hOZ6u/OEBPS2NGGfAx/c4mYF/EQrwRa7hi5vPfJBHvdhn4mGa7HQo27Mcp57nF2eEgEnSEzWZuOQT297rRZwb/iCTpRY5gcYhuCZ7eh+5bhITkKVIxRc4apqcR46lwDhlJA3MQJu74gXEJXWeOUxRb8hp+lsTQXWuOGwO4ZF0uFznIRgX4oh5U1Tzsn9L01NAADaiBrMkWLBA2BiwU3FMt62XVtpA7KFYmSlJ1ZaR95ghp7vXVOlN09xFHUgLJdMAhJmgoPwVZ1FvW8br7DQw7Hqwf4irgszIDiOhgXC0yagUImP4viCl13qQqJuYKxViM7PEOcp5yXeCE5apPvH/OE182IGklCRH0EW9yI4e9TfT1iJC8l5nH3D2agd1DfJYNyIoM456Ac62IZS/6m+4/uiSZCiCHJnTY9GSCpt1gmiLwMWUrQXibqmrzP8lmU398VK0TUOkqoPlowvEcz0pacbH3EjI4K8AywRX3DfvYotUB0jy857pI2w/uCf03uSRdSqTawfd/3fR9msxle9rKX4ezZs/jO7/xOXHXVVXjNa16D5z3veedjjAdlZCmTfy+Kgpsm+2fttW0Om7kvDMoFCAod9rgwcq6WIZTCUyZrUFwbaxNs7S5aZJZrrExRcW7abOZVcRFsCKOzPI+4pyDrTb7j2CpxsCVKzWLgtGOH0w4672D+nNY4dxcLQeLqz7lwIohS1ilqtEvrsZCTHOUnnqeAmGAKpafQ6WfyxukK9up5ZkGjnYtgc8JtPCSXZzDM0WYxL6osNUkBvGd3Q2P0PkcNm2oeOWs92TsTA0peb2Ntgh0jpfyqz5OGg/tGcu5IiAlpptBouX/hc7ABcSXA4xKU17wMhFmbRX6edG8AbOFWPqOPVrXnUklgjo5ToomiaESrf5Y8qSQDeOHT68k351mdgdSJ4n3LGmOppFXwyO5rsohKzh8PxV4T7lsyQvTXaAigPca27yWmk5issu2cWbKuXG/Usdv3z2XU7GwlayPdj+PZkiVVgrUnUeSis38kCDbDKNNnvSxQqLTtWsaSvM2oc2OdonT4+0wS8zhG1dKYagxcqcwd02FmBRl1LIKttC5LZ5FE5bkJQDr5WIeIZk4+8j4twyo1aOvnsR360SQHRedERYhoGm7M+y452STPZpRHesc5r4G4gYwZYEto2X6M5v6R7t193YIM4o3zAMG2goENAF70ohfhRS96Ee644w4sFgtcfvnl+z2ug7KPxRPIZAjgPOipKW36kgQ6GtIo+WxqsogyoUQjb0rEmx4qbn26Z2CbzV0DVxIqOPPfZ5RnChjehySWltetPuJZREtK96AstPXtb6S5BlgWUdlHKYuozszlZl5KiMdFX85cSsiqHUFHor2supmnmxjDUoWqgMJQ83M/uGdSwZ4/O3sewDLWDn2f2+Eez9Sou8BiMfw9X8PDz17ImsvB5igrsujLGyJxT2aQchQ1T9DJsoiSb6n5T7wEMd39nfHEQ8psTjsD2zyMwohmEdUecffcWMGDGzUMAH4WUUApAe7aKKAb9q5l+7F+djI/Suibbu/2MgbLelabk0mb+GW5VAliCu9TnoPW3t2jiQqICW7QVs+jEJZ9vcJ5HTV8F7PWMbS9cxaVvqWs23EolRIKlEJzuzZ3FfLZW2/efAfI/CooVJ5zVRu45P5ckhdYm/JeL8pB3+sm1sgctnv315yDRE4CgLM7s/7n0p4UT+zhz2OGYIuuzZIRYxh7dknpBo4Ooc83R55j53V2tjLEVcnZUjB2DKHwKYLNCxGV50YUOVQikS/tC4mRa2+cnlFlsdB6EW+v2Dd5n27Y6cI/N0pOMrPvin3OM6wmZ5HDJwwMlDilKC0dNu+NMzo/eHhs7P6Skz6tm1+LGkE1YvVCLCsZ2ADgc5/7HG666SY0TUt6edlll+3nuA7KPhaPnFUmBfAEt5o09YP3p5TRUYzRgQ77BqH0gXrerEUcupsLTwrBJr0VXoiVMiJ4yEF5b8nz1d3aGiGdZwoKmOnBmHq0stBghWBjaAAdHuJlmJPeQY+YXhO5swQLwIBa0AKmrlrDe9MJOkXElTIUD57ZtD3G1Wa2KZWApa9YUIJ210geRbAtXKVbPtO5YBZRbbDMCPzJPNb1MrRZEGEgS8ZZpkNEXRJ7huxIK8quZRbRTLjVDocSEqFpMMcy4VWxHnNjbQJs7yXWcIzPXLBP20sNMirs1N1rSqEcq18DysqsnyWbCK2O4FgKr6fGsKLy53n47XPYFoTb8Medgkc6anyWdWWocyk8JLnfWZfS4aHXa2Z8lkZdZx5LzjI7JEk6Zjx0uj1O+9mHn7t1VEKLJeHTzvtcLNNQ5zzsVfbNZZr2WnapSGrtyX4JBYJG+2cOD1nXn8cWd1YZ1eLsScSRUUJyR50TW8k8zl8oRwrz55GytPXs3bmVOQOdNZxcCyr8JaOIlylay3Oe0Z9xsLlOw5KhlhrD8n5kRIQrcwdlL13XG6em07CuW/3szhyUcmekVtQTbvKRAv9b2KBNDMX2XmM5dUrvqPDeVxhn2eEx7EmpjMrHKYu5LlcIj02vB9F/QeRg27+lF8XOey33XojFfqtOuffee/Hd3/3duPLKK/GUpzwFX/d1X4crr7wSz3/+83HPPfecjzEelJHFy+YkUTpeOmrqwbUER8FB4im9cixJJjznEI0iauYZdNceI1AmsO2ElxKiRR+MPom9eCZHGGzHPgjX4SQHHj+PGPciQ+/Z370bIyfwT5/H554Z2vTg6vLeZUEg6w6nIjk8UWpMLxUx2nlIJjdEVCl+S89oJ9uc++EUUSNGlKyahaYAuRDAFQvedxFdylKwlwxswe8uSzFE1F1vw8/xLKLcUFyT5KAde/t/gv51jAgtsjQmYHoK/2TS9PtpaT+esH3O+BxR3hqOYIuvDU9RK3GQdPdmZNnOPC7xA1nKSikMrhQa092/U3gehmgxw1j2rqXcc1k1ysHmJYLwnoclaAF8EujEgOIYj0pJDhjCsaSsdOuo5lvac679f6EMPR4KdtcxkrfXYgpZem7EEtnIrPCAcbaLX6URwc4o2f4/XxbOwQQFyud8jsC1985837b7AtJ3VAoRtdCq+jrgINg8Q7GS50oGnL5e8Fpxfuw6BkOKYPPfkdc/k3lLKL1ZYe/s+pf7h9lmxXpbJYlPsa7Rv2ugL8gVicHOyXCr7/XCCqdKNygiinU/RWNpCcU1/Lzr7UkrGkt9tKxtYgmvywqHWAlF5l2z9qm2//xaOMmB2r8uxFJtYHvhC1+Id7/73XjrW9+Ku+++G/fccw/e8pa34C//8i/xohe96HyM8aCMLC6yI0ieSzlITDSRQMU56KiM/JsIOprs1UeVtHV3FyWFWwnsXgaxBH4/XLd4kSR6z+OuYoKwqXgKeHc0RNQ78FJOqFRwYyTlnWIeMR5JHhAPwaYz+2WKvDZcOSEFfQiNzurjGREKQpYMj/UUuhzBZguOmj/Jm3MZSigYjuVlVIp6exm5sm6jrZuHQ5Wfx+ftSsP6PPRt03+LFm02/M3LoMr6AlIUxvZs4e6JaWgur6e5Jtk+x0igrXECw3uTIe6W0iwdBKvwE3pGhBJShWa9LBgcvHpMwNywEGxUEOZ912QRjWZ0LPGWWki70lr3DIZt3b3vnrz3rJptaCEKbjeXvbONXbP6Z3tSdrYRRK/VV2rMH9awG1pXcbZK4000K6s1t1NDXKzNmrDkdL7HvnHRgTPje9Ka2g/dcdaEwQl5wUPqMvnH5YRacsMVy8Rr9S/P9rM7FUkO5hztxqhRSvtClEMyuWZ+9+xSADkYQ9CXs4jm16xxthFUe32XMm6SvdND6SwE/YLn2NX92+d1dokYMOyHj757+312zwPl2NVjJDJAxXf3EWwLML5YgKHQs0v83CgYNr1EA6mBPm6s9XStdTKRo6jN0rMn14PGSbNNYggs7TVePa2/XYilOkT0rW99K/74j/8YT37yk/trT3/60/Frv/ZreMYznrGvgzso+1OScAqy+c1KXFzJAR6z7s+y7JxckZYbvxtOoARhxvVUDPlQm/5cGhHURiUJZD1UXHdvR25cQ2Lf13MUaYlUAaz3ZCt0WbiNUuQ7Zck78LpQUpqtUPGllbKIAmUkU7pB+1mnpKF4lSyiNMkB6rPHMmPYehJ+qIyLzjilUmXpveHQmKBA5K03z2iYouLsdQnkaBHPYOkZEZqmwfpk0ht0u9tMYZAKrenvNWGnRCYpOhJKaMROkfTmBzB8Xxk+bY0pReCmfSXjJhwkVLieG1xxzhouEblHvbrMeCPX19Dm8LMnCDNDoJfVcCHee9P4iQbKAnt2ibx3xr+S399dK2ZEC/LeyHFKJGSUsNm6TvdjjarNEL2xPWlnxs9geU2HnepH4uHgWZMZ8qjUN1A2aCeZax2HB0uetIqxxBpPlBNTO5C8kMpiiGj37At+tuprngElCVV0DFcekts7WyVVQmlt+SGi6Tg9igx5bkUpXGSJosiKHH0O9UTTtMjnxTJNklKzfzAOyd35MnGYFrMlB/mwZBKwOgRb7JmiSSjo/Ur21GPS48yc2s7aKO2d0RBRvY5quTuLXKQlCgSia7kcbBXhxruOA4vOY+Ny/NljZ2t7LVaPGe2iIaKl+X6hZhGtRrBdcsklOHnyZHb95MmTuOiii/ZlUAdlf8vcUWZlSGXKtaSVLxJeZgrsg1fYzXilOBkYOTyDyrdtpn334YcK0h8l3rTqbqy1xOclBAggwrE0kspRzkscAlK49hV+W3BzPeLifdqZztR7It68nMQ+H5OuqzNz6ary3mUpPER8d7mXe152WUzYtETpOAezJrFnArtOghEOIRbPVArx2nHI6ZmXu7jeHBSq9Die24mFSWq+Ry9UspgARCjIfnYqJuik1zcdDjbPEGmNaehj+FkaZbzMXJEQ0WQNL/mzb5A9yUvCIVHKnpCleTa9ebySAlJjYCuELvhEzMSA4sw5LzGPHmeC+o5m+7KE8AqkXXcO13ATedeA4TnL78i83UUJeUqNu3+4bZYSMrXXJA3ApPGNMiVjWFSBSRHNBWOYuN1zWjZsnNFwUFP+GH72KQi0DFCPtveMLTKxhudwKI5TJ08Kyp0+x6eN5F633jsz9BQQbDNXTrPRkPb7tJC+2aXiO7baK6231KDtIdjiRoSJtScV5nspaqSru1yK5AGFtb7KvlBj7LCN38PPkRBRjf7NnJtVBkPRt7d3KyQTW29A3HgTlXmBChQ7+5YFI5VLPVGBDJsadT1ken6dr43SNUt2auta/cTOEv3dL8RSbWD78R//cbz0pS/FZz/72f7abbfdhh/90R/FK17xin0d3EHZn+JmEd37Pc+ixREo24UQCRoC6AhZkvzbE8ZKCQkkJHd3wQ/RRHiaa1RcWnlDCOFpqCDfqHTolH7v8t5ZwZsmb3VD1pin2RIghCLfoRHsg4wpnmk9nSEzjmDLr3dF/irTi3tp6meZUUT1TZBM3jizJAe6zSBCSXOwRbLhAr4S0NYloYpO/1uOkVyvt27ONY1vWPVCRFOEY8o/lxve40Jev38JBbmE8kv6yozpch7PU4MU2TvzMaUfMzPAOkaZhFfNmR/yfmmAtfbj7pnysC0+7lKmxCRRifOOVlGkk2sVAqbJd6TWEesrSjwu75VooiLyZwX0XkmxiL7PoiGuwsA26ddbyfhLFIugU8hDCS+Wfog5S8hkJ8fJnShV52BU2QjWAxgPWUyRZ6G9UadDaR56fLE6Y55LOUK+u6cQtg5GXo+HjenzZfg5zeqctufJnXmSp+F36WhaX/PfZzSZzFwagAtreCu4d7Mx1V5bJ8/jfcskM3rQkMfaXAW5Uwqvt+qWnD0l5GAUwcYyOpba9HmP2/8Xi6Ure1EnfWFP8s6DNeWk9+lOYkamSXCt5+OMOXGiNBGAz8nJwn09ftN07Pm9POPn6mu4pk2TyqPwjQ6yiAbLr/zKr+DjH/84rrvuOlx77bUAgFtuuQWbm5u4/fbb8e///b/v6773ve/dv5EelJVLhFBco3QyBBs7SJwF2BrYHEFHWbgXREnMwjlXQHGVEEIu0f/e6bRYBqDl0rjoHDoUWVHwJHaGq6YxMgBJAbdwQHS3SkXeC5ME4hnEtmfz/lt6Cp1GR+WogXR+uJ6vROl1PEoVglt3OGo+P+9g3nXm0XQyhEiUsogyhdI2Hg0/yznfqLkk0Vlnd2Z0nPl648ZSaTjbcoj+mZAF+MbvXUehA5Akt5hOYsaO5LozjzPEqp6fwTZ1KPyAYOPj1EhdT4CR+4f1jaTR8JyDXNwQyuB20cg0GCa8d8QRbEabQQGRLGGTgy2KYKsLETWURGdu6jZX4TCx6pWMdoPxuRBCEzS6yftliGgpc5vXVzRzW2IoVWgi3X2KxIyFx0qKDPsdDT9HDbBJP0Flkt3PeIS8vSbpawS/YXQN6xDRKEK7hoPWXW9E4fcQjh7yWfYxL3L6Dr+fK2QRpZxQQceyaeQiWZDN+RlVkINGAJ7kgM8lmW3dS2zB7i9dK6FsinKFsc+ODRGNIgIpgi34jVy+Vk0z48jcJbkibPRn6y1o6DGNTMyoW5AXXENgBRJzlTXMxjT0H/uWVRxswTYtpC2ta2wqHm/gXBl1L6RSbWD7lm/5lvMwjINyPouPIhtC62bOAcE9uP4G4HKBJQY2nqEyEzQCCQn0OD3S8wz+r5VuoaBuJQoqssKMR3pPkvtZKetTbSpuIJ5hTpK4Wl72BPXkIJQ211mooCXoyHBOqZzz55ECWQk2veMZNpnwYh72bZvLgmG1Ruldn06wPVtgR2VQ9QSdJETU/JapYsP630gMbByFmhmf51zxTENEY/vHTPHPeYbV3aIRYZhLUydEtMt8qZHqLoKtlDCDoSGzrKzDzyUONhbK4SmUJQPKJjGweeG+WwXS9fXEiVLvSBgTQtMlk5mpj2mFY8jtxzN+MwoE+70PP3sE+jW8pVFPsU4mM9yfVe3HXkKVRLlfZJvpfpjXs+R1yyk0mbQk5cWMrJmxg4+1hvC9p7NwuDPbazZKOKog16AGxqDYiX1t1HdnirQXDqUdti5SpoQmMowDtiEupvDrd8mQYTk1ST6mriTnoAwRLRCPp4Z3FTWS9e/NT1vmNsP7VzCseteo8905s6TS7VElRK6vMvZoiCgwyHRVSQ6iYzJ1iIqwwoJBSY+n3WeH6/p1rqJD5H2lv+vkEp78Yyc5KHzLGT83dN1ZcF+IOq8AHyDBDFdhZ2LFew+HiBpDogg2q27NXGiAOS7cENFqA9urXvWq8zGOg3IeiwcJlvDubcfAJgUFz9ACcGNcMUSUCjrKAxI0oHgKSI5g8549rnh292ovuzZeJbDlIsR5+LkLe4163QDf8yYFN9vLHhOepPf6zE5pfuR9A/kzaYTjcD1rkoZ4eXwQ1pjYteg8LqERN/YMbDVZRNMMqquPc3OPSxBQa1g1mRmflzGEYxTBpj1anlGmZESQc8kLk2zrTpL2zL6JUmPVXQ3B5nPF9YbvDOXH65b2D7k2t5y1SY3pTt+Sb9EaJ9uTTNSCs09Z/WsDmxkiKtG/zlyqQWhbRPI13ETh0LygEM76jydTyC9yBJt1zZcBSm12JOXpmArr0kXl28ZS23Mv9+6gsbTIPxd7dja3S2e7hywZq3wVeaacvWZdITY9xy5TUK1X0jsd5v4ebyWXaMeZ1muapkdWLBzDlTvnnPM64WArZBGNEqQnCLaCMT7KIZlcK6A2vXspfYyzxy+WcA0t1vnQ3m+MaYVnLIeI5jpMFYItuLaiiGJ2PW7Is8/BMc7ikhPG+j1K+eG1p+sVEbCJPMnXsHTceQ4cfc17JubYjSYPsGVeZoCt50bz+m77j30jxjXX3r88MLCtUu677z4sFqnCcuLEiVEDOij7X7z04onny4F313j4kwPX23zEr14mvDoEW70w2IbB2f21deu5ieaLNIOqF14mueKiCl0N4WpJ0PG4G9bXbCXRQlxtTFsDhgw/9GDLpTC4BOVXQOmk85MbQSmSyXp22qa6lwlZ7H1udyGidhvtvbaRq2hYdQR2hmDLyZXT9ebOjySDmCRy5974XUWM7+1JpQQg0qDtoRv6uvP0mq6bGMMWcVSNd10bipkjQfbRJsuw2+iv7b1ib48FlPLlvE9ZT64PT8At7cfpt/QReTVIqrVJg211zQwRDc4lplhEhWtb+Rp+LhPOZ5eqwodG8a8EjS/sur0uY/d2Y6o1sC0cA0riNKyRVfb2r9I33yklTgi+d3YWmYjAJjY/6XcrPHt/rTAXPCOC5tn0QypTtJs3/iEs2UeqsL2C8RPO9842hkJNUNd6zqkm5btMEPwFRI5nxEj2Y7HPluacF2qt6/ZjCu4BJaOsXMee03K2kElFrH6yS3v3RzkP/WsS9WQtGWvvrgrZj77jgtwpS9RIX9qjvSQp1JBfQGJ61yk34j4h2LZL5zV1stntZsj4omG1oJsYjt2SIdAdYwWPdLTNmhBRa08rJeY4yCIaLJ/61Kfw7Gc/G0ePHu0zh1500UU4derUQRbRL9HioTCY8cjjYKsiv3T4IHIONvvATdAvFaEHHlQ+9w56oXXD71sOh5FsN8tM6hkNC2TV1gFREiCKJJ1i4+sRbFZI0kQ+u99mF4p2NohgA/zDifPU+W2WjaBBhEHQYMkEN5fXbbZww5KnyrjYe+6Nc4x789LKm9TAptoj6802sMXCDzvUAJDyLVrj1Jxl/Tgdz1sphMYaE+ALmG1IUqyudz1F6g6IYs+osligIkQ0ttYBf21YBirAF7L0fhw1ltpI3ZgyyO4vZRGNkhGnWcnyvuW1KAH2jgxjCSJDahI8WG1GCaNLhqdS3bHIjIjSrDOS+byyMaeQ7rtbG2POLCBuzNJj7UppbXgINm6YCCpfJcOEYyTvDIaAkYzKU7qDIaIJ718QIcSu95ytC+nYVXNOoa5duoCJfQ6um+9z+FnuSTm1gDbwtT+XEFe7idybVXUdaqXrJcNR1DkhnVf2GNmYguMs7D81Z2aPbK2QucPo0Ip9MupwKfUdjewpc3eaw3R1rTS8Pr/X5or065Wztw4/p+H1RrtBI2jN/rVKZlS3vYr5ETX0cgRbfi3qmAGG73GAYAuW7/qu7wIA/Pqv/zquuOIKCuU9KF86JW6Q4oaRNVov7y+6+ciF7nFsMag8YHn9CFec451sUSWiP7WBJCFWwRDREq+bHI7HqaLrdgKZtZ/VKbPox+kZ7VICWz/MaXN9gtPbwNntmVuPj1OPMf3ueuzJOKmQl9e1kUz+OL0MhHJuldBEnRFgJ8syq/u2edVKHi3PIJVwcTlG0AzB1guYhmEyWRtloXW+WCZ8R4CPpGLj0td25wssFu1YKFIm4IWVXcwd5YtdA3KDQdKmMGi7fEOZQpf3I3lV9P3pOMlcUuOvS9W+994XQ0bYpjE4tugaDgqdFYYJibbtSpqt2TOS29xmUaXKeu+y790Cgm3s+whnZQ22SZW8Ef3UKPKWrDBp2v2thHxOUbX8fAF0eFsQqbJSmBNHpeyoazVE3VaYU9OkewJrM46IGX4uPXvPMTpbhB2MpeQnVuZaeq4bxTPAzASa2jvXdVb4aDZta0+KEqTrkNc+M3tBwa2dn/vJd1aTvb7nlS3snbLs1/6zu8pZVJCPS+89imCLIuPZ/aVn985Biq4MGn+sujQ7ufnsvpNsuNeWaaoMwNG5VEIEBmlMkvuDfdfsc2FKiCByELDXoYV2o7JjZ1C/MO1r9Qa2D3zgA3jPe96Dhz/84edjPAflPBQ/Q6YtjGaEq0yRLmw+XptagGFjzLMairrqFOcpw9Mxyvs0gs0j/045XZCVbuOvIf9O77euybE6CLYVDkfJQWJmiSRZRK0DojNESg62kkfH42VKD7ESMsw2rEY9QDWoAd0kzd7qvKPWIOSgMJgCUuHR0lUlB5uXTTInFHc42Ijh3ZxLe8rkfKGfPa1XFeYkDdoOpwsbk67bNIMiX+JLi6KrcqQuH2dvoF/6RgQ2JjvsdPjZczowIckT2GXIa807igqiNWMyCcVZmLkTVliD0PbCpymi2Dw3Vlcc2ThtTpfVlQpWdxUlLxln2EjVYDFfJklfrHZXIV0Hhn22pJR45zq7VoPErEHfsD1trixsNWGr3rWZY6AHBgNbzkHrnW8+gj8ablyD/JHZpxkyLEEzZyGi+nls51XJiOklOUgNQj45PHWUB94Tw0isYrSPIsNkEp+xPGRxI7ctp9lyfGxtJOHoBWO+PY/zazV8WFEZICpLr4ry88bEsmlHZXNzHhJdx5rL6Xldogyo5zErUl+YyZeC+/EIuZPdb72jmjZrHHJSTrwQS3WI6OMf/3h8+tOfPh9jOSjnqXiCgVyA2w7yJzW0cP4mwAlZ0wgl8btnRKhBsFnkpG1fXMDLw5yU4kmyiHoHe2Zgc4xHyfWSQheFqwcz9s0LWUSl0Fd69s31aXbN3oyJ188ZZ81hXwyPDaezHn72+F9qQlnXpYHNCXNi39I6HG1ETC6YsEyvRQRb0IjgcTjKazOFYPPWuyyeQVuGZFchZRyDtlzDVj2PHywdty3ceuPRSQ7GCF+MkFevTZZq3TNstvsxrxclQi71k90f9KxGFYZUQY177ocQUX+MSd8r8Mx0ZXRWshEOh/b+2LXzabTLkxyk9WpCRK21Yb7LkSTQ7H2anEMFJbPIr2p9j4JcMYzTvzcasj/TGZgd+afkSBiDWmLjTLguybkhv+NMZ67VBjbJwVZIcsAcd272xZl/FqxP7bqRPXUV5B+7tlsMEW3/l+ebbRQxh1SB/CmMsyLJQVdKCLatwl4T3aMZDYAdPmn1k9/L+EA9WpZyMhcmL6S/p9ElpazO9Wu9qBsQY9iovYYYDaNZe8NG3Yr3Hj136hx3Rj9W9EAhxPRC5WCrRrC9/vWvxw/8wA/g1ltvxSMf+Uisr68nf3/0ox+9b4M7KPtT4iTUnjeNhF4WEFcebJqGD2UbtA7njCHyopkftdFOb1QbBL1Xw8HmPXvpury1V+hKXu4g8WcXcgMwAWK4tlVoc9MIhygJKqVwzknTRnPK+VHyrK7iJSsdOp7XL2ooBob32WYR5f3XCBBRCHqa6XUI480VC7XeHAMbQ4t4vErzZcrBlnF2MEXcRC42/TgXjjGsNCZZ2ne3TPaamqyIWhm3EKhtP8a9jXxH9VxPJcXC2xNlFi12f1c6IWu5FLyQNUJ4UAFh2ams9VIiOPaM+WsEhVoyKHUCu8l3RvakMWTE3NCTX4tnBoytC6A8v7xrzNhayrTYlfYdL+pCRCsQbD1CqMbQGwzhGYs6oMZaZ/8qjskMNYzPBe99ZvuXY7ySxV5vq6+Xtu/8Wn8WzaUTRZ/rQ7jtfAk3RFQavuX2WTKgehmgU5mmhEoTRuUKSgnWXttmfq0UspageQqGTQ+RFw0/BOoQsP04i+jwvG+PUxfQCR5ihvPx6L3YOKks64AeiiGvwW9End/m+4yFiK6R9146d0qG1WjYvI18jp9vJT7QrlivuCrSIDi/mqbB+jRPNhTXnxi9SFt3oWTKC6VUG9huv/12fOITn8D3fd/39deapsFyuUTTNJjP587dB+WLUQbOH58jxxPcaKhg4SDzNtRoSKOLYAsKJXqYbtipNrARBFtp83HTN9t7Md38dJtjEWzSk+hnibQ52Kw2LQNbDQcbF7SWRZ6DsdD2muxpGdl9cB4DEsGWhiV7CkgpcULUg0sRbAXjc/fuS9/S43CU13S4ja5apdyLNr1QRdYuW8PbapxRxa+7XxZZLUqQPhfIMFY3yq9BCYHJ/Jwt0jM8mrm2xrBgvk/jeSyScKACfSedOE4omhRui6Tr5jyy+h5+LikWYw01Y8I0owoqEDecjTUyeV7/lr/JC68nqOsRSKgah1gNQiDKm5M4cWYFhTI8Z1e/RutOOoUqdYpFUVNj1lvNnB04JOW7tNvszmovcy3N7Ffg/fQM7wl3VQEdTjM1WryDhiHRKlEjAHNieA4guYZtx2rNXhEM6yOGTdtoWGP0z0sJ0dzXCxow2P3hENEEzBADHkQzuHt9AWpuViQr64o1FWpkRHmpFEFQi6YG4CYgo206Olly70gDbAkNLcvaZIJdZb+xqpaAGNaYNGXBhVKqDWwveMEL8NjHPhZvetObDpIc/C0pHgKFhg95h30FdDiKYPMMLZrsNZoVdRWjnWWElMrbVpFnYajrCUWrIjviPBwxz30JWcEORzPJwVoeIlojDHrP5GUA1Nd2CgiUaHY9K7V5ybi34xBQt33LOR8LkyyFiEYh6BtTsoYd457kDCsJmF4WYnm/zgIYXRuludQJzWM42AChBDjhQ0BZqLB+n5WMv8Lj53EYybrJmArPWDLwrU8bnNut66fb52qMkFFlJYpgi3h1Pf4VisIICqhFhW4FAuwaQ82+c7CteD55949dl33m2mVqfM72rxWdgW7fI42DlLg8+I0sWalpygpl7Tijht5SmzPltMwdSPZ6NZXpsXPWWW+RbOu78zbRj4uaJH1bmZmTLKLBKIu6xCulTPec6610vcbQ4iLYEpl7//e5mv04yvtXM+eidVlSj0mTE8NHUXFlDkeHmkTuMwV5LmpQqkGwjXEKtWOqOYfz+6MZMqvON3OPN+pFkx+RfqJIcCK2tuNUsp8tIxohogUEmzyvL6RSbWC7+eab8Yd/+Id4yEMecj7Gc1DOQ3ENbOJS1CBVRKqIRekZmeSa9DLM6YQEnuLJNnMPsTAvoLg2poPhqMizQDbzLKywBmUTPewrkFRRAdNSpOX9skiElHV/f01s0LFwFyRoL1MgmsbeO+undBB5yEFJjJ+GiGZVOVxde8QrlPOw8WU6wXTSZISjGSJPrTcvsQbLnuZl7JRGO8BK657d2o6zoDh2SkgN75d3TSYAib5jIBeUWCi817c07rXX837CIaKGEZL1v2GGeftr2EOw1Si91jMyZJoXxp/0w/bEzIkyLuyiZBRJnBOBbLbsGuVgC6IwRnOwRefhSM+7dxZoDkcvG26aZCnaT2yM7LqNfiG8SlVh623p5tL5QDNGDXbt/UbfQqFajWfTOl9j9eqQWFH5ZwhL9pxC1r4JEOWaGDs8Q7HHJ9yO095rIuu9Cp1prg3zdv98EzKAJc9FjTfA+BDRUsit1zc7n1ZJPiDL2nSSfPO2bqyfGiCF/nZsblaF8Xro8MJ6s0IVozJJez2/1hD5a5RuUGFgs87s6B5t7n3UADvuHA5TNayQ5OBC5WAjWyMvX//1X4//83/+z/kYy0E5T8XLhJcKbjFusyJcnRk7HGOYK2iI30vkucx7HU2cYB6ia8O1JES0sEl6KCEu1OTXzks2p702PdLz9podOhUNES0JRF6mV3kt5UDL67E24557f210/TPEbnd/EVZPUJve/FyFN4LNL8sQkaNVh99l+HTRAFvyeIrDNuUXi429FLLS7SF1IaJGvU5JXMoQ0bhQ4T1PyXM+cFbAzTIrx1m6RnnIzPChGA+IhUKNvt/IOK1+kvvVOLmBbPg54XF0DNqymN8o6PlODZv7JNgThS5KrjxGgeB183pRJEBN/2nGYCfJQbIn+ed19Ft0TpTQOI1n31irePag4+58hK3WcOd5/cgMzFZfVZkSg9+tiueuM7AVHXzt/6WkVRZ6vx2Tzym1SuKVktMygspLfzeHPtqwUKJ06K8RmTeKZgxnaSTorDD9QuG91/Tv9Q0wo2HQGF/o26NKYOHLY5xnbB7zJFHls73GQF8jD47iR63Zf0bK8fk7asJ6Ys2cs2U/A8FWChE94GCLlW/8xm/ED//wD+PGG2/Eox71qCzJwTd90zft2+AOyv4UL8yJKX+Z0h0ML9PXPKNMasCIQeVni2XC3+sZ4zzjDQs7tTZjnuQgq8q5MKIe3PAGn98r2/QyXslrSVawwgFeRLAZQmZJydsJKp7lzGlSeKrnWYh6/dhh3XHFlZIcpAkRPB6hJlQvMnZZNtcnSZYzq81kvYnQmNK3XDrrUt6/nyGiUa8fUBGO1SmJgkcoKvCuTXJBR95aQjhyBFvsGxfRDcnebQhKhiGg9N47I4aNPmkwnRioyYKxtO+HKDD6e1jj1v3MnJDsKs6xFQyb3tkKMENeTAinY4oK9hUe6bCyUWGoqQ3x0gT6HhqxTGeRj8dTauQ5xNqMhtW0bcbek2xySKzBvlF+LYp0OXl4Pa+3goI6my8gQOdhBH8YrV+hOHoh7qUMpp3cq5NW6W/EEGyW4pnJs8Z1Pe4aJ1uJdiPjw6v4vlXGeKfvEpKou665mywHg/WOS+tqt+DYLRlG+75rzo2g0Q1g531eL4o4TWQQh4NtbNbvokO9YCgG8lBFM8y6as6aVUPh0zVtkscx52dJf/Ou9deFGM9C7muMuvFkDHyfzO9v/79QEWzVBrYf+IEfAAD81E/9VPa3gyQHX5olGiLqJjkwFKr2fv/Q8LxpTAHRa1WHcyZ9ZQY225PnZYiSwpP1jqTwVCL6T7I5zThXCtuMbVSKUa92M1Ylmt47TW4xPLu1ydpQbv9wjBrOPG+4Hk9JeIoL7MPPHgdb1/82yvxN1KjsrI0Sp5wdCmaPM4IyTFFhizAHW+l694xtmLccqxL4K5T7kgKTXo9yVAxzbtETMccE3tLcKpHsShLokpE8ysEWdXgA8SxeVvY0T9Gaq6yG0fdJFRh9PgWQBJ5HnvPpGW0GlSd5qRTiFd33VyFyT+qFCb3LIbfutSplMjbnpDdc2rky+oeaLKIjlBogbgSlBrYVwoVZ1stknPpacJ986BXHQvWAgnNi6WevrzEUh+cXazM85/05t3AQbNOJnYHZRFcFjQM0vL1w7iQOucAZtQpCsXSNjdOSET3DqD437H2u3jBQijSIPnuUIxSoczpY+0XU6Ffqx3M0VTk3K/rudK2S8RfIn71GxmNOPrNucO+253wMNQnYc2QVHSRpMyi/RGVU1kbUIVfazw+yiAbLYrEoVzooX1LF5RGi3oUJrVcWWmNwdSYU5ILG8LMWYHT3tZ68LkOUGyJKPOJRLoyagzXqmR3PcWPV8xWt0nc3s4hah6NUzoNccUl4l/GYzIgQRmyMRIatxIcV5F9ZKbU4GWeEzyIxDKwYJuC944VCA+hHqoL/14ypUsGeL/3QcYZg0yXJApzMY+sdDT97WWZLY5clyvsH2N5iu+9KxXGur5F6qjAFJkOwVXhwgXysnHQ9+N4L9UoJYuL7sf08pT2xK2Glggj20TkXRWbR/p02Z/OFi4BNsy/6zsDR52jwfh7CXM/B1hWm1Nj7SuzaQy47HuqbjdMisW/bKN/L+rKqWtdGyz8FpJuXWANoz9bZTrrR1ZzNWYRHgnaP07KUiOSjGV2j87DmWx5az6McyPQi/FP5tWhWQ2qEHIHq5YaN2JxjBpSosSUsdxIwQyZ7VaBAoyg7YNC1tgsUFVa75y1EdIQ8Gd1P2f3R/ZxS0qh5xzhoa3SYaCIL0/h7kEXULNUcbLJsbW3t1zgOynksC0dJbMjGqxdwEiJawcE2c7x+8lbPiNA0jRB0Fsnz5N7rei4KGQZnhk0lIaIF9J4h6EQ3WMAWKlbhYCvWDW7w60Rws8Yf5WCLHvZsnCUhr/zdV1dqapQNUwlg6y3zJE7sesHvzg7mSKZXud5q1npyvWC4WnoE2BXvOOq9Zvd7QnyS5MA0ksf6SBFspZA1OY99Iuao5z0atg7EEWxVimNUUQsiFK02aYgoFcTT36mAaHrEY/1E0XPsfkbYPMbIFVcq4gi2Mc/D++fXFkuoREdpvXWKYIv1XWVQCu6JG2R+WQjNVZw1SV3jsjkX1Jg21ya46qLD4X6KiK8O/dv4KMPS2McYNnndqCNhT0YshIgCcTL2qHOVO+P8fnYK6Cwddl/DBxw9H/SYumLJiKsYcGWxjWH+OypFOUT3uRrHTg2qV+8Llq7D7i+tjSQ8V/XDDGRjznBZtySbA/mzV6Eea/bJoLE2Si3AZG5LhgnLEHaTYQSbrT/ZbZohokG5ooxgs/u8v5dqA9t8PsdP//RP46qrrsKxY8fwyU9+EgDwile8Av/hP/yHfR/gQRlfZo6SyFKG57wmUmj1wySjpKeSyDSaXS81hhWUyYLxplPOpbe1FPoo+atKAoBnYBtNxF7TZhA2XQojSbPH5v1sGt7JqpC1Mc9Ohaeg4hkVIGqE+IKQteOgiVJDnI/eiyLygDifRfecKfIm7kksK1/D9TgPSKyfqFAC+N+t5XriYzIRbGZI0PBzNGuurmtnEMuvlWD+NUgIr17Nex+jwFBuEW1gK3CAlO6vIuCP7imiXomfsMZgEM8WNoJTpcJ4EzeWjuMhG4wdC4WA1cpGHHFes8dHx1nDwRafC/m9NZxjEeX+QZcdI2vd7MZ9dyX0L0dixt5n1NjA6+b1fATbQiWdye+3jEdmeFtQ9uPOuPzempDbPIuoeesoYzqrazn4mFFnTJhmNFFI239sztch2Iz7g+sSyGVxNmfsLLXWeNhcivUTlgFGnllA/j3rEFP5NdLNOASbKQvb/UTl5nFJDsoUGX3fNXPJNGjHwpeB9Dy4EEu1ge1nf/Zn8YY3vAG/8Au/gI2Njf76ox71KLz+9a/f18EdlP0pLo8QUeQ9b9qioCzUoBu6/ktGkW4DKSUkoKnNPWGwkEV0g3jEbaOd6N8JER276VdB9aPCQsFDV1JWot7JGmNYifDZbtP3NNciJpLxMGE0qiSGEWz5PNqPcW6u13mpigg2KlBxoUKHD+nvGQ3rY/2vYvRL+rH2haAnsGw0i8/NUsKMVfaFkgc56sU0iXvZXBjBQVIKPRjGE0cSNI2RPY3unavvvWO97Fy4jimEtYar0jV2PboOaoxMLgJ2sUwNltrAJu4tc6bGFZCosmKeo4QE31ZqjL6D/QCrZ5T9igfk4aGsvVKbcu+MJjRp6+bXoka/mjlrJ1Th62WmE/MYzxTmoA2ihLgzLv4+I3O+7r3F14tpYLPkjyCCztq3ARsFWtpPZ8XEUTGjHUNYhzN+Bg0oJf2pdG1Kn708RmCcEZJdp44MHf5orasaY3rN/A47GPP2as7r/TZe18g/0eyt7TjzemZSkUKo9IWaRbTawPbGN74Rv/qrv4rv+q7vwnQ6eCMe/ehH46Mf/ei+Du6g7E/xMuFFM53VWMhrwhm6DaBkaEkEt6WT2U+GiBYUVJnRKMrBtlUhsHtkxDUH2aoCs3d9Fe+NNLZY/ZscbAUhbaUMmYX3UctB0l7Lx26dl1VKb+F5PCGPGUWiihY7RG0EW16v6z9FLY6bcz1cfAk3fMhSdGr6r/lGHhJiUdgXrHC90rqcJRm88jFSA1tYSPPbLBnYahGOpXpsnNFrXIFRQnjN+VSBMDKNHcE2abhNFJFTsbaiWUijJOF1ilbsGvtGUQUk5cPieyfNIhrdPxweofz+vF6NcdFLBpNcq1CUotkG9Tif+agHmu2timrp9q8ao8wYnrySjFm8vzTnCiGi0SzqUcO7FQ3B2qxBUuUItvj3tRFT8fduItiCBu2qJCkFuXOnECIanTNjszdy1BOXB0v3R9clkJ8bTdOEQ8xrUKQ1yT502G2VM69ir4miZcP7cRUyzKhXkaxMt1mDwGdt2tlOx66D4ecLMdFBtYHt1ltvxUMe8pDs+mKxwO7urnHHQfliF8/Qk3h19uo1TV6XI1X8g6wr3Cvc/p+i53g/0hhWTDJQzL44CE8zD8G2RgxsQQGkRsgKk/zWeISCSkRJcCsZLE1+r8LhuBIXRuEQ9EIvAaYABfup+G62Ijz87KGZ5BqYFUKdawjnrTBezckCDAJRSUHlWUT9ddA9+yo8HtY4S/WAuCAuYe1edmHreg2CrTS/dlZBYpYQbAWDdjSlfF24cH7NbNPcOxnqqSyEszGN5W8qGUa9ewEW0h1rEyAow7ATxuinJhPvCoiJrvBvVMddtVhqHiF97/BzESE90rAZJUhnHGxj6ApGZ5RV9Z7ysMvs9mqMrcZeZ/OAVcg/UYMyURxX4cocrg2REynvn/WNV0fqAvn3oGF9NW0G6tago8Ya4w+ZCDbzdvd9yGIiapz9AwjQiIxOcpBfG4NyrvlGpT16lbkUpUChpPw1+op6p2N5/2rGFNVnozoVEJdRTcdIcOxVIaJUT4yBDGpCduX4FxdgmGi1ge2GG27A//gf/yO7/ru/+7t47GMfuy+DOij7WxYOgi2aTYl7+KOCir8A5wXhxQo9KG2Q0YyfM5U4QZcUwca9P+x+G+WXXWrvH6HAjIaRm1kRJRpAJHgw+rLg/6XDqYSosY2L+bUxHCTAuDA2dj0aAlg0yjiJQoA6NKOZiMKZSyXP+arvo3v2ulDncc8eNfzLPckz5lv3l/bYMveLeEcF5OIqoS0l4XoM0W003IX1HSWwtvqvQ6CV2xvqrn6+8bWx+vuoqRvdk+ooHWLjmUyaTDiv4WArhbx6CnKSxbyoTOb9jA3tLSVKKt0fRbrwBB6xNieTBs9/4rVYnzb4mW95pBmK5fVTTtLCzze+3qx+Yn0z9M0Y5DPLImrVjco/qzhrilkvRxjJas7w0SGiFQi2DNle47AojNPjgGXXapCpq8iDsoxBKNl6yfCzFyLaXlt97FFEHrsfyGVx08A2MjQXYPtXPc2N1147puheE3cW5/JP/BlrkHbxCKCy/HQh8rCtRSu+4AUvwGte8xq86lWvwnd/93fj1ltvxWKxwO/93u/hpptuwhvf+Ea85S1vOZ9jPSgrls7be17g92HhxR5bdAOQxrDOLlzyKBU52KaD8OQlgkhDTmSIaFbV3uBrkFCjvK3jvlEJwZbwcRnjtz24/qHhwdXZOKPQbjZO25AY64d0s5LXb9fh6JPtzYLh05Fx2jwxeT2JGPX6ocjWwmHdPVOV126EEQGwhTKrq27saQZks8lQKEeTPHccwSbDScPE5QVFfBUDmzm3K1BP0ZA1m+uNKDABLzcQd0504b6aKyRsAAl+n5q6NYZicx6PMMSNNTh2fc2EUM14yOy55M9Dbx7XOHCq0IxRpbnCQRldb3UcbPk1Zqj+mW95FH7iG28wHUz9eFaUVaLnW9Lm6LUxSYyqNf174XYZB5txfxTBxqIUtLwhb91dITM660vPharzNkiqz9q1EGwcYaR/5988v7f83F0JZ5Os2SdHOHbbuun1mkQSVpMsbD4qc4d5xCqMrTTKQj1AlLaC9UOTtIz47lH5pW1zdec9/+5pm2we1cjXUWS8jWArh0pfiJlEwwi23/zN38S5c+fwjd/4jfid3/kd/NEf/RGapsErX/lKfOQjH8Gb3/xmPO1pTzufYz0oK5aFE+YUTsNbkbWlxlthrXVPoSsmOZDe66BwLVOw2143G8E2hgC7DuKc14t+NzameGz9cK2Y5GAFBJuXWIOOs8aDO2J+jyVxLR3Cu46RyQq1YW3WeJVXSURRe41dl+/YCxGtQTfYz27eXh2OVcr82I5JK/dxBJmtoELU5WFwbbvl8eh6JadDlIejhvev1olSumZdrwkRrUEoWd2P4YpkdavIiEcYQc/Ht2TGfN2GVpy8/quyAGrDBDGwhY03NQaHKNKFGRdHzIWx86srnnGt7du+HqVqqHnHcYO4PaZV+efYNcbbFU1yEHZYFL5vCYkZTQYD5AaLGseI5scCvDB+S5a2EGzm7fm63qdzPXI9zF85MjuwlaAByJ+JcoyugLQronpHGLmruNHIvnJoI50jtlM43g814AYNyOEEQtRwFdu/aoApYxBsox13wZBs3dcBgs0pS/Fynv70p+PpT3/6eRnQQdn/4ic5yOubG3SQC4fdzzxscW9te/9ssUTTxEJEdwrcVWa2wMLhJDnYxnA31HGw+Upzqc1xCDbbYGknOTD4vYJGJqACrh6cs+y6dYiORR6GlS/DcFYSaErvqMo7GBRWwh7cCqi+pTBUkXdHPeojFc+a96nfUynVecIdVei7lKwjqgRIjj3Zv/WNowqhvV6yS/T+6PNElbcaBBvl8pk02Inc75wlyRjZnAmSNo8POVldUapx1njjlO+zJpyqJEPszHiYkxx7isC1x6jLWB4hq80aDjYbdWDcW8Fjxs7HSKnZTy30IFvrkyYN1Wv7ivVfYwQNr42SwXDmO0fC8s8KDs9SRmm+XvNreh2umsTC64O1ayHYomhGivYKn1nx9WLKP8Z6qwrNK8jX6fW0Lgvfjs4vGv494iwbnUWUzLvDao5EZZLafuJyb9ApPRK9NyYhylgKAquNphmHcATSuXQhZhINI9gALngclC/dslwOKe3HeGWohyyMfrHHF0YtdcaweYGDjRiEvA2xlC1QHqKlkLk49De7RMcZNarUeCbMNgueiVJGydWyiK4S/hg7BNs282u2YSHWDxMmVwnXc69Jo0yJf6Uiy1JUCRhjdIu02YeIMuE8ulcF3ydgOwlMT2LwHVt92Rxmw881mUGLZMTRvbdC8LOQNmN5/6L73ygOtgr+qFXnrHvNVFTMbkYhitl1Gw0ZM4LWcL+skiG8K+tr8XVZIi73UBj8vVlrMy6rhLmeTEU8pkjTNisUupqMtJHCQ0Rj+xeXS2LhgqPXcNiYX5hzhYiIqPwTPlvFuBcFNHUUYQ0YIaIV+xQzSNuGmvxaXRbRWD0zQVWFXDDGyMQcQNF9hWfJ1kam2B4LEAPbeeDQrnO2xPZeADikEnFFE5ABZQenLNF9MipnMfNINPRyDIKtJoKHthmk3bDOay4DDD9fiFlEwwg2AHjYwx5WNLLdddddowZ0UPa3zAsE6VE+K36Q5NdqlLwSIefQf1tvtlhi4iDymPHGO4hKqI4a788YlCC7PlYhi4aX1AiYJsnvCsabYghP8N1RnoURAkRd2JfRd3AulEitEy6u8PwwhxmG29u8EfHwkJI3zsswB7TrdY70QI4inKLC16RhCl1+bxTBZgmyNcZSC7VQ40msWhuWgS1qvKkQZKOCeMm5kdYt87SwftjaiArCUQN/jcOjBg0QzUoWVe5rPNI1SQEixmeAOHYKz+glAKFjt86SoIOR1Q2HglGEQWz/ihqe2jata77c7pW6JAfDz4vescvaBTBX18zzPr9WgzKMUgtEkxIB9rNH0eFjHG+sTYr0DczFmn3bC4lczJfZNV1sDjazyWzsnEA/aNisec7gPhk17rF+onrA2CyR7ByN6hZjjZh1CLZyiGhNP1EdFYgjiscCHKIJBajcGTSG1YWIpm0wSgftzFyfNqH9+ELMIlplYPvJn/xJnDx58nyN5aCch7IK4qqKgy2oPO0X4fNsscB00dB6LMmBtf67+3cSXqS84ljvTw1CYAz/QRRJwO/3kYvbJQ+uxcFWOJiLHGxhg+VILgxToYu1x/qPv3f/YJXvyJo2NZmTarOIptfy9moMxRYCxSXQVsrXWFRdFhpTIwwGhebSfN+pQGx2+9dYNFHNXhMPEa0Q3KIhkTWKo7rMDXH5tToOtug6OB/9VCgBUY949FueB04Xdo5Gufco8lnVrSMEj/XN6sbJzGsUunHj3O8Q0bo9vsLhMZkASJmv48Z4s8m40yHYD3UwWnKiiWBb3RgOtGOPJF6pMepEOdjq55waZ9AJGzXwjUUt0T0tOj+MelZynLHrBcjPMx4iml+zQ0Tz997WjbUZdeqMpUUALAQbl+312ojuPxzVH1vDVXKWhWgmiL6mSbl/uWO3HEZLx0nl49icO7QW2z+A1BFywMFWKM973vNw+eWXn6+xHJTzUEqZj6JGhBqhs04AMNp0PGezxRLTPURPSckrGYS6PUmu+ygvUTv22HuqIShuzAPTuFbzjkcoWnIjL73PaBZRHiKaVR3FqcLuj5J0Wu+IE6Ya14LffSz/ChP8rGIirIIKYdRTzK7Lcc56dFaN8pXXi2YGtcY0FnEFxDyJSZj1rgyz9sfocfSx6+beXZE9zQq1PGQI5zVG3egargsRjQmYNeFyY8iy69Cu5+H+KAqDOHC0YF+DOKehV5Py2gDic5YZqvVY68JlauZHFKEUOxuBuHHAlAEqvtEoA1vFPjkWiRVGjJ4H43XJ6VhyjpjOq2gIsLN3ZkjuIMIIIOi9YBZRa0g1yRTMRFhmkiWzybDhfAxCCKhItOb0X4oUYtejyXmqsmRXhKKGz+HomTVSTwTGGdjCTnqKhoy9zxoQiZkYxHG4lJJbtWNSZ97I72u1wQxsa9MJNtYmvcOB8bPrvg6yiDrlfPCv/dt/+2/x9/7e38MDH/hAbG5u4rrrrsP3fu/34pOf/GRf58Ybb8Rzn/tcXHXVVTh06BAe/ehH4zd+4zeytl73utfhcY97HC666CIcPnwY119/PX7wB38Qd955576P+29TKXlWosp156nRZRXhuNS/LaC215ZLH9nBsuWMCbOsIhgNbtBMqBijjI4lxS59yxIHWxj2LA0tkvR9hMDNDrcxwtNYz3lcsM/bo2GF4fduj9P2so9RQFYTuPvwISZcBxXKOiRVLDRmjOBoCYPSaLVVQEGsGftXVMgC4vsHq2uNP4pMHY20q3BuRBWQurALy4CS1xsbsh/PmmnebvNFBtGl0VDnOhSXWTXnYKtCsPlzLqUWKI/RGg+rW5PFOGoUrnn2OEE6e07r2urye93+k9erccJEw7GqMgMG313J6VhKOhM+Wyv2pLHhaZE9nt1rcavVODLtJAc1CDbVXvBcZ32PRXxGkfE1Bv5o4gZKgRDc4ynNTVQnDMu3ZjdVIbs6RLSGfy48zpEG+jHcZuya1T93QAfln5pxBp2WAHBEZHplyFDd/wGCzSnL8/ByXvva1+Lmm2/Gtddei6uuugqf+tSn8MY3vhFve9vbcNNNN+Gv//qv8cQnPhFnz57FRRddhIc+9KG48cYb8YIXvAD33HMPfuiHfggA8IY3vAE/+IM/CAC45pprcNVVV+FDH/oQXve61+GWW27BW9/61n0f+9+WUjSwVSoGIY/BedjQ5GLvhlASjkuQ/uizc3REfi2ahabGMBHP5FITJpnXKyk6STinebitHl4GsIMsrxdPm22/O4tANspFWIV6GmXIG67tLvxQ5xpFOspnMYqceWK/z/1MkjBci4ckaUGtShEPKnSWMCiF4xLnoMWBNhZBUoPIsbIdjkmM0fZTI+Q1RU5M63oUCQDUea/jHKUV3y3smBkX9l5rEN8tGPJr+rbqckdVzDAh11GSzTszDo5UJqkxzNo783rW89RwsEU5IKu4sxyUQanw/ceoW0OHMUImq3LYjnFaSqNuEpac923tk1Fk/FjjD53zAdQU+z5dX4uExiO+tqxxWs6aaNbw6LnO+q7KTj5in6sJr7fOe6DifAvKADY3rNlkhUE6v7fKEEgGoHn6agAOY9Hh+5WUpFSXob4y3sHgnOMIReMaee/6PbP3DgBHN9Zw99ldAP7ZkjjVL8AkB+FTd7FY7Ht46Ite9CLcfPPNuPnmm/HJT36yN5jddtttePvb3443vOENOHv2LDY2NvCxj30MN954I37sx34MAPATP/ETOHfuHADgne98JwDg+PHj+PjHP44PfvCD+IZv+AYAwM0337yvY/7bVkrQ5RplMkoCXRM+FCfZjBpvmDJr9Z1fGwPjbq9ZCn9+L/NMRAW/qDGK1w0eJMHsifT+isMtqiSORZBkAlGFsD4W9RT3hg3XZkXDZlx4MdfRGONgjfJTg64KCjBRo4jVJhMwzbk9IpSjjoA2roBEQxdcnjtVLOOCFdZjcoiw91mF2Eive6TayXhqSKApgi14PloGEHMemt1UeNnZ/dFz2DjLWNiHapMp/NYzxdGdcQXE+hZS4N/a5YZqqjgG18ZoOgwTQcL249XbHOuoihYWshpNUFVneI9eM5skDspg34X3XsoiGk0gVIWQPg8GxxzBZt7a3q/6r+EStOpadAPRc2Ns0gf+jmJtRrmravaPsedbdK+I6m7s/ii3mYVQZPez93R4QyU5qKEWMPeU/N6xoaw1ukEeOcH731Tvj62NaJKDpmlyzsWgIZC9dyD9Ruxcb/saftbgnAuhjDh2x5cf+7Efw7XXXtv//rVf+7X9z5ubm1gsBp6e7jDv/r/nnnvwF3/xF8l9p0+fxkMe8hA88pGPxNve9jZcd911eO1rX0v7397exr333pv8u7+VEoItiogB4qGfVZnGzP7za1FBdI14HMcIKtYmxdoci9IJGwIrBNkxAntNNrkoWTYT0kzlzbgYRUdFvVTMmxT9FkD8HUfXRpJFtIIYvzROmycvJlAxY5a+v2bOMCNE1BBp70l2m1n2tBqlJuxJtN9vVMirykoWfh/xfcEMEQ0qjmM5x4D8PUeNMpyjxrhG30fsOaOcUHXozLweDx+y1obVTwyhaI3pfKyNGiSC9T3l/eckl6Hqv4bO4nycozUo+GibNXKanTVzdVG/BuU31vgTPXOjCjI3BNbLcyUuVD2/GZLblufi72is3BkNEbX+VhX+aLxjE8EWRYYxx38YWcp0kNhZ5ifrCPQTPK+B/JmYYyRq/KnJxDkmqRozsNUh2OIcbKF+Rp/NsbkQRcazvRMAjm2mQYV8bWiHGG9Ty2/UuKeM32zOASpE1Nk/ZF8HIaJfxDKbzfDLv/zLAIAHPehBeOpTn4qLL74Yr371q7G9vY2HPvShuOqqq/DBD36wv+fWW28FAHzv934vTp8+jR/+4R/Gpz/96f7vX/7lX44HP/jBtM+f//mfx0/+5E+epyf60ijzQpKDGtRS1ABTykZZ6j/KxVPyYEjj4ljU0/q0wY7KahgN3fSMi6rJ8PuoQw5Z14z7LYL2itCW0Qi26OE48r1nQmMVQnGc0rwKQfpOiYOtwls7xsvuIRHmgbC+2jZlYWd4FQdbUGAfM05mEFqfTpIkIaz/GnLmcOhThWKhDTDTSWPuAWMNedG6POw9qIBUKUr7u/fWOVasM69inFEEW5ALbD/WsL5cxUNWUBLPJSGi9ji1xzyKOqjinwvKTzXPHpV1atY1O+OiRb/PsZlWWRtRmSq6J/I1aIynlFijQDmiFdma71O1VwTnXDSk0g0RzRBs8X3W+r4Wgi26f9AkB8GETDVUC9bYLeOg1T89s6w9ntTVfW1WILSt12Qj2Mwm4wg408BWsceT7xE1sGUhxMSgPXZPGmvQzh36fL1pA1ucg423ubk+went4Xf27PrbsTkHpAY2D5km+zofNGNf6uWLimDrypkzZ/Cc5zwHf/Znf4YHPOABePOb34zNzU088YlPxJvf/GY88YlPxM7ODu688058z/d8T3/f+vo6AODtb387Xv7yl+PEiRP44Ac/iNtvvx1PfvKT8cd//Mf45m/+Ztrvy1/+ctxzzz39P2mcu7+U1TjYYmEkQJzYdWzGvmhoGxMAougoamALGiaiUHmr/6axN9Tw2MnzRJMCVCHYosaBoEEIGIfOGmMUYXMmip4D4saOaLiLHPtsUci0WrHeVjFU9/WCh30NuiEaKsgVkLhHPIPqM8F+xDiZMBjlQLGeJxryyq7VhEPo8VvoNYCEKVYp3WbVMGIiy3hVEcrO50dsnGPXYNjRVcHBNpZPNF9vNXuiWTVMmmyhnC3FUwr8JS7DMB2G+S3iSmIUEUwNbEHj9VjDOVtH0RLN1DoWyWmvt9XXVhQBwuqyxBoRBFuVkXqk8cfaK9i6rEGw5fyG8Wey5rFlpGKop2jf1hqqQbBF5ywLmYu+z0hG166EUVzBfc5EsI08n8wQUcOACjBHlVk1S3LAwuv1/XUGbbvvKHCgRq7QuqOLYDukEWx2PT0mLyFBFiJKquo553GwHdkYxrkz4+lB5RyZH2QR/cKX2267DU95ylPw5je/GQ972MPw53/+53jEIx7R//2Zz3wm3vWud+H06dO49dZb8fSnP73/28Mf/nAAwCtf+Urcd999ePKTn4wbbrgBl156KZ7znOcAAN7//vfjjjvuMPve3NzEiRMnkn/3t7JSFtEKT1HUszHWm2f1Y3uuRh4a5P6oglylnGsPTIXxZswh2Na1rtW8z+j91oFlNknIna16sXHywykmCNeECew30oVxsEUF7qokB9H5FUT61QiyTAmIKko1z5577u2+o6narbpM0LEM9CZSt6LvOAF2/HtEDWxj+2HfSPY3aeJGu6osokHDO71/xH7M2ow6LNpxxs6imuxlObrTrFZn6Mm+UcV7r0CBhR0EI8+8KLI+aohjdaMyVZjHcGI72WqKnnLUKVXlmFn9LIruCzUIttL8SJMc5O3qEKv9QbAZ94+UZTODkDM3dBM1GXat72sZYLRBZehbndcV+3YNqj+agZki2KJGyAqU8iF17q5TI1NsbUQpblibUeoKzSHWlRo5Lc8iGnPy1egqNU62aNRH1KntGcM0go2vYTXnXASb5rSzv1E0uQSQcrDtOJazJET0gIPtC1s+9KEP4YlPfCLe85734Gu/9mvxrne9Cw960IOSOu94xzv6nz/96U/jJ37iJwAAN9xwAx75yEcCaPnYuva2trYAAO95z3sAAJPJBIcOHTrfj/IlW0pJDqz1W5PkICpg1hBtm6FLxgFTEwoR9bxHhRIgbuiJenBrUH4MXaW7YqH5ccLnOJIhKtTUoCPC1yreewbpp4YjY4xBQwvrP3owy+dJuF+CyigzHq3CZdhfC3qQaxTU8aE+Fd9dc6XUoGrDhp6YQMTatBTXqnEGrzUN2b/UOK3MeEBd+GHNNzp1ZF2MJe6V5cgsazx2m1FU3vkgYo8ab4D8GzHkcw0KIzNM0HrGtaATh/cdNFIRgd88x4MosJq1bs/5WJs1CnI0nIs7hlS9keGhQHw/tsOsSZvhtWWNJ9Ymn5tBBJuot12Z5GA/wqzHJOaIhoh6xtcMUVyRzTKOYIs5R3jSl9VlLyC+B1AjeRDBVoNS1kaRaJgk68faO9lnj8rSVt/0W1Z8D91G9GynBtQRCFjWfw0qXzspvXDOaIhoDYJN98++UY6a5OM8Kg1sHoJNdLW4AENEv6gcbM95znP6LJ+nT5/Gs571rP5vL3zhC/HCF74Qz372s3HkyBFcccUV+NjHPobt7W0cOXIEv/Zrv9ZPvuc+97n40Ic+hE984hO47rrrcOLECXz84x/v/3bs2LEv/MN9iZQSgm0spD8aIlFl6BmxyUW96awuE4pML8ZIBIm+nb2jGkPg2mRSTO7Qthk0qozkJ6tBA8W51fJ7x3C9MR6MmoN5jCJeWpczsYat7muMutGQbhsqH1TOa5SvkaE+VcktNIKtCt0wTtCJKs2mwj5ynDWGTe09Zl57G2EU3yvYNzp1eGP4xZHHvuzSI6G+a8LL4llEg/sUqRfdV6IKeg2nXJQLbCxSt70eU5Si46RJEqIGh+D5VGMYsZCpVRxsOmy9ictpNMRd1fWUr2jJskmOlLMA+z1ZaCLzbA0+OzMirGKUKYWIakX2fCWCiCI+2bPr/cebHjnP1TjkoqUvsBBRfXuN87vOwJZfq0Fn6bOn6luScysLkxyZJKVKrjDlktg75llE499j1fDY/QhbD3NiVrSp7/ccHtEQ0Zx+gbep9yUWlaCdqRvEuQqoEFEHwZaGiB4Y2L6gZXt7YN57//vfn/ztGc94BgDgG7/xG/GOd7wDN910E44fP45nP/vZeNWrXoVHP/rRfd1XvepVuPzyy/Hrv/7r+OQnP4nPfOYz+Iqv+Ap8x3d8B37kR37kC/IsX6qllOSgBgVmbj6GZ7bGUzOGpNMUeCsyQtZsknaIaOw5x2ZJqgvLQZI5ocZYGn3H7HpcaK1AsEUNVxVCeM4ZFj+Y6bcMG9Pye+3nGX4uoVCtd8w8X/F5bAluZpPhEAnrezAlIDewkb4ryHu1EDJWaG3rxowI0fc+VvkKe59Jm9qDyoQxa5+t2ePZM50UCDZPcHvo5cfT8ewD798YRE1YCA+ivVibQP7ua3imou+pJmye75/p7zVZRK3u2f1jUM7m3Kw4D6x1UONk00TSNUiV6DfaFwPbCCdKzXkfXTNRh8tY5LOc29tJkoO8zSiC7XwkOYjOw2gf7G+MoF1/o0nD19vG2iQxVkYzT9Y4RqqiaMYi2EbIk2xtxjNp5tesx4yeT22bsfdpTQXGwVbDlRvlAos6dqsQo6ZetL8yN9NRAeB4OIuoPq89BFv6Ptl6y0JEvQgC8U08YNrzn3gd/v6XX47ppMH1lx3lFe+n5YtqYPurv/qrYp03velNxTqTyQQvfvGL8eIXv3gfRnX/KkkmzREKGRAPEa1R6KKCcBhdUHG4RcNqANuQGCVSjULTq1JxUwFzAsAPZWDXz0fYV012q2i4cNirGzVsVpCJ1x3ieb1weGuNMFihyI/KIhoNL9sHT2KGmKhAv0QRNVUKe9Dby4TrcHKJGkF4BHKHtak9qCxENGqgZ2Ni7/7U4XXzui5XnToc6rvOe20oAUFETVQIZ3JwjdKtUYU1YeucBy0Y5hR0KlltROfH+tRG+TGBf8x5UJPZz0amld/HxnTCla8sfGi8kVpfHpvgwOqrCi1Cuo+ij2sMlvHkOLG+a4xk2lhaJStUGX+CbQa/O5Mlrb9Fn8kL799UBrYoB9vYbxmVNVhdnkVUf/e4PMnmVzhMMjp2M0Q0/j7sJBoNmiY1sFRlESXPLvm9gApaA9Ke9ZhsaYzK6hzc410EmzKw1ZyZrOj+uYEtnuTAM77J8tArjuOhVxwvV7yflvGurYPyJV1KqdWtjWasZ6NGyApnwbE2uWD2MYAZ02LjAViIV1SpChoRatB3VFErj8fqGxifyjsablMl6AQPxzFcOuxwqjmY4+iX2DPWCAs1irwtLOT1akKncgTb/qOJasj22XrT3vcq43FQeKKZxoJIXwshEEX5ARUGWPKOjgYRbFFjA+ufGtiOxAxs+hvLTLuymPt+EP0CxN9xlOOmZm0wQVx/k7F8MlbdsSFrVhs8G1xs/4g6BwBbNhjL1aSvN01sr/CUn5wAm52N5fEMdWP7XE2JOjzqQohje51NZxEzqNcgzqNk+ex+bYAZm4EdiMs6Vl/RxBaeIS7nqx2HgAWAIxsxRE3UWBrmgQ4apAHyfSn9Q+zZbfRvDMFWg/6N7vs1smwUlUfRiEGuSsBKcjBOf6rb48eASMwm8xBRB22m5a/LT2ya9aLOKyAeIprNuQqj3UGxy8Fbup+XBMEW9Q4GibqZZ7ZmQzONGFEvQpWXyrpm3U+E+ygCpUoBSX/nhp64khiF1VtDMjlRmibM3zDWkxg1lkTDlLhhIigI1xiERqyDGiMRg6ZHv/sYQ3H0u9V5ms2q2fNTQ0+FMUwLszUINuptDQqD1nuPKo5jPe817z0LEa3wSFMl0ajLDJGnjmyY10uF2NfCSjxgjz9qsIxmaaPzfUT4UFU2uKDBlCPYYv1Y16NJGygPaoWSGE5YMUKZXGfyj7qfvXPAQjeMN/rnaKKYocUrelhRZwtQF9oXdUBRJGZ0HgfnAlXujbrhLKKmQ6sG9WTPbf3qvOygyb1OvYxXLvg+PQPb8UOpE+XwRsyxHA0Lbprxht4qBFsU/Vsxv3IEW1wGiDqAahwzUYfLfiDYdBuj5c7gO7LGOWnGOc8BC6XM14aOILiCGNjysGTHwKbeZzhE1Dm39sNpcyGUg7d0Py8yc0fUy8XDsWIbRVRwAuKCY9RLVUW0bW765u3kgIr1E4X/12RA5QaY2CY5xoAC8LkUQSPUQbmD320Ego164ysO0ajyNiYZgnc9amCzDFXWN6oyXGmDZQ2nXfAb1YQqUqV7BAcbG6cOZ2BzKeogGJMIou0ndj8bZ45gY6TFMU9vW9cQ+Endk8EQUQD4Lz/wd3F4fYqHX3EcT3n4ZWadmoQV0XdvfY6xRNs14UN6DdcgHKPnYxWCLUjUzedHbP+oURLHnM1RdAPjo8oR0nEDG1sXtiOT1fXHs0qJZhEdkwQDiH+3aHbzsQlNahweWkHdD7RqNES07S/2jSLj6Ypew1Fnj6fwaycO5e0Kzjm9vmojcOIZmINJDmj/sTEB+Tup46+M6U9jo1uACgRbha6ln50hMaPcv2OSle1HZvRo8hMg52C74vgh0n/caKdlOIpgC8650t8OylC+qBxsB+X8l9m8Poso9U4GPbM1EPg4xDmm9HZGHp2xJB46FVeQo1D9cLYvKpAZ14KHOOWtqThE1ycTbCGFiHgIq4SUP8hNBJDvEUSBjPHw13gHOU+ecW1EuF5NFj+gnXc7hTYBMo9Nwc8wup0H5TyKCOT8J/H1ptdXDech2xMPr6dHKFtvNgI2r2cqfhXv03REVDg8jqzr8J34O4ryR61NGvqNoiGiAPDVX3Yx3vfKp2F9OhmN8muvr24ks+aSxVFTh26IIdiiRmrA4ReLrmHzzLPbvORo6n2PGmCZAlJjYIsmG7LRRCPlH3W/x1ejz56aMGtOExE38EWLtYatMsaJAsQdatGziJ0bY7je2NmsFdkaR9N+oOjXJhPszocMV0EAm2tg05kzxyZJAYDjCqVzaMM2ymjDSNRYWiNf1iR0iyLYaoylbD9e9b231/J61r5S45hhn1PXrckiWuOsjtQbi1AE4omwap4nDxHlz5ch2E7aBrbsLPKcOOpvLBtuHiLKs4geGNhi5eAt3c+LzCIazdjJBOaoZ7ZGKLC8C1ZVa0FXCSXBZ6cIthEIBU7Iq+pVhIhyoXV1BBt9nxWJCiJepRqOinCIaDAkCLAEshojQo0CFBN+oopfW9e+rtciE56iPEY1hp5oiFdVZi81TM7BFkOGAXEEWw2iUIe3WFxrQAWyrALxGeU2q0FB5KG5Ma89uwbk4/SEs1OH60JED61PXQXRRqDFvtGhddtwZ4bgBJ+dE0vn16IcbPsRIpoZyfchfOjS4+m3jCJGa0JExypVNU62qOFKt+mFaEbRDdZjRmkEzgcHW9V7r0BjR1HsUacYQ0dFQ9Zsh6nZZKag1mTT3g+026oINi9ENIpgy+a8Z0SIIti0fByUK6rQtxWZr6N8pNG1MWkcZPwoA5vt7NH7ZzRKgiWdaeumv3MEm6W/jduXogjHGqN/vh/H51I8RDSO7rzihG1gu0hRaXjrTRuGOQdbTJYFOB/hQUnLwVu6n5dikoMKI0LGYRQM+QC8zc+4FvTmR8nMgbiAShFsQcW1BlGTCyXjvK1tX+nvPPtQfi0awuP1H0EzVYVZmgK3dW+snjUmFupjXeZKYmx+RI2lNUoJkB/iPFlHVMmMjynMhWFcj3pRmVGmBjGqn50b7crj6YoWhNkaHoWArQg5GZvxSpea5BJjs0kCdQi2SLGfPVZXC7tdMTnlgnx+NeuavU9t9OQhNPn94SyiFaTrTAnJEGxEYM+J1GN7HBsPUIFGqnAA6eteVlP5Sbz5nic5iCv8PCRK1dsXDjb9jWoU/tj7bJo432wUDckQuNE1XJPVWdMFVCH1R3JsWW1E93hPVw5zgWXO4rgRQb+3vs2gASXKgVbDG1qTmCeKUKoJo42+97pxRuU0/TufRxmCrUJOG4uCyvcksh9a8hx5JH221mQnZ88zJosok0EefNnRdJzOu9QyXDiLaAW1wUGxy8Fbup+XUpKDGuNNNJzBDDmr8YgHFc8aDqUo0WWNYSKeJTJ24LJN0vocUT6sGpLesdxEVt2oUFOjKIURbNExVrwj7km0rgWNWdb3rRDOgXwtRA1xrK8aUtpoFtExXHOUC6wi/DG6Nmp4mQ5vxNKqW2s7ik5gayNKZlzjwdWFJ5eIG2+ixlIAOHFofw1sdedbOi7NRze0Wb63rxtUVmrQslGPtNlm0AhalQmPhYgeiyLY1LqsMVKPRLDVnIM5Pw9fQ/L91XCw1dAVhOWKkUiRts30931JDBQ0CI1BfNWErFn7UpSaBMiNCzXoKObkG2OwDIfa7QeCLbh/AHmSg6gRNBqRUDM3a+pyPtKY4SoL63PekZ63bI+35ApKUxHca3IHNN8/ouut5nwDgJ/9R4/EFSc28dPf8shw3zQSpULu1GdrDXKQodjzLLP8fTKZQ5cHX34s7cNpU89btt6i2UYB4JqLj/Q/P5CEsR4UHHCw3d9LKcnBGCTTfiCeoogeS/iJepRYPzWcDNZmE80GFRbYK5QazuuW/k5DRCvCLqx3wjlQyt7EKkRe8HC0ecRiRqaaJAc1CIOw0c1EdrH1Yl7OninKQ1YzprEcbFVhp+p6VRZRIhdEDT018H+tgGwQlI6ZATFowB1rlKnhQdSF7h9miGhMGPU8o5qfZ2yxka2x98m8xzWIGl2Xh35b6y2GYGMIECt0KcqHVUsUbpVLj2kEW2wNs7lp7QFRqgIgjt7lKD+lKDnzuP2erezFFK/2b1GFzroWm3PnA8FWF5prt5ln7GNt5teijsMahd8Ke4ryMgL5fKh5RzWhwfEM8ma1rCyX/G/6/fGIiPic0zxT+gxlbbImsyQHVQa2CgMKDRGNGVbzdekh2GLv3doTGVecboMZDLP37nzLLCR7pEG7K9/1hOvwXU+4jv4dGOcU4iGiqyeXYHU3pzEZEYjLP5ccVSGi3hmTGc5inIeeY+hx112E73rCtXjPzZ/Hv/22x5SGe8GWAwPb/bzIJAfhNPVBITzqtQcq4fJBBaYKwTbSex3NAljjccy8whVIqqjnrcYDE+XeA2oQbHmb0Wy2rJ+xhs1jm6kHtYawmYU5Rb1kVUT/kzxZBzUaZgg2sxomkwZrkwazhb8v2IarmEG9RtCJhojWcLBFyWZrwk6ZrKE52HiIqPXdY31XKQEj9imrLIjyZTkDomFjnmB90dENPPkhl+KdH78DP/7srwiN0Ss13mv97pk32dqroob3Kr40hpRRCtRRYmDLzwL+zccZUGIGNnZeZyFWFUkO2LkR5SaK1rPqegrI9mxICnSJeg9eG1UINmasVdc9RT5aMgNKjTwXfJ/sLKgxPls8ipG+gTiCLRp6uR9JDmqMA/qc8JBpsswdC5s2mEQdYuybA3mmRGoEVV1F0ao1ukZVkoORoZc1CNg8RLTCwBbcP6PIZw9xlRvY4g45DyEVKdEQ4pqIKj2m/QjNzRz63to4tI4fedrD8NYbP4tXfeMNtJ4+96Ser0seIhp776Uw0J/9R48KtXMhlwMD2/28SARbGE0URDJxj3QMrdFez6/ZyAzjIKlAsFnd13gHo+EpVVkAgx4D6/aowYEpNZZiQoWNEaiaqEJWk9o8Gi7DlK+jmzHeLOtyTVahcIioIxDOUc6GCxgcbI4BZWNtgtnOkG0sqhSdDw620SGiNcbfYOalGm7GKBlx1EBfgxaNIixrBExdZvOFeb0m5CNLclBQ+N/4gr+Dz967hatOHQ6N0StVofBq/BTBVqF86W80NqSx7SuGYIuio4D8LK9BnFMONhUiyvrPeQxje1w7TrNqGGkX5UG02vSQabI86qqT9G+5QhebR+14Yme7F4oWLdFwrCiSG4gj2Gq+0dGNGIF+FFFjyQZMruja7ZxXNQp/FB0OOJEjQUOPLgvmRUE8cUNNiKhGsEX3Tiqb66iJqlDjWN2m8YAHMQdj/i4dBFuQC8ySi6ihJ8smGXUk8G85KiTbyVIZKRE6GqBO5tbGJ+rcrEDwZyGihXPjnz/1ofjnT32oW6drd3fPsOaxAOShn7H3fsCzNr4cvMH7eZkVkhyYKB2GVMmSHFQoC1UIpZjyVgPfNUNEK5SaeHa+1Y0INV5Mfjimv/MQ0fxalDi4vT+mpEYNTx7iKq9rtGl6mu02jysEWw1qoMYoE0Ud8KQP+TUm2+tn8LzXeahADGUY9V7XEMNGjXE8PCPept7XasKn2VzSHGwM/h820JvcZnGlO8rB5ilfci7tEuWrapwVCLau/n4Y1wCCYGPzQ42fJjmo2Dszw0RF6DcNEVV7/5ENe5wagedmL1NtVKFAiLygM52xNrWBkCY5CCYKYX1Fjddj9zldHn01N7BFM8zVhF5+IUJE9yNTdDSkscbIdEQ5zzaD4YdAnJ/U++zyXUdDBd26pmEiVjeKYFu4CDZlcNiHEFEdBkejF4KOu8ywGORGbO+NybybaxOefXotNs4j69Nkn/feUX5msjOryc6OKJKKGVqi2Tnbcaa/84yw+ZjGGnCi82NMiCjNul2BYNNzbD84MQHgd3/ga3DRkXU84fqL8cTrL6H19B7oGUxlKTlCD0q5HCDY7uelnOQgvycKm64TBuOCsFXVWuxjle4xBNhAHOof9vpVIdhiB9l+fCPzfQbQKk0TR5BwTrngd6v4lhmCbR+8x9H+aw77mmfSa8ETXuTfjm5MwwjFsRxsNYbVaIhoDfG5Hj8LpahZG9EsolHDl2kEoO8zvxYNMfWUr7XJBLvzFuHIEGw148zPjfEKf7REzzwgD+WjSQ4q0HvRMBbrfGNtaiWGIdiObMQFa40q4Qp/fq2GKNwqevw0yUHQycXGFN2P4+d17Pk8BFs0A6H1mBRFpupGDYFe0caFmjMzitqsQrCR/jWCjXJ3Wg7b4Br00L/rkwm20O6Z+0G2HzUEWm1EkxyQLR5AHF1ahWALErnrJuJJDvh8n0yahPcgimDzjA1ajvCoXo5trOH09gxA3bpkdZumwebaBFu7w0dkukHEsQpYCDY+Tr0WmOP/vGQRjQIUTKO/3aZ+JwxEUhPdost+ODwA4CuvOYW//PGnYdL4qFr9TF5dWbzMpAclVg7e4P28FENEKw77eJKDuIIaNZZYRoAaDiWr+xoDm7XRWvvUmIQENUgqejgGhWs7kxU7cGPGgbZuU1WnHw+rG0SB1bQZVSZtBFvFIR416pLzroavbUMJVR6/hRQEdEavrlQhO0Zk8YpyKDHBzUaWmlXjIaIVazgeImq1adUz0ITBfWFjanvZazgxdX+M28M0PgcF9i9k6EFNeOzlx1MD27HNOPolSk7P1q8VWsP2pQzBRlA6m2uT5N27CDal9DId1USCVyBGrBLNVGjyC9K9xjCWjEjwYl333ucJccZcfoJnWcsQbPuAqq0hq44W3VeNQYhnvk6/O9P7rK6YrKKN4jzJQUyetOROz3Al9062LpomRx1Rh2WFMT9LMOUsPdmsj2CLGdj0O/F5pmIGtij6N+ee421GM8hnCDYyj4A6eg4pe0b2xq54azhKzK/nDQ3NDTpMdd2mibfpjTNasizEFdlOaRbRYGiuNb+jz7Mf+3FXppOmaDBb9T0fINjGlwME2/28SAUp7MENKol1fCFxgSyKEOC8TDFPd9RQA8TDB0zDRBACX2PoiT47zZRY4RW2OFzYWZYY2PYBmWXNBZMHqMIYpd8dVxbya3VG3aDRbSR6D8gNwK6BTfztxOE4zxQ3mMYETNuTGJsjbL7bqAOyf0VDRCvGqZMc1ISIRjOGRsOHuOIVn3N6XDxE1Nijg/uXNgafz1Lz7JdlBjbb+GzNBe7wiCkr1v0UwaaUPY1U60rTNDiyMcXprRYxUZO9tSa8zQt5+YP/55PwW++6Gf/osVfROhlKpipE1G7TPNuDZ3MUneW9z9d99+PwW++6Gd/9d/1MeHodsTZruARr0ETREuVgq3Gu6tC6mv2YJRvSCT8o6XoQGWbJPr5zYmjDe+vTpsFMGLaieyfAzzf9rB5KedI0vWHNM7BFjd81YclsX9VFy3nefG+aIRuqZ9zL9+OgU8jjr8xQqDFHRk3yEc9IkqGu9jlE1Ns/ZF0vjNbmYPvCINiA9pyYy9/ZORwOic6vhRFs+7Af15Qo55ouX9hR3j/LgYHtfl5KCLaakA99aDJlssbYYXUVDc2LempY/2NDRKP3RxEoNVlZGaJH16U8eSMUC3a/boMimYIZFdn1qFE2GqIUzX4I1IXcmuugynAVf09R4QlIkQIUwVbxPlf1CgPcUKvfU02IaDQsiBqfK4wymoONZxE19i/L6GZl3Q2uS4Z+qQmDA4B//vUPwU+++cMAgG993NWhvr1x5kaEL5zoFs1SDeQINh1K3hUTURNMJsPmUdM0OLQ+hPp4nmk9v/UclOXoxlpvYPOUXo38qUke4O2zN1x5Ev+v5z6a/h2IZ8ybTJqE2Lm7ZpVo9mob3RkzHnlIhK958KX4mgdfSv/elSz0sgYZFgwR/UJmEa3ZO3VoXY1xke2zR8IINsNIbpCu18g+QGqQ8zL7ZaGKdI/Pr7HzTYfHek4U2b/OVJ70pdZmFHFek+SAlRousI3ppM/cW3xuUVgCkI3pBEc2pji7lwyKydvA6gi2mmXphqiux9ZRFiIaTHLgnRuy7sWKc9Nrsx3PODkgM/p7nHZNA4iEYewd6etMVmmaBmoJh5Fi+7Ef15RVs7V62YUPSqwcGNju50XyK0RDtHiIV1wQlh6l9l57fFFUnbV5RcleaT8VwlM0O58l+EXRDezAsb4RJxONGu2MA6/COBAJzanhFhsbIgogyeAFxLkOakJzqRJgfSNDuI+GP7M2OYItJjwBwLbg6zhBhF1LeYsaUGrQqlRgz1BPfK1rQScK66/h02N7YhYiGszgBbCQpPi61H1XZbh1lMTnP/E67M4XOLq5hq97qG0kaJomW2/7leRgP0s0ZBYALj2mEWwVHGxB9I23JR1an/YGNk9B1ecJQ7ABKel7TYhoTZbIsR75KFIFaOd4xw8IOOdG0Cgzhg9rv7h0ZOFG8vwa+5y54278OKPKbI1Be0x4LHsmHdZ9qIaDbR9CROV7mTmGqzB/VAWCTTsEvD1e/q0GwcZKzjXp7DWOQyBtM/3d2xcuPbaJW+8+B8Dfj6KyStM0uPLUYXz8c/cB8A1cet54/cu9WsphpeLtNdqZymS/PJtkTO70EHmyaAR42kYuA0S5wFiJGv2BONo/M8B6/HOTBot5Wf7R5QvJQQusbmBztq+DEixfWFPqQfmCl/li2MSjwg8NEa3ZfPSBGwyTBOLIIY5UsdBm5TG298aEQXa/NXaOlIn1bYYkUe9TDC6uX1HTOAaxFdFMNcoPz6QZN8rU8IBE6pnCbUUYizU/baMse0+xfoA4gS0AbO0OCuqxGgRbALXY3lth+GZzJAt5jXOgUENTEMFW895zDjb2faz5YfBuVSQUycjhKxwO3tJYn07w//i6B+O7nnCdKwSHQ1TV5S8kt0fNXqMN4gxpUcPNGE0AAqROE+9sjYaIAimqxfOc57yUTOFPf/fOjVWLp4Do/bcG/Rvd06IywPmYxwxRY5/BMSNo9Bz0SrbW2ThNrsnYmVXjvGJzWWfUZQi2qBN3lSQHXZktuAElijKs4a7KEWy0++R7egg29v50qUlkc+LwGh5y+TEAwD/5mi+j9fSzeyGvDzw58BzuOlkbagwoss0OyWYVPW+je/zWjLepS+ME7OXE/DFHeVT+8QxXd5/d7X/2DGwZp+4+7J1RYykQjxbSpWRgkyWMYNunLKLRsmqyAuacOCjxcvAG7+dFHp5RZYMdjlm64YrNJxrOAMQ9ltTAFjTK2F5hIlwHQ0Stvsd6is5LkgN94DibvilkVigCkTpVHH1Bnoeop2iJOJE7zyoUM4JWheaaiC+zalWIqDSwHQ6GCbBr1nVeL7/GpotG1HgGQz3HmUCRERdXhFRGubNqMiCaiAmTnN3uWxtWmIBnkmrvg1EkCw1mhtWKc2O/Sw3foy4si6g1fG4c0L/zvqXB1EMs6PfOsogC6fxcOkiVPMlBbE/yzo1Vi6eA6Pccz1AZD19kCqXmqTsf87iO19ZuQw9/PxATOcowjjaLItiijkiAfyNtZGIGIks5j6Ie3bUZSBADWEbQuAzAEWxqDbscbMPPXhbRqIGthhi/aRr85xc+Aa97/uPwr5755c4YdZu8/yuEMez209u0XpTOAgAuPz60eed9vM0aBJt8n1sVCLboHg/ws0gbn5mMmM1N5x3deWZ4Lz6CLSaj1ZRszgXne03/bnhsMMqips3zUbx9QJdf+56vxvq0wWOuOYW/c/3F53FUF0Y5CBG9n5dZycBmojViCqrHpbM2aSCPJBoiGjQiREOsANsbeH5CRGPKW5S8l4cq5tcoQemKSQ6iPAvs/r6diIGtwnBkoomCYYVRBajj7tDFepSazLmmUbZCoTMz9u0Hgk08b1QBaa+xZ48JmNa+wubRpcdSPg+XAyUz4MTeZw3iK8oPxAS3KALXWocM3aC/nadIr00Ud9XI8IxhXIOxlnFyriqI7kexpuzYZ8/nEedLy5VE3recD56RSfflIdjkvNsh+xyQG9iiHFv7Yajt2umcgd4ZoucOqxo2/lZwm51QaF9GtD+m1NAFcKflauegV7IsohU8m1FEYE3IfjRMkiY5yGRZJkvG+wbSeeYhqaKcZTXcVUfUs7uk7+JvnuE9GiKqX0lpzl1+4hCe8cgHFNqMG1Akf+adZ3ZovZqwQimDnHEQbPoc98JjpRwjHZ1W+f/+4Nfgp9/yYTzjkQ/AycM8MYTWBZjTQTsIotQ13lkkZQpNsZC0GVxvNSVD2lXoMNH+vXoZ9cWXaIiot751edojrsB7XvE0HNtYGx3Ce1AODGz3+1JKclCHYIsLbhm8e6QRwRI86zI6GmOsMGBYfdmGL0uR5lneZGHCtfWO6OGoLkd56jxBwxKyxiDYbI6+mIIKOMY4HaoYPMiYoGNns40KJQ0JVY4bUGoMmxm/hmOQkqjWGhJoyrsTRbCZfFjMwJYKazUholHOiRoOx6jHk+2dUQdBTZKDPDzV2Y+bBpLk9wuJYNNK7xfUwFaBgNWFhbHUGPKrQkTF96zRPw6vczFOztsaAxtPShQ/N2rKmjSwOft2lFA8+t7rEGzrqt7+z2OOkM6vUdqN88AVN+Z9srkUD1lL728a3r9GcW0Gzzcq81Y4W3Q7NRxsGuXblSwD85RzV2luM0b/oPv3yMyZgdJrD9if80U/pheKLtFmXsnlXv58nsFIlgzB5qw3uceXONged91F+P+9+EnF/j1ZT5ZoVEBNkgNZLjnKkxxYHGxji/52NSGi0f59Y/oXz3FYU2rXonYkHZTVy5fmjDgo+1ZKSQ6isHjACBF1NpQMgl/BlRL12tUZ2GL9cIRQrG6XDU6WcDhnhdGKHao5kXtUCOffUmfmAvj3lO/e02P1N4oqdEAcReaFL8lvwqD6NX1nHBMVXG013uv9CBGVpYYEOvLNrd+7YqOJ7HFp4dYTXrIQ0ah3siJENMoZUpMoxFLUauaHDhvx3lF0ftaUTEklbV6sBO8vNgeb1/1vvuDvYGNtgsdcfRJPfNAlZp0aYV3X9Yx78tzwwrZ0YdlOgdRgs+M0GkWw6XfnZW6rKXJOeA53PXfCWQ1rMmSTZz9xOH1H50OhqkFxRZ1S+4FgixpWaxBX0dC2KPIYyA1sLBmUHtMGrRd3eLR/G+rParjAguvNQ79oOe2Ug3qS/e8HB1s05LWmZOjfIILNK5le4rzPS45xg5Eseo64e7yYZ95+XFOiZ3nU+LxqkoOLPQRbkP+2ptSMM+fei83PKg624D77hU7OecOVJ3HdJUcAAK/4h4/4wnZ+gZcDBNv9vJSSHFjnIDUyZZvUeM99HFUXR4ZZAlDUszqWgw1Is8EBcUWe86/k16L8CdGsZG7mI3UQe8TWHjw+7b+BRNSw7quSRlR47g+tT/vQ0G2CYLPWCwuD0wZP6jmvUpRi9wN1IaJJPerhjxl/AAtVEjP+Al6IqEawxVAD1nj4fXEDfbRNTugdM5Jb9ZjgqJXHmqQzUQOsVzLDJnn2i44oA9sXG8Hm7HVPedhleN8rnobD61NaT3+O/UKwSUTi3CFI18ULEZXv2gtZy/ibgsab/UJxra9N0HFKeOPMwrGC50YNx1UUwXY+Qn1qUOzRc2M/jB1j5DnWv5apwlQaFWh7hsA6tpl+S54wK+5kA9Jn3XU42DLEe9Bx5+2dOoOqF1Z46vB6z1XmhYFGDWz58+zDnNPOCee7e/xfXhveXHrkVSf7nx977SlaT89jNxpkY//PvuhZrhPZhBFswf2jCsF2HkJEfQRb+vvGNJi8w5nHqzoyvtDZOaeTBm/550/Gp+44g0eJOX1Qzn85QLDdz0sJwTYmI5rHwRYVyCz92vaCxkKsAFvoH2tctENEiYFNp80Ok4lGPbg2IS8QP8jyEIk4gs3zJEYP4zCCrSJEI09ywJ9JCt6Ug824nbWplVxKoF/RZpQ3EFgdwcaEa5uDjRuUk3p0/8iv0RDR44qDzVEsNPpgNIKt0sB2/aVHi32ZSQ6McTZNvrajKeU9oTXPyjr+6M9DY+w2L/oSQ7CV0IhHN9dcZc4K26J1g/sckK4jjyBdFy9EVI7NCxGNEnWvqnyVStQwodd29BzkWRrzazT8MJi1d0zhXKSWgc2uG5Urako0+6LJlxbkpeRZiOPPo98TMxBF0YhRWXQY21DfQ4ZF11GNEq9J7D0D26uf95WYThpsrk3wL5/+cFrPI9eXpSb0Mlr0K/EMKA+6bDiDvefOk1vwcT7siuP40ac/HF/70Evx//7Wx9B60bB1gCMqx5ToWX48CxGNhU9HjaUaqe61uS8ItoqzKKN12Af+zGiIuy4sqdr5LMcPrePRV5864FX7ApcDBNv9vCQItqCBjQkwNaFY0fj4aNapLsuTFFqihhYgbkyLksh7dbXXlCOudB8xj7RnPImGL9VkCtKKhad8RkOGomTZ1mWGIqs5cC8+uom/ubf14LJnrwkR1UpuTYhoDf8cU9D1WojycrDwshoONm2kq3see1wXH9EGtlgYXPt7EL0XJPkFfOHpjS/4O/idv/g0nn4DJ23Osh82fJ9dU/tcVEH2EDUZgi04P7xyIsuqaPevv+V+ZBCLFmt+jTWMRA2gVv9e14mBrcLNHU1y4BmudOGGq7gyWVOSZAwOgk2vQx4iGjMY2lkio46u/Z/HLHzIll8YOiu2LmtKlGOrxiCVZxFljkjdXvx5mIHt8Po0kSfZmWGF/DP5A1BJDhwUqm42KoN4c05/d8/QdMOVJ/E//9XXY306cQ0jjEIiG+d5MLzXZIm8+qIjeMlTH4o/+fDf4Ke/+QbepuGs9sqL//5D8OK//xC3zqocbPtV9puDrYZn8x899ir8/vtuBeA7GnV23/3hYIvtScDqCQkWzjkcTRqhyxc6RPSgfPHKgYHtfl7mhSQHNZB+fWDXhMYww0ANz9T6VBnY/v/t3Xl8VNX5P/DPncm+7wtJSEhIQtgCohBQVARXQCyL1rqgaBXa2qrVtqgVpFrrr3X5iW21WqV+f7XS6quttN9WRQVxgVaFFrQFVHZEFhEiIQkh8/sjZrhz7twz586cWfN5v16+TMjN3DuZmXvPfc5znsdBWr+/oJDfZReKS/AMwz44IF5EQ03FdlI/SVwm4KQov51gM9hkFxJxf7Y3Sv6CHTbp3ZYMNsnf6f5ZzZi8eBXchoFbzvE/g+vkZkEMVNnODjpYkuQkICU+V9l75Kczh+PW5/6N3PRkTB7ez+82/o7J7nUXZ7md1OexrevmIGAY7Eyik8xB2bmuqiBDmgXg7/dlxyh2YJZ9NpNchjcYI60FZjmHhD7Qz1G8HlhqxUUwg80wrA1VQh3cW5abyGrfOSj+neazRFR9FC67ofNpcuCg5o/q5JGuZZLmv6GsdpUlW8R2XCF+rz6BoxocCMcS0W6bi6bfchY2zz0vQ38zBvFP4uQcb/d5t3YRVXtMJ8/HbomoYRjITkvC523H/B6Ld18Ol4j6NDlwskRUw9hPDLSL52dRaU7gxgCqkzvWpg0aAmwOlogCwM1nN+Dmsxuk2zhZsq/K2kVUdo7Xf+0LeomobYdd3+9l74EfThmMxrJstNQWSoOH4jlJSw1YB/cw4VjOqTr+ETnp6knxjQG2BGceq6p2ZLQ7UTWWZft876jJgc1j+gus2N0wJLtdPrXN7OtmWP/d/wDV3+/aZAgJ+0pPdtsGhcQLjd3gTbWLqHjssotTnpgtoviYskGrWIPNSSq27XbCYzjp5KmalSerrzG4Xw5WfW8CklwulOX6H2j6eyp2NwuWJaKSgb3Iyc2KbRdRSw02+8HOzFGVqC3OQmV+umVWU7Zvu8+wagabXVMQFbKgjCUTIhxLREMMClmyWqXLjFwATnwepJ83U4DNWQ220Ae44rlGNTAR6W5bbsNAl2lQG2rmkZPBupMloubXRJb9AvScb9o6e94jskwV1SWiIrvzuHht05XBprpE1JIJavOnF7O77F4jwzDgMnxvpFSfUzi6iNrxd06yO04xI0lHPSzVjHMnkxOqdUND6YoqW5KXmRI4wObv2GWfd/PfXva5tGZ8qT13Jw0exKBGsG4+uwG/eWsr7pjSZLuNtU6ehgBKGLLinJRGUSVO+MqOc9zAIu/Xl47uH/K+AfXnYM1gU6u/K18JkoK5Z9QF3Lf4WdAxyWY9J6knfMjGIOYJObsJD8DabVN1XBPpGmwUPQywJbhAS0T9ZrDZnPzKhUCErAabOAhyskRUFsRobe8KuF0oS0RVl+DJZmvUu4iKF3u7IKTv93aF6QE/HfsUa4FJl4gK2VnSmUTFMZD4t9+y/4jf7ZzUCFStu9OrMj9D+nP/9WTssriCXyJqXx9I/abKWoNNNoAwMKo63/bngM3SKcWsFh0BQycsS9cVBzq2dXf8dRENMSik2sELsL6/Ze9jc7abtAZbGDLYcoU6RqqBiUhmsAE974+u7hMBy9Az2NRv0pxksKlm/wLA0uvG4v+8+F+cM6TMUnzfzMlz/eaEOvz8tY9w6sBC23O8GEzX1uQgyCWito2OHGSquF0Guk1BPdUbednNl25OmuNYmoroKCiumC3i5Hqt2kU0lK6ossxn889Ua9UG2v8t5zbir//+BJ3Hu3HfjOG226lmfIm7kn2exWuMLMDnxLcn1uOGswZKJ8PCkRkm7i5QBpuKcBynOCaUBXrqirPw8KUj8d9PDuP60wMHplSoPgVxSaP9+Mf3ex0BevEaFY4lovKGBL7fB7pm907IyQNswS3Fj+R1g6KLAbYEZ8748lfQ3G8NNsVssy86/Gcd9TyG2lIOv0s0bE5+xdkn6ma5XYbtBddvkwPF7Bm7GwbxIiqrTWFdImrXDltt384y2NQ6nTkpHCwWz5UNSgzFCJu4/zMbi/1v5+ewdHQRVeFkcC1m+elYIurv8O2XTws3niEuRXCSwWbNalEPXMnule66cAgWvPA+hlXkojI/3XY7y/LLEGuW+Tv8UAeE4uyxNIPNkn2jeGMjebtbi3+HPsAVb+BUsxGdLFXUITXZhaPH9AXYrM1+ZBlswu/KblIdnK+GVebif64ZE3A782sk3mCJbjmnERc2V/gUDBeFK4PNd2mdJMCm+Fl3kv0idrRWfU52zXFCYVfzR3WCEPCzRFRHDTbFbBF/f2e7CQ/rElG11zLQjexPZw7H7X/cgCnN5Zaxi5n5Gn3c5qbX7/OR7L8kOw1v3zYRHce6pZ0tVTO+rM0l1CdCdQXYgMDndqevkQpLEFLDZFywBfxlnHQRBYALm/vhwmb/pTnCSbUGWzgaVoQjc1A1q9b//iXXA1NKszTAJmblsQYbCRhgS3BHOk9kfGX4KWjuv8mB2kVn/xcdtj9TzWBzshyrOOvEgEVWo8bf8fsLeDgJIlgy2CSFpcVApvKSRsXAkSz7RXX22jrAs3/NxeWPOrKOxCLe88/3v/zA375U66WEukzB36BStc6Uky6iTpbbqGawhZq1IP4tXYb9INuS1aJYS6fnce3fS7PH1eCMhmL0y0uXDvDFv7Xq4D7Vppaf38zFEP+eql1mAfWbWcA3MO6ka52WJaLp9sWxZY50dAXeSCPVTBlV4ttDWvvOQR0hXR05zWaPq8Gv39iCz9s68dgVo6TbGoZhKQMhCvazFohqMwZrYXzFm0TFILXbZSgHio922k8wBsvumYe0RFRHDTbFv6ffSSmb/VuCpYoZxYGez6yTqzC1uV/AgvIqncQNw/CpcwkEvhbkpCUDAcqbiecF1RUe0iWiDrqI6mZ9Phrec5bHDPkhrX9PDcfppItoOKgOxy012FQboIXh+ejIYHNSg00co8rGP+aHkdZgEzMCJW/QycPK8df1nwAARlTl2T8oJRQG2BJcmynLTLwAA867rP1mzmjMfvIfAIBZoypttxNPdnY3Fv6zhPxvW5RlPyMo27fdYzqZFRaDX7LaHqpNDixLH2z/Rr7fyy4OlgCbcv03WYBNzGCz3VTZF6ab7LMHl9re2PldcmKXISXWjghDBpvdRVR8TewLyKoHb/zd6NkuYbZ0stKbpSO7qQmlyUGgm9kaSWeqXuJnW/UG2X5ZjnpQV5WTLlri81HNYJN1nhSfkixIryrYG7jIB9jUJjxUOZkNtwRLpQ1i9C+dzUpNwqrvTcDh9mMoz7XPAlXlchlIcbu8WYjh6CJ6zMESUdvJFif1eUyviZPnc9Smbmgo7LuI+pkIVVzGG45sItslog7Gc+KYyv46qPZ4ZirdGs1juA7Ja5nkdhZgU6F6DnFSO0p83WXdhXUT/yQ63nPiklcdE7vhWCJqGXtFOsCmuGpEvA7ajQGcrG5xwty1NxyfIdlrKY5RpXVTTc9f1kVUzGCTjTvvmjYELpeByvx029U6lHgYYEtwbaaBg3iSAZxlyQDAGQ3F+P31Y5GR4kZtcZbtduJJ2ckSUbv9y1LuffbtZ1CiGqxQzmCTLLFSLWiueiETj93ZEtHQ08DFpQc6bgTbTLP/eZIbdX8DUbtgrVjoP/Ri5tZ/s6+TJ75G6tlRTuoT2n00dXe0c1LDSLXJgf/PWxAHJ3DyOk9oLMZrG/cB8L9kHrDeJBpG6INml8tAerLbe1Mu7SJqWXIiCcaZjuu4JPNHfAwdGWyButSZnTukFC++/ykAoKk8J+R9O2HNugr1vKCeVSJ+hiOdwQb03KiKN6uhSHYb6D196woKzhxVibc/PgAA+OopVbbbiddS1WVOsgxt82sS6DUwBxftGvOEwmOTw+b/WqB2LdJxgyz+WezO8Y6WiCpmsImfL103/KkKGWxA73v8xM9ltYdVWTMC1SZh5cvRg5to0kE1I88JcSyr4zHDsZRVfE1iNYNNFOkMtoxkN1q/nFxz0nDHjpMyAGKSgHKATbKeM1DJBbOirFQsvnSk8vaUGBhgS3BtpmwBfzNafpfBBRg0jx5QEHC/qjfo/gYQdgMD5Qy2IAfhdv8GWE/I/oKVJ/an1hRAddmFtQabZIloploXUWtwT/3ipDvRQtbtyskAU8waC3XwJO7bMNQHT3bvOf/LTtUzqWy7iGruzOhkdlDMFrC76fb3HtMxK+0kI+lns5rxx7W7cFp9kXJgU3ZOciLNVAtMXoNN/bNpPofIMtjC0eTASZe6e74yDMeOe1Cak4Zzh5SFvG8nxPOC9iYHsuUmls+R/ePqChyEm/m9pKOGEQB8ZWQF9hxuR2dXN742ptp2u2CXiKrW5wl0fn/40pGY+//eBQB8fXytdFtVXxvTH8+s2Q4AONXUZdDMcFBaQCQLLqoKtuslYH+uUy1rYKkpp+mG33zNDJTBZqYl+0Z4CqpNIwKdu/oXZGD7Z20YFGCpt27h6PgpZkiHI8CmYymrk9UgsUS1+Zqu55OWciLAdvRY6FnsTl5L8X5N9jkaX1+Ev23YAwAYVGY/GSh2ESUSMcCW4I50nsiY8Dcw8N/VMPQTqiWDTXEAIQuKqGawqdYbcrLswlIkXHKDKgu++e7f93vbQrfCdrIC9plB1gKTZSKIgVkdxWbNpO3sxb+R5MIoBg1Cza7wV5hVNdDiLKirNpMIyLrc6l0OYmlS4iD93klGno7AlZMbnsKsVFwb4MbYybIcJ8zHKfsMi+df2c2K+WfmjtEi1QLHTjhZIlqUlYonrzol5H0GQzwvhB549/3eLhPS37ayc6fuLNRwMX8edGVruFwGvjlhoKN9+/ve7rhUMxYCnUvOGVyKp646BTnpyUrL11X84PxBSEtyo6ogHafU+J+8dJL5LNLRVES1G66TEgiqGWziBI6OAJf4uIEz2Ez711E/SnESxbr0Ur7v38wZjb9v2IMpw8tDOj6nrM9H//VFx2Sck/uNYOkI2jkR7DOwXWURpgy2zBQ39n35tY76lZamZrIMNgfnkLumDcG+1g7kZaTgirH2kz1OMvipb2KALcG1fdnkQAy89PJ3TtJxQhVnTe3OZ5aBsGTwohpgEy+atl08/QUwFJ+7rMaHLPhmpjrIEi8ksscXAxY6OnOpNm0IVm6GfbF0Jx37xKW5oQaKnWTPiVTrWwCSwbWff7avEah3oOhkkGXNYFPL2AT0BGt1vx9Ded1lzJ9FJ11EZTcrqjXYctKFAJuGLqJOMtiiyVIfUXMNtgGSQIu4rez6EumlRcEyvz8jXW/I0i3Z5rPhZIm7+SECvQYul4EJg0oCHKUzOWnJuHPqYPl+QwiwfaGh5mGwNcNk26oGS4GeYMuho8cA6MuoMZ8HZMt9xfdSOOpHqV4zA+17QFEm5p1ZF9rBBSEctc3CkcHm5Lygax/h5mSScnx9EVZt3o+MFLeki7rvv4uTc8FKN62EadMQYHPyWopJArLxV0l2Gp6bNy7g/p0sEaW+KT7WJFDQjnzZ5MCuXbn/LqL6BxB2s0+qSw8AoChLrWudakDIb7BDR4BN8eZVdTZN/Bs5uTm2fUwHNTPE/ddJau8FQ1aDTdy3bBBuzVQJdSmY7/dOZjvtB8zq2/pvCuB/f7qCQL2cDF7SxC5atgFDfxl5QRycQPcsdEqS+nvOCfONoWxQbGlyIM1gO3Fssi6i2cJyBh1LRCPZpS4U4usX6nlBfO0aSu2XY1nOs9ImB/ERYHOypFI3S0dY2ww2IUgtC7CZXpNYfQ2cXDcA36BvaU6AlpYKxPGO3evuL3itPsln/7k0TxDoeoXM50BpBptwPtZRg008H9uNey3lCjRPJukirr7QcU0WJ3DC0eQgHMvyI31OvGDYiWzFmyY1SLd98JIRuGNyE/78zVNtxyDiey5X00RaerJaQFuVeG9QkmOfgJEu1mDTMCHNJaIUSGyerUkbbwZbql0Gm3pGjROWwrSKyx9lg5eCTLUMNvUunv7+TTXAJsukUrt5LVCslyYeZ0Weejc41eK5Tm46ZXUJzDySAqFmslRrJ9lElgy2EAc6hmH4BLSc/I2O2zx3J3X/nHQR1bVsxntMwudQNmi0FuX3v63fGmwaBqO6l8eKNz/hWCIq65RoWeosy3Yz/U1lGWzibKuOJaKypZGxRDUoo0r8LDRKAmxOMtjqTY8zvDI3yKMLP/PNsyyoGw7ia2e/zMn3e9U6hrGaRejvvC97Lz0x+2Q0V+Xh0tH9cXJ1fsj7F1cP2I3n/J1XVD9vsu3MN7Ot7Xq6EF80sp/365vPsQ9MhKPJgnhzrrrkVkdwLxzE5dI6lkmKmVM6gt/hWv4Y7seUaSzLxmNXjMIdk5tw/Rny8hdFX5bIqJdes3y/z0tXS2wIpH9BhvfrQsV62jJiIND8+CInGWyquESUAmGOYwLr7vZ4U3HtMtj81mDTkYrtFm8s/G8nnuhkS0QLMlMwtbkf/rb+E/x4+jDb7VQLWvoboOrIYFO98RxY4psJplo4+MLmfn636/V/vzoC33vu37hgWLltlol4wXHymg8q11tAV5Zq7WQG15LBpqNWimGgy+O8tbhde29/N0qqjSgASS1DzYO6UJZS2G3r7xykY1Za9/JY8f2oKzvQ/DeVBdgsXXslN1UNpdl4f/dhAMCAQvuliuINnY4looZh4IGLm7H0nzvwnUn1IT9euIQ7s7Uy337CQ3x/y97vLbWFuOa0Adiw6xDumzE8pGMMJ/PfTxbUDQfVul3WDDa1ZdaxmsHmNNu+rjgLf/7mqdr2XyIE2GSTQuZuyYD631QWPDKPYw63H1N6vEBGVRfggYubsedwO+acOsB2u3AsERXHZfaTq/GRwTakn++kq47GGuIEYziaHITj8x6NIL3OxkHie05XIOm2yU149b97cbzbgzunyJfEqxD/zv0kiQfi/Y6OzzCXiFIgfIckMPMgxz6DzfpvoRaH9/cYdktjxFpVgU58iy8dibYZw2wDhoA1wOWkyYHd8rZA+/DZn+LNqxhgs0urz0xNgmEAHk/PhaJKMlMDANNGVOC8oWXSZWBlwrIRJ7OyTYoZbKqyJTUexL+JbIApZrAF6oarwuUygC9vIp0Mbu3iJ05q6ThZIqp7oBjKQNR2uYvLQEqSy6dFu5YlopqLCqcnu+F2Gd7sHF03NebHOXbcPjCRmaI+c3/75Ca8u+0gAOB75zXabmfNYNOTfTb9pEpMP6lSy2OFiyWDLcTBtfj+lgW3rUvx5Y/9Qw03HuGWpJiJGQ6qdbucTBCYfxKrnVydNLwJhxLLeMF+3+kpvgE21Yku1Qy23lpsOqicu5zUq1UlBtjsmxzoD+6FQ6YwhgtH3F3HJKKlMH4YMgJ13D9Fk/ie01UKoiQ7Df+4fRK6uj1a6ro5+Ww46SKqKtntwpTh5fjLvz/BHZObQn48SjzxfSYgqSOdJ1Lp7QJS4jI4QFMGm+IAV6zfpLJvWXANcFCDzc8/qxZdly0RVR0E1QgZJ3aD+6zUJPz4K8Nw3pAy/PXb45UeO9ANtMtl+AQ3At0oTf0yay4nLUmasRHMmF9cKmuWJQQGZH9b69I6HQMy877lj2fettvBElHb7rF+trUL7JbmpGF8fREMA7hXkt2pykkXUZGTYrOxeMNgGIbPAFDXMfpk/kgz2MQAm6wuZSpW3HImVtxypnTZhbjsVbVOZCIQJzxCHVynJLkw59QByM9Ixi8vO0m6rfjW0d2BORrM1+guSaA4HMTPol2wVLWBEACU5Z4IHk3U3MBAJ/G0GslsO9UMNsDP+Evx/Ck7z/pksB3Vs0RUlep7zoncdLVJFKdNDmLF3tZ27Y+p490u/p3DEQyL8/ia5T2ns9ZqWrJbW9MEJ81bwrFEFOhJ+Hjvh2cH7ExPfRMz2BJYW4cpg82miyjQM6vTWzPKZeiZKbIuEVXLYNMxs5CWImawqdefUw0kyJaIqv75xOcqu/m6dHR/XDq6v9oDK6otzsKHe78AAGw7cES67Z1TBqO5MhenNxRreX88ddUpuO2P6zG1uZ80MCAubXNSg03HTLO5xlCgWhRul4HuL2847WoT+fvT2Waw+flnWebk03NG48CRThRpqG/hMuCTbeYkwBaoXfrnOJGBoGuwpVt6stubKaGtyYHPElFJBluqGFQOENhVeG3ClcEWD8TnqmNwfefUwfjhlKaAHdyc1GCLF+b347Fo12CzCRSrdjYGgLsuHIrfrtmGMQMKccEwfUutdDNfX4DIvpfEa4osa9h6HVbMYFNscnBUQ4F0J8SxrJYlohliBptijeIYXSIKAA9dMgI3Ll0HwwAmNZVqf/wjGrrhWgOW+j9DiqWHY5alyUGM1hrbdfCo8rbpyWKTAz2fI8MwpAkC1LfF5t0NaeGTwSa5kXUZQO+QRdcSCWuTA7UMNh2DF9UZ1HAF2Jy0zS7MTMGBI50A7JfxhkttUaY3wLZlvzzAVpydqnWWZsKgErw9f2LA7Sz1sKQ12NTr7qgyB0LErlaintf9ywCbzSjLMHoyB833paqdXlPcLunn0zAMLcG13sfKz0jGp4c7ADgrWixbuiQGvzMi/J5XZb5J1NEQAFBvciBOhmgpqp0udhGN3Rs13cTnqnNwHYiTLqLxIkkxEzMcLEtEbT4b4nVD9hlqLMvGomlDQz+4MDNfX4DI1nqyTAbKukqbxre6ENIAACZWSURBVEYuQ/04ZZ/LvIzo3cRaOmRqOH+IE4e2ncQdNHmKtmkj+iErNQmFWSkBy5gEo1VDgM26skb/39Nu9UK8EP9GsRrUPbkm3/v1ZWPkyQfWlRPxfx2m2BebnxzSorfBARA4g62XjuKkgJ+Ze+UabKHv31KDzWaW229HR8UbINlxOqmN8ux1LTijoRh3TG7S0lnHiYlNJ5bDnN5QHNF9qxIznKRLRMWsBc0X0fwAg/y7Lhzi/fprkmxD8X2n2rhArCMRbubn62Rc39Vtf9MtDnTEemOxwpz1pGsZnE/mj6MloqG/j8PRRTRehCODTZWlyUGCZbBFeoloqmKTgxwxwJYAf3dxbBLN56S6RNTJZKPsc3np6P7ea8f9s5qVH1OHiNRgUxwDxGqwA+h5rScNLsXI/vmBN1bkpESHCidLx4MV6c7KusXLNeqMhmJ8a8JAXDq6P24PUAPNEmCL93W8FBdi8+6GtDAH2GR1y8w3AbpmRcULl20NtiCXE8hYClraPKY49jMcLI+VBdGcDHzrS7PxmzmjlbfXadaoKvxjy0HsONiGm8+2b1MfTWLmgSwwIL6XdN9I52XKM9hmjaqE22WgICMFQytybbdzCZkItk0BhPeYandaXcwZe+bGBIHIlj9mCKn64sAnVpiD8h1depYkmQNnshslMais4ybAEnCI4UwI3cQJlkjOXqsG0+OJOevjmCSYHg6qTQ7EmoOJ8HcXn0IkmxyIZPWPzOMvJ8EG2divIDMFf/32eOz+/CjG1hYqP6YO4vlXTw02tfenOAaIlxpsuvzu6y244sl/oF9uGi4YVh7y41maHIThvBDn8bW4OVcahoFbzrVv7GQm3hPGSxCR4hsDbAmszTQIki0/NJ9QtRX0ViySLmYX6Ni/uHzTNoMthIut7CI0bmAhirJSsf+LDp+spljjchm4/+LIzgaHSr5EVP/SOrOCABlsSW4XLj65KuDjqM6iioOASAejzDXnWtvVl2fIlo2JAx0xWytWpJneS+3H9AQRvn/eIPxtwx4c7/bg3unDbbcTl83qWOosBhz6EjEo7ySrJlSWAFsCLBFNiWIGm6UGm00tQTFjMxECEylJLhwxTZpGOoPt7MGlePmDTwEANYX2SwBl5TNkAn00BhRlYkBRpnyjMLCUOwlDgM3unCSePwoCTPIlmjG1hXjnjklIT3Zr+QyLYy1dTQ5umtSAB5dvQkFmCoZW5Gh5zGg55mAyNV4EaoxHFA581yWwI4oZbOZru66UadUlouEoTG+tweZ/wKd6jCq/a5aa5MbfvjMeW/YfwcnV+tLlSf7+EN9Lum9AAi0RVaU6iyqOJyO9RNR8k3r46DHJlsAPpwzGj/7yAYqyUjGqxv49LwYJ+1IGW1VBBlbcciaOHjuOhtJs2+2cNjlQIdb86Uui2dBBvClMhJlz801poO7Tuol/T7uMZnEMEC9ZGTLpyW4cNDWIifR76b4Zw1Ff8jFGVOVJy1kEm2kdq6WrrGUqNJyPFQvHi69xvzz7Du6JSue1yzL20nS/M+/MOgwqz8bg8py4byCko9ZdrInVcSYlNgbYElhbp/MMNl0zOuIgxC6IEI6sI3Hfdhls4qyhk4BMoGBccXYqirMjW1MtFpj/9imaBhqpSS50KHSzDEc2pFmgJgeqxKdg956P9hJR802AOVjvz1XjatBUno2BJVnSAWY4Mtg80H9nZn4OHRpndFWKP4s3dDqCA2LwuS+JZr05cd+JUFvZbc5gi3IXUbuMZvHarqu2bDSZz53RqL9WkJmC7503KOB2wV6nstJi83ZEbBykY4moapafOAboiwE2ncTPja7PUUqSC+cOid0OxE50x/saVz8iPTlNBLDJQUIbM6AQP5o2BD84fxCG9gtUE6qHrhkdMWhgv0RUf90scXBt95iWDDZNS0T7su9MbPAOWh752kgtj2kejHZIlutZMth0NznQ1I5btS6T+D6OZgZbIG6XgXF1RSjJTpNuF44MthZTTZ6ZoypDfjzA972ka4moKmvHK/3nxL7EboIlGvtOhOuG+Xoa8S6iYpMDxc9GOLoFRpr5/B/LmZBOrlP/c81olOak4vKW/qiI0eBRUbbvdT+Sy43FXRVqGoP0VZbyHAlwXtDtrKYSlOX0jOMevfykKB+NHhkRnpwmApjBltAay7LRWGa/FKmXx5Sbn6eYuh6IODNkNyAUA2zhKEBtd4NlySQKMGi9dHQVfvePHQCAUVz66VdZbhpW3HomjnQcV3rvqUhLduHQ0Z6vZdlElgw2zYOnfE0ZbKpdycTtIp7BFoZlheJSdR21MYZX5uFHFw3Fx/u+wHcm1of8eICQwXZMzxJRVZYmB5puphdfOhJL3tqKeWfUaXm8eBHNJTvivmM5MKJqcHkO/rh2FwBgVHVBRPctjhdUg6fh6BYYaebzvydW11PCWQ228fXFWD1/YkxPAIgZbMmaMmInNZVg+X/2YlydfdMGcaVELP+d4sGY2gLglRPfJ8J5QbfUJDdeveUMHPiiUynjPh70paZOFDsYYCMcMtVXEgcTwRJvCu2KO4snvnDMDtrNcouDl0Cz3D84vwkVeekYUpGL0hx5pk5fVpmv96Lsu1zPPthhqeeXFB812Gw7iEW5yYFqnRgnwlUb6YqWai2P08u3Bltks3TEZbO6/kZTm/thanM/LY8VT2JriWj839DNHleD1zfvw+dtx3D3RUMjum/LElHF8UKka8WFQ7ppMkLWqTnanE4ExXrQqFgMsGkKytw/awRWbt6H8QOLbLc50pl49bCiaVxdEa4aV4Mlb21FdloS+idIAEm3jJQkZBQkVnigIi8duz4/ijEDIjspRH1XYn2CKCjmJfeFWXqCCKpLREXhCLCl2gz4rEv15I+Tm56Mb52lJ0OG1Kku17PU89OcwSZ2/gqWuITG7jjFQFx6hDshOVkiqipeis1+9ZQqPLNmOwDg9slNEd13pvA6x/oNaKyLZoBNDAglQgZbSpIL/3PNmKjsWxwfyLpKmx2NcBZqOKTHSR3FRKv3GI4abACQm5GMCwNMeOw51KFlX3TCgqmDcc7gUlQVZMRsF3PS79nrWvDaxr04b2hi1Mqj2MezC/mQdYdyQpzlUw+whWGJqGIGG+sxxCZz4KxdcqMkLhfS8V4yN1jQlWYuLr20z2Dz/T7SS0RLwtCkI14CbMMr8/Do5aOwt7UdXz2lf0T3nWg3qNFmN8ESkX0nYAZbNKk2OQB6SkD0Th4eDdCkJR7oWE4fCYm2HEucdI5kDbaG0izv12cPLo3YfhOZYRgYJ8kapMRUVZCBK8fWRPswqA+Jjys2RYyuIqrickvVG4toFpBlfC02pSku1xMz2HRk/vxh7lgseXMrZmgqng8AOelqp10xABzp4NSIqjyMqyvEO1sP4uFL9TSsiHQWXiiiNdPJjDW9otFxsZd4TkqEJgfRJL6WsmyijJQkfNHRs8SuLQECbE5qm0VTND9v4SAG2CJZt2tCYwmuaKnGnsPtuG/G8Ijtl4iIQhM/dzsUEcWaslbE7CHV4FU4AmzHbQoCizeyzGCLTVeOrcE/tx4EAFw1rsZ2u3Bk/gyvzMMDl4zQ+piqzQOsS0Qje4NlGAZ+e+0YtHUe17aUgtlZFGni5yiSxKzaRFgiGk3iNVsWjE5LdnsDbImxRDQ+AmyJFkQOd/MkGZfLwI8iXOeQiIhCxwAb+SjM1NXkINgabPoHZ902ATYxqy7BxoUJY8rwcnx2pBPHjnfjopEVttvpqo0SbqoBtmh3EQV6bmBZpyTypgwvx1/+/QkmNBZH+1DiXjTnTcTyBFwiGjnmjN9IdwIOh3hZXp9oGWwiBsmJiCgQ3jmRD31NDoKrwRaO+h3d3TYBNhcz2OKBYRiYLclcM28XD1SXiEa7i2g42HwUSfCzWc24+OQqnFLDjlehKjB1/410EF7MYIuTOYCE8JMZw/C1x9cAAG46uyHKRxO6SGcwByvRarABwDfOrMMvVnzEOmhEBI/Hg66uLhw/Hv8TN2TldruRlJQU8j0lA2zkQ+yYFCxxFlN15t4m2Swkdjf14iFxZpIiIV6WiIaDJxwf8ASUluzG6Q3MXtOhJCcN3z27Acv/uxcLpw6O6L7F5WXRXK7a14ytLcQz145BcpILQ/rlRvtwQsYabNFz67mNuPjkKvQvyIj2oRBRFHV2duKTTz5BW1tbtA+FwigjIwPl5eVISQk+6SiqAbb7778fy5Ytw8aNG/HZZ5+hrKwMZ555JhYsWIDa2loAwPr167Fw4UKsXr0aBw4cQENDA2666SZcffXVPo/V1dWFBx98EE8//TQ2b96M1NRUDBw4EIsWLcLkyZOj8fTiUn6G2s1/IOIspmoGm91yTqdunFSPh5ZvBgCcNajE7zbWDLbEGxhS7MlOU81g8/0+XmrwyJxm6t717bMGRvFIqC+5YWI9bphYH/H9WrqI8hoTsr/ccBqee3cnZgZoPJNo3QLjJYNZfM8nAsMwUFOUGe3DIKIo6u7uxpYtW+B2u9GvXz+kpKTEzcoZUuPxeNDZ2Yl9+/Zhy5YtqK+vhyvI1W1RDbAtXrwY27ZtQ//+/VFRUYEtW7bg6aefxksvvYSNGzdi586daGlpQVtbG/Lz81FfX4/169djzpw5OHToEG688UYAPX+QGTNm4IUXXgAA1NXVISsrC1u2bMHatWsZYAvgmtMG4NdvbMEZDcXa0vuTXerFiM2Oa1pDNveMOhRmpqCmKBNVNrOOYjYBM9ji3+JLR+LxVR/jutNro30otnLS+24GW2FWKp6fNw4b97TiK5J6ekSJwJLBxmtMyIZW5GJoRfxnpDkVLxMsEwaVoCgrFfu/6MD/mcnOl0SUGDo7O9Hd3Y2qqipkZDCbNVGlp6cjOTkZ27ZtQ2dnJ9LS0oJ6nKgG2L7+9a/jiiuuQP/+/QEAN910Ex566CHs2bMHr7zyCt5++220tbUhJSUFmzdvRmFhIe644w7cc889WLhwIa6//nqkp6dj6dKleOGFF5CZmYmXXnoJ48aNA9ATeDty5Ijt/js6OtDR0eH9/vDhw+F9wjHqjslNmHFSJepLs7Q9ZrAz9boy2NKS3bhibI10GzGAwQy2+De1uR+mNveL9mFIqS4RFT8KjaXZYTiayBtVnY9R1fnRPgyisEsRM9g4201BipclomnJbiy/+XTsPHgUQ/rlRPtwiIi0CjajieKHjtc4qu+S22+/3RtcA4Dx48d7v05NTUV3dzeAnuyn3gyo3v8fOnQI//znPwEAS5cuBQDU1tbi9ttvR3Z2Nurq6rBw4ULp+tl7770Xubm53v+qqqr0PsE4YRgGBvfLQbLG4rTBZsLZNSQIBzEIyOU7FAmqGWzVhSdmyG49txElOcHNohBRdHCJKOkSL0tEASAvIwVDK3K5fIqIiPqkmGly0NXVhUceeQRAT6Bs4sSJKCgowEMPPYSOjg7U19ejoqICGzZs8P7Orl27AAAbN24E0FOvLScnBxUVFdi4cSMWLVqEAwcOeB9XNH/+fNx8883e7w8fPtxng2y6JbuDG1gdj2ARdPFeh9kFFAmqXUQnNZXigYubkex2Ycrw8jAfFRHpJnYRZZMDClYilAggIiLqC2Iiz/HIkSOYPn06XnvtNZSVlWHZsmVITU1FS0sLli1bhpaWFnR2duLAgQO48sorvb+XnNyTCdLV1QWgp7Xqv/71L/z3v//FnDlzAAC/+tWv0NnZ6Xe/qampyMnJ8fmP9Ah2pv54t+YDkRDr4SQFGRQkckK5i6jLwPSTKjG1uR8zAYjiUEqQzX6IROJ7iYiIiGJT1K/Ye/bswRlnnIFly5ahoaEBb775JgYPHuz9+fnnn4+3334bra2t2LVrF84991zvzxobGwEAFRU9xbKLi4tRU1MDABg9ejQA4NixY9i9e3eEng31crLctNbUnakoK/iWuE6JGWvMLqBIUO0iSkTxzdpNO0oHQnFPrOdHRESkqr29HQ888ADGjBmDnJwcZGRkoKGhAXPnzsXHH3+sdV9bt271lvcS/8vLy/PZ9pe//CVGjBiBnJwcZGVlYcCAAZg8eTJeffVV7zZXXXWV9/dLSkp86ud3dXWhoqLC+/OvfvWrfn/P/F9lpbwLuQ5RvdN7//33MXnyZGzbtg3jx4/Hn/70JxQUFPhss3LlSpxxxhkAgB07dmDhwoUAgCFDhmDo0KEAgEmTJmHFihXYt28ftm3bhurqarzzzjsAgMzMTJSXc3lVpDlpGPCLy0/Cpb9ajaKsVFzeUh3Go/LFJgcUDVmpJ0674+oKo3gkRBRJnMShYDHARkREwTh48CAmTpyItWvXAoC3Vv327dvx2GOPoaWlBbW1tWHZd0VFhU9AKzv7RMO2Bx980Fuqq7q6Gnl5edi+fTv+93//FxMmTMBZZ51lebx9+/Zh6dKl3hWNzz//fMBEKvEYSkpKQnpOKqJ6xZ4+fTq2bdsGAGhtbcUFF1yAlpYWtLS04IknngAATJ48GSUlJRg2bBjq6+uxadMmZGRk4PHHH/cum/rmN7+J6upqHD9+HM3NzWhqavL+/ve//32kpqZG5wn2YU4y2AaV5WDNbZPw4o2nR7RTltgkhANYigTDMPCXG07DLec04MFLRkT7cIgoQrhElIKVmcLMZyIicu5b3/qWN7h266234rPPPsP69etx6NAh/O1vf0NDQwP+/ve/Y/z48SgpKUFKSgpycnJw+umn4+9//7v3ccyZaUuWLMGUKVOQkZGBAQMG4Ne//rXffV977bVYvXq197+XX37Z+7PeJpVXXnkltm7dinXr1uGzzz7De++9h4kTJ1oeKymp5zq4ePFi77/1ft1bNkzlGF544QXVP13QonrFNqf4rVu3zudn5513HgBg6tSpWLlyJTZu3Ijs7GxMnjwZCxYswPDhw73b5uXlYdWqVfj+97+PF198ETt27MBJJ52Em266CZdffnlEngv5cnojEY3glphNUFucabMlkV5DK3IxtCI32odBRBHEDDYKVlluGk5vKMaqzfvw468Mi/bhEBERgKmL38C+1o7AG2pWnJ2KZTecFnC7Q4cO4fe//z0AoLm5Gffdd59PXefeeMvPfvYzrFmzBlVVVaisrMTmzZuxatUqTJ06Fe+88w6am5t9Hve6665DRUUFkpOTsXXrVlx33XU49dRTMWjQIOXn0N3dU3h9zZo1+P3vf4+xY8eiqqoKI0eO9Lt9YWEhmpqasGLFCqxevRqpqal48803MXbsWOzevdubtCV66KGHcO+996KkpASnnnoq7rnnHtTV1SkfZzCiGmDbunVrwG1+97vfKT1WVVUVnnnmmRCPiHSJh4YBYg22weUMeBARUXgwwEah+M3Vp+Bg2zEUZEauVi0REdnb19qBPYfbo30YtjZt2uRtBjl+/HjbpmkzZ87Etdde662RdvDgQVRXV6O1tRXPPfecJcB24YUX4g9/+APWr1+P5uZmdHd3Y8WKFZYA21133YW77rrL+/20adPwpz/9CQDwjW98A1dffTU2btyISy65BEDPUtGZM2fijjvusNRrA4AbbrgBK1aswOLFi70rFG+44QbMnz/f7/NKS0tDRUUF2tvb8fHHH2Pp0qV46aWXsH79em8N/3BgzjmFRbK4/jIGiV1Em8qzbbYkIiIKDZeIUigMw2BwjYgohhRnR6cMlep+PR6P92u74BoAdHZ24qqrrsJbb72FAwcOeLPLAPitcXb55ZfDMAyfxpSffvqpZTux/llvg0qgpwlBdXU1HnvsMSxfvhwHDhzAtm3bcP/99+Odd97BihUrLI83bdo09O/fH3/4wx/gdrtRVlaGmTNn+g2w3Xrrrfj5z3+OzMyeFWqPPfYY5s6di4MHD+Kpp57CHXfcYfv3CBUDbBQW7jjIYBNVF3KJKBERhQe7iBIRESUOlWWa0dTY2IikpCR0dXXhjTfegMfj8RtomzJlCjZv3oykpCQMGzYMaWlpWLt2LTo7O3H8+HHL9r3ZZb110QDfYF6va6+91tug0p8JEyZgwoQJAIAPPvgA3/rWt/Daa69h5cqV+Pzzzy1ZbG63G/PmzcP8+fNx7NgxzJ0717b+2pAhQ3y+v+yyyzB37lwAwPbt222PSQcO9ygs4iGDDQAKv5wNLstJY3YBERERERERxb3c3FxcfPHFAIC1a9fitttu8y4ZBYDly5fjzTffxObNmwEAixYtwrp16/Dss89KM950uPvuu7F8+XJvttzgwYO99deSk5ORkZHh9/e+/vWvIy0tDcnJybj++uttH3/BggXYv3+/9/tnn33W+3VNTY2GZ2CPGWwUFvFQgw0AfnXlyfj7hk9w2ZjqaB8KERElsK5u6+wuERERUbg88sgj+M9//oO1a9fiJz/5CX7xi1+gpqYGO3bswMGDB/Hkk0+isrISO3fuxIIFC/DMM89g165dcLvdIe/7iSee8OlECvQE9bKysvCXv/wFP/zhD5GWloa6ujq0t7fjo48+AgDMmDEDKSn+SyIUFhbik08+AQC/ddp6LVq0CHfffTdqa2vh8Xi8j11WVoZrr7025OcmEx9pRhR3kuIkG2xUdT5unzwYNUVcHkpEROHTdZwBNiIiIoqc/Px8vPXWW/jZz36GU045Bd3d3di4cSPy8/NxzTXX4PTTT8fzzz+Pk08+GW63G8ePH8dvf/tbFBcXh7zvXbt2Yc2aNT7/9WbQ3XrrrbjkkktQWVmJbdu2Yfv27RgwYABuvPFGPP7449LHzcvLkwbXAOCee+7B2LFjcejQIezcuRMDBw7E3Llz8c4776CkpCTk5yZjePwtmO2jDh8+jNzcXBw6dAg5OTnRPpy4V/ODv3q/3vqTyVE8EiIiosgzXwdfvul01JeymQ4REVE8aW9vx5YtWzBgwACkpaVF+3AojGSvtWqsiBlsFDbXnV6LjBQ37psxLNqHQkREFHGPX3ky0pJdOGtQCYNrRERERAmONdgobG67oAnfO7cRSWydRkREfdDZg0ux7s5zkJYcei0TIiIiIoptjHxQWDG4RkREfRmDa0RERER9A6MfREREREREREREIWCAjYiIiIiIiIjIBntDJj4drzEDbEREREREREREguTkZABAW1tblI+Ewq33Ne59zYPBJgdERERERERERAK32428vDzs3bsXAJCRkQHDMKJ8VKSTx+NBW1sb9u7di7y8PLjdwdfPZYCNiIiIiIiIiMiPsrIyAPAG2Sgx5eXleV/rYDHARkRERERERETkh2EYKC8vR0lJCY4dOxbtw6EwSE5ODilzrRcDbEREREREREREEm63W0sQhhIXmxwQERERERERERGFgAE2IiIiIiIiIiKiEDDARkREREREREREFALWYDPxeDwAgMOHD0f5SIiIiIiIiIiIKNp6Y0S9MSM7DLCZtLa2AgCqqqqifCRERERERERERBQrWltbkZuba/tzwxMoBNeHdHd3Y/fu3cjOzoZhGNE+HCKKAYcPH0ZVVRV27NiBnJycaB8OEZF2PM8RUaLjeY6IQuHxeNDa2op+/frB5bKvtMYMNhOXy4XKyspoHwYRxaCcnBwOyIgoofE8R0SJjuc5IgqWLHOtF5scEBERERERERERhYABNiIiIiIiIiIiohAwwEZEJJGamooFCxYgNTU12odCRBQWPM8RUaLjeY6IIoFNDoiIiIiIiIiIiELADDYiIiIiIiIiIqIQMMBGREREREREREQUAgbYiIiIiIiIiIiIQsAAGxERERERERERUQgYYCOihPX666/jggsuQHFxMQzDgGEYePTRR322Wb9+PWbMmIGKigqkpaVh+PDheOqpp3y2WbZsGS666CLU1NQgPT0dpaWlOOecc7By5UrLPh9++GEMHjwYqampKCkpwdVXX409e/aE9XkSUd+l6zy3YsUK7++L/y1fvtxnW57niCjSdJ3rAODRRx/FqFGjkJ+fj/T0dAwYMADz5s3DgQMHfLbjuY6InEqK9gEQEYXLe++9h5dffhm1tbXYv3+/5ecffPABWlpa0NbWhvz8fNTX12P9+vWYM2cODh06hBtvvBEA8Pzzz+PPf/4zCgsLUVdXhw8++AAvv/wyXn31VaxatQpjx44FANx222249957AQD19fXYuXMnlixZgrfeegvvvfceMjMzI/bciahv0HWe65WSkoKRI0f6/Ftubq73a57niCgadJ3rlixZgnnz5gEAqqqqUFFRgffffx+PPvootm/fjr/+9a8AeK4jouAwg42IEtYVV1yBw4cP48UXX/T78yVLlqCtrQ0pKSnYvHkz1q9fj9tvvx0AsHDhQhw9ehQAMH78eKxZswb79+/Hhg0b8Mc//hEAcPz4cTz77LMAgD179uCnP/0pAOC73/0uNm3ahNWrV8MwDGzatMkyy0pEpIOu81yv8vJyrF692ue/U045BQDPc0QUPbrOdW+88QYAIDs7Gx9++CE2bNiAc845BwCwbds2ADzXEVHwGGAjooRVWFiI9PR02593d3cDgHepQe/XAHDo0CH885//BABcc801GD16tPf3xo8f7/06NTUVAPDKK6+gq6sLADBjxgwAwPDhwzFw4EAAsB0QEhGFQtd5rtfu3buRl5eHvLw8jBkzBs8995z3ZzzPEVG06DrX9Y7hWltbMXDgQAwdOhQvvfQSqqursXjxYgA81xFR8BhgI6I+a+bMmXC73ejo6EB9fT2GDx+Oe+65x/vzXbt2+f29Bx98EEBPcO3KK68EAOzYscP785KSEu/XpaWlAIDt27drP34iokCcnufKy8tRXV2N9vZ2/OMf/8CsWbPwy1/+EgDPc0QUu1TPdbNnz8bixYuRlJSEHTt24P333wcADBo0CHV1dQB4riOi4DHARkR9VktLC5YtW4aWlhZ0dnbiwIED3oAZACQnJ1t+Z9GiRbj77ruRnJyMp59+GkOHDgUAeDwev/vo/ffeWVQiokhSPc8NGTIEH3/8MbZt24Z//etf2LRpk/dm8v777wfA8xwRxS7Vc90rr7yC+fPnIycnBxs2bMC+fftw2mmn4cUXX8S0adMA8FxHRMFjgI2I+rTzzz8fb7/9NlpbW7Fr1y6ce+653p81NjZ6vz527BiuvvpqLFiwAFlZWfjzn/+Miy++2Pvz/v37e7/+9NNPvV/v3bsXQE8hXSKiaFA5zxUXF2PAgAHef+/fvz9OO+00ACeyNXieI6JYpnKuu/POO/HFF1/gtNNOw5AhQ1BUVITp06cDANatW4f9+/fzXEdEQWOAjYj6tJUrV3q/3rFjBxYuXAigJ5ujNzvt0KFDOP/887FkyRJUVFRg1apVOP/8830eZ+LEiUhK6mnM3FuzaN26dfjwww8BAOedd164nwoRkV8q57mnn34aa9as8W63c+dObzHwmpoaADzPEVFsUx3TAcD777+P9vZ2AMC7774LAHC5XEhLS+O5joiC5yEiSlDPP/+8p66uzlNdXe0B4AHgKS4u9tTV1Xm+9rWveTwejyczM9NTXFzsGTp0qCc1NdUDwJORkeF56623vI9z3XXXeX+/trbWM2bMGO9/8+bN8243f/5873b19fWe9PR079dffPFFxJ8/ESU+Xee52bNnewB4ioqKPMOHD/ekpaV5H2/JkiXe7XieI6Jo0HWuu/POO72/X1JS4hk4cKD3+1mzZnm347mOiILBDDYiSliHDx/GRx995G27DgD79u3DRx995C12O3XqVCQlJWHjxo3IzMzE9OnT8fbbb2Ps2LHe3+no6PB+/fHHH2PNmjXe/z744APvz+655x489NBDGDRoELZu3YrMzEzMnj0br7/+OjIzMyPwjImor9F1nrviiiswa9YsZGVlYdOmTcjNzcWkSZPw8ssvY/bs2d7teJ4jomjQda5bsGABHnnkEZx00kno7OzE7t270dTUhEWLFmHJkiXe7XiuI6JgGB6PTRVHIiIiIiIiIiIiCogZbERERERERERERCFggI2IiIiIiIiIiCgEDLARERERERERERGFgAE2IiIiIiIiIiKiEDDARkREREREREREFAIG2IiIiIiIiIiIiELAABsREREREREREVEIGGAjIiIiIiIiIiIKAQNsRERERH3QwoULMWLEiGgfBhEREVFCMDwejyfaB0FERERE+hiGIf357Nmz8cgjj6CjowOFhYUROioiIiKixMUAGxEREVGC2bNnj/frpUuX4s4778TGjRu9/5aeno7c3NxoHBoRERFRQuISUSIiIqIEU1ZW5v0vNzcXhmFY/k1cInrVVVfhoosuwo9//GOUlpYiLy8Pd911F7q6unDrrbeioKAAlZWVePLJJ332tWvXLlxyySXIz89HYWEhpk2bhq1bt0b2CRMRERFFGQNsRERERAQAePXVV7F79268/vrreOCBB7Bw4UJMmTIF+fn5WLNmDebOnYu5c+dix44dAIC2tjZMmDABWVlZeP311/HGG28gKysL5513Hjo7O6P8bIiIiIgihwE2IiIiIgIAFBQU4OGHH0ZjYyPmzJmDxsZGtLW14bbbbkN9fT3mz5+PlJQUvPnmmwCAZ599Fi6XC0888QSGDRuGpqYmPPXUU9i+fTtWrFgR3SdDREREFEFJ0T4AIiIiIooNQ4YMgct1Yv61tLQUQ4cO9X7vdrtRWFiIvXv3AgDeffddfPjhh8jOzvZ5nPb2dnz00UeROWgiIiKiGMAAGxEREREBAJKTk32+NwzD7791d3cDALq7uzFq1Cj89re/tTxWcXFx+A6UiIiIKMYwwEZEREREQTnppJOwdOlSlJSUICcnJ9qHQ0RERBQ1rMFGREREREG57LLLUFRUhGnTpmHVqlXYsmULVq5cie985zvYuXNntA+PiIiIKGIYYCMiIiKioGRkZOD1119H//79MX36dDQ1NWHOnDk4evQoM9qIiIioTzE8Ho8n2gdBREREREREREQUr5jBRkREREREREREFAIG2IiIiIiIiIiIiELAABsREREREREREVEIGGAjIiIiIiIiIiIKAQNsREREREREREREIWCAjYiIiIiIiIiIKAQMsBEREREREREREYWAATYiIiIiIiIiIqIQMMBGREREREREREQUAgbYiIiIiIiIiIiIQsAAGxERERERERERUQj+PyhgxcCo56cOAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABNgAAAGHCAYAAABiVu/5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOxdd7xUxfX/7u7r8B5NmhRBjL1E/WnsgqYoaizBEmNHY0uMiUmMJoq9JJpoLFEjiqJixy7EiiCIooD03tuj8wqv7v39sdy7M3PPzD3zdt8+4M338/Hjsm/23rn3zp058z3fc07M8zwPDg4ODg4ODg4ODg4ODg4ODg4ODk1CvKU74ODg4ODg4ODg4ODg4ODg4ODgsCPDEWwODg4ODg4ODg4ODg4ODg4ODg4ZwBFsDg4ODg4ODg4ODg4ODg4ODg4OGcARbA4ODg4ODg4ODg4ODg4ODg4ODhnAEWwODg4ODg4ODg4ODg4ODg4ODg4ZwBFsDg4ODg4ODg4ODg4ODg4ODg4OGcARbA4ODg4ODg4ODg4ODg4ODg4ODhnAEWwODg4ODg4ODg4ODg4ODg4ODg4ZwBFsDg4ODg4ODg4ODg4ODg4ODg4OGcARbA4ODg4ODhEYNmwYYrEYYrEYPv/889DfPc/DHnvsgVgshv79++e8fzaor6/Hk08+icMOOwwdO3ZESUkJdtttN5x++ukYOXJk1s9XV1eHq666Ct27d0cikcAPf/jDrJ8jW1i3bh0KCwsRi8UwadIkss0ll1yCPn36NOn44jgy/dfU4+8suOeee/DWW2+1dDdItNR4fvfdd3Haaaeha9euKCgoQMeOHXHiiSfixRdfRH19fdDONK4uueQS6ZijR4/GT3/6U+y6664oLCzErrvuiv79++O+++6T2vXp08c4tz3//PPk/Pjmm2/il7/8JfbYYw8UFxejT58++NWvfoV58+axr7t///7a65k+fTp+//vfIxaLYfbs2dpj/PWvf0UsFsN3332HLVu24O6770b//v3RrVs3tG3bFgcccADuv/9+1NTUsPvl4ODg4OBAIa+lO+Dg4ODg4LCjoLS0FEOHDg1tNMeMGYMFCxagtLS0ZTpmgQsvvBBvvvkmrr/+etx+++0oLCzEwoULMWrUKIwePRpnnnlmVs/3n//8B08++SQeeeQRHHrooWjbtm1Wj59NDB8+HHV1dQCAoUOH4v/+7/9CbW655Rb87ne/a9LxTznlFEyYMEH67sgjj8SgQYNwww03BN8VFhY26fg7C+655x4MGjQIZ5xxRkt3JYRcj2fP83DZZZdh2LBhGDhwIP75z3+iV69e2Lx5Mz777DNcc801WLdunTQm1fHko3PnzsHnJ554AldffTV+8Ytf4NFHH0XHjh2xbNkyjB8/Hq+//jr+8pe/SL8tLS3FF198gQULFqBfv37S35555hmUlZVhy5Yt0vf3338/unXrhr/+9a/YfffdsWzZMtxzzz045JBD8NVXX2G//fZj3YPdd98dL774Yuj7fv36YfDgwXjooYfwzDPP4O9//3uoTTKZxPPPP48f/vCHOOSQQzB9+nQ89NBDuPDCC/GHP/wBbdu2xdixY3Hbbbfho48+wkcffYRYLMbql4ODg4ODQwieg4ODg4ODgxHPPvusB8C7/PLLveLiYm/z5s3S3y+44ALvyCOP9Pbbbz/v+OOPb5lOMrBw4UIPgHfrrbeSf29sbMzauaqqqjzP84J7tiNg//3397p06eIddthhXrt27bzq6uomHSeZTLJ/C8C79tprm3SeHQENDQ1eTU2N1W/atGnjXXzxxVnvS1Ofp4jmGM+mft1///0eAO/2228n/75q1Spv7Nixwb+546l3797ecccdR/5NnQd222037+STT/Z69uzp3XzzzdLf5s+f78ViMe+KK67wAHifffZZ8Lc1a9aEjr1ixQovPz/fGzx4cGQfPc/zjj/+eG+//fYztjn88MO9bt26efX19aG/ffjhhx4A75FHHvE8z/MqKyu9ysrKULt//OMfHgDpXjo4ODg4ONjChYg6ODg4ODgw8ctf/hIAMGLEiOC7zZs344033sBll11G/qaurg533XUX9t57bxQWFqJz58649NJLsXbtWqndK6+8gp/+9Kfo3r07iouLsc8+++Avf/kLqqqqpHaXXHIJ2rZti/nz52PgwIFo27YtevXqhRtuuAG1tbXG/q9fvx4A0L17d/Lv8XjaLPDDGRcvXiy1+fzzz0OhYP3798f++++PL774AkcddRRKSkpw2WWXIRaL4emnn8bWrVuDsK5hw4YBAB577DEcd9xx6NKlC9q0aYMDDjgAf//736VwNx+jRo3CiSeeiHbt2qGkpAT77LMP7r33XqnNpEmT8POf/xwdO3ZEUVERDj74YLz66qvG+yFi4sSJmD59Oi688EJcccUVwXNVQYWIxmIx/OY3v8ETTzyBffbZB4WFhXjuuefY51Yxb948nH/++ejSpQsKCwuxzz774LHHHpPa+M/hpZdewo033oju3bujbdu2OO2007BmzRpUVFTg17/+NXbZZRfssssuuPTSS1FZWUn2+8knn8See+6JwsJC7Lvvvnj55ZdDfVq9ejWuvPJK9OzZEwUFBejbty9uv/12NDQ0BG0WL16MWCyGv//977jrrrvQt29fFBYW4rPPPkNNTQ1uuOEG/PCHP0S7du3QsWNHHHnkkXj77bdDfaqqqsJzzz0XjBlfMXrbbbeR6iJqrPbp0wennnoq3nzzTRx88MEoKirC7bffzr4WCqbxXFNTg5tuugl9+/ZFQUEBevTogWuvvRabNm2SjmHql4r6+nrcf//92HvvvXHLLbeQbbp164ZjjjnG2G8K69evZ80D4ncXXXQRnnvuOSSTyeD7Z555Br169cKPf/zj0G+6dOkS+m7XXXdFz549sWzZMus+6zB48GCsXr0aH374Yehvzz77LAoLC/GrX/0KANCmTRu0adMm1O7www8HgKz2y8HBwcGh9cGFiDo4ODg4ODBRVlaGQYMG4ZlnnsGVV14JIEW2xeNxnHvuuXjooYek9slkEqeffjrGjh2LP//5zzjqqKOwZMkSDBkyBP3798ekSZNQXFwMIEWqDBw4ENdffz3atGmD2bNn4/7778fXX3+NTz/9VDpufX09fv7zn2Pw4MG44YYb8MUXX+DOO+9Eu3btcOutt2r7v88++6B9+/a4/fbbEY/H8dOf/jRr+b5WrVqFCy64AH/+859xzz33IB6P4/rrr8edd96Jzz77LLgGP7xswYIFOP/88wNCYurUqbj77rsxe/ZsPPPMM8Fxhw4diiuuuALHH388nnjiCXTp0gVz587F9OnTgzafffYZTjrpJPzoRz/CE088gXbt2uHll1/Gueeei+rq6lDuKQpDhw4FAFx22WXo1asXrr/+egwdOhQXXHAB6/rfeustjB07Frfeeiu6detGkgsczJw5E0cddRR69+6NBx98EN26dcPo0aNx3XXXYd26dRgyZIjU/uabb8aAAQMwbNgwLF68GH/84x/xy1/+Enl5eTjooIMwYsQITJ48GTfffDNKS0vx73//W/r9O++8g88++wx33HEH2rRpg8cffzz4/aBBgwCkCKnDDz8c8Xgct956K/r164cJEybgrrvuwuLFi/Hss89Kx/z3v/+NPffcEw888ADKysrwgx/8ALW1tdiwYQP++Mc/okePHqirq8PHH3+Ms846C88++ywuuugiAMCECRNwwgknYMCAAQGpVFZW1qR7+d1332HWrFn429/+hr59+6JNmzbW1yJiwoQJ5Hj2PA9nnHEGPvnkE9x000049thj8f3332PIkCGYMGECJkyYIIX9Uv2iMGnSJGzYsAFXXHGFVdii53kkWZhIJILjHHnkkXjjjTdw22234cwzz8T++++PRCJhPO5ll12Ge++9F6NHj8bJJ5+MxsZGPPfccxg8eDBJylFYuHAhlixZYh3+q15PPB4PzvnLX/4Sv//97/HMM8/gtNNOC9ps3LgRb7/9Ns4880x06NDBeHz/eXLDVh0cHBwcHEi0tITOwcHBwcFhe4cfIvrNN994n332mQfAmz59uud5nnfYYYd5l1xyied5XihEdMSIER4A74033pCO980333gAvMcff5w8XzKZ9Orr670xY8Z4ALypU6cGf7v44os9AN6rr74q/WbgwIHeXnvtFXkt77//vrfLLrt4ADwAXqdOnbyzzz7be+edd8hrXrRokfS9f/1iKNjxxx/vAfA++eST0Pkuvvhir02bNsY+NTY2evX19d7zzz/vJRIJb8OGDZ7neV5FRYVXVlbmHXPMMV4ymdT+fu+99/YOPvjgUIjYqaee6nXv3j0y9LWqqsorKyvzjjjiCKnfsVjMmz9/fuh6dtttN+k7AF67du2CftsASkjfz372M69nz56hMOTf/OY3XlFRUXAO/zmcdtppUrvrr7/eA+Bdd9110vdnnHGG17Fjx9C5i4uLvdWrVwffNTQ0eHvvvbe3xx57BN9deeWVXtu2bb0lS5ZIv3/ggQc8AN6MGTM8z/O8RYsWeQC8fv36eXV1dcbrbmho8Orr673Bgwd7Bx98sPQ3XYjokCFDPMp0pcbqbrvt5iUSCW/OnDlSW+616ECN51GjRnkAvL///e/S96+88ooHwHvqqaci+0Xh5Zdf9gB4TzzxRGRbH/57Tf03fPjwoN38+fO9/fffP/hbcXGxd+KJJ3qPPvpo6Nnttttu3imnnOJ5XupdHzRokOd5qbkkFot5ixYt8l577bXQvKCivr7e69+/v1dWVuYtXbqUdT3+3KL+96tf/Upqd/HFF3v5+flSWOojjzziAfA++ugj4zmmTp3qFRcXe2eeeSarTw4ODg4ODjq4EFEHBwcHBwcLHH/88ejXrx+eeeYZTJs2Dd988402PPS9995D+/btcdppp6GhoSH474c//CG6desmhVkuXLgQ559/Prp164ZEIoH8/Hwcf/zxAIBZs2ZJx43FYpJSAwAOPPBALFmyJLL/AwcOxNKlSzFy5Ej88Y9/xH777Ye33noLP//5z/Gb3/zG8m6k0aFDB5xwwgns9pMnT8bPf/5zdOrUKbjeiy66CI2NjZg7dy4AYPz48diyZQuuueYarYJn/vz5mD17dhACJt7ngQMHYtWqVZgzZ46xL6+++iq2bNkiPcfLLrsMnucZFU0iTjjhhEiVTBRqamrwySef4Mwzz0RJSUnoWmpqavDVV19Jvzn11FOlf++zzz4AUgUV1O83bNgQChM98cQT0bVr1+DfiUQC5557LubPn4/ly5cDSI3jAQMGYNddd5X6dPLJJwNIFfkQ8fOf/xz5+fmh63vttddw9NFHo23btsjLy0N+fj6GDh0aGt/ZwoEHHog999xT+s72Wjjw1U+qUvLss89GmzZt8Mknn0T2K5s455xz8M0334T+GzhwYNCmX79+mDp1KsaMGYPbb78dP/7xj/HNN9/gN7/5DY488khtRc3LLrsM77zzDtavX4+hQ4diwIABLBWs53kYPHgwxo4di+effx69evUK/pZMJqVn0djYKP22X79+oWu58847pTaDBw9GfX09hg8fHnz37LPPYrfddsOJJ56o7dfixYtx6qmnolevXnj66acjr8PBwcHBwcEEFyLq4ODg4OBggVgshksvvRT//ve/UVNTgz333BPHHnss2XbNmjXYtGkTCgoKyL+vW7cOAFBZWYljjz0WRUVFuOuuu7DnnnuipKQEy5Ytw1lnnYWtW7dKvyspKUFRUZH0XWFhoXZTrKK4uBhnnHFGEKa1dOlSnHzyyXjsscdw9dVXNylMSpfPicLSpUtx7LHHYq+99sLDDz+MPn36oKioCF9//TWuvfba4Hr9PHU9e/bUHmvNmjUAgD/+8Y/44x//SLbx77MOQ4cORVFREU466aQgZ9aBBx6IPn36YNiwYbj99tsjw+dsrl+H9evXo6GhAY888ggeeeQRso16LR07dpT+7Y813fc1NTVS5ctu3bqFzuF/t379evTs2RNr1qzBu+++S5JmVJ+oe/Hmm2/inHPOwdlnn40//elP6NatG/Ly8vCf//xHCgnOJqh+2F4LB+vXr0deXp5UpRNIzRXdunULch+a+kWhd+/eAIBFixZZ9adz585kBVwV8Xgcxx13HI477jgAQFVVFQYPHoxXXnkFzzzzDK655prQbwYNGoTf/va3+Ne//oV33303yEFngud5uPzyy/HCCy/gueeew+mnny79/bLLLpNyFh5//PGS86GoqCjyeo499ljsueeeePbZZ3HDDTfg+++/x3fffafN2wcAS5YswYABA5CXl4dPPvkk9M44ODg4ODjYwhFsDg4ODg4Olrjkkktw66234oknnsDdd9+tbbfLLrugU6dOGDVqFPn30tJSACkFzMqVK/H5558HqjUAoQTpzYXevXvj17/+Na6//nrMmDED++23X0DgqYUTdASETY6ot956C1VVVXjzzTex2267Bd9PmTJFaucTFr6SisIuu+wCALjppptw1llnkW322msv7e/nzp2LcePGAUgTGipGjx4tqX8o2Fy/Dh06dEAikcCFF16Ia6+9lmzTt2/fjM8jYvXq1drvOnXqBCB1jw888EDtWN91112lf1P34oUXXkDfvn3xyiuvSH+PKswhQhyTYk4zmzFpey0cdOrUCQ0NDVi7dq1Esnmeh9WrV+Owww6L7BeF//u//0PHjh3x9ttv4957783KGDOhTZs2uOmmm/DKK69IOQ5FlJSU4LzzzsO9996LsrIy7TvnwyfXnn32WW1Ow9tuu01Sz/rzoi0uu+wy/OUvf8HXX3+Nl156CfF4XJt/ccmSJejfvz88z8Pnn39uJPEdHBwcHBy4cASbg4ODg4ODJXr06IE//elPmD17Ni6++GJtu1NPPRUvv/wyGhsb8aMf/Ujbzt84i6QBADz55JPZ6fA2VFRUIBaLSQomH36Ynk8w+GFf33//vURQvfPOOxn3g7pez/Pw3//+V2p31FFHoV27dnjiiSdw3nnnkQTDXnvthR/84AeYOnUq7rnnHuu++MUN/vvf/2KPPfaQ/rZ161acfvrpeOaZZyIJtmygpKQEAwYMwOTJk3HggQdqlY/ZxCeffII1a9YEYaKNjY145ZVX0K9fv4B0OPXUU/HBBx+gX79+TQ6DjcViKCgokJ7h6tWrQ1VEgdS4UFWbgDwmRdLq3XffZfcjG9ei4sQTT8Tf//53vPDCC/j9738ffP/GG2+gqqrKGKJoQn5+Pm688UbceOONuPPOO8kCJuXl5Zg3bx6OPvpoq2OvWrWKVNKp8wCFq6++GmvWrMHxxx8fUtKK8DwPV1xxBZ599lk8+eSTuPTSS8l2ffr0yUqxlYsvvhh/+9vf8OSTT+Kdd97BiSeeKBH4PpYuXYr+/fujsbERn3/+OdnGwcHBwcGhKXAEm4ODg4ODQxNw3333RbY577zz8OKLL2LgwIH43e9+h8MPPxz5+flYvnw5PvvsM5x++uk488wzcdRRR6FDhw646qqrMGTIEOTn5+PFF1/E1KlTs9rnOXPm4Gc/+xnOO+88HH/88ejevTs2btyI999/H0899RT69++Po446CgBw2GGHYa+99sIf//hHNDQ0oEOHDhg5cmSg9soEP/nJT1BQUIBf/vKX+POf/4yamhr85z//wcaNG6V2bdu2xYMPPojLL78cP/7xj3HFFVega9eumD9/PqZOnYpHH30UQIqIPPnkk/Gzn/0Ml1xyCXr06IENGzZg1qxZ+O677/Daa6+R/WhoaMDzzz+PffbZB5dffjnZ5rTTTsM777wTUic1Fx5++GEcc8wxOPbYY3H11VejT58+qKiowPz58/Huu++GKspmil122QUnnHACbrnllqCK6OzZs/Hyyy8Hbe644w589NFHOOqoo3Dddddhr732Qk1NDRYvXowPPvgATzzxRKQC6NRTT8Wbb76Ja665BoMGDcKyZctw5513onv37pg3b57U9oADDsDnn3+Od999F927d0dpaSn22msvDBw4EB07dsTgwYNxxx13IC8vD8OGDcOyZcvY15uNa1Hxk5/8BD/72c9w4403YsuWLTj66KODKqIHH3wwLrzwQqvjifjTn/6EWbNmYciQIfj6669x/vnno1evXti8eTO++OILPPXUU7j99tslgm3NmjWhXH1AqhrrvvvuCyBVLfPEE0/EySefjH79+qGmpgYTJ07Egw8+iK5du2Lw4MHaPv3whz/EW2+9Fdn36667DkOHDsVll12GAw44QOpTYWEhDj74YIs7EY1u3bph4MCBePbZZ4OcbyrKy8sxYMAArFq1CkOHDkV5eTnKy8uDv/fs2dOp2RwcHBwcmo4WK6/g4ODg4OCwg0CsImqCWkXU81KV8x544AHvoIMO8oqKiry2bdt6e++9t3fllVd68+bNC9qNHz/eO/LII72SkhKvc+fO3uWXX+599913HgDv2WefDdrpqnLqKiyK2Lhxo3fXXXd5J5xwgtejRw+voKDAa9OmjffDH/7Qu+uuu7zq6mqp/dy5c72f/vSnXllZmde5c2fvt7/9rff++++TVUT3228/8py6/r777rvBPenRo4f3pz/9yfvwww/JSoQffPCBd/zxx3tt2rTxSkpKvH333de7//77pTZTp071zjnnHK9Lly5efn6+161bN++EE04wVmB86623PADeQw89pG3jV4h88MEHg+uhqoiKlUBtQP120aJF3mWXXeb16NHDy8/P9zp37uwdddRR3l133RW08auIvvbaa9JvdWPVHx9r164Nnfvxxx/3+vXr5+Xn53t777239+KLL4b6uXbtWu+6667z+vbt6+Xn53sdO3b0Dj30UO+vf/2rV1lZGfQbgPePf/yDvNb77rvP69Onj1dYWOjts88+3n//+19y3E6ZMsU7+uijvZKSEg+A9E59/fXX3lFHHeW1adPG69GjhzdkyBDv6aefJquI+pUvm3ItOujG89atW70bb7zR22233bz8/Hyve/fu3tVXX+1t3LhRamfqlwlvv/22d8opp3idO3f28vLyvA4dOngDBgzwnnjiCa+2tjZoB0MV0aOPPjpo9+STT3pnnXWWt/vuu3slJSVeQUGB169fP++qq67yli1bZt1nqorobrvtpu2L+g7pYJpbKLz99tseAK9jx45eTU1N6O/+e6P7b8iQIexzOTg4ODg4qIh5nuc1I3/n4ODg4ODg4OCwHSIWi+Haa68NlIAODg4ODg4ODg5NR7ylO+Dg4ODg4ODg4ODg4ODg4ODg4LAjwxFsDg4ODg4ODg4ODg4ODg4ODg4OGcAVOXBwcHBwcHBwaIVwWUIcHBwcHBwcHLIHp2BzcHBwcHBwcHBwcHBwcHBwcHDIAI5gc3BwcHBwcHBwcHBwcHBwcHBwyACOYHNwcHBwcHBwcHBwcHBwcHBwcMgALgebgGQyiZUrV6K0tBSxWKylu+Pg4ODg4ODg4ODg4ODg4ODg0ILwPA8VFRXYddddEY/rdWqOYBOwcuVK9OrVq6W74eDg4ODg4ODg4ODg4ODg4OCwHWHZsmXo2bOn9u+OYBNQWloKIHXTysrKWrg3Dg4ODg4ODg4ODg4ODg4ODg4tiS1btqBXr14BZ6SDI9gE+GGhZWVljmBzcHBwcHBwcHBwcHBwcHBwcACAyFRirsiBg4ODg4ODg4ODg4ODg4ODg4NDBnAEm4ODg4ODg4ODg4ODg4ODg4ODQwZwBJuDg4ODg4ODg4ODg4ODg4ODg0MGcDnYHBwcHBwcHBwcHBwcHBwcdlp4noeGhgY0Nja2dFcctkMkEgnk5eVF5liLgiPYHBwcHBwcHBwcHBwcHBwcdkrU1dVh1apVqK6ubumuOGzHKCkpQffu3VFQUNDkYziCzcHBwcHBwcHBwcHBwcHBYadDMpnEokWLkEgksOuuu6KgoCBjlZLDzgXP81BXV4e1a9di0aJF+MEPfoB4vGnZ1BzB5uDg4ODg4ODg4ODg4ODgsNOhrq4OyWQSvXr1QklJSUt3x2E7RXFxMfLz87FkyRLU1dWhqKioScdxRQ4cHBwcHBwcHBwcHBwcHBx2WjRVkeTQepCNMeJGmYODg4ODg4ODg4ODg4ODg4ODQwZwBJuDg4ODg4ODQyvAlGWbcNs7MzB3TUVLd8XBwcHBwcHBYaeDy8Hm4ODg4ODg4NAKcMZjXwIAXvlmGWbdeVIL98bBwcHBwcHBYeeCU7A5ODg4ODg4OLQibK1vbOkuODg4ODg4ODBQU1ODf/7zn/jRj36EsrIylJSUYM8998RVV12FhQsX4rbbbkMsFiP/u/7664PjrFq1CldeeSX69u2LwsJCdOrUCQceeCAuvPBCVFdXB+3E3//ud7+T+vL+++9Lfx81ahQAYMaMGbjkkkuw9957o6ysDO3atcOhhx6KoUOHsq6xT58+2muYMmUKnn322eDfX3zxRej3AwYMQCwWw+677w7P8zBs2DCcdNJJ6NmzJ4qKitCjRw+cddZZmDp1ahOegB2cgs3BwcHBwcHBwcHBwcHBwcFhO8LGjRtx4oknYvLkyQCA0tJS9OvXD0uXLsWTTz6JI444Qmr/wx/+EIWFhcG/+/TpAwBIJpM45ZRTMHnyZOTl5WHffffF1q1bMXfuXEybNg3/+te/yAqrw4YNw1133YXS0lIAwKOPPkr285tvvsFzzz2HkpIS7L777li4cCG+++47XH755Vi/fj3+/Oc/s663tLQU++67r/RdmzZtcPbZZ+O3v/0tqqqqMHz4cBx33HHB35ctW4YxY8YAAC6++GLEYjEMGzYMY8aMQbdu3dCnTx/MmTMHI0eOxP/+9z9MmzYNffv2ZfWnKXAKNgcHBwcHBweHHGFtRS1Wbtra0t1wcHBwcHBw2M7xm9/8JiDX/vSnP2HDhg2YNm0aNm/ejA8//BB77rmn1H7kyJH46quvgv98BdvcuXOD4/zvf//D1KlTMXfuXGzatAkjR45EmzZtQufOz8/Hli1b8PzzzwMA5s2bh9GjRyM/Pz/Utnfv3njttdewZcsWTJs2DbNmzUK7du0AAC+++CL7eg855BCp/1999RV+8IMfoG3btvjFL34BAHjttddQU1MT/OaFF16A53mIxWK46KKLAABnnHEGZs6ciVWrVmH27Nl46KGHAABVVVV466232P1pCpyCzcHBwWE7wPrKWnQoKUA8Hmvprjg4ODQTVmzaigH/+BwNySTe++2x2HfXspyd2/O8nJ3LwcGBj8raBjz1xUL06VSCsw7p2dLdcXBoNTjtkXFYW1Gb03N2Li3Eu789htV28+bNePXVVwEABx10EO6//37EYul9wkknpXKp/u9//4s8VjKZDD4PGzYMiUQChxxyCNq2bYszzjiD/M2ZZ56J119/HY8++iiuueYaPProo/A8D4MGDcKIESOktieccIL07969e6N3796YNm2apKjLBJdccgmef/55bN68Ge+88w7OOeccAMDw4cMBAMcff3ygTBNDYwHg2GOPDT5nqz86OAWbg4ODQwvjze+W47C7P8Z5T33lNsEODjsx7v1gFuoak0h6wJ/faP48ICIak25ucXDYHvHA6Dn49yfz8IdXp2L6is0t3R0Hh1aDtRW1WL2lJqf/2RB6c+fORUNDA4AUQSSSazr07dtXyl/mq7X22WcfDBgwAADw/PPP4/jjj0f79u1x1FFH4aWXXtIe65RTTsHs2bMxcuRIDBs2DO3bt8cFF1wQ2Y+PP/4YM2bMAABcccUVnMsFAIwZM0bqf/v27YO/9e/fPwh59Um1SZMmYdasWQBSBJwOvoKtY8eOgRKuueAUbA4ODg4tjD+8mtpof714AxasrcQeXUpbuEcODg7NgaraBuFzbgsNNDiCzcFhu8Sw8YuDz1/MW4v9e7Rruc44OLQidC5tXiVTpucUne4ccg0I52Dr2LFj8PtRo0bh8ccfx+uvv46vv/4a9fX1mDBhAiZMmIC6ujqSoPrtb3+Ld999F5deeim2bNmCG264gczVJuKDDz7Aueeei2Qyieuuuy4g2FatWoUzzzxTajty5Eh07949+Leag83P/eZfw0UXXYQ77rgDo0aNwtq1awOirW3bthg0aFCoLw0NDbjmmmswfPhwtG3bFiNHjkTXrl2N/c8UjmBzcHBw2I5Q1+A2wQ4OOyvEtzvXweBOwZZ9fLN4A2au3IJBh/ZEm0JnUjtkjgRzE+3g4JA5uKGaLYW99toLeXl5aGhowLhx44I8YyaMHDkyUHmpKCgowPXXX4/rr78eNTU1+Oijj3D++eejsrISb7/9Nkmw/fjHP8bee++N2bNnIx6P45prrsHSpUu153/iiSfwm9/8Bo2Njbjjjjtwyy23BH+rra3FxIkTpfa1tbKi75BDDsHnn3+uPf4ll1yCO++8Ew0NDRg+fDhefvllAMCgQYNCeeQqKipwzjnnYNSoUejatSvee+89/N///Z/22NmCCxF1cHBw2I7Q2mzriQvX44rnJ+GzOeUt3RUHh2aHyHHl+l13CrbsYl1lLc5+YgKGvDMD//xobkt3x2EnQcLlYXVwcNiGdu3aBXnGJk+ejJtvvjkIGQVSYZjjx49nHWvZsmX429/+hsWLFwMAioqKcOKJJ6JDhw4AgLIyOidsLBbDb37zGwDAKaecgt13351s53ke/vznP+Pqq69GIpHACy+8IJFrQKqiqed50n86MlCHvn37BvnUhgwZgvLy1P5BJQdXrFiBY489FqNGjcK+++6LiRMn5oRcAxzB5uDg4LBdobURbOc+9RU+mrkGlz77TUt3xcGh2dGUcI9swSnYsouvF20IPg8dt6gFe+KwMyHe2owABxbKt9SgvKImuqHDTodHH30UBx98MADgvvvuQ6dOnXDQQQehY8eO+MlPfoK5c2UHz5lnnokjjjgi+O/GG28EkKqeeffdd6Nv377o0qULDjnkEPTo0QPLli1DLBbDeeedp+3DVVddhbVr1+KVV17Rtnn55Zfxj3/8A0CKrHvkkUekfmQTPplWWVkJIEW6HXfccVKbyy67DFOnplLweJ6Hc889N+jLnXfemdX+qGhRgu2hhx7CQQcdhPbt26OwsBA9e/bE2Wefje+//z5oU1FRgeuvvx49e/ZEQUEB+vXrhyFDhqC+vj5o8/HHH+PYY49F586dUVBQgC5duqB///54++23W+KyHBwcHJqMWM4Dx1ovKmsbcM2L3+IPr05BfWMy+gcODllErt/0hqQ8xl1Blczg5gyH5oBTsDmomF9eiaPu+xRH3/cplqyvaunuOOQYHTp0wPjx4/HAAw/gsMMOQzKZxJw5c9ChQwcMHjxYqo4JAFOmTMHEiROD/+bMmQMA6NGjB+644w70798fBQUFmDFjBurr63H44YfjxRdfxMknn6ztQyKRwC677ILi4mJtGzHUc926dVIf1LDQTHH22WdL4aAXX3xxyGkp9mfWrFlSXxYsWJDV/qho0YQRY8aMwdq1a9G3b1/U1tZizpw5eP311/Hpp59i6dKlKCoqwsCBAzFu3Djk5+dj9913x7x583DHHXdg/vz5ePHFFwEA06dPx/Tp09GzZ0/07NkTs2fPxpgxYzB27FiMHTsWRx11VEtepoODgwMbHtymN1e4/8PZ+GDaagDAgT3a4ZKj+7Zwjxx2dngtGSLaKM8tjUkPeYncdWLz1nrcP2o2erQvxrUD9sjZeZsLtQ2OYHPIPuLbMcG2bEM1HvjfHPyobyec/6PeLd2dVoO/jpwWhPjf/f4sPHVRbsLcHLYfFBUV4YYbbsANN9xA/v22227DbbfdZjxGaWkpbrnlllDYJoUoB1z//v1DbS655BJjFc8o+KGrHLRt2zZQr+lgyuPW3GhRBduIESOwcuVKTJ48GTNnzsTNN98MANiwYQNmz56Nt956C+PGjQMAvPnmm5g9e3ZQYvWll17Ct99+CwC4+uqrsXHjRkybNg2TJ0/Ge++9BwBIJpOYMGFC7i/MwcHBoYlQN8EOzYcPp68OPk9asrEFe+LQWpAUDNJch4KpIaK5zsl213sz8dLEpfjH6DkYv2BdTs/dHKhzBJtDM2B7LnJw5fBv8faUlbh55DSs2ry1pbvTarChqi74XF2X2+rTDg4O9mhRgq2oqAjvvPMOjjjiCOy777645557AACdO3fGnnvuiVGjRgEAiouLMXDgQADAL37xi+D3o0ePBgAUFhZi+fLlOOKII3DwwQfjtNNOAwDE43Gjeq22thZbtmyR/nNwcHBoSbhE5LlDbUPaUC3MS7RgT3KPxqSHMXPXYtmG6pbuSqtCS0ZlqnNLrnOyvfbt8uDzpMU7PqHtQkQdmgOJ7Tg79sxV6X3S8o2OYMsVxLkml6pjBweHpqHFa4qXl5dLcbl9+/bFu+++i9LSUixbtgwA0KlTJ8TjqRWna9euQVuxRGxNTY10nDZt2uDZZ5/FkUceqT33vffei9tvvz1r1+Lg4OCQKRqTrXfTlkx6OQ2PEUO8CvO3411NM+Clr5filremo7QwD1/dfCLaFLa4OdAqIIaA577IgTy3tCSZX1Kw4xPajmBzaA7sKKkRXTGG3KFeiGzI245DiB0cHFJo8R3F5ZdfjmQyiSVLluDcc8/FokWLcO6556KiooKM/9VV4Npjjz3geR7Wr1+P++67D1VVVfj1r3+N7777Tnvum266CZs3bw7+8wk9B4fmQE29k3U7RKM1h4g25nhnIYZ4Fea1+HKYU9zy1nQAQEVtA8bO2/HD9XYUSDnYcnzullawidgZCF0XIurQHNhRVOytjegZNX01Tnzwczw3fnHOzy0WqMmLty5bxcFhR8R28ZbGYjH07t07yME2Y8YMjBgxAr17pxJorlu3Dsltk0t5eXnwu169eoWO1bFjR9x4443o2LEjNm3ahAceeEB73sLCQpSVlUn/OTg0B4aOW4QDbhuNu96b2dJdcdjO0ZKb3pZGS157Uf6Or6hpKnYGNdGOAnGEt3SRA7WqaC6xM4y5uhZ2hsxcuQW/fn4S3vxueXRjhx0GO4oN0NqqnV71wrdYsLYKQ96ZkfNzi3N3S4WIiik1dmS46tkOUcjGGGkxgm39+vUYPnw46urSiRs/+OCD4HNVVRVOOukkAKnwT79wwWuvvRa08f/+9NNPY8OGDcH348ePx8aNG4PjODi0NO58bybqGz08PW5RS3fFYTvHjuK9bg605LW3NgWbiJ1BTbSjwGvBIgfbk4It1+GxzYGWVrANemI8/jdzDf7w6lSnkN+J0BLr4LdLNmDouEXYUlPP/k1r5ilyTdKI4ej5LZCk79a3p2P/IaPxwldLcn7ubCE/Px8AUF3t8s46mOGPEX/MNAUtZlVXVFTgoosuwpVXXol+/fpJIZqlpaU466yz0LNnTxxzzDEYN24cBg0ahN133x3z5s0DAJx//vk45JBDAAB33XUXrrrqKvTt2xf5+fmYPXt2MPlddNFFLXOBDg4ODk3AjuK9zgbUa21sQUVIaytyIGIn4Dp2GEghojm+76EcbC34vjXsBPnLWjoHm1hNsLYh2apVuDsTcv1ubN5aj1/8ZwIAYO7qCtw/6EDW71pSAdvSaEh6yM+hkky0lXJ5Xh/PT0gRa397azouOGK3nJ8/G0gkEmjfvn0QCVdSUrJTOHocsgfP81BdXY3y8nK0b98eiUTT19QWI9jat2+P8847D19//TUWLFiA+vp69OrVC8cffzxuvvlm7LZb6gV+//33ccstt+D111/HwoUL0bt3b1x00UX429/+FhzrvPPOw/vvv4+lS5eiqqoKnTp1wqGHHorf/e53OPnkk1vqEh0cSHie5yZ1By1ak4JNNdBb0mBvCaN1e0GyFY25loYUIprjc4dDRLPz3L9auB4fTluFi47qg36d2/L6shOMOamyX0uHy+34t9NhG3L9bswSKoO+MmmZBcG28ww6W7u8tiGZUyVZfVIMEc2tgm1ncvp269YNgJxuysFBRfv27YOx0lS0KME2YsSIyHZlZWV4+OGH8fDDD2vb3Hfffbjvvvuy2T0Hh6xB3bzm2vPlsGNhZ1B2cKFu+FvSkNuZjEhbtOZrzzW8FpSwhRSjWSK0z3vqKwDARzPXYPxNJ5Jt1HltZyjmIoaItkTYlohcF4hxaD7kej5uaqh6S7zDb09ZgSXrqzH4mL5ZSW1Q15DEhUMnYl1lLYZdejh6dSwh26nzV11DEijM+PRstKRd2NJK3WwiFouhe/fu6NKlC+rr+eHQDq0H+fn5GSnXfLjEKw4OzYyqugbp3w2NHlwkh4MOO5NXOArqtbbktbemDaqar6klrv2+D2dj+orNuOuM/dFnlzY5P39LQRziuRY9Ncf7Jm78Vm6u0barqJHXwWyRey0J8T0qaOEcjslWNH/tbFDzeeWaTGkqz59rInDGys343ctTAAAVNfX46yn7ZnzM58YvxsRFqRzeN705DS9c/iOyXbWyZuY6/6J4q+tzfO6diWDzkUgkskKiODjo0HqzOjs45AiVtfLGon4n2Fg4ZA+qcd2a1ERhRU3LXXtrCpNUE1nnekr6ZvEGPDFmAcbNX4c/v/59bk/ewmjRENFmyMFWx9x8qWNuZ3AkbN2eCLad4H62VrS0o6mpRH+uUzp8Oisd1vffsdkpGDZ3TUXwecqyTdp21bUywdaSFTVzTXjV7wRqYweHXMMRbA4OzYzKmrCCzcHBh0oq7QwbTy5CYWMtGiLaYqfOObZslcmOXCvYpgobma8Xb9A33Bkh3Otc5+JsjpDs2nomwbZ151sHa4RrL3Ahog5NhKqGyrWjqalDJ9f9bI7T1Qr33lRJXI1EackKwrkmvFpT2hIHh2zBEWwODs2MClXB5hYrBwEqqbQzhE5xEfLc5/DdUM/Vmu77ZoXsyLX6ZYvidGhNaEkFW3OQ+U7BlkJL51VtTcrnnQ0qWZNrAoV7PiqfcC7RHCSyeO9NKtSwgq3l7AXunLujns/BYWeAI9gcHJoZVY5gczCgpcNDWhLNVdWQAzWnSmtSgIQUbLkm2La23uTCLVjjgCDzs0CwMTea6jPfGVQRYg62eI4T6qlkRyvyD+x0UMmaXDt7uDapSrTkXMHWDOcTr8lEsKmpXnJJsKnPJ9d7iJ1BbezgkGs4gs3BoZnhQkQdTAgrqVrP+FBzuOTy2lWP9E6w3wcArNq8FaOmrzbmiNncwiGiItlSWtS6ai0lWzBENKxgy3zQc3MRqUUOdgZHwta69LXnWgUaImVakYNgZ0NIwZbjscSdB9Qxt9Mp2Axh3tUtGCJaXSfPsbnPwbaTGEcOzYqdwWmWTTiCzSFjeJ4XCv9wSEMNEc11YliH7RtqeEZrImBbUr2nGsw7QxW+xqSHsx4fj6te+BYPfzxP2y5c5CDXIaLp85cV5ef03C0NaZjleMg1h4KNq+SoUYi4nWEdFENEc01whSoB7wSEZWtFXaPyLHNsA9Q18M6nkum5Vto1xxotXlNhvikHm1JFNIdkwlaVYGM+r2zBhYg6ROHZLxdh/9tG45//m9PSXdlu4Ag2By2qahtCFQ5VeJ6HQU9MwP/d+TH+N2N1jnpmj2TSw3UjJuP0x77E0vXVOT23GiLKNWYcWgdClf2yZLQuWleFm96chk9nr8nK8ZoD4aTrLecV3hk2qEs3VGPV5hoAwOOfL9C2U9VEuSYHRAVdu+JWRrAJn3NNMjVHURGukkNttzMo2MQiB7nmC1Vic2dwELRWtLQyjB0iqvYzS0TgvDUVuPqFb/HapGXGds0SIspVsKkhovW5qyIaUs+5ENFWg3Hz1uGEBz7HPz+a29JdMeL2d2eipj6Jf386v6W7st3AEWwOJMbNW4dD7/oIZzz2pXFR+2bxRny7ZCPqGpP49fBvc9hDO7w3bRXemboSU5dtwg2vTcnpuUMhojuB594he7DJQ/b1og145JN5WF9ZG3ncC4dOxIivl+KyYZNatOKVCSFyMYeG3M5IsHGhbqhyn4MtPSeWFW/fIaJrttRgfnlF1o4nksi5vu8hBVsW3jeugi0U0rgTbNpEFVmu13WnYNt5ECbYckygNDFENFtj7pf/nYgPp6/Gn17/PpS+QD5fVk4noZZZ5KAlFWzbW4holPDCIXu4YOhELFxXhX9/Mg8VLlJsh4Ij2BxIXDB0Imrqk5i6fDO+mLdW225TdV0Oe9V0zF2d3iB9s3hjTs+tJkfNdYUoh5bDa5OW4W9vTUP5lhptmxDZoRkfVbUNOOfJCXjwo7n4y5vTIs+9fOPW4DM3T1Ku0Rwha1yoXmHTucfMXYtznpyAd6aubO5uZQRuRi/1WnOtfhFDRBM5Tg5vgzVbanDc3z/Dj//5BcYvWJeVY4okcs5zGDVHFdEmEmw7uoLN8zw5RLSFFWyOYNtx0dLqTm7IYXP1c53gMDQVwBHXqWwtGyJRVpiX0LZTFWy5dFpurW9pgq3l7DSHNJyScMeCI9gcIlFVq9+ct2Spahu0ZJJOlWBziSBbBxavq8KfXv8eL3y1FDeP1BNi3E3vik1pwuyjmXZhn9uraLIlq4iK4V2AOUzy4me+xteLNuC6EZObu1sZgXv3wgZz9vtigriJ2p6Nxgf/NydY44a8PSMrx6zfnhRszUCw6dQN4c35djopMVHf6En3L9cktapgcyGiOy7UdyPnOdiUBUAXtZILUtdUjVc8XzxLBWJq65umYMvW3qemvhFj560N5VkTEcrBluPxoe6fdnTniAMPdQ1JDB72DQb9ZzzKK/QiAQcajmBziIQhLcF2G3qmoiWTdIYINrc4bZf4bulGPD12oTFEwQZTl28KPn88q1zbjusdzMSgNG1mG5Mern3xO5z1+JcSiZcL2FQRXbK+CpMWb8haeEJIxbUTvJdc8l7NdZfLa29MetJmZXueD0UVaLZ6KRKKpvG+rrIWT45ZgBkrN2fpzOHnnp0qokoFRM3mT1XRbs/EKgehTWeObYzmDBF1IWC5RUuTz+rY1dnLat6xXM/dkoItSxI28VpNBFtzVRG94dWpuHDo1/jtiO+0bdR3O9f7LnWuc1VFWwa5ft+GjV+ET2aXY9KSjbjrvVns3zmFYwqOYHOIRMywsd9RqsuIxnx+IrchSaEiBzvIPWtN2FJTj7MeH4+73p+FB7NUBae2nvecw0UOdARb0/tiWvDe/G453p+2Ct8t3YS/vPF900/SBHAVbOsra/GTf32BQU9MwOgsFVOxIfeaC//8aC6Ovu9TfGypSNSBO7eESN0cbqjDOSlzf99r6hvx2ezyyBQH5RXp0KUupYVZOXc9k2C78fXvce+Hs3HKv8dlbWw2R6iPWgFRRw60dBhctqH2P9eX01xFDt6esgKH3vWxqwaXQ7R0+LQ6L+jUWer60hxFiUzOHnGMJ7KkYJPmJcNtVyN5skVyvT9tFQCzE1adp12IqB7JpMfKUbwjIuq+L9tQje+Wbsyag2TKsk3B54mL1rN/t6Or07MFR7A5RMK0kO0oCjZxQco3SfKaAXUqibCDe+59VNc17DDPPwrTl6dVIs9PWJKVY3LznoWNF/qeZmJ01xt+O0fITzh2XnbyTHGhGgy6a39uwpJgrF31gt7Ta4NwBVPe/c2W8VJT34h/fzIPKzZtxeXPT8rKMblzS/i+525OUjdpLREyf9+Hs3HpsG/wy/9OND5PMXditgg20fg0vdOfzE5vuEx5iWyQixxsegVbyz/3bELtf643nWEFW3aO+7uXp2BDVR2rGtzCtZWYviJ7CsvWihBJnesQQGXd1dkuqtOwOYhA0zHFdyxbuTvFazURA6qCLZd5bdV70tJVZrfXPNKNSQ+DnhiPw+7+GG98u7ylu5N1mMbn2opa/PifY3DW4+OtU8joIL7vpvyEKnaWPW6mcASbQyTihlGyvSZPVyFu6vKymFS7oTEZUqipCIXl7OAbCyBVVv3wuz/BsX//NGshlS2JLc1QnUfN8aWDOh50xlMmZKYpp0tLOiPZhlszKKxCJBPzHNkyLpvjveF6DtV2uczftD0oB4eNXwwAmLVqi1H1t0VQ23VskyWCjalgE6EmuW7yuZuBWOUSZzu7gi3X4zgX+bBMaqKl66vxk399gVMfGZe1AiCtFS0dIqoWOdDZGiEFWzNspE2qOHE4Zq3IgXCtJtNcfd+y4VzmpmZQ1+f6Fg4R3V4VShMWrMd3Szch6QF/fH1qS3cn6zDd9qHjFgVj9NqXsuOEFsd8UT6fLtrR1/ZswRFsDpEwvdTcMLiWhrgpNuVZsMGWmnoc+/fP8KN7PsGsVVtY5wbMaqIdBde9PAWVtQ1Ys6UWT32xoKW7kzGag+zgks8h76TGaM0kLED1UIvwhLiILEVdsNGSSir1nnDPna3wjE3V2R9zXPKvqeq9bKAlC1tQyLlapFHc0PHOHeXE4SKcgy37Cjaug2B7DjPiIFT9eScscmAaHw9+NCd4hn97a3rWz92a0NLvhjqWdeSRatM0hy1rGnMiIZWtHGzi6UzknvpMslHkoJrpOAnlYMuxkz60Zm+nCqVJSzYEn3fGNJImYlO0EbJ17eL7blKwqUTxziAiyQYcweYQCdNLvaPkExM9PgVZChF97NP5WLW5BpW1DUYDMxSWs4PcMxMWrq0MPm+o2gkUbFuzs4EVwTXAuPJ/m82wDXElLsY55tdCBnouyZZQkQOmVZIt4zIq/1dTwO1bS6pvtocQURE6wlTdTGYr35B477njXS2UQ2HV5q1Ys8Vc6Sv03LNw78NFDpib8+10k8YFNcfmsjhATTPlYBNhsv1Ep9TOUCCmOfDapGUY8MDneG3SMmM79b3MeZVI5Tnr7PowEZj9udu0hjVmOQeb+r5yw1OB7BBsquNEN3+0dA620Jq9nb7vU4WcYR1K8luuI1mCOh5MdprocCnO54dzmiCO8UKDMKWpzuqdHY5gc4iEabHfUXJwiYZiXpYItgVrq4LPpo1N2HjaMe6ZCeI15bpoRHOgORRsqsJAh3AuH3p82IQF2FTskypz5VjCpl5rcxjsOjRVxWVSA9pgE3PMra+sxSn/HouzHv8yUsnE7Vs4QXvrUbCpRqtuM1m+RU6UnA2Fkud50jjjjnc1wbaKeWsqcPR9n+Lo+z7FkvVV2nZqSFc27j23imguEqTnEtR15nIoqxUdm2NTY7L9qoVKwMUFeVk/d67x/fJN+P0rU/Dl/OyFu/7p9e+xaF0V/vS6uXhQSyq5AX6IaC6KMZiuXfxbNhRs4TlJf26VbM6GuEB1nOjuZ9gZmGvV+fblFNPheyGXcr/ObbN6bI4Tob4xiXHz1mFdloos2LxvYhqJwmwRbGIONkOIqGrT7QxRWtmAI9haGRaurcTbU1awN/+A2YspTgC5Di+zgVhoIIoQqqipZ3miN29NK1DaG7wl6mK0o3vuAXlxzzMl6dtBsL4q/SyzNY7FHGymMaeOB90iqi5apjGq5n8zvcMtSbCxyZZm6FdTNzXZCxHlKdjufn8WZqzcgu+WbsK/P51nbMsvcqBuLFg/ywpC+Vwi+rxi01ar9SoKaj4z3Xys5mXMxoaG+66riFKw/fWt6Uh6qePd8e5MbbvmUC6GQkR1CrYcJEjPJag5NVub3k9nr8FTXywwEurNVUVUhGkjLb6TJQXZ2dDZYF1lLV7/dnnWKgae8diXGDl5BX719MSsHM8GzVF8xAbqnKxTZ6nvcHPkYDNdu9jPbESIbq3jk9QhBVsW0uNU16prEX1Mql+5dNQ3dd3KNTYINlW25kPP83Dl8Ek47O6P8fWiDca2T3y+ABcMnYjTHhmXFRIy9L5xFWwF2dmTiY76IkOIaMhZvRPscbOBHX9n7MDGu1NX4qSHxuJ3L0/BQx+bN2oizF7MtAGYrdDL5oCo/jFVEf3fjNU49M6PcfYTEyJJNjGHUvviAm27nTFEVMTOoGATjfSyouxIy8UFz5S/gJv0XVWwmUIUVELCZBBJwzzHj5K74W+ObnFl7eH8EtkKEeUp2KYs3xR8nrWqQt8QfKNbndNzqWALJ0zWn3v0jNU4+r5PccIDn2etoI4aDq5ThjZHXqRQcYks5WCrEIoxmMg49fzZUbDxCMtwaPCObYRT/c/Ge7RoXRUuGzYJ93wwG49/rq/kGVawZXxqq5AkUcHWEgTblcO/xR9fm4prXsxOQm/xUpsj1Ndk96nq2Kxszhsa8d8vFkaGpwKEOotZ5CAb84c6B5rGnDi3ZCNEtDoDgq05FGy6uZNST+cyPY/N3F1V24C/vTUNj3wyL6sV16NsG8/zJFs2WyTgpCUbMXrGGqyvqsMFQ83k+4MfzQUArNpcg1WbzekaOKgJpangKdhMIaKe5+HbJRtZDt4apoJNtaWzFeWxo2P7ZUQcso4/vDolmChnGpLyqzBNbFuFFzBbxQNssGBtJX7/yhS8O3WlsZ14DSaC7dfDv0VdYxKTlmzEd0s3Go8phni1MynYWtg7CQAfz1yDz2aXN4vhmJdjgq0x6WHWqi1ZzfsiSrpLi7IT7sLNX8BVcalGsMmDqhJspoW5OSpzAcDcNRWYvHSjccxxCzw0B1Qvm+7U3Pw0tuCGiNoglHidGXKS03CT0Hyov59XDv8WALBycw1GTV8deWzO/FahKNN061tzVL1sqhKgqi5bRQ5yoGDTPM+wgm3HNsKpcZONMfLxzDXB58c+0xcQUnOwNUdFWFOoj6j+yVbOHxt8uyRln02MUJU0BdnIr6VCJMFV2JBMXAyfsAR3fzALf3r9e4yPCHut44aINkNYcpi0M+R8FvqVjRBRlWCzycFWlwWHj+o4sVKw5TA9T9hG1Z/7969MwQtfLcWDH83FjJX8faYOi9dV4Yh7P8Gx939mJIXUW5StSKHVAlFmSomk2tzZ2GrZqL5FMsw0Hz/z5WL84j/jccq/o1V23CIHLVk0a3uGI9haEcQJx8ZDZtr0bhUMf9MLaIuPZ67BY5/ND22GVFz49ESMnLwCvx0x2ejllwk23sIclfh+s6BAaVfMDxHNdWGIT2atweXPT8Klw77BFCEJaLZgIiy58DwP3yzegEmLo43l616ejJMfHou/vZ29ymXNEyIqyKsNC16IFNEqQOTvVe+WCG7icUAmJbIVIrpkfRV+9tAXOPPx8ZiwcL22XTj/nEbBZtmtVZu3YvhXS1BukRtRR9g2VwWtphQ5iLoNoVwYmufOJeKaA9zxriIqTPQvb3yPo+77FF8ZxhsQDv3UJvRWvs8Goc8d7ypMm3O782dfKaNuOtgKth3cCKeeXXZILt7GvTmqiIY2dIbxIUYv5Dq1QHMjW1V7RZjeYfU2mxQg4+atw/UvT5YSulN49LO0+vH1b5cb27JDRJvhHbbJgya2TWSBYAspii2cgVkpcqA4TnS2BR0iuv2pzusakvif4CBYtqE643PfPHIaNlXXY/WWGjz4v7nadiF1dpb2Wdz0FLNXy9EF2VBxqTa+aXyKDg/TfuPO91IpJFZs2hq5HxTXdlOEmjo+doY849mAI9gcQlA3EqaXRfQAmVQ6Nli4thKXPz8J/xg9B0+PXWRsu1LwLphCY+QcbLx+Rk0S0mJvMDBbUqUDAH94dWrwefhXS7J+/GwQbFOWbcLZT0zAoCcmRE7673+/CgDw0sSlGZ/Xx/rKNNmhJvxtKqSko4Z3g5t/RTUYTAu/jYJNXLOztVF68H9zg+P+URh/Kpor98yFQ7/GLW9NxxXPT9K2CYfL0e97cxUp4YaI2oAbAtjUCqrZQDghLu9+mobG/PIKvPzNMqzaXIPznvrKeJwtNbywHJtQVi4oNTNHdZetDX9zvG+hRMzsCoTbN8G2tqLW+K6TRQ6ycE1q/kwdbPLzsM9tUelVtP2yFb69vSCqqEhToBL7IkI5MQ33/YKhE/HWlJU4/bEvjecTN8QqMaaCm8A/rFTJPkHPz8GWBYLNwnkWVrBlgWDbUXKwqSGAmnOrBUKysTdYvnFr8Hnlpq3ads1VaZVLpE4TUnlk6/xhh4dJwSbmYOOJXaLWjBpmjvWWrEq/PcMRbK0EoXLUpsqgFhsL0cjKVi4un0ABgIc/4eeKM3m0RKOfu5e08RCZ7lFzqQY+n1POUsGIFTJ3bVec8blVRNk5i9dV4cWJS4x9veeDWcHnIVlUpnEheuOztTCL74YpfFoNw9ERPWq/TBuxcJEDU4ho+m/Z0iGIfTWtteo7pjPYbfmf+eWVAICpQlUpFWEFm6ZdM3nnRIItW/kr1fupCyNpSUl/U9VzpjGwoYpPVm7Z2rQQ0WyQkNS5OJcfRbCJ722uDWHuBpmbq217wPvfr8Lh93yMU/49VnuPqHk6G4QlVzGhbnqbQ8Gmu3bP86SNZ3OEVNog26kvshWSLcKoYFPt8yyMI5HciCKDuCGioWqSzTB/mMhFsW02xrtNyHzzEGy8EFHqWnMZCaM6nXX3aeVmmQDLRhoAcV9pClkPO0KzMydw5+PF62W1XjaEFE3NwcYVu0RVRpcrnpv2uDwVe2tDixJsDz30EA466CC0b98ehYWF6NmzJ84++2x8/326pHVFRQWuv/569OzZEwUFBejXrx+GDBmC+vq0kfzuu+/ijDPOQJ8+fVBcXIyuXbvipz/9KcaMGdMSl7VdIuy51k98NmECoizV9EpV1NTj76Nm45VvolVHosfChrQzeY/FxYg76Zs20mFvvL5taOI39PORT+bh969MwdoKc2Ws+0fNxiXPfoPznvrKyrjsWlbIbsuFaSHxPA9nPP4l/jpyOoa8M0PbTgwvVqv8mZANw9rzPGmTmy0Chas64YaNhUJETQo2ZWE2PSNxfGYr0ke8BhPxrb43XMVVNhDOwabbSDePym6jQDhnK48hlwwMFdbIaZGDsCHMeY89wwpjs9lSN7o6EjKszMqCgo04BjW21ftRaaGoMd0K2yIHjUkv8t1TN3q6Mafez2yoX5oL1770HTwPmLumEpM1uVibq8iBeJ/yjHNn9snSsIKNfkbqGp3NKr8chNUq2Z2/qrNAsKnvsCndiXqbs7HGiJvsKDIoHCJKP0/Vds0lQQ/I/czGfBwmNvX3KVRFNAsEmxp1o8+/2zwKNs/zMG35ZixYW2lsx638ra6l2XgvRaLYlHdOteeyleOT+5zVe5QNAtQmb6k4J3NfS5vlymQjhh3ljmADWphgGzNmDNauXYu+ffuiX79+WLVqFV5//XUMGDAAVVVVaGxsxMCBA/Hwww+jvLwcu+++OxYvXow77rgDl1xySXCcN954A2+//TYqKyvRr18/rF27Fh999BFOPPFETJgwoeUucDuCjedaXVzVjb0I8aU2LXj//GguHv98AW58Y5rWYPWxfFPaE9CjPV9xZVqYxYmK+/KbJsgNVbIay5wclUdYfr1oAx78aC5GTl6Bv701zdi3oeMWAUjF/ZsIqXCeFuNhmwQTAVtV1xgodd6eoi9EIeYMUBPPmsANpzGhuZKjil5ws/eHpy61CRENKxEMhLrwvmcjcTAgbzTjhlUmlPSdGa5nApd05c6JofwSWVJriEqqbJF26v3Uhvow8881BygjkXN6UxsbYoObg605Kq1S187J5ZWtEFEb5eKS9VU4/O6P8eN/jjGSA6q9oHuHm4OwtIXneZKim4OYxutAvbNZIbmYuTubQ4XKrT69UQlvz7WCjUsINRU2hLYO6q0z52DjO7W5KLAg2LhVRG0VbJzrsMnBJs7J2Rjv4VQJhrbK/J8NBZtK5NoVOcj8+r9auAGnPToOP/nnGGO+NHV86B13KvGdDQWbQLAZjmerYNtYVYcHRs/B/2aYiyephT104NqyNrDJsym2zUZUgArze5n9+WtnQIsSbCNGjMDKlSsxefJkzJw5EzfffDMAYMOGDZg9ezbeeustjBs3DgDw5ptvYvbs2XjooYcAAC+99BK+/TZVYezYY4/FxIkTsW7dOkyfPh0jR44EADQ2NuLll1/O/YVth7BRYXBzqgAyGWJ6+Z/9cnHw+fM5a7XtAGCFoGDr0YFPsJkmANEzy93MmibzTVtlgs2GQNFN/FOWpYnH0TPWkG0omBaSxeur5L40w0bapMjbUMlL5F4i5AwwEUchr3Bt5nmsuMaDLapreQueGurDJXrUKnIiQptek7pTzLOgbWUH8XSmXCncnFA23kAuQcpNcBxSS2TpHRKviWsQRSkM1bGkJ2vVzTnr9FkB9X6x3jmTNWjxSEIKNl1S/hxUEU0dNzrUMCpkjdszGyX7lcO/xfqqOixaV4U3DEnSOVVEPc9rlvtpA8/zcP5/J+LQOz+KrDougks2ANmv5FmUb6g+3RwhokzbT033kGsFm7oeZMPRJqI6C4S2+nzMOdjUf9PP0sYRIinYIuZXlazRj3ll3TCstX98bSoOvP1/UsoXCtwqxGrbbKiubapjcgsI2UAlcnVrEfXcs6GQ+u2I71LH94BHP52vbaeGEOujLLLvRMljhoja5mC75e3pePSz+fj18G+xarM+txs3oqY5UonYOKXEOZC7tpreIXWvZdzjWirjWwtalGArKirCO++8gyOOOAL77rsv7rnnHgBA586dseeee2LUqFEAgOLiYgwcOBAA8Itf/CL4/ejRowEAgwcPxuGHHx58f+yxxwafCwv1IXG1tbXYsmWL9N/OilA4lA3BZor7Zqp0RERNPGKIqKk6pwpjfHqdPbtvMtpskqNyvTpNTdpq8t6u2iRXUWyOsBwTAbu+yhzq6qOYqWBT72VlFqrrqbeEm3g8CpKCzVSdimnkqcaXTZED0/gU3/dsFTmQQkQNxwyTi7pr549bU3VV+Vxc9ZzaLjvvkDiWG01jTvg6alhyNwHNsTnngtpEcOZkUwsbe46fg42f/4QLboioulExFfCxOr+Fkl2simbazHGqiJLEYo693HPWVGDCwvVoSHr47YjJ2naqqkQ3z1KbvWyryEyV2cMhohmfmq1gU8dxzhVsyvmyrWCrslDR66A+H5OCTZ1/dUSCDalko2BT329d+3C+WI3CsaoOr3+7HNV1jbj2pe+M5w6HjhucgU1wSpmg3ncTYRh2tGU+5lVlsm5ObK4QUXFMmqIXQk5o5ryQjXskKthMa0a4iqh5fLwnEL/TDLl6RRLUFODRHOo9brGyMBnGO7dpXlDfS5ONGLKRt+P0D7lEixc5KC8vx8SJEzFr1iwkk0n07dsXn332GUpLS7Fs2TIAQKdOnRDfFmfUtWvX4LdLl9L5vP71r38BSJFrF110kfbc9957L9q1axf816tXr2xd1nYHG4Y5nIyYflk8z5PYfe6CF5VjQd146qB6dXTGRzIpJ+Tl9nOrQTUQVgTqJxTuRr6pZcfVcEC5XzyDKDhWQyO+XbIxouok/5hqKK0OYtUbk8dIvXdRG8/6xiRemrgUXy1cr21DjZtMw0Qbk57sUbIgYNkKNiPBZvG+C2114VC2kENEDQq20MKsuXaLcAjT+yCdixkC2FwKR+6120A1QLkhornMmUG9CxxPt+mdtDHkuYmlbUKXuKD6SR1XvR/ZKnLAXYtUdGpjcFSGCLbwNVIESK693FxnjKigB/QOH1LBlgWiWlQmFxoUbKG8N81Q5ECrgFWeXbYVZFFQr91E8M1dU4FJizcYnWbq37KRg029R+YcbLz52GYOyihEVFtFlOcQs3m3m5qDLSsODwv7OLRmZkGdpc7ruvtO2SbZUIdx1bLhwkQ8R2g2+igVOTDYXjbqbBUmx7K4xzA5PJrj2rliF3WN4p7bNC+ox8xGmpvWhhYn2C6//HIkk0ksWbIE5557LhYtWoRzzz0XFRUV5IIofkdtBu+44w7cddddyM/Px/PPP4/9999fe+6bbroJmzdvDv7zCb2dEWHDms9cm+LtxcNyDTzTS60awdyqKYBePm/jIRNhVFLZ5I0IeX/o628qwWZSF6gLYVSIwTUvfIdf/Gc8/jpSnwPORga+vgkEm02S7qhN00Mfz8XNI6fhgqcnagtHNEcJdHVDaVOBh60aMGxqwnmRDG2lv2VnYeQq2JpKLpqgXrtuzHPPzQ3xtgU3nNPumLy+hkJ9srA5TyY9fDa7HDNXmpXg1LPkGMMmlYpNPhyqyAKnXXPk/NF9p76vNkpdm/lTd03lW2TlMzdsC6DHMfV8snE/q2obcNOb3+Pu92dGrm3ckKrlCsGmc/hQ83Q2chlKOdgsFGxZObfqXNU893DC99yGiHKdTcs2VOOkh77AoCcm4It567THCynjs6AYVQkYk4KNWouo/Y8VwZbIfohoWKmicWpbrCc2joy6JjjKTQjZx4Z+c1WGNuASI+QakWWVkIk8UkNEuWtm9nOw8QlQbvEkwOyUqhSIcWPIfjNcOzcHmzpfcd8N07ytOhls9rguRDSFFifYgBRR1rt37yAH24wZMzBixAj07t0bALBu3Toktz3A8vLy4Hei4qy+vh6XXnophgwZgrZt2+Ltt9/GOeecYzxvYWEhysrKpP92Vth4ajgGM0B43QyTn+iFMOY5sOinavjq2nLbqbAJVdQaGkkvtOHR3c8mh4gaiBbb6lSfzE69Xy9/oyeba+rUyVR/fq6CTVxETbBRsHmeh8c+W5D6XdLTVkpqDoLNRl3QZAWbYXG0U7Clj5Mt8oirYOMqa22M2ZCDgOll1z2jkGcywrDdVF2HzdXRuQGb4nGNmiJCZC0zaXI2Nufvfr8Slw77Bj9/dBxWb67RtqMJtujzm+Y5G4KNq0i0dcwsWFsZSTRwrz0UspWtsGTmBnnmKpkkNRU6ClURJcYxpTDKxgbkqS8WYsTXy/DfsYvwyiSzg5Q7ty3fxCTYyHx62VUtmBVsduNz+orN+Gx2ufFdD60bTNuPqxrOFtQxp1OwDR23KHACX/3Ct9rjqddZnYUiB+p6YgwRJQmUzMaXaFPZVhHVOmaamC/WhCZXEc0CwWRjH3PXVhtwbQuOyjlTiDn7QudiOgPD15N5H/PivCIHNAmZBYKNqWDjhtHagJuDLUTUMs/dbAo2R7ABaEGCbf369Rg+fDjq6tIb8A8++CD4XFVVhZNOOgkAUFNTg/feew8A8NprrwVt/L9v3rwZJ598MoYNG4YePXpg7NixOPnkk3NxGTsMbEq6hxVsTILNQCLIcfQmsoFvNG5lTgDcOPao44vgVvCiNhu5zMFmcz/Z90W5n6aNC5dg427wbTzNc9ZUSP/W3V+aYMtsgbBSODKTo4YTO/NzsHG9wtkKfxSHnYk75SZNtqncyQ1z4qo7Q7lXDOGqyzdW4+j7PsVhd3+Mecr4U8EO07SYFrhVRG035xz87uUpAFLXNfyrxdp2Td042uQBM4GbDNlm4zfsy0U48cExOPOx8ca5jJuDzVY1yX163DGnVto0bSY5YafNpWB79/t0sYIPp5urwXHnkHWK0lmXKoJbEdYW4vlMYylcAVHfdtmGapz5+Je4dNg3eH+aPuk8V/msnruuMZnbSsRMNXee4NwxO0zl30cVFeFAvUfGIgdMtVqTQ0SjFGzMXKj8iuf8fqpzQ6MhJY04D5r4tYbGJD6dvcZYGRMIX6dNDrZsEFzqfKwqxXTnpn6bKezIfJ5dkZ1quII4w7R3bGLqCcCcGsVEjIsIqfeykJeSa8fb7DdEmOYFdU413crmIJ93BrQYwVZRUYGLLroI7du3xwEHHIDevXvjpptuAgCUlpbirLPOwhlnnIFjjjkGADBo0CDsvffe+MMf/gAAOP/883HIIYcAAP785z/jk08+AZBSpV111VU44ogjcMQRR+Caa65pgavb/mBVRTSk+NIYWRZVRkRDx/RS28RyqwaTNodSExMwVptygTE9OjbkTRMjRI2bS26VRoBvVIYUgaYiB8wqolxjIRQiaiDYvlog513TbaSpcZMp0WST44pLdqhjzJT3Rv2b6Xpqm4FgE+cGmxBRrYJN6ZdpMxfeJOqOyT23YjgZ5o8RXy9FVV0j6hqTuMqgmGgklK1aEsXCjuYqEWycI1yI85cppJGaLzgGmVHBZjFuQySkZv5UvzcRGLe9OxNASvk1a7U+RJa7UbJxjNiAq5q0CfXhEJakgi0L11RalC6CpBavUMGuBqfck611vHsEZKdYiPju2OSEMp370U/nB/29/d0Z2nZc5TM1bnJZ6ICr5hZTT5igjuFsKNjUe2ci+Lgq+lBxGsP4sMnBpjqNdO8mV3FlpWBr5KlvQqlJDOvwM18uwmXDJuGMx7405tPjqtipv2WD4OLOx1S/sh0iWmDwhIbGBztENPN7lImCjZub1bT1EvcYpvOHozEyfz4hFb02yqJpY9PGpjLNNdziJ60NLUawtW/fHueddx66d++OBQsWYNWqVejVqxcuuOACTJw4EbvtthsSiQTef/99XHfddejcuTMWLlyI3r1749Zbb8WwYcOCY9XWpj2OCxcuxMSJE4P/Zs6c2QJXt/3BhuHm5tiyqUzKV7Dxj8kN/bQhAqXjGxZm7sLI2TwFx2yicW4ybG2Ui1yjUlX2mTZKG4QqoiaBHndjoo4dk3dpK5Nkap4QUQsFWwNvcbIpcmCTA04m2LJTQVW8BmOIKNMzyglD8xEiF5lhF/pcbcrxDO9bQSK9oVuwtkrbrqnql6g2IeWTNpcO33jiok1hXvC50jCXUOGGPAVbdnKwhQkh5maSuVkwORWoeYXjhImaj8Q3zJyDjbceqO+haaPEceI0l4KtrCg95kwKIcCsSBeh3urqenqNoeaqbGwsxA2dndpff8zlm9JKnrIifWX2kHNCM3dS63Uu87CFQkQ1G8WSgjzyexXq+K5kOBuXrK/CRoNC36aIDVetZuMwFWEbIsqtZqkPEeW/B6r9wz1m0gsXp/BxzwezAaRyAH8+Z6323Db3M5Mk+jqEHIwWjvpsFyYyVolkkke26TQ4yEswxRlUtBDTLjAp2MT52HT+5iAXw/Mxz0blKsjMYhf+swwr2BzBBgC81acZ0L59e4wYMSKyXVlZGR5++GE8/PDD2jbDhg2TCDeHMMITOV8aqnsJQ8QVN0TU5kU1tFU9U/oQLz7ZkYjHgr+bPI5cj4GNbLmpkmIbgs008XET+6rEpklWL4aIlhbqp5uwcjGJPMKjZhMiqo4lrprH1JYLG9UkN8mv2ieTgo1bfSjVVn6edY1JY64JDkTD1xT63FQFW32jB91w4irYuN5rm/wSu5QWKL+lx3FTSd0ow4VrCIcVbJGnjkTbwryA8DZVvaQVbNEdyFYONnZItoWCTcTGav2mmxo7nLEQtZkS+1ZrGEdc4oyr8gN4tgVFjvqJ3DOpXFxWLCrYzOsXV6GtPucajR1AKtgy3PR6nocq4XwmRwK3CjIgV0bt0aFY2y6sfObbNdmqJPrxzDVoSHr42X5dtWNDtZV05J4pr5SIsILNPFZe/nopbh45DYV5CXz5lxPQsU1BqI2N2oxWKEXbjqZ5QTxfZIgoc4PMLshEXLvO0abOV1oFm4akFwkYCqb52MYBrUuin8n8pc7H2r1WM9ioNsfj5lZrDqJFfDVMx8skjFY3d3qeJyuKjSGqPLsCAD6auQZj563Fr4/bHT07lGjbqXOqLny6qVXh1Wg1ESFC2zCFhOel3KmZt2dsF0UOHJofNp6acGJF3qTveXojIk8qtcxfxGxysGkVbEr3TdcuVvI0hZRwF2Zqg6vPi9S0xchm82Oa+Lil6VXllIk82iSE7ZiuTu1XlUYBE27Hl/9zxzGQjRBR1cDUtw2HPvBIJtN9t1HfcHMu2kA8n03eP3YlT8OYZ1dBDpEY9PG4YZepY8h/U/MAmo7BMYqiNkrqfdIlp1dVp9lWsJnIDBtVrwhjDjaL95Wdg62JCZtNeSe51045cEzKUvEaTO9GKHeVhpiwcXRxFIE6cjRTxZeoxopSsJkcZiJCZIvmd9x8ejaoqU9Kx8iW2l+sjLprOz3BFkoPYuGUyoaC7fM55bj8+Um46oVvMWHhem07dYzpxxdvXgjnYNNfy/KN1fjLm9OQ9FI24rdLNpLtrNRRTEds6F0zvZdC06hxGU6DwCPeuc5AkxM4lIONaf8AvPljk6HgEGV/UPMsVayM+r0tuAo2igDKNolhlcQ+hyGi4j2yKZCXOj/z/df0s64xKR3XHCLKu0dbaupxxfOT8PyEJbjmxe+M/WIr2JoaImpS5KnCFAuFY7bJ3x0VjmBrJbCrIsolrohJX/MSyqWW+RsAmyqi3BAvrtfPWOSAmYONVrBpCDbmgqlep8mwVRdm0/1kK9jUEFHDZMotqx6quFVLG0WhUA5DiCiViJlz7tR5MjNewhvkzA1MbsVNgO9R8jwvdP6sJGcVxqTpXnINMvUYxuSsXIJNJZk0cxeXkAHC933VJrqapo23lWvgpdrynqWN554LkWAzhW5TDgFqnlQ3OiYFm03+J3XzqBtLIQUb8x6ZQkSpuZ8ucsBr50O8BnMYjXwMNYxe184uRJS/Ec503LUtTCtto1SM/BBR9R5pCLZmKHKgOrmy4ZwA5PtvUvyEK+fy10ydgq26rgFvTV6BpevNCecB4MY3vg8+v/jVUm07dR7U2UDcjZ46/5gcd18v2qD8lqsqMZFhPBskdEzD9dk4Tfghok1TMpnSWXCLyVDvN0dVbAzjJc5FnV6rbtf0dcqyTXh7yoro9ZqZCoBaHzMlMdT11RTV1BxOYM/zsHBtZWRKEvG9sVmHotrrziGC2o/q+sstMLVGqLD+/fLNxn6Fw6J57xu7yIFhzVRtRxsCNtvhyzsqHMHWSmATJsndoNrkBchPMCvBWPQzVEZYM/moc6ducfA8T/qbseoUc0Kx2UibqhNK7ZKqccnf8GclB5uFgk28VpvNgo7sC+Vgs1Kw6cZH9o2XcPiOPl8I17hVK0yZjGuupJ8yAnTv+9Rlm3DqI2Pxj9Gztef1IZIh5iIcvA2dqsQyHTNcpIX3buqJb74hyk10S5MQmvM38u5lqm20we55HhEimrlBJJIdZmUpj4BRvzM5EuxysKkkJO/d4CqfyytoUhXgq56o+cd0fvEabBJB6ytk8t83ThoCfXLmzMh8m2HLDREN3yMdwca/Ti6syHxVJa05t7qWmtZhlQixSaugez/v/WA2rn9lCs54/MvI3EBrtqRztvbqqA+dCuVg04xP9Xu9E1ada0xOIZ6zx0bBRvWLam/jMOWq91S7F+CHBuudgTySGqAcjDobgE/ctxGKW2ywDNm3Ic6p36+rrMU5T0zA716egmtf/M7K7tXutZhVZoFUbsB7P5yFKcs2ac8L2KUR4dqoNmr/G16bihMeHIMh7+iLrgB8soYOqWYq2JjKMMD0bvBEFzbgil3CRQZ4c5Jx72jhwOHuN1obHMHWSkAtjLoNf8ijlIXEm9xKMDZKu3Coom4R5JF26sRpU9bdpsiBdoJmGkQ2+XFsDDLuBiSkkmF6lWwMDZ0CRj23Kaw1nG8ohwo2CyONXUXUQsHGXfCoBVa3YTj3qQmYvmILHvtsAZZtMKsRxHczG+87N28WkImCTdNH9dxMpQigD9G0ys0ohv9FesSj+0pu3LKhYBMSiptzsPEMYRvVoo3ajKsa4CpLAaBDSToHU3lFrbYdOwebZQJ9dohoaP7MPESUsx7o86Nm6Miw+D1bwaasB1oFm6XKsCnntlMp023XKuPRKj0IU9kB6BVsw79aAiAVOr22Uv9uqPboLm3Dec18cAv+qO+wziEXUrtbbDx1bW02qGwFm4UyXv257h2kbACts6eJye6NBBuziih1P3TX1EHIiWcKEaVDL/nODWoOWLSuKlir/jdzDcbMLdeen2vT2aQxufy5SXhyzEKc8diX2vMC4TXaOC8wqwuHIjcMa/ab360AADw/YYmxn9w5lSJmm6pgDb63cISGSerM9hAAYYMwyT3uXsOoYLNQxdk899YER7C1EtiQYeqmjLtBBUwhomIOtiwprup4IaLqIqojF9WJ01RFlEsM0Am9eR46HQGq/t6k7LAx8nR5z8Ln50+m4t/M3lbFs5KF0KVQWysvVWYLBEki6FRkKiHEJuIsiCvNfaLus+6eihso00Yp1VYk2PTPqKn5V0xkS4h4z9Aoscn/phpA3BBNgDc+ogzGkIKNWb3RpLyZX16BYV8uwiaDEgCQqwSbws2pZ0f1SR0b5pLyamVj/ruRDYKtVKhmWb7FRLDxiDOb1AKA3FfTu8FVZ4XHEX3tnueFiGkbBUimSmEbYsSUV0uEakfoSMim5lE0wU7BpqztWQgfUm0JrYKtiVVETQI/MU8cEFHVkKlgU9tt1pAtNhtPTs5Bqp1tgnZOxWHTMUPFOjTPhzsfU+fTb/h58wzAJxGoOUi3ZrYTip+sN9gqXDvNZv5S19yFhmriobFkYS/o+jSvvFLon2E+rOXZSQCVl5tnp2VDyaQeQ78vit7Tcc9h+l63FoacwBbh9TrwQ3N5+1Gbec6myBO3+ElrgyPYWgk4ITg+uJXGSO+Ppq0YQmMjazdXEVVCRLXXE/6OahpSsNU3aidzrqFjk3hTnbi1uYFU49Kw8bQJU+AWObBRGarn5yoZuJ5z06aTa7xQ4zhTebeNukFVOWnl9w38+87NhWETIioiKm9GDXPDzzUgwiSXhTHIrqSpMUpsct9xxzFpMEc/o6hnw1H6cTZuPjzPw+XPTcJt787EmY+PR4Uhkbx4DBOZQRLaFMGWgYLNZjPLnWdNhrF4TJOCjUvK2Cb0lnKwWahvuPnFbNJEkEoTTdezrWAzkcAmh5mpTzp1VHPkYFMPac57o2yAMtx8kW1tQkQZVURN17Nso6yK5oZEA3qCTX0XNm2lxwd3TgB4YfjUMU0bVDoPYzRhYGN76Uguar7Q2qjc9VrpZ1ZysGkqEVMQvzbNx2QONgsyi3QMWYRJcp3ApI3KmGtMOYrViBWbPMFc5aJuHEXZjyK4YY02Kr/wb/l2mo444xaCsElnwSW5QlFaTOI7W+IMbohqa4Mj2FoJmppUO/Vv3oQC6Dch4iGNGwCmhwwIL9rc0Drdd+pk7Hl8z5XNAswNEdWFXIQrBfJJJpPqSVWdaD1FFl5ULhnHJyyzT3ZwjCRbUIaS7t0IL6K8sDFzyXDefafKdHMMAJNtV98oV8Kz8ZLpSUg+2aIaYGruOh9cA8Jm8xVuqzN0iDlJ6xX2hM/mZ8NRZ9GJnfX3ffG25OSL1lXhv2MXsc5tSkFAExPUfKwYgyYFmwXBxs0TYxMiIT5PMwnJI8444WE+PM/jFzlQlSUaJxJb/ctc33TjK1OlsHo/TfmWVMUG13lmU0VUd53zyyvw03+NwbUvfmcMXw6FiFqsrbpbGU6RYRofvLbUc9cppESYc5sphBSTUAb4IaK6cEFucRiAn3oiEzJMd1wbe04dizoynVt0JtUn3pqpttPZskB4btHaAMQ6zlG8r62o1Tt2mcQVl1AC7JzA3LZNjbIwFRvihoh6nsdWtnL3BjbKZb7Dg7/X4rbjpK5In583L9iseVzymWvvq3uIbIWIOgUbDUewtRKQi7XOO8lk4iljkqNQMnmzbNRRqkeOW+RA7U9wLouwPtWwsckbwV2s9ZWx1HZ8xYJVyK2mqU1+nrBByCTYmBs6Y/63kKeZP44zDxHlv29clZGN/D5ktOpCRC2819K5LYhvcxXRpr1H5hxsvCIc/LwVFgYzUzXJVRQ3JuWCBFHkp9o3iuCzCW1TN0YLhPCTqGPoNlXURokaT+q12ighbUhQ3TOyCREV3zcbhRCgSXBuEe6SIjPN59Adw/Po58QNi6bXUR6pm+pPZoa4+ntT3tRqbgJ/bg42C6flTW9Ow9w1lXh/2iq8N22Vto+hsWmxtupJTP6aySVWGy0IYBFm56rF+sZU8YdCRLdqCDaVzLdQsHGLHNjkoKXOA1jaP0xiglSwaTfyzA2/mm7FYPOr85+NLc0h2BqSnj5cj6lW072GHOeIOWcrz67h5opTUVGrd/aoDnVTNVz1VFq1PVPpxgknF88vQmdXcPd03N9S5wZMIaK8d9Om4nm4qjPv3eDasjYOD5OC30Z00ZrgCLZWAlrBxtv8aSWxTVTFmbxZNvlCuBsgbt4bm7CcsCcv80lf3XjqjUbFwDMVObAw8kILLvOaTMoKbp4YrjEaztFn8ozyvDXNkYPNpgogdS6yYpbNtYfyuvEMolR/ohdHk1pBfb9N9zKsPNKM+ZAqzUCwqQl5LcK3abKDdzyAr27gKoptcs+l2keTgTYbCNUQNodOMTezTZyPKbVl0C+mYZ86rmoIZ06wiffZqN5jzjXkPbJQldgoqqnNb6hYhm4cU84JG4WkxWaDPL/F+qaGiHLfTW0VUYsN/zeLNwafpy3fpO2jep9MKnp2RUcLm4pbLZAaipw107SxtkuqzXNGqkQZ95nXNSTZCkfdhju86TSQpUwnXyakndbhQdoamnWYeX71npgItrATmG+r6M/PtAGYdhrXSQcQ4XI2zh6LkGyOnWYKEVWdEdwcwQDfpsoGyZSRgk3z3NR3m6sMMx2Tu2baqPdCaSq4wgNmH7NX5IDftjXBEWytBDaJO8Nyef6krzfs08c0bc5tFGzcl5qbK45ONs0kmZhEXOo7HWHJMxq5xiXVL2MONoVg0+1RQxtUG+8g04DQk3s2ZAfzmKRxm9kCYRWGR5FcjOqeNrkMde9GUxVsJrIjrGDztMrWkEpJm6yaR4oA/Cqi5PhkhIwYQ/BCBqbuenibGpuy96nzR187uXHTjE2VrDTd93CuFH5oHTWWQ0UOTKSq+swNOfrUOUT3PLm5/IDwNXGVz7q2lPLQZgNkU5iIyr2pbhK1Kh2qn0Rb3dxno2Qgz89834BwiChXLaILo7UhEksL00Uw1lfqw1jtHKHKHM9N6WAkirkbfj7ZIcK8oeOTR1wlBjd0nHqW3LAxKjcYEH43TNdDOnYYc4VV/lsL+4NbGIhbbbTGoCzl29K8uRMg8trq5mNmFI6dwom/ZnLtBZucrSJMIaJcBxJpIzKfkW58qDaiseq3SrBp1gwyzQRTea1X7/HXVi6xmkkONu449Dz6nto4bLk5PlNt+etwa4Ij2FoJbHKw8ckOG4It/b2pohCXGAD43jTuhs5mAedKYm08T+HS8zovhGJcGosc8O9npVpVKEOSy8YTyM09wyX3qPNrQ0SJQ2QcIsrcSOvORSrgLAx2dg42wljh5J8zqVCpY2oVdIxwG88Lh3gYCTa1iqiFccxRnNrkvtPlYOPOx5SBZfPcuV5/vXGtKNgswtEzJRdDYZ8WufyM8wLTGFS/N+1n1PNplRXcdccitQD1zlDfJZMeWcWRWo+5aSJopxQ1vtKfi/LTZme2FWymd1NV0ejmOWqe5ap8dOffpbQw+GyqwMxVvCeT4bAtfZEDdWzy32ErYoFDsBnJBr6too4bnaqFXdnPYiPNtSusyDCmky9sexlsP6ZKhyZQ6PlDPQTX5jYp2LiqPHJOY+Z21DvKeXaalcKJ6RSj5mObdDwsBZtFNW9tpXnCnuPmiuMq2EzrtTqvqY6S4NwWz41b+IWu5s0jn7kkpAlcwpK2F6LHjLkyO3/+spm7WxMcwdZKYKVgY3sxiWMyZPW1Bvl9mBjgM+w2CjZu3q1Mwy64BRZS51cmP51XVlWwGVUlyrkNi7KqZGAr2LI8PnS/pb43KtiYG2nSuM1w40caxxnmQQsbjSbymWdgUgss59pNeRQp8k03RuoYBI6aYwqwVDNpjUHe+87Nk5Jqq45PG480z4g2htyGPJQ8klu3UbEJ9+WuG1xHhjoOTc88XLktc+I9rBjNnLTjkjI2hj1ZCZhSpWjmVCpvGZfQJtfRCGVXcX4i+JwpwcYtZAMQSb0tNrNcolr3HnVqUxB8NinYuBWtM7HnzIUTeGOeE0pPwUbBZhO9oM/3yHQGEt9rU0qo6k6mSsbGMQLo7FFzX0Rw04NwFWwUCVLfSIfDq323Idhsqi/qHbFc+zyaxAQM5DV1T5hzkk1II9cppj4LU8EdLnlD2YjcvQnX7rQp5rKxilcJGNCvW/zQS77zSj2Ezo7OpMiBjYiE46yxUrAZcrDZ5PlsTXAEWytBJh46bpik7jvqmLoJ2iYpf2gRZYZIaL+z2MxyVX70MXlGiT7ESmmXJQVbuKoQ13DMjEQA+Iorm5A5rqKG68W0AUneWFTSIzfNFuSzGiJn4xVm5WAz5cNibvipttyccKY+NrXiFcBTEpiUGuwKc8y5hvud7rjkpiQTBVsW3jf+3Bs2BnWOGZsqolzClKruS52fzDVpsaHjGvHaOZERTq47D6DLwZbJszRvUEWCzSYXDwUbhwu3UAr17GgnCPUe0eduX5Im2NZZKtioTTdN7tHHtFEXcEly7juswliQyUahzbS/QspWi3HMVThyU36YkoRziVWrFBnMqADqOm1yB3PU2ObCZjyix6Y4D7fQAB0OSvWRT2yw879pCEsK3NBxtZ8VBgUbt5/U+GArRpmqOHPqCflv66vo+ZNjQ6Tb8ohArqOLmqO5ilGdTQPwCTb6/NF2gSnVSyZVRDnhy60BjmBrJbDLwcYzsiiDgas80iYOtpDVc8u6c3OBUROSfgFXzu3p8mjw+8SvjKWSlTY52PQTn+oF1hJCTCPPykgLhTNkRmym2nL7Gf6OEyZpAmXQ2STv5RAw5g2IarTyDB3qPBS2Gkhd7oY/da5oQogMgbNQsNk4CHhFDgybRObcyZ1rbAlQTh5HrrcTCM9BpvseJhd5cyf1W4DObcTNtWSjYNNdE1e1xAnFCNoyNwGczXX69xShzV+LqLU4TEJq5k5u34X5vaggewQb114gFQZaRXP4O5qopsYHfUxxE7Veo8AA+NUCyRA+bhVRC6elzdxJ9UndPJpDzPnrW/h95xEtNsS3XpnGm2uoghU2NipH6Wu2f6LPAfBzOHLTdqTayr83K9jUf+v6SYSyaxweoXx+NkSxxT6AE6FiR1Lz3zeOjWjMwRZSsPFsAMBQaIBJPqvzvk1eW938Sd8jnt1pk0aE+25wU0+Y9rjcZ8RXsPHvu1VOTNXuzVCgsLPAEWytBHY52FTvD8/Q0J2HOpcuUaU6AZiMEu5ExfX+qFU8U+fg3SPAjnBkxcfrihyoSbpNVUQ9i0mSaYyGQi8t8gJkGvoZTiRqIhsU495ms2BIks4BNydCI7HxA3jKJRvyWZtfgzCeOGFbJo809c7oyIpQYnymYsvkIQsl5s/UKGEqs6jf24w5bpiS6fwcwpIaN/ok9BbEFdO45uYcpOZjbmiKTd4bqj/JZFiVBtBzPB3Cp5kTmWumjbqBuicUOanbZFIhok1V6QAa8kejYMvUkcFWjJIECn9t5yvYNOSA0K/GpKdd26nuk/OfxbnDxJWFg8DGpmKEsjZXiCg3QbtN8RGtU4jrRGGG9qbOz7M9bcJOVbuZq/LT9VOfRzX63TAXOeA9I65jhlS8W4Q6W0XmMBwmWmexTcQMcXoOKWyqIsrtJzVX6RysbNLOQnGuPiNdiL1NXshMiPdMCTauMzCZJIhi7ThkvsOhPaZpPuY7PFSnus7WaG1wBFsrgZ28Wv5eVyqemhe4BIq2tLmFUcINKeAumHaeq6YfE9AZJfJ3usnPJjcRN/SS6hP32m0SYGecg42ZN4I6hk3OHdNxOeCSN9wcEak+8Y1rbrUvboJ09VymSsB0rhYekVdH5Ge0mROAsEFoUyGKriLKI2+ofunzcPCuiXvfgmMwPJQ2xLdKpNoUOeAmA9ad3yY8NhwiqtscM8m9DJU7NrmemlrkxPR7ijzSKtioEFEmqcwNbRMPl9UcbExHgs3aTIeIEoQlub6Rhwzdv03VdG4ktlKFOXelzs27R9TfuFW/U7+NnqtM+WJtwoy44b7c3IxcpxAQvic2c4XWrmHaINwQXuqYevKXp2K3yo0WUlIb7DTlsDbpLNiEtIUdb1XkgHTU88gjG+Uzv/q03M6Ug43bT+r56kILuWp/9fc2ivMNWgUbz9ahzscNJdW15doV1Lm1CnomaZY6P3O/YfFehtYCQyirjbK2NcERbK0ENnmmuJsdrooLCE9UWtWThVGiHkOnwiDDLjJVIjA3yJlstLQybFX1YzRe+KQMvyR02EtF5RGwMjBDE3Rm5B7VNhv5V7jg5s3hkqgA5ZHWX3smCjZSEaNulCxDRG1IjHDCVL6xT/2eW4UP4G1wjaQuU/lDvxtMYtLCGKWeE61go49no2ALOVEsNrPU+2Kj3lPbWhFkFoZsU5U7pu/ZXnILBYrNJnNrXVjlwN6AsG2FdLtiKURUT9RzwE0ZwCX9Abq4Dx3Gz7OJUudSSBnNvM919nDD21P95NsA3HxYXLVIOO0FP52FaQnmqt24hYHI8Hzd2syMIOCGHwL8MWejYOPaVE1NUWH63ooIZKby4IZp2zhmuO8RV4xA9cnm3HrSP/wdh/wxVRHlRkRQ9iC1N6GiMXTPvSYDu0KXw5K7FlH9sskjzbVHdeQe11bRFVMg+8m0YagcvboccOp1mjgzm+ia1gRHsLUScKvl6NrSvw//lq1g05EdFhsL7kudSUEDG++TTd851eS05EvIA2JRoclIyjDvJ5dctCAcw2oz3tjUkXvUMU1hYypMBBIHmSrYSMVpSNllILkyyMFGfacaBdkIEeV67mzCVVLtow2YTEJ1TOHD3BArbgggHbauv3Z1g04r2PgbCJtkxNyNRSYhFrp7z/XGc6uy2qih7YgWHlHDrTaaOiaPvBafT34iFnzOKESUeT/FcVnUrFVENc+N+W4BtPMt0yIHmaWz4K2j/BBRw/zFJEaaqmAz5/xR+6lvy1Xbh+YFiw0qlxixc6Jk+NwtlCJcMo4a25wE+j44Clyb1AJ6Mos3T3OLNui+j3Lyi3Mnx16wUb/p1jdufmfVuWnMwcZ8N+gQUabqURd2GlKw8W0qXYgoN8w69X3T9zr8YlSaOYk5x3JDt3XH4IYgcwk+k4LNJuS3NcERbK0E9MumW3SoiZ83eTZLWCFz8tOx+1yPFDdsK/U902OgmxAZhoHWg2oRR28TVsgtGsE3+M0bLVO/bAxhblsbQ9hEIHHADYPTP2P5e88L544ybdLUtjbGNRkSoISR2FQFA/ihqNT5yY2KRZiTzWaUsge5qo7UcZUxp1M3MPtEV2TlG6NkkQOLeVstfGITUpCp6ok2Bulxp4ae2YT/UePdKhm5hWHPXXeoY9pscEnlonCe0qL84DO1WeKSCLTiKvyd2C6bIaLq+e3CsfhjhFaC8tc3bghzJgpJbpEDOycbv58cotecg42vglDn1UxDxzn5rNLH4L0bVrZsE4l7YxXRDBRsVKV7brgd9Z1pzQy9wxbOCfZ8ajEfR31XmJeevzgpHGycE9rKtczwx3CIqIWCTXNuWsHGW6+1kRMWCjZ1LdaFiNo49LnKVq4j1E49x5sTuUWWtP3MIFULQBPfOjFDONdlZuv6zgJHsLUSWIVeMkN4KIOOuzGxWkh0hkHIi0k246urLGL4ufdTe48Zsnzuhopa7HxwE90CNhVrmu7x5BKWdoYor60+gWz496aqVxxwN8jc3DHU7bDx9HI3IACPdDONOW7Imo58Ukkhap4xVsJjEGLajSMjdNwcYsUcc0xVHseI9kEl8OeG/+iLHDQ9V4qNgo26Jnoc8sa86iUO+sj0NHNzReqOmUlIEcB3aAH0faomwj7F59O2MC/4TFURVceiXSU8ah1MfxYJtoyriLLJDv6cSBPd0XnqqP7ozpVpCLNVgSnmRhrIzBHKyUdlzh8pH1M3JwH8DTKXXCRJVeZY0jk8bJ4Rda3UHGajYAsXuOLPH6n2PIcJne+RN3+k2vLWVy7hQM2dmedgSx+zKD+9beaklbF5h6h5G0jbf4l4Wj3HIYV1xwPC48vGCVvT0BgiW7jqcOqYNnbF+qpadkoaPVnLmxe4oZ82aSa4BKxVLkF2xAzfkUAr0cmmIUWiU7Cl4Ai2VgKuFFrblpxoeMf0vHBFtuZQsOkMCC7xZVMIoilVW6SFmWHwa8k95XtTHhu1Tzp7LFXaPLskF1fVBoQnbivJNvO52+RfocKmbEA9O4p85i6uNu+vzTtEGU+cvGzGIgeZStM5CjZTiChDSWUXMsIjnrnn1h2DUuVZKW+oTRozzICrYDNtkNmqJ+b8wR1HpLrTwjFCGpK68UGRvRYbC07icsDSWUOcK0qVVlqUJtgyCRHlEkKSgq0gewo2vvKZ99yoYwLRisD0MZkbOt25mYpAmhQmD8kOo6X6pWvb1HfYXLWOd4/Itsz8hNkochDKY2Qx19jZ3NEbbNOz5No/3BxydgW71HPz1w29Q51rx/McVQD9vkVFvIgKNk6Yp40KVFf1029bmGcm97i5M+m2fALW86iwQD7JFHbc8cdxfaOHLcR9slEEcsPRuePLRhnWPAo27p6M58gEaCd2pqH4rQ2OYGslyDgHG1P1QC5YxLtmI5vmKqmsVAdMtYiNQURtkBslz5coLY+euHUqDPV7U7geNwm0TVghl+Ti5u2j+mWzQeaStTaqAd099TwP3y7ZiEXrqsi/++DKyHWLG8ebb6OO5ObYAmi1hk0ONo6SQfcd9T2X8PfBMe7tcgvxN37ZVurakLIkMcAcC1wFW9LjEz3ae0ySVDyVDj9MyG59Ue+zvlgPcy2xWDe4CjqbXC2UKk3sZxTBxt18cddr8bqlHGyGjTcHmSifbcJeyTxVxO91jhnu/eQSV+Q7zHZEGgi2DNZhDkllrkLMe5YAT23veV64nU1aFOa1a+fjjB070b833aOwgk1nT6b7n2dQSHHzWQHhcWNDBGaag40bcg/wnVoSwSY5yqNtYb2TLXw9upBO//zi3MlJd2CMWGEWNdO9s6rTgZvvlfqtTW5XANhMVGGmUxsxbRXdmOOGiDLtAoCfl5KbGzF1fua7wRgzQVsqdYbGLlL3Ay5ENAVHsLUS0CWMecQVYEGgcENgmOos3TGBMNGk3dSQXqpwO5sknewQU6GdGBrD8fZyFWz1jR7bcLMJXdJuMtmbAP79VL/ONDw1dX4euUgtGrqN0iezyvGL/4zHz/71Bcq31JBtdOeKMgYLBO9kOESUv0EkjQKL8BBKrZFpiCj5HdOwoIah2WCPNu4z2egYFSDMRP+ZEDVWoW0Z5s6kxgL3/Pr3LfX/WHovxw6xIL26FmQUt8qkTSgXV72b6lfTn4dN4YRoBVs6B5uuIpwIHbHKnZeaKwcbVzVpQ6Bw3yNqs7K1nt4gZ0I+c+cFbn4ekypN/ZNNnl5O7k1zDjYeyU0dh6tQtFF96/rKHnNMNSJ1TN35uaQXdUxOyFpJgWij8shWsmq46miyUD7b5Irjro82YoKo0F5Jwcax420UbHUNRgVdQSJtI3LIHzsFm8YGEJxsYoiqGsVgE11il4Mt/N2mreE8bNSz1EVahOYaC4crdw3XKkbV+84s9qXrD0CvRdzUE1onv4XjUD1GpkXidhY4gq2VINNNJjeMhjIqbBQoXOKK+l4b1sMm/Sz6yTTexHaSgo0TImrhydMpijIxXmwSavJDRHnHzE4ONnUh4493SgECAFe/+C2A1OI3dNwiso2uT1FGtJgXiRMiapWPQWs88Ygv9TvbKqKUocOtIkrnRTN4PBkhPDZkK5c4ItvaKOWYBAY3pAfQKW/4Y4l6bnTISDgNgK6f/jxdlGdW9NK5sKh1KHwOG/KEOr/uEXM3dHpPM48IoIkr/npAq9JEgk1UsJnztZnOw1a7i46mgrTZqUtvMG9NBR76eC4WRyiFM0k9YacEDfeTsjd0jhmusoSfnoNHNAPEZtJCraHPVRn+jkNSGdNZMFNUAOH1mZuCwOa9zDTEy4Yk5xKrYYcpfy3iKJRKCkQbhGk7Zqhg4+ZgiyLuTe20FeTJ9d7cRzFMk5Nb1qb6s+cBVYb5OBGPBSQXZ59mIq64KWFEsqSsSJ+7k07fwJtPzTn6wsfdSCrYiPm4lufw0O+1eHYat5I3wFewWe3JmGQcN7ok1S++najahJmm2NlZ4Ai2VgLau5AZicENabIxbm02f+pCpltL2KSfBWPPJpmE30sEGyMRvE2+EC7BplcD8j0wtPSYN8HrSV3l3ExSFTD0U/XmWWxqdPdTfJ42+WTU36bb0d5jdXxQt80qMauFQomjYDNXk+Rt+DMKETUY7KEiBxmO7RD5azQGlTFnoTLkktS60HFq7uUqvnS3k6tgs3lG/vnFnJSZhP9wClOYfg8Qa4lVugH+tdNra2ZzJ13lzaxKKxMUbJwQUd13XCVTo0bBpptHznp8PB76eB4ufvZr8u/p8/PmeJv3iHr2dLhOqp3oGNGHiPLmBS5hwLW9AIrs4N8jveIqmlQBCDLKGArGI0sBoFLZOLMVYBYELDelhFWeTZ2N6iuURPKGLB7AOzfVT5aCrVCfX0x8llI/GeuWySHGLcTFfZ42yh+uQ198L4siQkS5KnZdn9SxLZ4/EY8FYbzUfQ/nRdOPj3AEEN1P8ZjtSwqCz6rzzcYBpEZA6O6R54VVtQCwqZqnYOOG7OsdHry1NRMVu00BMhunOp8I1Ox1mKIaIEyYmoprtCa0KMH20EMP4aCDDkL79u1RWFiInj174uyzz8b3338ftKmoqMD111+Pnj17oqCgAP369cOQIUNQX59msFetWoVzzz0Xffv2RSwWQywWw3nnndcSl7TdwiYHG1fBxlZhkISMzYKnmaiY3jxuP61CCphEoDhJFRsW5lSRAebmnFqwmF5UG1WcLt6ezrnBu3d6go1nGNjI0Nm5UiwWZjFHicnDzq0gJhqDsoJNbhuVeFd3TNN3AK0oIPOyKeNLp/ADNCFrEZt4MVxQPRc3LE/3N5uNI63U5f0WCD8T7SaNOX+Q4Y8WCra6xmSo4pbNWKKIBe6Gn+qnWJCgUFKwMd8XbiU5i7WAOr9u7mOHjFiEqHI34jYOl6gcbMUFCfhTGXfDQKsM6f6ExpzwzyJGiGjFtk3mkvXV5N+DfjIdSFxiE9ApLvSbjaiKrIBFiCjRJe46yk3pYLNJ4yb65/7eHCLKI7mB8AauIRkec1ySGKDHglbBxp3jmeSN2LYozxwCqNoVRhuEWUVU7H8bQcFmWkdLIgqVqPfIqoqohRM406Iz3NQ5ukgU2qbj2dy6sUDlYfPPIxJsnLB3k9o+pLRjELBlxWJqAR5RRCvredXJdeN781amgo3p8LBJnbN849ZwO0Z4vO6YNkUOuHthgG+r6MI5SZtMI1ZRr8kp2FJoUYJtzJgxWLt2Lfr27Yt+/fph1apVeP311zFgwABUVVWhsbERAwcOxMMPP4zy8nLsvvvuWLx4Me644w5ccsklwXHWrFmDV199FbFYDEVFRS13QdsxbHKwcTdQ3Jws3M1Xqi2ftecaZFw1QKa5G6L6Lhc5iF7cbLytesUVzyDjPnPdMTJVtbA3ARb3iR2uR4wbKocREF0m3Qe54EWE+0lGK2PD30hsKlL94m8WuLnRbKqIUsqQqlozaddWMOwzUbBRoYo21ZCo5x7OYcRXYegVbPbzR9Qx9YUKouca3dxJzSt8kotaH9KfC/MjVBDMaycdOLrkxoxNpu6YgM6JwidvuJUnbYqaUM+jOkLBlh+PBUoysopohutjKIeb8G+xiii3CIcOYfWLjjziky3Usyf7ue0ZtY0It00miTnJ4tyZvAdUW4oABeh3Q0cYct939b0yK595NgBAryecEHUbu0JPnDGJBaYTRXxuhRF5esMqP/395DqGdDaISWlTYrBlqX5ZpVWwsFHJcWjx3LlpCOQcbNkJEdX1KZJg25aHjVtFlHrXASIVByMHm22IaKqf0fakjQoUADYRIaK0go0ZImrxjBaurQyfW/Ouc4h7fTE7i/mLuX+j+lmb4fxFzbO1DUmrdXxnRYsSbCNGjMDKlSsxefJkzJw5EzfffDMAYMOGDZg9ezbeeustjBs3DgDw5ptvYvbs2XjooYcAAC+99BK+/TaVD2mvvfbCunXrsHDhQnTt2rVFrmV7R3PkYOOG5th48rgKthS5oH5HHpIf1sP02uuOGXUeU5EDm3Nzq8YBCOVK0Sb5tjLYeUaJzZhrjo1SJpXbdARbXjw9ZZryn9BhX+a+tzHlYLMJWbNQIrCLHCj9MVYRpUJEieTfknpPMNw4ZIfV/GExZiiyIfwO6Q2HUAESbd4/nsPDhmDj5sihyBu99J937/iETLpdUVMUbEwyyibHVer8yuY+04rUGToIbEhlUtEcQZol4nEUbyO1aYKt6c+d+r5Rsw5S8xKVg0gHLnHFVazr2lKqXr9dfiIehMyR4bY2aQ2Y+SatFGxkjj/i3MSXumfB7af6PMxpFaIdAUBqzHA2n+TcZUO0MNV7OmcxHT5tfm6RYfNMdZR6XOq3PsT7JNogJkdVscEZCBD3yCKU1caRwM4VaWHHR50nqsiBOnfqK4nTfaJCRAOCLZZWsDVlzTW15RQkaFqIKDGfMtVvunWDItio902npOKHzYe/X7i2KkRa6ohuKrKIXeQgwxBRbmEfbi5k3fl1ewEXJtrCBFtRURHeeecdHHHEEdh3331xzz33AAA6d+6MPffcE6NGjQIAFBcXY+DAgQCAX/ziF8HvR48eHfy9U6dO1uevra3Fli1bpP92VmSiJgI04SHcfDjkRolPoHAnCpsQUa6nOFPFl3g9ooKNswjrNwuUx0DnaVY317pcTfzxQYbQEKQMd2NAnStTApY6l01YTp3GAyMI2CKIFnviy+Q9zjzpOl1p1jeeCvLigTqPVLApi2hNfZKtmABoAlhX4CGkYLOoxsZVCIm/F8NTqX6q75AucS/VL5sNP3f+0eaO0nz/zLhFkrFjszmnQ4h57zqZw0M4T2HEZpJL8pDKUCbprvveRulCq+/4BntUzp/0b/nvG0kUC7/PS8SC+YZUbbJDRLmkbvpzJMGmbDB1Cgzq/JlupFN95bX1579EHMZ7aReyxnvuZGEMzRrBLV6gy5XEdiYyckIZQ0RDRIvOCcKt1MqbkwD6fnCLydjlYDN/F1X4hav0p/7GccDIVUT1JIJcDIEiMnkECtUvvSOBR+pynb2676k1T0uCkqGBPPJFnI/bl6RDLytqCPJo2/nj8RjyEjHtcW3CCjmRAmq7dsXp567ahDZ5k0Mhoox3rWObNLlHVhElxoe26Aw7jDf9ve9EqahtwNqKWqmdjrhX7xFgUeTAhixlFu3jpj8A+I4/3e9NaWRaC1q8yEF5eTkmTpyIWbNmIZlMom/fvvjss89QWlqKZcuWAQA6deqE+DbliKhQW7p0aUbnvvfee9GuXbvgv169emV0vO0ZmSrYuFWryPw+FiE0fAOTmnzIQ7I36PSmJrN+iueRcs8w8q1p1WYEGabmQzD1ic5b0XQyDMiCgi3kEeITKNwwXps8HAC9WcpLiAo2vXFLh8eZ77sp/4ku/M9GmUGGg24zdArz4kEJeI6CDdCr/CgCiCxyoFHvsUJEtaGXPEND/L2Y8J1SbFCn4iqkbMKH2KGXunGsGSMPfTwPJz88NjB4qGN6Hj13U/MK13CLatekKqIk0RH6SptXhKuO0JEV3NDNqCILUUnCbVTflIEbFeqcJ4SIRuVHNH3H9ajLxKpZ/aISbEZHhrqRt1Bo25BcphDRRDwezN2kgo1UgfLWQYC+Jm56DsBCIanpE5uAZZB2JoItXEWUbkcpfKg+2Vwj18ZMtQ1vkCkSmHt+XRoRDvGuHUcWtledQHZINoghL66pIFOqX/rfhvrKyJ2n+57+jj93sgsDCecRFWycvQ0nH2d7IbdZpSFENC8eC6IouMIFfoQHHU4qkmHthH6q84KNuoobIio+n13apgm2zRFVRP3xySXjOXudvbqWBp8XrJWrW9so2DIpcpBxTnALRxM3dYVO3OHysG0HBNvll1+OZDKJJUuW4Nxzz8WiRYtw7rnnoqKignzZxe9iovSgCbjpppuwefPm4D+f0NsZQS4EFgoU/iaAt7jZVHnjGio2iam5SeitQn0irrO4QChywFiEtZJrZmUbgL8htNs8ER6piJw/wW+Z9zNTBQl1DA4x0UYwHKmNJzcHGzcngmgQSSQT0wCwIa9NaqTCvHigKOIUOQDCG2HT+SlDRzxmqRAiquaEsMlHxQnZAOQxU1ZsTlLOnStS5+JtgMhwLENoiHRMi5AkH0vWV2Pmqi3aYwI0QZftEFHxWRZE5LJhO1aY/dYdkzquTbhdU/JXisnMubn3bNZrushB+veJeCwI89pa3xjaaDYldEr63jB/FSTSallqrqlU8muZwtG54WVWRDVFsCmEbTKZTlGRiKVD5qqJd9jGecZPPWEzJ/Gem65P1NzNTQ/CVWtQv9fNZ1T+NYBnQ9gUP+Eq2ACe2gzQrGUi+Rw1JzJVfjaqb/E6iwv0Tg/x96Z8sQChfrNIp7G1vpHc+5HFFLjzsVU4uPm+F+bpi5VR5+cU4RJDL0052CQFG3NO0107nW4h3K5WUrDpixzo5h+OCp5zj2QFmzkHm+805YaIciqg7ikQbPOVPGy6e8zJYWuTHznTiCraecQrzKM7ps7WcgRbEwi22tpajB07FsOHD8eTTz6JN998E4sWLcqoE7FYDL179w5ysM2YMQMjRoxA7969AQDr1q1DctsLWF5eHvwuU8VZYWEhysrKpP92VnBzEwGZGXTczbA+L0HTN292Sfl5/bQxWqM2RUWG3A3ckA3debQKtgy8GDZ5iKKMEh+Ux1DcrPjQV5nlGRBksnuNh068zW0iKsJJVUQNXtmmJAg1hohqFWzEuGGqdACRYEsECjZa6UYQbMyKeYBG2SG0M4aIEkNbG5bDDptIfycq2PgJ3zMjdannRhrWFuGPhr0rgDQJbhf6zSNb2cn7ha/EimjsBNZkaByv34CJpOIRNdzQTb0jIXWdpo2s/jx8Q5xSHYnXlBePSfONmE+HmjsBTeiU7n6qRIBwPfE4jHONSjTr1jYgfJ9tHHd6FVnq/2IoWMjhIVxPQriX1QQ5QFZ1Zlb91vWTq0zX/Z5au3T3o5ogtFTCNPX7aBtGt5kDwpts3TukywsXLkbDt+c4BRpMx+DmsCX7JNx3uRBW9HOzySkXVUU0Lx6TyaMQSS7aKvqK56nveCQC1VfPo+cvTvEl6tyAHaFNqqQ93TOKJv04YesdxBBRZf5LKvO275zg2jpaVS8RCRP1Dou2kkoe6d4t0qZSCS5trlqR2EwEduKm6nCIqNjWd9hSziMgrPTjpBfab9c0PzBrlZxOSrzHBUKUC6WkD70bWQgR5b7vdgo2rq1F/34rkXe5tYFNsI0fPx6//OUv0b59e/Tv3x/XX3897rzzTlxwwQXYY4898IMf/AD/+Mc/UFFRwTre+vXrMXz4cNTVpV+UDz74IPhcVVWFk046CQBQU1OD9957DwDw2muvBW38vztEg/uy6b5nV4lkbjbsQgCJ/jDJG+3vM9jQAXxFoHjfpYWZUd3TxuumC9fjhuzSk7lm4mXmK2lKkt+oc3O90jpxWZRXWUy2T91TUcFms1kAohdBadOtGBy667EJn6QLGqRDRNMKNibBplGwUe8MGSKqSa782qRl0t9siG9qXqBzhoWNMV0/bcJtwslzPXqjRdwj1bDWncfGOSHCvw+6eZKW/xNjgbmBiSIBEvEY8g0V0diOAAuvaqPGEOYT2lQ/qWs3G61SKBh3bbXwXkeF9SUScSkXmuhM0J1nax3f4FevSSSd4rFYMNdQz1MNAdTNs6RjJsOwTyD9PEUSQSVsxeMlhHBbz+OFP+nucVQaAer8wW+ZzwKg1yedvRHldPCVqJz31Rwiqqx5OoKNGSJK30udjcgjb3TH4CtIzI5MawWbhUJa54Dxn4mYh5U6lzbdCcO5alOMAaBVitwQURulbVOcxSLxznEsNSQ11d6F33YQFGxqiKikPI7FkG8IEbVRsDVlTyc5oJU5Ubdm0lEBClHMsGkSiVigoKOriApE4LZ2nkdXvKfsNAriu75/j3bBZ5Vgk+8R7biijgnoyUUqUsEqooqZTscmRJSOFqDXZ53SuDWBRbCdfvrpGDRoEHr06IHRo0ejoqIC69evx/Lly1FdXY158+bhb3/7Gz755BPsueee+OijjyKPWVFRgYsuugjt27fHAQccgN69e+Omm24CAJSWluKss87CGWecgWOOOQYAMGjQIOy99974wx/+AAA4//zzccghhwAAVqxYgT322AN77LEHVqxYAQB4//33g+8c7Lx5dDUonpGYSUii7phc9Z2Nl4quFsgneqiNfBQRWGzIW8FdLAFdriS+YiMqZC5oZ0EuchVs7NBcC6OAGxaobSuSLQYDApAVbCYJdFNyIhQbPKM2hJJuE2EiSwry4kFuES6poifYiA2/RZGD2asr8MqkdLg+d9MJ0GOTejd0XtmthDrCJpyKSwBTx6ysNecVCY6nMcgi+LXAELJRupBzBZPkivLAxmPpcBeut5ZsR1yPbj4Ur9GoUNIRIBkojMTjFiTiQcEUeh0N/9ZGnRW1qckTQkQBeS6zycWlHtNHXYOcl0olpIJ8jxko2GwK3tgksfebivOx2k/1eko09xLQrVm6+SP8HVeVog1rZtoqNiGi/nuQF5V0XRlL2agiqiXYVFLHIn2CXQV53vrITm2ijKW0QinaftISRxa2rFjoKM/gdBCvR0x3wrHJTDnYuOkSyPeAGTZqU/yEzLeoURlmEl0jnrudochBUlH/msaHTbE0Tmiv2k/RTguHiKY/i3Z0NSN9jE5lJ36dF48FYaIbq+uMCroopyk3R6D4zrQvyUevjsUAgDmrK6T3Vs7/Jt6j6PDYukZNgToyTDqzcE5uiKdOxU7dJ3Ec5Cd4+6PWAhbB9tOf/hSLFy/GAw88gOOOOw4lJSXS33fffXdcfPHFGDVqFD7++GPWidu3b4/zzjsP3bt3x4IFC7Bq1Sr06tULF1xwASZOnIjddtsNiUQC77//Pq677jp07twZCxcuRO/evXHrrbdi2LBhwbHq6+uxYMECLFiwAA0NqYm5srIy+M6BrxBIJj22cc/PF8LbdOra8quIkofUhFSaq6ylz8NfmG3k/2pbeuPGv0e6DSX5jJiEhc4jRYZTMMOHMvlO971NtVI674RgQAgL83tTV5LH8KFTDQIWRpaUo0+f10SbX5DpTQfCBqrneVIONtsQUd0CSp2fCusRN1+iQQQAt7w1Pfhsp2ALn5vaoEv5OorNIaJcBZp63KBPzLnTlNxYPl60t5eCfx/EY5YJ953OARc+Dm3E8/rpSQo2c3gZl9wjHQ7aqsq0IaweV6sGYjt7dGRYqm0iHgs2s+wQUc0xRQPZWBlUIcNEUkhsrxtH1BqjU7X85F9fKIU10r+Jx2KB6okXIsrPL2qTBFobArjtuFKeKUNl43gsJo0llZAi51NteCq1tvLWN20VUbZTiu6TScEmh3lH992UT4+bh1Wbg42xZtooQHSbWS4Zx00jIo6lvEQs2KRybAib5P1R70Z+Io58UcFmyMFmcgZS3+nsfV2/KHuBHF9MQklLaHPfN43KMBNntXjdnYT8Yu99vwqfzl4TrJWyEyMejA+u08Cm6BU5ZoVrl9IKqASXLhKEo2DTOA0lBVs8hr26pfKgJT0EOWXTbUV7UrDpSDUkb64Rn1tePIZ9u5eljlnXiCUbqoO/iXONqGDjhDDb7DErahtoe4Mx9+qOaTNmooociLkEXYgok2C79tprUVBQENluxYoV2G+//fCTn/wksm379u0xYsQILFiwANXV1aivr8fSpUsxfPhw7LPPPkG7srIyPPzww1ixYgXq6uqwaNEi3H777cjPT79Affr0ged52v8cosPTgu8scj2xSSZyo6Sb0HibFe6mBKCviZz0LZKpkyXtI0Ipig35NWy88WQcvEVOF+6mPVNZPVf1SBOwuvvOa2sTTiVej1hF6+lxizB7tbyIi4uRzpOuO39kjj6D0WqTg038TrCXQ1LuVOhC6nOBECJa15gMjTHqvuty4Yht/aIRNgo2FXRlPf5GOkrBJibupbytNupfLgFMnb+ytiG0XtkQbLox4iNQsGnIRao6H9+5wdtUqMSEKUSUneuIuGxdXhDx96Y8aGI/CyIqB9vkN/XbiptZdoioNuw0PJYo1ZFURTQhk0Jbm6xgSx9T3HgCKSXqC18tAaASq+lcT3SIqHwefSgn/x7RG4vw9XieF7QVx4c6d6qqo2JDcRw7BRtzbWa+LzZtxfMkJKW2fl5ISFUNo+eKmvrw2pLup14xJUJcdwoN1XhtogJskneTx2VuZqNUIXEhBJAzz9rYaFFrViIWkxRs6vOUFGyWIaKepyOFw2HeAE2i+ucRxyY3bNSGeI/KNVloyKWs7VOEndatXXG6qnN9Iy4bNgnjF6wP9T0uKByTXngvYJN/zlZpl4jHpBBRNWesuBZEKcjC+ZGj58NELIaDerYL/j1t+WZ9P0VFMUH0hPM1Rr/refG4VOhgyfp0JVFZ3alPLQCEr5WTj9NX23sesDEiPNZHlEMs6CMVQmsRoSHOk2IuQadgs8jB9rvf/c749xUrVmDAgAEZd8ihecAtHqAnlMybJR9ctUemVbSsFlHie2qzYOP1IxUoxAZVvE45d0O0MalN5E4pNiwUbFxvh84Qpu49KavnFsZgkrK635MbVAuvneR5U4iez2avlf4tXqc5RNR+U2RKcGxD6EgEl6F4gPgcUyGippC5aKUJdVzfoxVZ5EBRsIkGGtc5oB7TR1QONjlElJgXmIpPnaw+Knyo/TajpL7RC4eiWRQ5MIXhAOn7IB6zvRSawswBx/R8R4aICuFl3PmcUv6QCmWGgo0bki2GPXDnaarvInmTl0hvZrnrsFaVS1R5o4gMKQdbPC7NN+L7qVObkKpvoal4PB9rttSk2knEKlBgCEdX5xVdwQq6grJmzWKqPcRblp9Iq0XUfprUgOEQUT7Rw88JxXeOch1Q8pxo3iCLm9l0iChvrtApv7lrnmhnic4Rtb1N7kxu1UqAP9dx3+ukQj7nG3LahcNg+cqsqHDSVE5MQw42SW0vVjxnkkzM8H4g7LzzPC+4xyUFZoWQjbPafx6iIzKKMCzMN4fHshWjwnf5iRh279xG+vuw8YsBKGR+DAoJqhBVhHBBZ3dStySKYOsgVvJUCg2Ily0XC4u2K1gEVyKGA3q2D/79vUKw+deZCtkXlfnmfKTUv6l+5Qk54ADZXhLHcRtJ5Rc9PrV7N+GYXUqLgs8bqsIFHqg1JirU2Uc2FWxiLkFKOdjawCbYnn/+edxxxx3k31auXIkBAwagW7duWeuYQ3bBJVp0hh+5ODI3FjbkEXdx4lY40X1PeuMtKrdRfaJDrDQECsMTqTs3NclxJmmqT0F/LEJG+Jtu4txMw88mBM8mBJkk2MQw3gJ5kyhK99Xfmwg2Mi9SxJgzbfh14qSoeycq8kLJtwVjLD8RDza9VFsyjEOzgIp9D6o5WVQRBeSS7DY5+rjks5wQVx/epTumVdhqxLslyurDXmH+3Cm2LcgLL+2+qksc76LBSM1f1CVxSS4631D6cyIWM4Ylc+cZ0ujTKdgkT7M+JFs8ZH5ESBA3H6hKyphCwWxUm1I+QeF5qiSjmi9NDhFNP3tZUZP+PR3qIyjY8sNjzg/VUXPvBSGijckQuaE6qnRkKV1B2ULBFkEAm8ZnUrkeXT47QLcJ529guOSNTZGDqBxs0rxgINjyxEIlEcf0wU0toA1ZFdYd0UHAqUJqE45lo2Djzl9R34khtxzloW7NoV4DfdttJFNczqP49pSVmLM6XbROKsgUQTJxU57o+qRuzsV7LtoK3H2ANsfWtvfNZCep/RQVbNx1L+odzE/E0a9zW+nv3dsVSX0EUo4RmQTVO01tv4vqZyIWkxRKGxWCLal5RiaC3kcdo4poIh7D3t1Kg+ufsZJWsIXWNip6gjnXqCGiojN2i5ArT7z2EoPyWb0mgFegrktpYfB5fWUt0c+mK9hsqpWSik/B1hLtdqdgsyDY3nnnHdx///147LHHpO9XrVqFAQMGoHPnzvjwww+z3kGH7IBL4OhfLJ73iZv3wsaDm2neLVLBxpAt675LfR8+fyWZN0I0SuyS2OsXQR55A/BJUG4ONd35yYWEMhC5m3MLstQmXCYqSfpmRX6tXpesYDOFiIbPE1VavClFDqLGjZgPIlTRTWiXn5AVbOp1U+fRXb9v9CbiscDQqmtMGjdQxYr6RVSw2eVaohVs6iZe/H2bwjzEttmspDGYQagzQIcPif1sbwjTJJ+vLqRAuEZayRcuctAuIkSUmweNq9IJqTVMm3PmMa0UbE2Yj6WcO9wQ9QjFQl48ng6tY+c3NTu/4jGlSEudfpNqSswvnrttRNEXSdmRF1aw+fOP+PqJIaJAeEPLLXJgQ3KzVdtKQvHCfFppp1bDLckX75OSg80ibIvtvLLIKcd9jyQFWzGv8ItMCPH6Sdle4jF96AhDnYJNPVcUiRjVVrc5ppxdZJhVE/IWJ4Swec7GV5fLjxuxAggKNiVE9KOZa3DW418GSfel9bpAP3fqzmVjp6lzgK7iOD801/zciw35FtVjmorjJJO0ij1KRZqIhxVsPlkhk0wpko06BgDUspXgfPJYJK6K8xPB3K1W8hTnRNF+i1o3AN5+MG+b6rprWYp4XFshE03+M07EYigR7F4qlQlnrlD7mZeIS9clOkPFnxdLRQ5Ux50XOpduPhRvSWeRYKMUbEwHAVktmVhftfuNiErzorOYCs1tbWATbMceeyxeffVV3HDDDRgxYgQAYPXq1RgwYAA6duyI0aNHo02bNhFHcWgp0B5c86RfIFUU4i2OnISWgF6dxVVScfsD8BVsdIgo7Z3zm4r3yEbB9vTYhRJBYaVUIRVs9gtm1Ln0i07qXDEpv1fTpfo2ue+ico4F31mEiIrP/ZQDu0t/E8dJMulJhkl9oxeZP0H0CJOlxUX1XL7+fdNXfjR7J8UNckjBJoaIJuKS6km9Luq5qbmS1OPmJ8zKDjlvhbw53ypt+MPnsJk/AEKRp4RnlGx7N7nVhTMldcX7KXqF1UIHXOWNekx6E5gMHVMi2IgQUWpfwvV4kpWWhY7FYjCGiHKLsTR1PjRVdZYTO5vVDey8oUq4SZ4hWTU1lKLGdn4iLilww++bSKjHpPVIfN9kBapAtESsmUWEgs3vs6pgk5QAW+V5Ue03RV4AdgolbkJwVTHhbyZD+Ssb5XbGEFGy+iF/becSGDrFFVlxNGJtFp8PpVT2n7tUrIO5tus2XmwFW52GYDPkDAvaMJSD/jpIbTx1RE2U6in9e/M9EsM0OU5kXSEGWsFmtlXiAlnqo6quEd8u2Rg6tylfLNVPQJeHTEOwKaSI7DQUw1N560GUQ86UbxEIr5n++75USHQP6BW09LMU1gOhQqaPOmK9TsRj5kIUTLWaNvzZYNfE4zHEYrEgDFANVdSpDKOUz6nfRq/X8W0bDrGSKFXJMyHYc7rzc5R/6vkT8Zi0HorVXsVn1MYwlsg9M6OIj6hgo0JE/ecu5idk52BjKugBjTNTOI9oy+qIw9YENsEGAKeccgqeeeYZXHbZZRg2bBgGDBiAsrIyjB49Gm3bto0+gEOLoSmydjHkg1vkgJvHx8YQJhNtZ1imnksERhlJ7QybY7WtSqD4ORZS7fjGHFk1zyJElJ0vSZNjzz+9KKtnVzqjyLQMc/TZkIOkISz0ab9dy3Dl8bsH/95al25P3aMob/wubdMLoyqpT/VTILny4sECGQ4R5S94qjor3X996FJ+wqwqsVOwbdvwx+PSGFHvlRTSmJCXInFTR286+fMHEN4sideeF48HXke+spW/WYiaa6QQ0dp6bTsf2iIHmvP78OcI8ZiiUqUiAwVbUyp+imqN+sZwQSJ2iChlNGrmQ27RmaT0Dukrp6nHDL6LSKkghtaZ5i/RiaEPQU6dqyARl3JnqWuxvFmIG6qIptuJHvuoIj5FhILNP26jogwTQ/s2KwRbKETUQsEWVVxCRJRTSLxHFTVyARJViSkpJmpVcoBHNgD0WKbXVnrTTK0T3IqhcqgxT4EiVTVkhgrqQoe4qhLx9yIRGPo90/ZRz+U/c9IxwnTg6M4flZc2HlFdWO2/1sHHHAeAQJYK87EIn1TQFWSKymtrOr9uzVLHiPgs2haayT06ykHzvm1rWpCIB+RilOI0PxHHHl1S+92lG6qlNUGbAzLiHUzEYzh5f9m5SxNscYlEaSqpbJMKKP2up87rz92bquvlOVEi2MzJ7tX5hxMi6jukfIIv6clrh6jELBHsXk5FWk7kVn4iZlCwCXaFIQcbdy+q9qmzIURU3JNF5ScklboWCrYLh36N37z0nfx7qchB2pbVpZBpTbAi2ADg/PPPx4MPPojBgwejbdu2+Oijj1BWVtYcfXPIIqgFJqrEtbgB4So2xLj04LcWm0Su148rDQf4OcuaQt7I4V36MAExHMrH30fNsT43QN+PTMNompJjL1vJZklD1EK9x1WQANG54hLxGPrv2SX4t7i5IBNya0gm/x6XFKYl9epGkjq3v1lR+6l5XSI39yUGElQm2OJSiJe66NrlYEu1zc+LK8oOvTqrZ8cSHN63Y/rYQlubZNU6A1cNGRSvJz8RC0gUijTkFj/hbAipfpoKDXAdI2rbUqIqqz9+xfmwfXHaIFIdBJ5HJ0LmbjyjErEn4jGJWA0l1aaunR0iyt9IU8fVKdgosoGrMJIVbHFjaJ3fT1lFTl+T3/eCvLhE1qoh6Wo+GZ3qisqhCOiqiIqb7rA56a+zKrEqKo82KfNiOESUr2Dj5NLxQY0lNaF4t215kKrrGrGlhlacJ2IxKVfnukr5vtvkYKMecVSIaDxCSc5Pu5H+Lio3Y1rVkt54J73wXEldJkXUAgRZoHEqiV+bnMAUmaXPxZX+7Nu9tIKtaXaF6Ts5DE4k3hkKtgxTrQACMRGPYRdhI5+GF/q9VEWUcE5Qjy5qnhSVP/8YPQcTtlXRBOT7G6UotlKwCdVwCw3KRbHriXgsINg8D1iwtjL4m14JZR6LefE4OpcW4tHzDw6+oxTniRikfURTw6J1CtryiprQd6KCDUiTKHWNSX1qAWaRlKA/jHHsE4viXLtBWOP8y0xVERWLHJhT9wCp8UE6J5LyMxIdkqLyWlawiSGiTVew6YocqCGiUmhuof7cQGY2lY/3vl+FVZu3Bv+WihwIz0ZNldAawSbYDj74YBxyyCE45JBD8PTTTyM/Px+bNm3CgAEDgu8POeSQ5uyrQwYgPbgRBrMpCbTa1gdFItioMLhqJJsNrhyekvo/NxQsasEqizBERe9PXiIW+rvpPFqlSkQlFx9UvL/Yp6hzRSl32kjhhxSJwDX2KYWi5llmUFgDYGyq4jHFAyUSbOFr1HnjxRBRn0ChFWzyAq4zrjlj24dcRVRPgopew/wmVBF947vl+HjmmtD3/nO3CRHNi8fw8hVHoEf7YgCpd8k3eGxyqujeGdXYEMdmXjwebBg43tbU7/l9ogwNsW17Q5gmN1m02vayY/qin5LTxd846DbSlQz1HMBX+dEJqNOf48qcGB7zZgdQ0E5TAZAymMXfm8KcpM2COM8xHTOcqnGm0Dp/jhffSa2Cbdt7nJ+IS2NpoxKSrpL54tq1UTDaddceVRGNqiLqjxUpt1ksJvVTzXupkuG60EebNZOt4FcI4G5lxcG/xU2FuvHrUpbeAJVvkTepNCHNX9ujQsyjErTTa7v5u6jKyv59yovHpbxdqjKPq2DzPI9UlVDvsBTOaSQbQj/VbqQ9gWTShQX7faJA3XeuY0gNnw4UgQzbTedssclb6j+yeCyGPp1KQn/37QRxfJQww+tFRNn24nwEAL9+fhL52zYR+d/olBJm+ykRlwuvhNuJ9kIMP+hSGvx73po0wWaTB1GdjwFIxw0UbJL6NyYp2NTxRF0mdd/FforHW1BeFWqrpjsRQ1lFmzapIXoo+6cpBJt/fpHEEcMlRbJUDFXcUGVOzaLrU6qd/Nx5OdjsioVxihzICja1emu6XYkhJYza1gcVZq4LEfUhprsRCemuZYWB6l58L1orwm5uDc444wzp36effnq2++LQjPBfrMK8ePDiRRluYsgHN8yAVrDxPYFcJZdNRSI1ZK6ipiHSG2/qp3g5bQrzEI+lJlgqSbi/MIueSQo2+UL87/3zArQRrHNCsKuyRhhpJRGJYfmJbsN9jPK2iuBuIABG3p1YTPLOisQMXc7abBjEt+WsWLOlls7BppJ7+QlU1DSExpIuRJQcnx7vGak52KQQ0RAhRZ//1ren48f7dpW+8z3a+Ym45MlU5wY1v0Y8HkOvjsVYsWkrkl7KQCjKT9gVOWBugMTxnpdIq3lqG5JoTHqB0akLYbFRCNBkfur/sZi8sVCfu12eKcHALcrDR78/HgvXVeHH/xwDgFPkQCFAlXa+84RSbXLJDplokb3x9Q0eIKSh8cdcQSIerFXUtetsQX/86PppStSte4cyWTfUUB9OrqVUZd+Gbe10G9e0gk0M0di0VTXE5c1Cp7ZpUmjV5jQpJOXSicjBpsvLpP5G7Ho8HpNSK6hOOfU6tekPrJxs4XscFW4cj8Wwa3v5Hu3drSx1PIWI6yoQbGu2yCE8dgo2HhEojpk2hXlBeHfqHZeJiqbkYZUch9T7Linz5ZxQoniWTC3AfIf871XHpJRaIE+vgNXlHGtIelKfxWPGY0IONma+RYBPvEelzUjEY4Hd3ZhM5XgtMJDsNuQzR8HmO7hE+ONX965znYFRiuZ2xfnSPCSmLBDPUZiXQH4ips2Ba6N4F8kjc+49meTas2s6JdLcNelKq5ohp9mvpL/zx2MB4eQU+54fjyMRS/9bnZO5Tinxvu3TvRTTV2wBANz9wSyUFefh3MN6p48pjA9AVtxvqq5Hzw6pz/K6kZ4EPpi2GkvWV2G3TmmHX0iJqVXlp79Xc7ABMsHmX2Y8FkOntmLOsnDVTeqeVNU1ol2xvEcT54W4kWCj7QWOgk2n6NWFiJpy37UxnFtt64NLxIkQ1XtqiOghvTvg2yUbMa+8EovXVaHPLq03Nz+bYBsyZEhz9sOhmeG/WG0K81DbkHpBo0IPiiJysFEb3y1bm7750p2HJjb4i6i44JZuI9ioyYfcyEcoJvLisYC0IxVs2/qZl4gjPy5P3qKXxSaMNq1uSMCDh5r6JLsCIEBPvE0hyGxKm6t9j+qnzpDlGo5aBVtk5TiZYIsKEY3yIOcl0nL12oYkttY1Sht71UPXubQQ5RW1WFeZSuDqy/LV5PD+P6PCY4vz9c9IzcEmGs1qqKLufq7cHA4pSBc5UDb8atUpZcMPyGOqsrZBT7BFkA0qQgo2JaeKGgboK3d0hB2ZsFnTJzpEIk28iyoh9T2mrp2jbM2LpwhLSsEozoemKqLiJYoEG5VnkwxDiXCCJGLy5ly9p2mSKY7GbWpcbq5HIPXMjQSbIQeb2PU2hqpgAH9Ok943IaF40oP0rovHNKlKg++DIgcycaW+byqZ361MJI/S6ixxHLeNCDmJChHdSoWIxs0houo7py9YwSeuuCGi0tqeiKF7O0HBtik910mqo3gMnYUN3WpFwUZX3dWsb01QsIn53yhyIKpiaHBuUU0UEeLlnz8RiwXVcKnjUtdjqkoa6pPnhTYpYlORkAgTPeQh0dDoQeWCRYeYnyqBm/YC4Ed40GRn+nNePCblv9u8tV7aXKv3N6rIknzuKGcgJDWiD4pgK8yLBw5ebnEKcswJ34nkhdi3RDwmXWd+XspZXd/YmFFxHDEFQjyefu5RzzIvHkPvjmmln0io2+SBphRsBUQld6mgSiKGEkH4wKk6HpWDba+uZQHBBgC3vTNTJtj8d10JEQVUgoteNwDgdy9PwVvXHg0gdd9DSkwbBZtwflF5nRSIQJGEUxVfAP085pdX4tDdOkjf+euJP8cV5iVQkBdHXUNSchjrQ0TVdyN8nZTDAZDHUnFBAm0KEqiqa8Q6hTCU015E7cnSdmc8FkNdYzJyT0RBdIqpqWZ+sm/XoDDKx7PW4PJjdw/9vrXAOgebw44J/yUsjkhOKk4ARYYNSKpt+jufLOLnYNORYeHv1JARIJr40p3fl9CSYU5MlZ54jxLCBpkmudIeMtUTK24ydMaYKS+AWNVGrcQG6L1p1AY5KnQyfe50uxJD+KHYT93vfdgpEXhjqYFYmIFwon+qbVFBeloUxwl38yIeMyFUXQLCqhLVyPKrBTUmPSnXguS1N+StUtua8uTVKQtjX8HTNLe8Qmqre7coiFVEOxg2/OJjS2x7N8Sw4+paPyl/+BycZNXihj9k6Cj5qKRQ1lo615J0HuZckTq3fq6Jx+TKVOp7zM2ZIR4TSBvDogrZf/5SkRYpPFU9d5JuZ3AkRH2nhrvkG3KMiYa9T8RxN1RAdH6eQkPVXLnIgTkPGTUUo9aSPCFEFNCTi3mJmBC+TOc0qQveN5XQ1oeS5CfiKC5IBO+nrGBL90VMKD523jo89cUC7TUVEkUOaogQUTUHm6pgC6t0+Ao2TjU6H9G5zWLo3o4mIdWNX0FePMgNpIaIctdBwKbIAb2ZpVM18OYquchBfjCHmFIbqAq2poaI2uTkFW2igoQ+ykKvYNNvKMUQ0cakF7IztUUOqLxdTUg5Eo/H0E7Ii7k5pEJtOsFGOjwVopiC/2zC+WJppZ9Neg5dWLIPn6xWbRWfiOI62qO+ExVsnOrCokJLdKzrFO9RzqY0gRNek9R+iuGX4ZQSzHMLY1MkdIHUGkdW5yQUbFKIqMbuBIApyzal2xG3iHp/xHMDaRtRIs8IGzlvW4ioH6q4jqi6Sd2TOasrQt+J67AP3/lQocnJKe+LGDnYNAo2NW+pr8pTFWyqKt+/bkpVK+YENyl1ZQdjeF0X85Gq88Ixe+wS/FtUd7ZGsAi2k046CePHj49sV1FRgfvvvx+PPfZYxh1zyC58Q6EwP12FJkp1JG46oypE+ZPelq31rGpw+mpf4e+5xIZucRONJ3/i31rfGOonV8EmdjERiwUbMFrBlgzOrRJs4kLOCW9Nnz99PdRkn/4tfY8rCBKUrgxo3jSLZK3JWyJ/xzN+dDnYuBX7pH5GhLKqagSdgo0yEHUhCv5QSsRj6NBGzHVkUHEl5FAjMeGsODRNISPqd6bFXjRO8xNx7NO9LPj3zJVbpLbiMUXli2pIAel7n5+IS5sFdaMmXnsi5hNsYe+sjYJNVt+k77tKcskhonFpk1olJu618EiL11MaoQAJFI7q+FDukU0ONjUEEZCTgAcJ57UhomYFmw9T0nMR1PviKURLKERUgOic8NtxHQEATWyKj9MY5iQ0jKoiyq1WKBOg8VBonXRMgaAvNczxnucF96QwL65sfuS5pp4gYLttU2it2VIT3Ec1FEzs5z0fzJaOKd77QoOCTTxmLCZXzt2sFmNQ7p1ewWYzLzBtCCVcr3t7OoxWWjO2zV3+3F1eUUtuUKVzM6rm+YhS8MshSWYSI30e83pfmBcPnD2rN4dDrIIcbAl7BRtNsFnYP8Ix8/MM+ahslFTC+yaO43AOpfS/20TkKOYWx1HtSRP5rK6FVlVEqTVLmY8B2b4A0ikfVEKowDJfLFlFVCJ6wgTbsg3VqXMI11mQl85Vy1U0U/akSgxwc+8l4jHJ6SKGUOuunU5zE56PZQVbclvfZYe+6JALKdiYz10lb/bvUSb9XbR7xXcDUHKwiQSX4jzTgWsrqG3JHHAEweZX4vXzfNIhouE+zFm9JdxOyOvmwyeCRTGJPkQ0mqCvbUjSYc3CV6Iqb1N1vbSeqWOz0EicpW0qvx0dSpr+7ckHdMdvT9gDe3dL5wfcrCnwkBePoUuZPpy1tYFFsJ199tk455xzsM8+++DGG2/Ea6+9hi+//BLffvstPv74Y/z73//GOeecg+7du2Py5Mn4+c9/3tz9drCElGvAsDjpcrBFlQwXSydXKQYUrcKgJ32/qejJoRRsUaol6fvG9ALhkydJj+d5izRKhMW2qq4xNFH6v88nQkQrGEoZk/dZTFRdUdvANjCpjRo3p500mQp5u0hvSRM8iabvAL7RKhvC+kqaQFhdUaTJwUZdY1SYUULxSIcUbIqR1UUIBymvEEIPlM1P8Psogs2gWFWN1t07twkMvFmrZGND7Oc/zzko+FxdJ4dpiBv+vERcUbDpPW++ASNVf9pmuNqoO+s1JJdpoyRWEQVkAklXzTYqr6TojTeGWMVlhaNKisgb+dT/OZsq3xgV1Y6Bgk1JA+A/83AF0/R5CoUiGDSZzyMCxa9CRQ40Ki6x2qhN7k2KbNC9R6ZNYklUiCiT6FHHnImY8A8p5n2h7nujQObnJ2SCbfSM1dJmkQrJ3nWbQqu+0cO6ytpt/ZQ30kWKMk2cE3X2go+tBKmrhoiGFGzKvaDm3dT18IhNtZ+FgvolVPVS2XiKIaIrN6UVbOr1AKkEz/65xOp2URVlpfMzw9saNeubOs9RxQN0fVILv/iFG9ZX1YbmeDGk0lyoJHweOnpAcz9IFWz6c4FBBWoT3i++b4WE6pc6ppRQnK1gM7eLq+HTIdW38m7oUlQ0wc7ySZGHz/2h1Ma3EyRCKhFD/rb3aMHaKkxbvjn4m/YdjAh1LswLb0d9gk20swoSaXIvyv4ynVu1PwoM84JKxqmpLEzn1p9fdq4C8njWKdjaSnnAohXvnGu/4Sd7SX8XbZYGhWTaRQiHFysmU2SYCCrU2Idujlfz9AJAR8EhKc6zKhHoK77IEFHinsw2KNhER6C/HlfWNgTjRFwP5LQs0Qo2gN7jqurSXdrS1VPVNcvfv5hSOiQEu4KKSBBf4aL8OG746V648eS9g+/ESAtVmd+xRF9Ru7WBRbANHjwYCxcuxC233ILZs2fjyiuvxLHHHovDDjsMP/vZz/Df//4XvXv3xrfffouXX34ZvXr1au5+O1givaGLG6vl6HKw0Yqx9Gexsosa5tTIrKIlqwbMxgs31BCQFWy6CpG633Nk9aUab5b4+5SSqQDH/iAtnxUrJTYlt0dKwaavQKgLKyQVbEypvZpHyFx5iUlYar6LKptN9Yk6pilMUm3rhz74BkJTcrCpxzOGSSqb2c6COmytkNtDVzktSiVYYiAX66UNVeq6/eS9C9ZWSaFO4jEP69sRJ+7dJfj3Zs1iW5CISfOC6dp9403ctPhEl024MDd/lKRgi8el+UaS/msMZptzrxI25urvE/GYkjRYH0LsOwc4ag9/s5QnjGXf2FNzDpZqQtzVjZ/JIItSbAXHVAzmAkOIqH/MqPAdXb4QSokgtjWlQPCktagpCjZqnpLHHCf/XEIIIa4knCjiMQvy4mgvkPkVNQ343YgpZJ/8941SaImkRl4iFgqL3SJ5r9P9NlcRTX+XUKqIrle83KrahNp8APyw5FQ/6fVAXbfUd6OsKC+Yv2es3BKs/WqIOQCl0AE9d0b1kxsiKt4jUzVvm7lTLfzSbRth6Hl6Z49avEkd99S7SSrYdP00VPwEFGdTiKTWkR36eUlUgADh+ynnoBXHUdNDc1Uld3tDARB1fNQ10tWSuWNOdS4CwEn7d8NPhMJFATGijHlxXnzwozlCH0OnSR0nok+JeAzH7dlZ+vuyjVulPgByiCi3yEFUDrS8uLmKelJpK0bDiHa3Tk0dJWYIFGwRDjFVba86XWjFOzE+lHluwN5d8PODdg2+E0lw/3n6fewsOYHpec4fSyL8tZPMs83MKwsYcsBta+vbPn7IfnVdY4jU9+99u+L8wKm9YG246qUYUunDX489T3QCp3/TxpATU7fPIys1K/dTW9xBfIcTZgVbEBWQiAfiDDLqzJPHOyA7jeX8c7JjRnSsOwUbEwUFBTj//PPx9ttvY8OGDdi4cSNWrlyJmpoaTJs2DQ888AD22muv6AM5tAgkBZtRdZR+WaQQ0QhvsUgimKoF+ogiRaRNDVPBpjWoBONJF/4H6DxfZuMlEYOiflE38ulNIgA8f9nhgdQ26aUVEdp8ISaCLSZXtVHvu9jPdtLz4eVgi8ohkhC8vSQJmkF+DMAcHiJVW4owXsRxfNf7szB03CLt+f2F1B8n4sJHnSeKWFQrzKmhl7ocbAAwacmG4LMcFqPfVKjHNJUMV/OaAMDBvdJJXm8eOV04prwJ0ClQxP7kCzJ9IKzOaiAMsrbEuxT1XosQ5xUTMdIgXXsMbQvCxF7qHPR7GUVIi+/la98ux9/emka2TcTjKMxLBMa6eo8oQogK5wbUTUDaIEyrTM0e8bCxDrmdKdekZhyq911W/hBVRAUE9yiR3sTT9z39WbTro9Rmpg2VXsHGq9Yc5QBSQ+ueG78YyzdWp9sKmwVxLKn3Xkr+LWw8fYyasZo+/7ZzS0n8t+UYU+ck9T2TwkOEP1EKlBpNiKgYDjZ23jq8/u1ysp8ALz+PD62ytZF+nupzV/NxxmIxHN63I4DUdc/aFkZEhUN10RBsNgWMKN6NXGNEoqdQr2CzSjivjI9uOsJQUe+Jm0/VXiEVbBRJbVFVVXI2GauIpj+LY9N0zHhMbhveIKf/LSUUZxY/iVK75iUi1J3MIhjc/G+U7ROLxXDy/t2C73U52K46vl/w7xUbhSIpFrasSqA8deGhuO+sA4LvFq2rAiDPcwV5+vBU9ZpM525QHIwFTOWif5/aEqlhdA65KIWSb//EiQgjk4KNVeSAUmwKX/nnFh0P1fVhG8i3KbRRFhEhor4tTSvYdGNGJI9S90XKiSoRgek9LgB0aivmapPDRMXCQL59vqGqjlAuytcOgKwkKtsViSDaQH3uur0OOSdK9xNSZVRRlSfOnTYKNp8wS3rhqDMqBQLH5vffDZ8MXF8ZDs9tTWhykYN27dqhW7duyM8Px807bF8Qq7aIHroocqBQChGlFvHU/8M5VcxJi1PHMy/2baKMF6aXSmwbj8l5w1SvgX+JUm4chqS/jVQFkL52XwIei8XQs0Ox0D7sAYm6JrFstrhRMRGbItFBhnhFGPE+1NxVZm+JmfgKzmOjEhI8Tz5U1SAg913NE3bnezMDw009j29sFBX4i1T6GqhrjEogG4/FcPQeuwQb/9HChlc9d55CsL06aTk+mLZqW7v0b6KKHOiSzYYVbGHS7qr+/YJF8pPZa0JGXnxbufIyzWIrzil5ibg0L6jqrKRyTABkbhMqTBKI9kpLOdgMBnNeIi4nLa4TPdKhU2zrk3lsqxXRXvhqqbTxb1SMQd8ru9FQgt03nLRFDggFm/g7qshBXCCAN2+tl56RmnxbzDXJybMJhNVJ6rtmChEVC4X480x1HXFuMf+JlBfSTIZJCjY1XYDQriCPVrQGx2Sub+qGTrz2Rz6dj4ue+Tp0zERc9hyr6mOKJNdBDeUAZKKrsja8AaJCfXTea0rB5s+fIoERi8mkDAC8/PXSdD+V8a1TsDU1P6JpTqRC5o7cvVPw3VcLU04PaoPaVcg9I1UWZFbYTR03ff5i5b0VIc9zesWE7jzkWqbmAxUKPKzR5J8LFTlQVWTE6akqojbPUjymRLCFyD16bJry94pVRAEz0UJVaJbPz7NR1ffNFCJK3U9axRVuRxd3SH8W1wxxLknnYJPnr1/9aLcgxFx0DOnzkJnHcTyeIgd+cWjPYEzN3Ra2V6c47vzce1xFc3S6E7NykSIifYJNl+pFtNO21un3T+IxAYSiQtSiasYiBxHOhfS5w/OcVOhp295IrbQKpGwVf10oF6MsiHskgsrH6aPWIgcbpfID0mMprWDT5wLz76mYViHphfdGIiHlg3J4NSqOQ38OMVWvF8FRsHXSFHdoUN7LIkMVZNHuFItbqFFnqiMUgNKeLnKQJjdT976qrpEk+loLXBXRVgB1kjJVD9ElhzflAVEVLapCiltFSzZeIipjEcdcW0Gz5aIstohYRHykPSDxYCPPSRDaViLYaClyQlArtCHD4OiJ1xSCqIaIipOe2A6QZdVUiGgUWUEdU0yUWReRGNZHjSEfVdT3YvGASMJQUnGFy7+L1fBE+yMwNggvEDUOyeejhFJ0Li3Eob1TyrB55ZUSuacaT6IKAgA+n1MOgO+1V7+TFWy0uhJIhXMCQI/2xfjRNsWG5wml4oV3A1C8WdWiN0vY8G+ba/xQmk2aCpmi8dKGUJLJlR/T10NW8hTOL+VgC4WIykaJTJJHK9ii3o1SoiIaVXnJv3a/0MEmRa4vzjV+yD5nc04p2KgiB4lYTEpeK+YhUUkEf56rb/RCa4e4ORdJ4ufGL5arrAnnjqkhoirZIYRndNu2kaupT4Y2neL9Ko7Il6arIqreU3WOp+aD4JgRYyE4h0LqqoTYwrUC6e87URSVsjrXiQQbpSAD0vdHfDf8cZcvjBN/DVLnJBU67zUFdVMlHm9foajK9yvSOZzUe6crcqBbM6PuvYlgo4izw/umCbap26rhUfdIp/iKChfW9d30vmuVVIaQRhGUraSuW+L1rNZcTyIuKzFDSlBmiKjuWVLktZwuQR9loVOwRTktxSIHJgLWlH5BbWv6TnX2tDOFiBL3M6pasunc8jyX/p6q7kypuHwH2uatdcE8oyfYzOf316z8RBz9OvupKipR15DUFjloSJrzKJrOLc3H8bgxKoIieiiHkziMRQKWqgCtq+Ca3p/RDo/SIr3tyy38IoXCbzs1JT6grju+zaYF1NDx9PET8ZgUcgqYCba6BjrUmYpyEFV+/tinxrEYUikWqAHS9yQvoebAVZzAXvp6fFDpRKRnGUunIlIjmqwUbMr7JinyKun0MeL8VUMU8pPydxcZlLLE2CzTVLtXczMCkPLFqU7W1gRHsLUCqJ5rbpEDccKlQwpS/xerWQJEDjbmgqfNm8WU3wMycaIeNx6LSQoHnXchTzAayetWJjRx4tHlUMrTTND+Zp7yAqjfq9eTF29aiCgV4hUVipHuj7yxMJK1xDHJioqaRUclUOTS4vzrKSaq2y1Znw7HEquypn+Trjbrg9roUMU61PEBAEcLpasXrUvnelANmK4COQGkSVMdwUblN2zUbL5MOdhEg7qYKIygbpB1cnHVKwykjXBdkQPxvlNl6sXxIV47laxanFfamkKnFI94W41XWBu+HJHEXlWwAfKmWx1zvpHXmPQUIi59TN9oS3rRG7W4ECtZqChhVMNtz65pgk0sq656Rk2hiuK72l1Qvjz1xULc8e7M9HUr74Ypf5NI6oqq3+Ub5Zx2unWDriIqEGyGHGwhj3RAsPE2sz6ZJasWFQUbQV75v/F/Fosg2MSNp6/6GHxMX6mN/9y3Cn33FT150kY6vEGm+qh73ynHTbrIQfp6fNx++n7B576d2gSf1XFAOTYAPXlEOgN1IaIh5WJ47hZzDlXXESR1nMrBJmw8IxwBuvP783BdQxLrK/WVSU05f8Q5ctd2ImEWzgupEihdNQSbFJIUj0nv3KuTlsnXQ8xT9GYy9FWoTz6kdAnGSrwC+RyRT9j/Kh4zK5l0KQjIypPM3IwmBZtp4+uDJvd49hg13gGgQKjOWq9ZNwAE6p/6Ri8IM9On/DD3SXRC+2tSQ9LDonVVSpGDmLG4BTUtkGSnMo4LNcoo9feqgi3pCeSRJo90VKVGyiHmP1e52mjcGCJKR/boFZuAJkS0Lnw94vjw58QNVbXBvVFzCf7t1H2kc/rHtMo3rTm/6tin2omOw3enrpSO67/H+XG5EFe40n167+ijlBBIyIRlDL222SsrN2+Vi2DoCDZDpXn/mjpqFHnqvO0r2JIecOhdH+Pu99P2V6Owx5Winwy5HoOonvxEcN91Kna/kJ9IbrbmMFFHsLUCqLk1xLC+cKiP7CnyQSUoDRRsysvv53Lxwc1BIlet08exq8cUjaxXJy0PtfUnqry4XORANfT8Q4rV7aK8kKI3B5CrpojVtsRwoLYRidyLJGJT7xlVQ/WuHP4tznjsyyDMTFx0SovygoWHWwXQSsFGJNul7l01UwEC6BN/A9sqP257lmR1PTFsjFCwiQYPRfT4SsetgheIIoWjkuymKy+JCUo13p94qrz4s5ceFnznv4MyYRgRmiJ001TgQc3fRH32r1klirX5GJS5Bkgb4Zuq68kwSTEhbh5BuNjk0pGqxxoMXMm4TcRIVal6jqjQXHGDRynYKFVLXlwmIQGZiJSqOUWF7EcY7JRHPBE3KNgMofBVtXrPeVdFhfnKpGXBO6F6ucV5UZcHLRGPoWeHkuB7MVeZej02BU24OdjisVigJiJzsBFjoaquEWc/MR4//ucYrNjkJ+qWyec8TUineLhESLGgqkDFcZw63s0D95ESsPvGu/jM/L/LBAWlVAn3UVSsivNst3ZFobZ1DUk0CioT8V0/rE/HwDEnjmf13dIr2GzIb3qMhJ97WJlWQIwTdRwDQBchRLQ8SsGm6bukWC2QN0q//O9XwlpEz3MmBVvPjul3SFV0pK5JnrslwlBoL67LBYk4Bh7QPfj3a5OWSZsvbpED3bOkiCKxqUiSq0SCTvlsUvSIeWUBM9HSxpDLT20bfBcxNqMq7FL3kybYQl9FKthEEoGrYOtArFu6cN8op7o4He4lrUlbtEUOAEqFKl7TtnOT5J5sA5iUi2oOWoB2lIvXI9r5UaSyeO/VAg6hHGyigspQmMhH1H1Ph4imj1tNpOcQ7WNfpZ700gSKSnJ1KS3CNf3TefpqIghYcr1ulJ+RD/9ZUU5D/16esE+XIKxy9IzVkl1VLyjYZNuLft9EPxP53JU1e99dU+pszwPmrE7nXc5IwaYJEVXbieN4Q1Ud/jt2USgSRRXFnPvUV4E6O3U99HMXCyP4oHKwieG5TsHmsFNDXRjl3Gqetm2ekF/DmGw/HsMeXdoG388rl6ux0DlqKGIi/Tk/YU6gLx7znjPTSVFVgwSQJxVxctSFVIqJe8mS7koYiUiwiaEXOlVa2wgFm2njJ/YzT5kkAWDKsk148ouFUju/bZAzggoRNeQloc4NYFvFmtQz8jxiLAn/9u0HKv+KTo2oLkbqQuJ78tQ8FKn+iIQllXw7fb0U0eOr3lJhkuFF3Ae3OpRYTXMjsTgm4rFA3SEqivy/i6eWCNqIcBtKjeajXlFx+aCM16CfCb6CTTXCG5Ie6c0TF3ApJ9e2MalT75EkvaRg02+UpGuPx7Vh3jpCpqExiWnLN2O+MNfpSFAfcl6mNEkOyEViNmjyaxQbiIHUMdOfKW+v71BRc3vsKWxm5goEm3i8kGEfCk1JN6aIliA5vGII55tCRH3HSCKGHu3TCrYVSlVWcXyI8zvlORXfo6L8eDAvhYoxKOPYFCJKzV/zyyvxzeKNWLC2Cn8dmSpw0aCMOWpeop6PScHWqKxFfn+P3ytdjc93avjzZFF+PCDjpAT1AQkqrxuP/+oQ6Zybt9IE9IC9u2DgAd2wZ9e2koqxpr5RCsETERSvSKYVf+EQUY2CTbNZoQx6KaSy0KBgI94hKoyZIuI6tSkMPq/RVNcLjmOhYPMxcdGGQEmmI3pMSt0upYXBtaymCDZlUyW+x+LcpebuPKhXewzYNt7qGz2sIyqO5ifS75CaZ1K9Hvn78Hc6BZvJlpXWwQhbtsCgYJOqiEZUuqeU8bRjRnaMyDnY9Dks033kkXs2CjY6B5tMwAJyZIRPToj3yFTlVT2mSOb33SWtaF25qUZb5ACgnrvsqFfPk24nz3PiMSct2Uj2MxZLr9nivEwVZJIINiIHG6WCBRCKMFKJQFltz4kW4p27hHDK6JwtnUvTc4MfJkoRhlRROa2CLcKWllT5Sp4xKnKiMC8RVMOtb/SwdEPaMSfmYDMp2MTcjD4oBaEa7iumPxALm4nXIxdkMhNs8Zg+RDREsOWFbU9VnZ4Xj0vzDAD8dsRk7bl9+L/RRq34a6HUV0ewWWHTpk14+umncdNNN2HDhg0AgO+++w4rVqzIauccsgP1BaA8sj7U8vPGUEnBgOizS0kwUc9bIxNsuhwk4fhw2WgNVAMR+b1279wGe20jJSjySDR0OrcVyTDZyBSvx58oSC9kyFNDE2yUQQJEe76KIkNz05N+WXFYKTN722ZW9izEA4OAVHxFqIGodomY7C0xJYb1ZdVkiCi93oZzqnjy9ZiqGuruJ9VXavNXTIQSU4ZKVBUr3yjR5XmgyoCLeZECkkm8l4KipTri2guFBO3qvZdysOXpjGu5tHqgYNPkiVFzm6ltNxHqF1HJkx8PE2g6kisq9LythYKNUpWKfQTkMKMvF6zHaY+Ow0/+NQZL1ldtO2bYyBMhVeITSHJAVQLoqjTqydLUMcObfvF3PgmubhbKivIDhaVIXqlFDkyhKeK1UwSbnxxenPPjMb0qUCRaUgo2U4ho+vNBPdsHn0XlnA9VsdFx231XkyCrSaCLhJDxcJGF9OdY+LFr83apBi6Qmgtl5SCMCjZKiQAAxfnhSmv+MxPHurgu+fdfzdU28IDueOnyHwXfaasGx+N4/FeH4n+/Px777ZreYGytbySVAIBAsDWEN/E+KAJBbSuG7agKR7VtiUEBTG0sIhVsArHp2xerN9OOtuA7Rg42iqT3/65T5KlVqlW1mf9ukgo2RYnQtjAvGCvi3CXlw9r2/HoJ6rgKIsQ+Hotht06pNks3VIfWTX2RA72CLRaT1ypV7Sa+6+K7RjnkxII75iqi9H2nSDu/rZz/zUwi+LkZdXlLuU6+piT61xU5oBRsftMOxNqus70ibSVh8ixSQnrVYi6SjWLIo+iv2aSqVS3YJfT1lremy85AIQrGhxgi7I8pOXQ7SsFGX7uadkXdv4lh2bqk/PJ1RjjjiBDRILRf6mP6N9SeR8qnl/BVcUTYqQXBpktXkK6MHg4RFQkh8fz+sTzPExRscdn5HVKwpf4v2lNUOhH1We4jEmyrRKclbZ/S+yJ5PhZVYWKkVEhAQzju/LldUrAp9odIQOrIX1/QUVXXGIwrX40tks/Sfscp2Pj4/vvvseeee+L+++/HAw88gE2bNgEARo4ciZtuuinb/XPIAnR5s4Bw8m85YWE88BCaqiXmbWPN+2wzoBasrZQmEtHw8UmexqQXUiLomHjKO6h6Nvzj1tQnCXm3QLCJC4OicBCVTP6mnya45PupO6Zuwy0qa6qIym2icWGqYpqXCCvYAGDXbWoPtQS6v1HjhoiSYQbKxCsarpMWb5Ta1kvPPdVuxaatuODpifjtiMnBBK2VjCtjUy5HDbTddszK2gZjoltqoyIq2ETj2kcR4XnjGreNhFGiI9hUogWQCSf/72q4rw+ygqpiNPubqmUbqyVyQJeDTVawbTu/QgTaKdhoD6H/bsmhKeGcOuK1FxjUt4D8vrQVicgQuSi/m5KxLBY5kLzx6TZfzF0LIEVaPfvl4lQ/NSGaPsoJgi3qHolh+KLhRHo8lfc96LdCgosJ9H344WDlFelcT6EiB0QBiuDcwn3qVhYm2Gas3Bzqo1qBUJerJC8qRFQ45r67lgVFOhaurcK4+euktuG8Jn45edpzDUAqcpD0qEqJgtFMhKNTa0l+Qs7dGVxL0gu9Q3KeTX3VODHEilIj+HOFuPGLChH11y1xjZPed40hXqQkzA7mWFXBto3Y999bah3iKNj6CIqXZRvD+cXEua7YVOSAuJ+ioj1Q9BJV+AAElTfXV9UKDoLwvECtG+r5acfQtvskzMdiuzcnr8DzExYH/25Q5jl/Ldi8tT6UeJ16ln7Y6+otNWR4qj9+KFW+eD2JeCxIXN+Q9LBsgz7MO+p7UVUiznMmBVt7YX5Vw+rEfoZzsKkOaEEJycwTTCmdRFAkQlA8IFTQJfTzwAmmOybV96CPBNECKKpNxcmXJ6jt2xcLjqGt4RBRUyEZQG8jS7k5G5MBAe/3zaRkl/KgbZuPKYJLzYG2R+e20t8Xi8WoCFuFcpRLa4GkYDNHboiR+P498ws4UCoyf0yFcqFSTscIkYBa2Aug86WJCjYq/JVSm1EpeaxCRLU5Ag1FDoR24pj277d4/vy4GiJKO9rE3KGUM1Z9lnsLBNusVbSCTVz/VceI2s9ELLVv9+cxUcihFgopIhRs/lgP9hsa+yN97vRn8X62I4rLNSrOd0Beu3RV71sDrAm2P/zhD7jkkkswb948FBWlDemTTz4ZX3zxRVY755AdqPJZc+4ZwXiKx0IhHFJbZdH5QZeUiqy2ISkZUOKkIioMZiiTSihZo0HBpm6U5DAaOmFjIh6T8qSolbREJZO/2FDVf9TJZxeNKo6q2gbQVUTFa5cmpwZ5MRKVHfEYPUn6/VHvp3+P6hqTYUVPBJGY/k5eRE8TKgU98+Uism08ll6UPA8YN38d3p26Eh/PClfIFBGqwKMo2MoMRJN4TIpgExVs9YJcnPoNJZcPfhuRmNU3XsSkn/PWVKYr+wkESvrahE2DT3aIBR4sDfY+2xKIV9Q0SOoo1Svsg5ofApI6ZibYKINZJhfD+Xl05KK/YRINiOgcbOnvurcrChRFn88pl8a8XO1UDRGlq17qqjT6RiQVGixCDLNSn/suAoEhh5KmjyeHDpkrAYubfpEYrKlPSsf04RNsjUkvCLFTHTNsBRtBsNUQxnU8FsPuwqbmq4XryeP5KmF/M79sgxIiKrUFLjmqT/DvN7+Tc3JKFYNjaYJta32jNNerhr1EbhqUuuLc7sMf32q+NErB1pj0Qt54c4iobIT7kJUDqd/4a40YUijNNUQoGEWoywmOaVJXDQ2iSF0grVil8g35oMiLVNv09746CmAo2AzKI92GUnU06sh0v0iN5wHrtjnbZKKnIDhvVFgQSbDVK/OxQrABwK1vzwg+S4riRFwK3T390S+1hRP85+6/y9V1jQExRa0bOpWl6LTcvXOaBBUr5gL8NBFi27iiYFOdkUnpvutVoIBs+xVKCke9A7ooPxGsL2SRg21tRRtNdUyox0wo9sLG6jr5GRH36boRU/DXkdOkNY2tYNOFiIpFDlQbQNxwS44hs4ItKqevlCpCqkzrKWp7RcFmyJ/p38dNyn1U+5OIx3D2//WU8pGWE2He4rteSkWiSOkK9Pme1X5S5JF/bdQcm073ord7fbw0cSkuHDpRS8r4vKaYq9i3edW11Ud+RCoP/3poO5qez0lnteIg8BGV9kLtB5De46jOVU6IqHjtJLGqrNltC/OCtBYLytP2PiU2AYCnxy3CwrVy5Jdkq2y7Dl8hvbaiVthDyHaf7t1XowLKisO2ithevB4fZYTdT0bhEOOjNcKaYPvmm29w5ZVXhr7v0aMHVq9enZVOOWQXaqigKUFoOOl6LHQMta0/6Yt52BYJ3h/xZT2wZ7vg84wVm6XjqUw8V8Gmyl11pasTMTlEtFwh2NJedrEEd3RsfJvCvEDSX67NwSYSGGEDX6p4ZQgpEG2EvHgqkWi4f+FjqkktdTmUxLFRUWNWhuXFY/jxPl2D8K0JC9ZLRl5QCjselzZ8PvyNkJxPJt2uolYfHpGI673mgJpryaxg898B8dqLCM8b9Q5E5T9Je6QFpd+SjbjqhW+ltnmaxcl/hroQ0SiDPR6PSZvPxevDXtnUOcObSSAcpmmTgy1d5ID2EFIGu6SoUbxuACcHW/q7zqWFQQLudZV1eHtKOoWBf25f1q5L4N+gObcIn9DWkQ0+/LxMnueFQg90Cq1AwRaLkeE4ItT504c8njxJFeeja5lI8KX6qRrM4vumhlSK8xQVth5UhFWO+aPdOwbv/Gezy9OKTWUcxeOxIAxtyYYqLTEQj8Vwwj5dgvE5esYaiThTCzeIzhFRxabmkxHnkJe/XioV8hGPWVIYnmuCNVRZsyiCrSGZDHnjxQ36RzNXy4VCNEoqleCqbWgMNhYiUZpPqGWpdYsyrNW2UoiZ8p76wyOkYPPVff65qUIyyiYz3d/05z5CFVI1hFjtp6w8MuTeIxQ9aSIw/RvxmsT7RBUwEkOrqFxx4nJPrZlBsuqgCl5MS/wD8nXnx2Po3i4daj2vvBKTxcTWxPzRjSh0QOXubKuxLfxDxuMywbZA2UxyQmZDx4zFpDlMbSteu+jkoRT8wfiMUrCJDuhEOheY2k6c49sU5gXqeEpxruZgA9LEUNKTw0Sp+7Fi01a8OHEp3hCcCVGFPqjj6YocBCp2Qqki3tfN29Z2OQ+qXvWsnl8Ok5SVtSqpK/5dp0KNx9J2V9IzOyfyE3HEYjFcdGSf4Lty0dFFpBGhbAZ9iGhEpINEsMkh7JSjXozeEB1TOnXY2HnrcO+Hs4znpsI5dXuYfOIdoZ4llYNNr2AzF7OjcrDh/9l783DNrqpM/D3fd6e6NVcqlaFSlZkwBsKUCAlBImNkMKAMIggmrTaKiEobw6gNdNtNCw3tACpp6DbS2IAEUBDkFwGRSWgrASJkqIRAyERqvMM3/f44d5+z9tprrb32/e4NWHX389RT9373fGfvc84+e6/1rne9C7HsBb0eIF6bwzPssXdYCwADMbM1NMnvkK49+MMHFvqNX0jfjcecvj3q60s33xP3LdjHwV6Z6w0a/WVu90kBpv5wlKzvEjlDttPav0uBtnBeKu8iMWCPxlYMsM3MzGD//pTOeP311+PYY48VvrHWftjNEvNMADZe6WzppZHTsZbAgaXzUSftLiVV8qG7tjQ///e//3YUTeTRY8pg47o33Akxo/xkc9w6O9UYCJzB1gKGnSaNc3GQppxKi09IoYmKHDA9O+nnJg1OMaz54sR1kTbPTuJ0YrgCshNA06GAtNJrWCTXT3WbRfTLe3+AC37/043GFD0u9N/tVA0rsT8cRc4NpSPPCs5CuGf0nJZWCne6JS0E6dgZw1EBZIBN0mCTIm95Dbb6Wc9MdqN78PHrvo/BcERApk7ynfr89d+pTVKSIkoZbACw9+52842iwpkiB/TdCNcTjtuvONzhOrYozCueJknPT8enpZzIaTDxtT//Ubub32lBgnBfg1Ew2W2rK0cMNtLHtADU0jFFgQyhQmQw2CVHVtMYowAsTcfhkVZABztike0WrKAOzY5ItDgIqbfnnujEhWxoxankmroVHn3KtujvbSpH+1mnqg3lC848dumaek06hTSPTltKA5zvDRuxdyCNHk9PdPETD6jFjed6A9xwR7t+8QpzdE2koGF8zng9eNPHvokX/dkXxWM3CAy2MMeSFFFJg22YGuv0fb/hzkN4/1e+Q46XHVSeIkoDRbEGG2XLpo7SBFm/pPddcrr5WIZDuRob0IKPLUumgN1Ajt21bV3DJhIBNhJlp+vbv3vvV9SqwfQVbir7CZqY3cjxo2nc8doJxJVGRbH/iHmdriHcmdU0d0KLwJtuBz959gnR379wk+ych/XjOKHQAWcTAVCDd3ScpxO2qpfBJoFCI+L00uCBVXEzTm3KMNgowME12JhOXVNF3dDymyABHEn/TVrrjonWJcI8Uu4TAPzttS3BQWK6WWzAuu/2c8lBlgJiWwQGGz0nTS2X9yw5y4PbAXHF88p04Omco+DJPaz/ngBc7VCZ5LGvA8Tr6AGByUQZbvOZyrnaGrLQH4hZAY87swVn3vw332x+DsdOCfbHx/Z8r+1bCMzEGmwpcERtCun+x+es/18nSBVoANvvfHAPXv/h66JnLQVsAV32AjBSRJdOywPLW6LAZTtHKEieBdjIJYX7dCYt/LekS06v5/jN03jb8x7W/M51MSU7jb5PoZhMn82jW+6RGdwWKSW0uw+lNmrEYJtJA208+A7wAJu+Zh3prRhge+Yzn4nf/d3fRa9X39yqqnDLLbfgt3/7t/HsZz+76Fxvfetb8dCHPhRbtmzB9PQ0TjrpJPz0T/80/uVf/qU55sCBA3jFK16Bk046CVNTUzj99NPxute9ruk/tC9/+ct48pOfjE2bNmF2dhaPfexj8Xd/93ell3dENs5kmjIjdPGC1paMTjeIsLCGRX8bEWGkzgql+Z5yzPrI2KHpDNwosSpU8mM9QtDdThWxFjjARrW4NEYL7zssfsFBPTDfFwEZuvhMCAwl+ozoInZwgUfY25+DU/Oz554cHSNVH+p2Kpx1/Kbmd56e22sckE5kZNx27xx+7yNt5EuigZ+yvWXfUOYiTYOTALZ+Ax6156SLvqUvwUXXLW2iGSHCT6Ne4X5pKaKSoxRaVoONRtNYehQFOyLGETEkJEbPuqluc94cw7IuQNICbJTBFmnpTFDjKdUoksAwuaJQGo3ful7TF0uvfSpKTVmaHxTkyghGU72RyW4ncmgpuNdnaxcAsWiGVt036lPQEpzoxGXVgRq44poqYU4cs36qCShQbcomzbpTqYZgaBqDjf48GBL2HLl2WpggCLRzMP/BOzc3Y/wS01vkwOYfPO9h+A9PuX/zmaVddRZJywkalhLIQyvL0XVGWpOO3yxrhkXH8spch5QUmk6VVPz81h0HxXdzvajBFoNI9TXJKaL94TC5RydtnY3YP+/8hxtJyom81nA2At3D6N5GHcbwDGOguD3njAAmSOnG/HcN1AVIkYPBSKwgGpqUTsnT9QLb6tZ7DgsFlNq1hjufH/mX77bXozAC08p+8rs2zdgnQGz/5Bhs2RRRHvDodsSqcaHxdKgH79yMv33FBc1nX7ixZU1wTSogZrAFULvHwA5AZ5NTOQvK0qUAOT2ON6mSOQVrN0y379DH9tyOW0gAic7jLRkGG11nOcChjXOy26aTJsUy2DzyFmQK7wMF/imzVrlNAOIgnSafkBRoUdYPqciBBDJJwTP6blCG8A8OCazrUTw/xf6Ho4jBlqSIKuAmlQAAUoAvuu8BYNtEM1yo3Et7ztAkdh7F+qYnu817JKaIZvTFwrVJINOvPOGM5rPbCGMpvC8S6E7vmRQgmM0UJJhQxtgT1rkwzhIG27W37ceV/3gz/v6b328+0+4RZ5lqQKDEYOOM0Q3TE825qa1AX5WoyMFM+twlDbgzjyMA2x11oQNOIqFBh++zNbFZ58ijlPS+B+ycz3nESeAtZbDJ9kdTsEIrckDSSvcvVRPvCUE26/08mloxwPZf/+t/xZ133okdO3Zgbm4OF154Ic444wxs3LgRb3zjG4vOdc011+DOO+/EqaeeitNPPx3f+9738Fd/9Vf48R//cRw6dAiDwQBPe9rT8La3vQ133HEHTjvtNNx888343d/9Xfz8z/98c56vfe1reNzjHodPfOITmJ6exrZt2/CP//iPeOpTn4q//du/Lb3EI671uVEgGIGhcQc5GIT75/sJ66nPWCCxsyJXOZnoVnjFT5zZ/H4tSRO1qqFYujdcp4ZqxESaZUsLQFik7jq4EJ2HRjGt9EPJCD82inwFBki6gYfzhxYAAXrt9D7uO6ynYoXzvPC8k7GbVPFqo+zt9yY6VVTZLYiON9dEHBBqZPBjJceCMqSk1OCJToV1guPZpgC2n1EQwQLYJjqVqIEhHaul9rXVQetjqeMlRd4kkWBJwFOLTEpjlKLCnU7VsDFCn3zDC8ZQjsHWraqm+AgQF6Kg+n5RiihNv+DGdQZgk5zzLVqFTPZe1uenDn8AZdpr46kBvPFgQk4rLq4KFtLCZUZLDmDj69e7X/IonH/GdnLcqNbUEZyKqqoazY7vkGIUtJCMVmmUXxMQOwLU8eoPRy3wHRU5EFJEKQO2qvU4z9m1FUANAn43qjgaG3k7t6zDLz7utOYzi/lDQfXAjpLWuVO3EwZMtM604wzXHenVzcmpn1UVg6BRiihb4yUdx54wP9dLKaJL9z9J0RA0UAajUXLfu50KH/nV8xtn9dt3HMQXb7pHHGdo3LGhaw8tshOzqdNgj6SPSFNsVAYb+X04GhFngQNsFIiLwWfacpXEJ4izcs+hxYTF1gDqnSpKwQIYAJtxKBdFtgZx/ISq2vSaIkaPlCJKwCOJhbLQi/eiiY6dIhrbIPVxZx23sRnHl2++p7lmSdhaWhdKNNjaIgdc9F2352gTBdoJgHL85hlcQNg8f0XSJOkz2hppsLFgXLQm8WcY7+89ts5pKaL8Xd8g7C2hiRpsG2RmrXaf6jEMssfxj/UUURroWtrfBK2lGUGvjq4fdL5zWQF6TrP//jCpXCtV9g2NFtawglJcOgdotUiBWO5F0oulmRGaxqil5RzmXVXFIvrTDJyQ5sf0RLcJOFE7KMx5CXSP2P/OIgeqRp+ggedlsGlrfGjX/GtbmIgz49triX1YrVhHzGAbReMN11FVVVNZmkrHxFqo7fkj5uJ8ylzkKaJAy9jl6wINbHoYbLHetxCM7Fa47ILTcMnDd7JzpfNoZrKLnz13d3TcXSJol9r8AEkRXdNgU1sxwLZp0yZ89rOfxf/9v/8X/+k//Sf8yq/8Cj72sY/hmmuuwfr16/MnIO2qq67Cd7/7XXz1q1/F17/+dfzO7/wOAOCee+7BN7/5TXzoQx/CZz/7WQDABz7wAXzzm9/EW9/6VgDAX/zFX+ArX6l1jF7zmtdgbm4Op5xyCm688UbcfPPNOPfcczEYDPBbv/VbpZd4xDVOa7c02Hrs2Eef2qb6BKM+NM5qUZ0VZrC/5LGnNobb7fvmxeNyVH2+8FPW135BAyT0DbSb/nAkGy9dQ/QckJ1EWqb+5qUoak/YwOtx2AwlWo450QQQnMmpiQ7+/Ocf1Xy+IDDYOlWFB0YAW8xgayPiqa4bXVQlg4yyKyjARllxs4KDuihUiZSq1PAxhr4j0fWEwdb+TI0X2uZ7depx2HAjDTYh8racIgf0ufNGo0rUeABaZ6gnsPy6VWuwH5YYbOzdOHX7+oaJ8Nlv34X/7/o7krFHKaJC9MlisB1eHIggU6M/t042ciXQjt6HpsCDApZKTgQ3DGKghQJsKWuRsgyGwnupMUXCM+IMkLNP2oL/dem5eO4jdzWff3//giqkHhge871hE6BoCsl0KsYEFNKcFGM0YbAtDZMCA1KKqARyPfKUrc1n//IdG3jvdNoULovBFhttaWpKuBbKYPvaLfc2P0vRVg1YHbFjj9kgM4r4Gi+lmYdrHhFQRGIdSRps3iIH4Xpmpybwyifer/n8m7cfWBpn+904RTQGMyIG2xRlsMUAFx9nnLa1dB1kXwvHcuAs1saCmGoDpEwZVZ/HocN6LrFVPk90ieoxtOsXd3YnGAAdmqRJFRx9Tfx7RmKwkYdE3zOLwdbtVFGaDT8nDRBYABsFQymYHyomHlociOMMcylKSToYUkTTwEyOwRaq4IX1gAeG6HOn55KYi+H1CI/nFT/RvhdSpWbALnIgpZiHlrCjWAXVAMZZTLdup00RPUQq6oYmabBFtvTSPJHYfLR9V2A+85Zq+ioASgRgxXuhtl9LcicbZyaa+SmliPJK903/3fidNIscKOBmrVtKGGyMQSelXh6zfqqZV3QuSYFQSauPp9yGfWNe0mBTCr/wDCONRdaux+25w+OV1oSpDIMtl87ZFdZDQM40kFhxEoNtktm9QMya1QDY6N73BiL7FojX5tAvl2oAWvkPCvzzdYH2HfoI6xi9pnAonXtSMbtup8K22anmudzOATYhKCWtx3zP2jI7hf/2Mw/D8x7V2p2DocxGfONPPQS/+8wHNZ9LoF0uRZTLxwBrGmyhFQFs/X4fExMTuPbaa/GEJzwBv/mbv4lXvepV+Imf+IlldT4zM4MPf/jDOO+88/DABz4Qb3rTmwAAxx57LO53v/s17LN169bhaU97GgBEaagf//jH0e/38alPfQoA8KQnPQkbN27ExMQEnvGMZwAArr32Wnz3u9+F1BYWFrB///7o35HYeKTXiv5wx+bcU49pfv8nkk4A0OqLS5tT5KzIGmwtG2GpsuFCvzF4uOYPTcv508/eqI7T0mCTNgha6IBqxbXGrT9FtNNcTwuwBc0ybSORKtvQY7dv0Jkq2kYyLYCmCWNiZrJhun3je/uZUHgbEecMNmqciimihMF2s6DXVjPYBAaI4KxsNlJEuTFG00MOLnAgUjYMaFvoD5PUg9Do3LOKHORTRNvPaaQdqMGTYBxpKVYtANv+rapaBtvt++fxn4gGB/1OZykyOtHt4FVPOav5+2e+VUcIewITAZDnUl9gqkgghgQeaSKylIkgjaNl1LTnlNIYaJPE6cP17DucMu2ogxAq7PUGo6YgQQSwKVpHPMIPxM8zYoEcmI9SKah9KemwUQbb5nV0XbDTyyIjk0UTpWdJU9fuPLDk0AnvOo3Kxu966sgDSBge1O8Lz53qN+1nlanqvutznL6jXWf+7z9/B5+/4e7kusP0UYtwsKi0psHGQa5dJL0ttJ4APktMt3Cf44qO8rH9wSjWiVPSM2TdG8Jgm2rnKq0ACcR7W/y+pXtRJGxN0jlDG5I1njY1RZQdx6sGa8Z4nsFW4bzTqa0SA2w0pZKPle7vGuDAGWwaSB6xnyQNtojRE0tU0GvqVJUIkogposI8airMKYVspCAr3d66DeCQFgGRAjMbFbkGzlxsGT16hXCL6UbPGZ5PYP4CMWgZA2zte87lJPg7RPe/r956bwTKc1uWpw43Y2T7UJROaICLbRXRlOko6arRdtu9c2JlQa0v/jvdhyMHmc05TSutzUiIAzNhjRUZbBqYT/aQRaHIAX3PkrkUxtmtsNVIEZWAzYlup5nzlMEmrV8SAUBjsMlVRJeOY+sRt7+0lP2WUUznZ33SjTMTyVpLQdNoH176mAZlQhBC61teP9JnGQWqBdBO2gPjKsSKv8NYprx4kfRzkyLKqnkD7X5JAX2JzADUNjXXVJT2DZHlx96NDvG3eNq8VOSAAmxB01cDqfkerOkdUtZmLkV0s5BtIL0bEgB7NLYigG1iYgInn3wyBoN0sVhuu+OOO/CFL3wB3/jGNzAcDnHqqafi05/+NDZu3Ihbb70VAHDMMcegEyi8xx3XfPeWW27BXXfdhbm52hnZsWNH8zd+nNTe/OY3Y/Pmzc2/Xbt2icf9W29J6iVD/7VjJzodPPzkLc2Ls+e2e5u/DYajJpIYFqkt6yYbKq1Gaw8b8omkmlVA7vkCQDewP7nmRnzz9hYA5UbJpkyZ+HAcEJcWj8A4ElGSSjGHJi0+JwtpktqCJlWJjBhsBACk6U10jADTiBGqK0bX3o3ZZvO9YST6Sun/nMEmOWH0mrYR/SgahaEGmajBJly7VeQgimYZoCrAN/ukawD1ZkoNY/peyEUOBIBNTFOUna/X/uQDo+MiBlvieC455aGKKJtzdH7+8TU34Ct7f5D0T41fqnM116TGxtH49ud4Lg2HadVLQAYxqAER0qI3rZtsonoSi0zVXhEYjjSyL+qQCe9mAIgp0BLOTe/RKYLGlydFVAIm6HVEQuH75lWGoyQI3RjhrIroB756Gz701bYqKu+fGoScwUbP2V5bWlhFShk7jaRp3nRnylalxwIEmDCYP5uktAMBLNyxcQY/flZbSOlvr/2eet1a1cvYsaiiYMb3I/YLOa6qcH/y/oTGiwJ0KjmQEPZHfk0Ss3bIdMgoACsxrbRAwrpJWsEuZrBRZz+WK5DAo9TppfuaVKSFj2U4jPVNaZti4K/GvJEYINz5O/ukzc1804pwdDsVnnVOnD5zcFEJyAkOQ28JAPUUOWhT5gjARsD2m4leWGgUPAoFP2jjVUQnOpWoMdrohgogAr0eQHH+lq5JSlWU9o3Y/pKLHAByGj49Dog1jqQgCmdDRsxexe6cneo2oFGaItr+3K0qnL5jQ1PZ+Is33YN/+FabssbtY6rBplX3pSmiQKqbypmtANNgCwBbhsFGmc8a2407uxpLR9ZgS4OBcSpY2Afb81Npgx8cXnRrwE2xQBuXs6B6fnvZe0Tt+K1REQYutyL3vYMULGuB6jQoFQFhSz6xJuUhAsWEaUcbJ0BoQXXOYKOi/DOT3UgaBIi1E6U9k2Y3hfdOSn0E4ufOZUTCuQDGpBYYbLOCdIzkk9FzAkhYpgP2Dks/h/vdExhs65oUUZnBxsFKrqkoETmkd0iacyGwe+/hXtS/xHCk8znYSlpxq9Tuo+tM+7ctoh3fXivtX7KraPZTaJMGiedoasUpoq9+9atx+eWX45577skf7GiXXnophsMh9u7di+c+97m46aab8NznPhcHDhxIFmMgTvGoqko8RjpOapdffjn27dvX/AuA3pHWuGE/bTLY4sV8dmqiATLowtcTDLcOiVbRFFFpUZFyz/kCzYWlqX4UX9CiCOqcvUBT7a6Awg8JYFiL0rYLODeIpMWHpi+FDV+rIprVYFuvM9g0loqV1kfHGYkWC2DYRKcTOZ1A/NylTaeq2kgu7XNAABQJYJPSH0sYbPSZW/eJpyWFNt+Lq1NFGmxC5E3UYMswKyi4d+ZxG/HUBx8fHac5qOHZhnNxYIKLqV+/lDJGv0NPOSMAhhQcpBsiN/BiZ6H9m8hgEyKeFAAPoBg1BrXIdVhj6LVH4HMmTTLM+TBOCla3KaJtf6dI73AEsGkpojYwcRwBrL+/f0F/h0UWavsO8ZTCV7zva9Hv2nOKI5mtHlZsEMXRTto3PUdU0ESpLhylCjCATQTDZtKoqJaq9xtPapmYi8L60YCqhO23X9HYCsLrYYwUpOaixfcTADZepCXPYJPvUXTO4UgNonBdIkBfa+J0n75a5EAqqKKBMlKKKGV908aZA5x11F5THLzRmDeX/OHnItHxuu94nNMTbaGDuw6ywBRxZrfMTuGD//4xzd8OKoz3iNFDA1isEAW9donVEmmwbWjXgo/+y/fwv7+wVx3nOaTiOj8nBa4mhAhS2Dspu4UeNy0E5KTg2cbpiWZfDGz/qKLj0nmo9uBBIcDJU8Y01hEQA8CidtXSvQ92/fREt7HptMAutRG/8b39sZ3C1o8N0xN4+UWtTvA/k3WBvxvxfWzPwwvE0HfuBe/6J1XnU0oRDdeUIbABAL53bwhWy3tRCmyCHEd/rhow3KoiGhVJaQB6mcHWG4xMrVztvJzZOjXRaSpKA8ANd7bVwYEWMO10KpU9z/um61BgCveHo4R5raaICgy2oHMF1OBSWnglBe3C9YWmabAB7f49HCEKgobj7n/Cpui8arEfcs7ZqRho0vqWGI7SsxTtaAqwCZqlBxZkgsSEwqCzihx02T4EpMWGAIjPaRBhCPEYE4CN3PvQf6QvKrLDgy+ckk2AeB6HJt1PTTc00d5V0m03CsGRAVu/QrPkPOIATmqrHI2tGGD77//9v+Mzn/kMTjzxRJx11ll4+MMfHv1bTquqCrt372402K677jpcddVV2L17NwDgrrvuwnDpgd9xxx3N93bt2oVjjz0W69bVE/T732+rj/DjpDY9PY1NmzZF/47Exjc8S4NNMrKCM0+Nor6yOYXN9K6DC2alsxM2p0BPyrSLF18KqCQMNqUM+0AyGinzaWkxTyOO7fkSo0RwgHZsnG4Wv5sbBpts3EYabMLCe8wGnaWjbSRS2q8ELlI68PcFvZKJbpU4QTEjsP1c0mToCewGrciB5HR7Ndi6nQonktQQqj8CxAC7CrD1B6JgMxAL2FrVj7IpoqxvLXUqZbDVY+kLLK6aoh6/G9RgkjQRIjHiJWOQCwc3PxtVrOj4pWiWBh6FyNsPhGh8NI86scPNr42+GzlNl3CqALbM94at4dikiBIGG4n4hneYnk9jsEkMEHrt0Tt3YN5ltCbad5XsSNMWRzLbz3kks0lLjlhu1GAOa1J7jnDsxpnJRmg3rhhsG8JNkQNhTZIqU2nzSKqEJoKqsxqDLT52ZrKLR+zeCqBOyw1VCDmAQkHA5pqb+Rmfj7ew/vSjtUZekwYGO4pX1uPjpPsBT6Wm1ajp2iFpKGnzM/QvMdg4YBjPuRaQ4mvxBIvyayyd4Qj4nQ/siT4bjNL7FOyPfXO9yJEaMIBP0sepx0rtGoWtkqyJMnCVY7ABwJWfuzm5TqB+li96zCk477Rt0d+Dw98bxuvXMx92YnRcm+KlsZQJA0XQjwrPr6rSFD9Jg22i22nm3AFBAzfMzQA0HV7sR3s07ZvaZxbzh26ZgWmnpYhyGZGff/cXxePCOM87rU03pvtM9G50Y4CNgoGcFUcDtjfedQh/9tmbmt/pPG2yAgTmYC5FlI6B3s8thk2l2ZNA+2xNDbZOun7w+x6laR7SQS6dGZcGQqnuLwfYYjBdL3Ig3Xcg1a8E2jVPTRFVAkgUEOGMVf5utNcXF45QU/bpnj0cJvvg6QSEBGr9P0l2I9LuZCncKsMwkzHTacBv8n40dnR736XAO52jkT9qMIU9aZJhfNL6Ffbt4UgpyMSeUdhD53tD9AfDSIe1Obfgk0n+9XE07VNKS6bMdLqvZ0BQurcnDDZyXOwP2/aXFAwNz5/ug2sabHUrBtie9axn4Td/8zdx+eWX4wUveAGe+cxnRv+87e6778Z73/teLC62i97HPvax5udDhw7hKU95CgBgfn4eH/nIRwAA73//+5tjnvKUp2BiYgIXXXQRAOATn/gEDhw4gF6vh7/+678GADzkIQ/BiSfGxsfR1jiTik7+oGPTHCs4Sk3UkRqiSkpQ0C9Y6A+bRVqmxRJwZKk6KUfiuRNiUYfpIrH37rQKH+07rlqXLigdBmAcSKJuqSNdVRVOXnLQb12qAqgyAQRh6TgVrY3I0pQ6flye/ZJeO2UO0px/Wmr5sadvj9iDHsp2+FliN0x0OnaKKDknfTaf/Mb3ccUH9zQGFL8eqr1y6w9YmoCQ3sbbQm/YgAlAfA+l8uJykYP0M835AlKDVIoK0+PCPeJON6fWUy1BSbuBphHJKaId8ec6RUEGTyQ9Bk2bKIAy++f7mFscqPMofjfC/Giv0yoAAshznoIt3Cigz0Oqhhsz2OwUUc3Q2b6RFn9ZUNdOS0eRG+FSi9dPAugzlpBk2EcOjcJECC2wB+48sEBSJOS1LjghkhPPGYYATXsgfUf6le31hjlEX8tKOKdUubY+tv7/sWe0zvTnbqjTwTjTDYiZNUBqiFcVZK3JDMORtsFQLnIAcDBMXhdC4+uXliIqMUY11kCTIiposPHriR0bEo1PihzE/VsV5j75jTui36X7eYyiuaSlKgIxU5pXiWzHGTNqNOagVIGyT+YHB2C/dYcCDnQqbN8wjb/8dz+GK19CCxjFjm9419763IfhiQ9sZVEC617ThfSmLwFtUOOeQ3WKn1Ych7M6outhDLbhKK68qTLYBO0qiU0UANN9cz1SfTq+HroOfuZbdzV2Ba8iCujajJGmXacTSZ3cck9rgySsuJl47bjmX+9sjxXeN8pQlypU8uyO0JqCO2Scm50FHpJUxSYtmjPY5PdCsmW7nQrbSP/3GGmaWiClNxgmacmzUxON/XfDHQfF9FzKngNSDTgNTI+qabJ7r4FM4v7WiSUDnvq2f4hBf2XtjNjkg5h5JK3H4Th+36nkRGgN60jV7oxTWj2BLit4RjUNFwQ7enYyDbzv1zS0DfagtnZJAJsUdIgzPGLWIpDuW/TZU6kXleUn7a1L75FWMVjyDSLpmsUUsNSunbPD6TsspfdLjDwgTt/nQXX9/c0HBo7UVgywve51rzP/eduBAwfwohe9CFu2bMFDHvIQ7N69G5dffjkAYOPGjbjkkkvwrGc9C+effz4A4DnPeQ7uf//745WvfCUA4AUveEHDmPuP//E/Yt26ddi7dy9OO+00nHLKKfjiF7+IbreL3//93y+9xCOucYefGoHv/8p38HVSUVJaABqAjdBnKVOJbk50sQhpopLzdXyWwdZpBBdD229oq+3YONNoJ3zx5nvw8etuF48D5JLyfHPYYBY5aH/uCIZobzDCocWBujlEIIugQ9btVI1RtM+gtccMlKpxGBtheiFFlaaIfn/pvtP02BBxvOqy85rjIoBNifq17Ia2T7pBSKlTUvWh9VMT0f3531+4Ba//8HXptXfqtItgQAVR+GaczIB49cUPSPR/agZba8BrAFub6iOliGYYbGyFpRublGbd/M6cWb7Z86plNPIlbcxSimjov1PZhqMGCMkabLJBtnNrDKh73o1FYX5sN9idvP+OALZw3QhqCJy4ZV1jFIUUUbp2bVs/1ayFdH2wjCf+MwdQJDAKSFmo4TgKKgNQBbgtBptkEFVVlaQAamkkJ22jKQ31e6dqsDERcF6sA6jf+fAVLpzLx9kVUhqlca6f6jY/x1VEkRz78CUGG9AyFyWQiwIdQBog0Na5tjpnCmjTdTZck8YqEXWRlGfEK8JpKaKSrhvXmeI/94ejREydr1/UIaFzPnEmO7Eh3lf2l9AiR1pwPHVgJAbUaUAuAoQUxhdnl2qppFYV0dD38x/dZlRsYsBLA6gr+ohB64syzoH6XaIM3CCkH9lpQuo2kALFnSqWVQn3tD8cYf9cXw3MSFIivBIeBY7onKRzLstgE9iQMbCariHdToVvMzDzk1//fjTGcByAiHUlOb3hWK2COt8z1zNwnu4f0vvWJfacJJWgOa3SuhAx2JwpmkDLwOH7G2cIhXFq7Ch6L5/1Pz6HN3/sG83vcRCarjUxOEBtlQCUhnu/f74f2X/NPO7UdlwIVnMbUQPTrWqamgZbC3y35+9UMaNpvjfEbWQM0rvO+6j3Ay1QHwfO+Dx+8oOOT9ZlKonTHEsZbCFbacnX8+xFQR+vr5xzhugU0usG5IBUlDGjyF7wNVFbj/k+xMcZ1s91xCeWAG1v9WtN+1bKRGnYqrNyUKgtENP2u07MrGn/rtnSFoNNSu/X5ke3UzXv0/75Xk0kEfwNCYA9GlsxwLZSbcuWLXje856HE044ATfccAO+973vYdeuXXjhC1+IL3zhCzj55JPR7Xbx0Y9+FC9/+ctx7LHH4sYbb8Tu3bvx2te+FldeeWVzroc+9KG45ppr8MQnPhHz8/O455578JjHPAYf+9jHGhbc0dz4gkIpyADwjzdQEdfUwA2L7mhExXPlhW9DRtRSStOUjpvoVLiNpf1F2mrsnN1OhVcTEflQKVECpDYJ4vgSeBMaB9i0xYczerQU0ThNMHW+up1WO+LeuV7sVCgGUVVVzaLWbGSCmDpNVwsMNmmc5+zeikecXDuec70BMdza+xAJajaAEEkfCk5NtxKBKE1MnUd7w7OU5uauJeDm9v3zUR/0nnWrCpdecBr2vP7J+A9PuX/z+UJvEEXRI4BNMLKkKqIS/VkTsQfijY32rTmeTVSYpT7yVItQUQiQI6OWBtskQwGnmTOpiexGwNXhmBnG+6fpvLf9YE6NONbzOJ5Lcfp0WgiANsmIoA5GeJ+4gxrGERiULTOrPff66Qn80QsfgV983Gn4sxc/svm8YQ04QENuMGtp3gtsTQyG25sveUh0vVJFx7pPbb2RjUGgvRdWkQMgnkuLTTpp27fkyC8upVFoUe4Q9OC6HrzvrmAwS4B2VbWadXoV0TTgIqXGhOMeeco2vPC83c3nPCVKBdiE9JBwr3/s9GPw4h87uT12OErSy0ITC4AoTgBPEaVrDXUMc2xqTVeFH8sZlnzOt6BIdFjE1uAMtvWC83XrPa1NIEXkNYAtHBrGOT3RaebVQQXosYIOQ83xm0zfYVpACADe9FMPwa4lkHr/fD/at1qtuvaa6Tm5JhO9z7MCeKWxXybZGk+vne9F21l1+EUFhGzYL1Elvvh6ZiN9tfQ4AJE8h6zBVv9Ply/pufM15KEnbY7O86lv3rF0vva4FvRviyLEum7xtVPt3RtJ0RdJ1402+g7mWEKSVu1Ddm5OwBNAliugFVStYlAau7THQF3NVtH2QbpnA8Cf/MONTfA8StebiPcsCjCG9YvO24fsbJ9nCMLSa+pWdSGZ05YqX99271wE2A4Gsl3Dda60Ik8SW5Xfzy/ceE907dSnkd71+vc46KGm7JOfeYpoXZ1yBu/5hUdH5xZF7IXAzGA4qvV3lbkpaThSJndHOFYCrrjUCcBSROm1d7V7P2B2hXxt4ZhFAdSVtM1Gyjn5een+xhlkHCSX7qcG5tMMoNBoAOewxGBjYFhoSRVRVo2Wp/dbReLCmVE/QAABAABJREFUva/3wfZzVYNtDWAr+EKng263q/7zti1btuCqq67CDTfcgMOHD6PX6+GWW27Be9/7XjzgAQ9ojtu0aRPe9ra34bbbbsPi4iJuuukmvOENb8DkZKyJ8qhHPapJEZ2bm8PnPvc5POlJTyq9vCOy8QgI3ZiAWhMiNMkgo4tgExmli5RCW7YWFR59ATgDo8L5Z2yPxqlVBw2GAb2uZvEZpQs0daikqnXcIPqTf7hRddLo4rOJnVev/kOMK0W3ImhHDIajKOqoMRaAFhiRq/rU/8cpogvJcXSc9B405ahVZskSKBJYJcwo4eK2gBxt7QjGaGiS4xmqSY1GsQ5bPD/q/9dPT0SpFVaRA7qRSSmi4XoXShls5P2gLDT63tDza6lgHFy680Cqp8c327DpBZA83P8pNshJZjxpYAe9l9KcixhsFGC7d06dR/XvS+CiEPVbP91tnF2xyIHwfnAgMDLqGQA6lYBMMWB44f2OxeVPe0CU4p5LrYsF3/W0GFFHkQGBj7vfsXjc/dpKmtSZ1SLICcCXYRNp166dj/bNjWtLjDhaO5d02HIMNvq4wnVoIJMEsMVV8+r/102lRuuQrUntWFLHIhzaqapIuzG0RWF/s1h5aoooM5j5OOMUmnIdnwYIVIHidM+WmB1AfM/6w2FUQIg2fj9j5yvdB6797r7mZ2mOqAw2xiKrqnafoUWMNPaelTZP5yS97/OMsRHOV1UVHnD8JnGc0trNmTLaeixVqoztNJnBxsFavi7wipZUVoHuFeH6BsNRItHRJcBVM8ZF2a7JVxENYG07TlGzjN2n33jSWZEmV2ATSXZFVVVNdVK613KmrspgY2sSL0pE9y4tKMVTNOk9OnbjNP7nSx+N1z/9gfitJ5PCLwJTeItRmd3SmaIabJojDZDgqrAmTXQr/BjRswst2N0RG5IH2ghwJ9kqv3D+qQ34+6lv3tGAyhz0P33pGY1GPt3QWcYS0tZjOpamGAK7nz/18Lhi8W2CjcpTc23mkRIcGXDtzvr/x5y+Hb/6hDOazxuATUsRZUCTJhMhAfRS1UugDchJhRMkzVJVQ1tdE3VNzDggV/9PfdywDkYB6H7qO6Ysw3j9bHydis1hpmMoFQFTg0JNILTtt9Npi/9JgGXki3MQkKwJ/B3m7GOLvUft88jH7fJrj23po7EVA2wf/OAH8YEPfKD59773vQ+//du/jRNOOAHvfOc7V2OMa23Mxg3m3cfM4i8uPbf57AZCnZcMTCpQf3jBn5tvaXtE0RdFJPznH3sKHnRia4hqufmh/8h4C5utsEBHFUclxkSVgjx/+P99W+ybLj5c282lnaCwBiR2EKBrqgBpxT4pwr91drI5LqSI9pRNdKPA9NOq+00aoMhEp4pAgdCCoc7BIw1gkzZ7mq5GUwA0AyIS++8PYoCNbNozU+3PEsAWxGBvu3cO/3RjrGOobfYAY7D1hvpxLOWWO/yPZeBzJI6qACgBNAwGRHjvqJMEpOlQXqeTjpdeAxADbN+9V2ew1d9b2pgV/bngMEgAG42iBjZCJHQ811ONAkBKi2n/FhmYE+n6pTlKURR1mGqlhMbvO620St+1dQJLph5rarzVfcTGoK79wliTyrXTnxu9NkHTDmC6coMhA7hkMIymHfDx0/k3FN4NOrawHh+Y77fppML8iNleIZBArj1ikelrNxe1bo4bxPeIX4clRhytsVHltvQZ8eppTerWkFcmRXRcO85wTkfwjEkb8LlEX6ue4iQBKdATMdiEfUBzkJt0G9VZiY8DWkAqFtWWg2IJg00Bs6cNFirtm7J6Iv1MllJZnzOWK9BSNGeFQGhUjEpZa9IUwHg/iAC2g4uqBlvMWqhBNg6srotsNHnt2uROESVjnM0AbFVtg3z1NU/ESUus9wXBkabPaNuS3mfQnuPnnOx2sGvbbDMOOje56Dpn4tFnrjrIzEHla9Jjz9iOn3/sqdH9kmxpS4PNTBElAJ8GtITrA0ignFUrPGOJQUabBLbwIj7UQQ9rCLVVjtkwjYft2tz8Huy0hjVZBYCt7Z8WRNACHtRGPLzYV+/RRLdlwWoabC957KnRNUkpol1mg8TBiZEqv8ALxGh7piSRoaeIxsEmTaNPYiiFZYEHUQIgJKWISlkh82SN097NSE7DCNzxatZ1n+kaPyMw2CionGVoE7uCtgQkF0gX26IiICTYotjx61ghCs0nS5mQ+jvM9TMt4J0C6lomG0DWj376jI+WVgyw8aIGz3nOc/DGN74Rv//7v48Pf/jDqzHGtTZmk8Cox5yxvdEzulGJvInAVWO4yZHRCbY50HPWRn+VfEdz6DbOTOIvLm01avarLLIlR0lIP5D0jjYJVZU4IMON+3f+w43Nz6pDR4G7uZ4KQkpMBO4s0FROWohC6xtonQBJs4NG7o9dMu7vPrTEYBOq6gAy00/rv2WwSUymDs7YsQH//fnn4KfOaSN6jZPGnD9a4Q1oARKp75O2pMUy+LVrrKv53jCii1NnYZ2QUkk3ZurMPP9d/4T/8+Vbm99jwz66lGgslP2WsrjC/RQc6arCyy86E485vY0M33lgIamqmDAcgxYGqyLK++bAmWZgyg6/POepBtttP5hzRc41IyvMDzFFVIii8vRYzWCN+07BhpJ0Pet9VwE2o1Kh5gDMKQCb1r8GAtLjev3UGNSunadpJmsSAw2l4gFAy/7tD0c1a8DBYJOCE/E5U50tKdJM2SXSvkH7jOc8i9x3NK3JpfdNcaTpmPtDDkLSvlOAS3OUgDh1S3vfxOIWmkMngHFSdT0A6CpVxCxHpT8YRnNOAti+Q4rZSM7KMYIGrDbOlsGWT0maYg6lBopYRQ7otVItSanyZexMWmwNZR43KaKynSYyUATGBBDvx/tZdVatOE6yzhG9xWaMi3LAdIOSRhpaq7HVDnSrUNxCshGrioqup+8QPee2JQZbbzBq1g/upE5PdBv5g713y5kgnU7VgHWh3Xkw1UwF5ABWTwhaqvuwEOgKVbQBJJkEWsCjPm8LcGnzvf59aZyK7QcAv/mk+0Xf4Sx62h8/ryYiD8jVLHmqMwX4KMCmMcNmmTyIdhzQvptSxeBOVacQ/82vXdB8FmVZKIyvpAKzkgkzGR3H5Rfa881Ksj3K/sbZ3BLjCrA1HNMgW8tg47puFFyiTWJSaQGPhNUbgUztOcP44n04kEhSm0qzVervsf1AAcO4dI4YFKLBAaEwD+87PE9NWkn6OWVCxucMvt7BhX7CoteqC/OAWM6OPxpbMcCmtXPPPRef/OQnV+p0a20FW7xIto/8tO31xnPngQWRst0AV4IDEpc61qMqtH+VBWGg+xsithlJ9SHGYADtqHMTgEBJ74gacFpKEmdRnUGiYJqBu4lFijQRVZ6/L53zJ88+ofn9yn+8ufnZWtAsBltHGOf+ub7AFrEd1Jw+jyiUvfS3Zzz0RLzyia2hJRU56FYVLnvcqZGRw1MG6Tip4foDQXMH0AWj54m2HMAYbEJEi14T1QMcjYD/9U97m99jJpEc1Qn98+sJLdyzkG7DwcVt66fwF5ed1zAD+8NRK+CvsIk4tTzMT67BFgM9I2iR3pjNY6eXUQ2272QYbK0GWzw/AusoAK4L/WG0JgByFHV6Mo52WumpqSi/7FjE4uwCe4/8nc6/4dCn87SQpKG1x0kVbvlY40hm+zNlbKoGkbImST/z9H6ecsv1ozQnMS7/3lfvUTe6l0vzQ41y6yydiBEo6C1qwFW0vw3j+dnpAOumUpOqcZCVaC+dg8OhHhyIAAzR6Y77pca95oBUVdX0Ie1FejXamGGZMthi4Cw0Dt5wMJ/aFRsEfR5aqVFmsKUajdo4g/TFXG8g6j1aRQE01gAX36bnjBhsEStM0M+k52R6Q9o6E+nGCnZatH4RBm5SUMXaDwZDVYNtggUdJCeNBqYoeEbvexQoFaqI0pTs0DYKmrkUMKyEZyQxaijGQ4HFoHnaF+zeY0iF7IG4JgFPftBxOO+0bc1nB+b7IigTgQjMQdWAwPgdSm2qkOoKxEHquu/2Z75+xAw22ZalY7aE3P/d406PUyozlczp7zTYlAQRhCAf18M6/VhZJy/ydQQtQWBpbVDuO0ABNpnBBrDgopAiys8Za2eNRFu6/tkAtA2AHvAx2OZMBlsK0DdBjCRFtD52OIoZ9ADwsF1b8DOPPAln7NgQPacDTTVxGeDjVUQ1QEgsciCsXzOMJVyPV14X+PVbAHAasE3X7k3rJpt9MfZh5HM2drwkg6TZaUM9KwCIs5UOLfbtwJ1iV2iB+rUiB2O2ubk5vP3tb8dJJ520EqdbayvctJcg0o9Y2ngkh1JKodGooTTSa+m0TArHSRtZt0OqlhDjQBLkpQyCNpW1+XPTPz3nAUGDLeS50wWfGn06YyJmfHFB3Pbn1FHizsI5u7c2mnJf/97+RhTWWvg4OKABCQE4W1wSj9W04rIpop10sx+NlqIlCgtCZICwa3/C/Y/D3//G49vjBrrxQo1HKfoDxE6dqcFGNu3Jbqd5ZnMCg22OGf5SkQEgfUalDDagvucaq4WyS0Pqp+b0ci2M5r1k1gNP69NE+cWqhspc2jA90YDWdx1cyKTRypH7cC+p4/PUt34mEqPl6SFAqpVi6RiGFJQgyq+mRAspolJVQ97HYDRS30tbSL09TiopH84tHU/HEhXWMAwnQAcCJ6O5Gac/8nSXtPpi+zd6PzdEYH5PnUf8XgI6EMjvJyBX5pqa6DR9HO5JIr/KtbN1qVtVEcDSHDeMHRBAnx/9oe4s5PRNtWp0aYqofFyuWEfMdrMj4tRXXlT2AiB+Rn3mfEn3kgJsEhBJ2QB3K6mCoW0g+7UESFlzSQN1ZxgYBqT6b0CcIkqZdmGoaopon6flEMBQkMiIKtdGdpoeCNWYTOFYlcHG3o3lMtgmiR03JxY5aIGz0KSiVFrKayPSPaiDLdq7EaUbL9kWkpO6ZV0KYPFrn+h28Jf/7sfw5Acd13wenrsG9EywoKXm8EvrHB0nTRH8n5/fGwcDTQYbYaooc44fl1z70rFTEx287MdbLbBgq2gyKvV5w/XrDCFJpoKDHTu3tNV1b9+XatXya1o3GYPA1jrHg9rS/rZpZrLxNyiDTbJVeB+WBhtPydb2Aqt4EhDf01n2fqrBQGH9kNYuIJVl4ef8/ec8FJ985YU4l2j1tQw22V7ha2JOG7oe3ygaL9DOn3WCJIy1t8YkiSEhfCg+mWFTdTtVU4gkx2aux7rk4wZGoJpCHI/RZrDFvp5lIzf2+dBOO+V6xkdjKwbYtm7dim3btjX/tm7dio0bN+LP//zP8V/+y39ZjTGutTGbprG1a1u78YSFX4qORtoeQTxX1WmJoyr0/zjdpD1OjpwTQCgwrgQNNr6ghai0lMpKF/6woOxvxPvbc4TqQ+/7xR8j1932rWv+UGZcXzXWuUNV95/e94cSfYlbl1JjNJ0lIK7YV59bAQJ5tVNlnFGRg4V8+WZ6TRpoJ7GeJAP3+M0zOOu4jfX1CEZjTr9AdYCY+HdURZRFUINhwDdczsIA6nRbLuxc9x0fF1cRNRhsHd3xjBkTRiRRi3yF4wbycRwE9TDYwly30i/D/OTXkxrsrWENpKy0s47f2Bx7271zkRabZIhzFpVF/Y8CBAaIIAm+a8YovbwBiyRGBQEM7bvYiU8ZV7x/rscVmjnnjKp18foVR2/p/5oDArSgpXROutYcmI/1K7saWNk4nm1/tHspyi4JpAPEaJWqiAqBBCB1KDtVFbEf+HFacQ3uBJRUEbUkAygDxQrMtAwUAQjU9uxMekhXYHgCOggYjqPnpHM1tO/eO28CwHGK6JIEgjrnBM1WR1DMSpvnemn1OZfWJHI+Os67DmUYbIytoVWDkyQyNADDAp81Vi+wBLARTR16Hq4tK92jWU2DjdkAs+x9pG0gvMMUoD+QiN3H3+cBJF5xPLRYz2+hua7QmirVs6nGlcYW2S4Aq3pWwNL7KwQiVW1GIRi5hUluvPpD1zbXbEk10OfuYdvL8iAy+BwCQ4sKWEt/pynu/FnyNV7SLV031W2CyrfvbwE2jQlK1/D5nl5UBEjZkNp6vGNT/dzvdGjlcoa4t+iMdt/5fK/H2fZH2Z0RuGhce6dTJYEZVZpkIn7uWvBso5CtpK6zBqs3sn0EBltPAIulKqJaoSMgtX21oDZPEdWe0dalNST4MJr+LgDMTk405+JM4dju9M0jANg4Hes0aoFQQGewJe/vRGxPHo1NVhM32h/8wR9EL2Sn08Gxxx6Lc889F1u3bl3Rwa21lWmqLtKWlLosa7DRHH47VXBCcLpzDDZJu6ErLLz7hWpw3BisIzCLbTU4gcFWn3MS2DffMtiERWr7hmkct2ka39+/EFVf0hYfGincP9/DjmFrTE0oi76UUhkO3bW1BUBvvecwHr57q8mOmpqIDRJtI+NMO024nqfWAZY2kdMoyKQzSJE3qUJlOI4yFn5AgRYNkGLsH43BBtSb7oH5fqtZNghzroMnPvA4fHTP95pje4MR9s/1sXl20qRiuxlsDIikBpHq0DXMxfQ4oAUX6415KL6XgJAO5WEjSgYE11QhjrwG/tbfix0LHul96fmn4m2f+lZz/N2HFhsNHqny0nQ3NsZMBhu7Jo3dQOd7Oz/l5xnS8EI02mMI86gsHaekDwjoGij0d1eKaKbAA69eVh/bvhu0WbpytPuNLB1du0ciwKatHwK7oTGEE12T+l2XjOucuDON3FsabNq7wR2qbkeZcxGwae+ZtI/+YISBsn7Ux3UAtM6UqsHG9myrb2pr98ic01gy9TnjPeshO7fgc99OC8h8b988dm2bFZkd66cnMDvVxeHFQVP4RRtnHEAK1dHlY615rKVjNSwd4d2g4M29hygzf4ntpqVD9WNdJMoakzINNCkPS7fLXhNH0BhsEwzsoMGsMI/XT8sMNs5AWTfVBQ7VhYv+9trv4SkPbiUzJMdTqniuMtgYCKqyaqP5kbLYwzOiDLZ75ySt2vb824XiFhrQE9a9RQE0iys1k/eyCZ4RgI2ML7Rb7jmMk49Zb77DlKVNGfsaQB+YNJ7AUKtrKwcdgPb+9gbD5rloGmjhOM1OOn7zDPbPH8Tt++cxGo1QVZX4LIFU6N8KBrZ6fhIzrD1uamnOUdmYsNRZFSoteyFZj5X5QW1eMf1RWUPmM9c+2e2gPxwkchoJwMaeu0f6QkrfdttKSuBfKnIQ1q9ojCwTBEiD6twOkUB/ev6WHS7bX8esn8YNdx7CocUB5nuDaF1N7Hhe5VYFYNkYFfsUYPbXfN8M3IV1fjhy2pPkmKOtFQNsT3jCE7Br164IZAvtlltuwe7du1dkYGtt5ZpmMJ8YVfZbqigp0NWlyk9a+XdLm4iCDdTp5E4aEG8ygXG10B9ivjfAzGS3OSePLIQNQkqRiFlc9dQPIMtAWfhqg3DBx2CbYcww5Xo6nQqdql6gOHuv22kLQVCGYaiQqaWBAVKUvf0bjXTHVYX62EyYdzntBu0ZpRVr5OOo09sXomldAWATgYlg3M5qDDZyTsMB0oocADqDrdup8B+ecn/s2DSNv9lzexMVvfPgAjbPTjJgJDplzGCzqogyp1sDEaJIXs9msPHIrPReAn6x/ViTSTKu5WviKa9qykl4N1ikd/O6SVx6/qn408/eBKBmqgQhYxeDLTKcDGeyP2K6WTFoNtmtloRe7ZRKoJ7XA6TzmN4jXhkrOl+kGSYzC7Q1kfaxYBpErUMD6OkZXISZ9p2yIGLGqOYEcAdZA2AlTRUNMBVZOkvf4eZLHZhZEBlsGqjMQa5upVURrf+uFZjQKpKFczbHFaeIdppxavpN9TUtPfcMA2WSMyZG+rtOx2IV1ogAS5a+vWvbOvyPFzwc/3LbvbjrwCL+7z9/B0DNtt+1bVZ933ZsnMbNdx9u2CKedCieVliPTd63uOi7xTYDWuDBYlIDNWshOGJ07lZVhaluh0g6yPedp7YBnI0oX88is7+0tHmgfo80DbY4dZzNj6U/qQw2CnJ1qui4X/pf/4x/fs0TG1AysK/olNsQ6c+lGmy0ccBSY6vGxVz0NZ7aU/ceTllp9Jy0uEUA2LT3rWF8NzZiew2xBEJ7r6TCQJTdF9oXbrwHJx+z3ixyQOdW5EgnqZxhvxb2DTUwJLBlFXmB/mCE8Mj4s+QBD+29PG7TDP71+wex2B/i3sM9bF0/pTLzeREhLQsGiNON62uX72cDQpK/uxhsw5Hok9XXHq/H2r7BJTL4OKwqorbYfYW5XroXJRpsznTOGPhOdY/NgIdDh0wCgMOckxhsZvCK+bk5hqU0P+h8p5V+98/1Ir+G309aRX5uMU25lX7uD0dqVgAQF7SjVdfr88TXRJ8ZlSjRArtrGmwF7dRTT8Wdd96ZfH733Xfj1FNPXZFBrbWVbZrReOKWtlLlbfemKYgSg03SYKOGlc1ukF9ASSQ8Bq5SLbChYgyGCGmtVaJrpaxjlXU046WpNLbYbww7TY9iE2OwaRGy+vfWeKDXHqXwMgYbPQ7QBVeBVDurK4CLgAQE2g6qtvAm+iseFoRgDEbaSIl+U3rOqYlOo29BNdhyrLgwThpdkRhsQLvh9gi7YPcxs3jd0x+EZzzsxOZ4yWBOGWyxcR9aqmEUA5Za2il3Fizh8bjAg85g4+wszZHOsbgm+ftOqoLxKmtS/w0AKzhK2zbQ9B1btyIGeWywgbP3XFoUYgVVBjgs/TpkVbQkQBkQUlkNByC0cO81bbVw3uacChNhOMISA7b9m2W4Ae2zSpwkZ6Q5MvAW9AhqVBBA0GDT3nXOAknAZ/auU+ZzRwW5YoCv06kLcDx456bo3NL+pkWoB3x+kGkk9W2niFbNsX1lL6Dfy6U6J5XTDF0mOv8XjBRRq/LkRKfCxWefgMuf+oBIKHw+w244dmPNEjow3zdTvLigdxiDdKzXoZvodprfrSqi0ty00uWomHpsz1GbJmUI6UUO9L3d2g+4Bhvdo3kRDOm+UwbbvZFmajw/qX0GAH/39dubn8Np6VxaP53aiBqAMc2YMhrbjDNL63FSu7c+eDNxhkOKqAYixAy2WNetqmSATwowamzqBcmR56gUgC/efE89TnN/I+d1sO3be9T+TQt0hfm52JfXRHpeq0ojTxEdKrbk8ZtaXycERDUd6ajq5uJAzYIBaCGK+vmo+xYrWkWraVr33dLOSiowa8V+JoV3XblP9L073BvYBaGW7EleJEWTJgFSBlvMcKTHxfO4U8WprFyjWLMB6HsSxiets1JWgAU+J/0zneDQuA6Z5jtyXV1tHgNpVVhJXgiI13uLCQmkKfZW4I6+c3NG6nibUbUGsLkb1Sug7eDBg5iZmRH/ttZ+uE1b0I7bNNM4rYHBltNgEyOjipHlTT1oI3R5MGy+x9Mu4nNGEZjeQF3QuHaVZrwEcHE40kpcUyAwroRnR0CWjBKmwUbHuGsbqby4xGDzVEAM16QBZzxFVNNpsSqiAfHCm0RLNI0+cpyUIupOyyF9h/RAymDTACnODIsYbAxgC1TsOVZePBKrXm9HpC0B2wUzKkzv51Dd7DmAYfWtGTqW9krCYFMqaeaE8QEy5zPVhxKgRzDctpNqgVQYVhKbtedR1HWSVmim0DDjydKfC89iMNSrglngnhVhD61ZE9lFxWnJOqgbp+vprF6rSIuZbtzXU3g2sBQF7b5L4J7m1IgBAiWVI+wbi0sAgl7kIL32hlGz5AT8n1/8MXzi1x+Hh+3a0oyTFsyoKiPKzsB0NUVUSOPVUq37nM2sAcVCQIw6NbxympXmHaeI0uOiwxLJAI35LGtNkmdE5vyOja0desf+BXUf5GwNQHeAPMEePlZeJTI3N+n6Mc32ouAkL/QHKiNQvh4ZtJuSAl0NC8PeD+K00474c61LlN6jk7fNNnPg6n/5XhOw5e/b4YW4uMHH9rQA26B5j8j6IRQ5aKvXy2AlkDLYdKbuaOm60j17y7qMBhs55/aNQopoCE4YQEtvwG2A9jgKlkrBHj4/ad9aYJl/z9Rga5iyATiS5+eMkIYXFeFQmHF0reHP0quNePxmAWBT9mHOZrKE3Dnr3DOXagZ/e47EVmBahmoKMUuv1zKV+HwHdJs7vnZe5CC+92EN4ezwVPOQsdiV6+HFEAA9zZuORctuAeJnEMYnVQKWCkdpQba6j9gO0NbOpPibsmdSVto8X5MSwJLPTy1AEN8j61nGwaZciqi8LqRFSuo+hqN4PTqamjtF9JWvfCWAelN77Wtfi9nZll0zGAzwhS98AQ972MNWfIBrbfym5V5Pdjs4btMMvrdvvi1yMEiPnZVSDzStErY51P3bjl9OAHImEsmMN4ikyAGNwCzoFOcpw8iifW9g2kCzUxMqC2NmstOkje2f15lh0bWHRV9I69u8bhIbpidwcKHfFDmwGGz0miwnkRc50DY8Dt4AOktHK1vNr52mu0jPXWP0LAx07ayts5O45Z5a/2QwHKHbqVQGG9f8iTTYWAR13WR8/WHO0801ikgfsEW1+e9WVJhHz9UUUWa8WADXjPAeS33TZ7TYNzTYovm29K4bVcFoVTSTGZYAPamDGgtQp8CqZWDm0h6avjOOtJUaoz3PNEVUd7o1lp9aRXTpvAkTgILaDs0MAKZ4rgRy6XpHOvOHLt0bmR4W1QSh872qKlRVbbAOWd98bBwYAIjuDbv2dYbuDj2UayPS/kPfs1MTuN9xG1la4cjlSPcHIwy78nrY6bSyCh4GW8MQN5gVQDvnc+m+CWPC2N8igWXDQeXvm3avpWepvW/HEhDjzoPz2DXZ2qqRU8PYGvU56fqlgUdcSzBdZw8vDgiDLX3ukvwCfTdTBtuSmHpPv+80FasNhCqAYQTK2Aw2bldEGmxR5e34mUvv5Y5NM/jJs0/Eh//fd3HPoUX87bW345KHn5QAwHvvbqvFAsCe2/YBiAP8dJjdTtVo7wU9vZatGp0qFV1X9gNrnQMIgy1KEU01fek5aUDubhaQs/QruayCts5JqePdToWfeMAOfPIbd5DrtoPF9Xh8tsqkAQipAJtYhIOBZ0KKKn+WUxP6nkXfy+MIg+37S5VEtfWDB+mtoCUX21crQLPATASEGEFYi3nEs0a0+SEFJ7wpovSZ8XvfitgzBpsR2K2LtNB71B7H30s6TnMvMoArzg4HuI+7xGATqoh69sy6/yHCobkKzBpYyvUJreq+EQja48FIAsA651F6rE96Ioy17du+9m4nlc840pubwfbVr34VX/3qVzEajbBnz57m969+9av45je/iYc+9KG48sorV3Goa225zXK6gw7b3YcWMUccC0pXl0qgx+ku2kYyjP7XUpd6jAXBxzk9mRqjYQFKGGy0MthiX6V3TzODXa80Rq9dMkra81dV1aQ68Tx2jWY7YIYb7buqqibyFvRkbMo2uyYFGNkUVevpqw6QFPnSrj1ODdZ1YuixcoqoDjhojvTWRpulLYShMb74OK0iB3FK5UB0lOKIdKq/YkV/FszNiQGWSsSTa/5E2mYM4KKGzkHCEJAi3JSdpRp4QoqorcEWGDV6lBvgDsNIBNNzKaJWqqBVUdFypLVjA2tAY9TQa0xSADVRfpbuQu+7VuSgZWzwvuPr52Nq+mDvhsZ6mmTHWX3ztHUtch6lKMz3zHeoYQM2KaLt39QiB0kV0eiUSbogPU5jcWlV60LjYFwD0Cfpw7ETYKcls7VTiV7TsSbpeirTLdxPBQi0AFgFTAdYWrK5zumVc7kjS8fLj6UAW8JgU8TM50JRAAcgxdMK+TrbCp/X8z2cUgPTg00TFw9QztlnFbrJ/aNFNuYEgE1jm3F9ICslaHEwYkCgbPv1BrrT+5QHH9/83BaiiNclrtuz0Di97Wd8Hgc7NRQ5kIpLAGlQStsPYg224Jync06qIqqdU7IXNPYvr+btSYXX5Fbe9FMPwWt+8oHkumPWUX1c1H0cDIxsFXlfB9JgoBooD6CyMedpkYWm7yQFj+3XyppwXCZFVAMCOUNI04kDUlkHLb0+yUgw7jsFLHkKcbIeu4Kwts29ju2D8T3iDLYAsC3tG4oNwJmLWkqjxGBTgz1R+qMOLsaarfX/PeF5SlkBWjCQ90EBPsueTBiWXXnOzff0eQTwfUvf27V5JJ3Tez+BuKhKrMHGAHJhjznampvB9ulPfxoA8JKXvARve9vbsGnTpsw31tqPSrO0gSgT5MBCy7qi0SMp9aAnRAGA+EXNlW8O32tBJjmiNDOROpQaJZcz2LQiB5EugRGRXk8Bu4VY/w3QN/ye4UzS33MpVsFoDLn2VlpOksbiZLBpKaKWSDg/p7bhSNdUL7yDloWh3M8EBFX6ppVE7zlcV5TUACnuBCxEBh7fINgG1TDYiMFMgJ67D9mixXwspq5JR9/w6GPnTAhrftD3iBbt4EYjUD/7Q4t1EQgNgJVTRB1aLcMYvNGOC+eVWGkRE0AA2LQqfNZ7ATBtIh5xVBwAqaIjr4hGGWzq/WRaOmqRA0GQl44j0b6LHKUCBpsyTq4PSPu2NNisFBpe0THHAqXvoytFlGuwJSmisc6oDjbEa8JQWWeA1AHS7pEVaZbWePqem5HmpX6Go/i95A5dy3QrYLANbQ02OpYI1DUB7ZjZYaVo1tcl2zU7KMB2YEGN8Et2TWSDGOnbkePJWS1Lx84zRotaZEBgsE1NxNH+qQZg02UvgNpBnusNGiexrwDqkvOjzU8edIiAQEWT08uo0VKdL7r/Dnzqmy3jSqykye77xukJ3HlgoWWwNTZidFjCqOEgpTRmvs4B7b2nAFtgsGnBlo3TEw07nEtKJCA16Z+niKrPUrDTJjodbFs/hV84/1T857/9Jhb7w7YAh8lUkd9ha7/uDXUbRK4iKs+lMG7eLMY539vpOOkzkkkC8rqQMoTYu870/LRgD2cpdyoriBIDu1rAw5IR0cF8IUXUYLBp1bTr/uvzcvkFK8g23zOCKAUMNp7hoaU60+PCtUS6y0vXIM3NkePam/6JDittU+w4zT7mWVpWQGwdqyKqaqYyH8LOsGABfQuMc+pIT7EAwdHY3Ay20N797nevgWv/xlquul1ow6G8oEnVtqQ89vrnOCJN+9dQc6kKn5YSxVMVE3SfM9iUDTeqrNPThW7XM8eP9m1dU2+QiRh04mtXizYsLaaj0VL0R7keIKPHFTHYYg02DRCS0li0lBOuTWRXjmtBSAAqGObV15AqiWoC8dwosRhsPDIrRcS3CgLHVhqvqsGmsPyAmMVVH0ue0aQejefzg75HhyIGW7oNhHthVRENKWthjEDm3ei0Dj+dH+k94kDP0nGUwSak2tD+1VRjQ28RSNlzJgu1ExuY5jpLADaN/VJVVXTftWfOtfRCa1hklgabKTgfO3QeZ2EwHEUsnZwuJAWktCqiB+b7ZhCj28yjFGCj3UvMjnBNvAp66likY6yvLwYHtL6BVOdKC6Jw49ajf9ITAIdkndWqACrn5GxqnrLFCxh5CieEY0Pj98iqAqjJFUhsWXreHYStcicH2MhxUtVNTUcxdhZGjIHCHUo5nZOz06eYg2qxeegz0vSG6DVJ16MBhr3+yCyOw1lC4ZwTnYoxamJASnMSOSMO4GBphVf/5ANxwZnbSb9hjHKgCSAMtoV+pHloM9j04CpPiQ7XVR/XPvfN66gNkNof9NqrqmqCcoHBFt7lBEChz8gA87NM8ojN1AK1gL1+RAWZjMAMB4+0+SkCbML9bK8rtUuse8QZ0h3hugEkqdv8mjiDzSIo8CwP7X5aRatS/Uq2zirMMH7fvXrTgG5z833QsmnCvV8cDCONYillPjQOHmnasqkGm7EPD61gYPudhoUazc/6ACkrILJ/DIBvQKp08ymbFAZSsgKmGYPOslHjfSu2lSL9ORYg8Pij9fXYRA7aBw3watWFgXgfOpqam8FG25e+9CW8//3vxy233ILFxcXobx/4wAdWZGBrbeWaVc2S56hLm31UnUqsJkkYbFHULTaetMioqN+kRjZ04WAgrXiq6RiZEWlyPRumYvFtwNataIVZbZotd2o0YzDZ8Awh9eSalAU1LgndjyjT9NqljVkzYLoMuLIZbMxJVDYTi/2iaWbkypBzcVIK9HBhab45ShpK0iZigwO+6A+PYmqRRP6MbA229liaIsr7pv2nQDEHIYMmVJwqmLsmW2w/nktS5ccN0xOYmuhgsT+MUkQlYIQ7VDRtPGGgmnOOMxzZ+mUxF2mRg4H8DgE1a3OxPzT19HJFDlImAHHATNYki8oqEc/kvTDukZVaR699I9O6dKWISiwuNXJfX8tIibLPsqhwYzAbxmUOgE0AekHDsR5L+zOv3qqJJktVDa2xUjBfG2cAMTSHjjOZTOe8on3r6WX8nBXkPcWqaN3txMUYOLtVq4LMWYv0nIAF8OlOIqAXJJDYnYuDYQOKWHtRGHd/OFL36/qaQopoYOnIDKG4mIvNmKCpepTBlmo9MrBD06MSCixwsOPU7evx3l84Fz/zx59vKl7WAErbH5/HAaQfjuI0K7698XRj+mxjkfDYQQXa945e62ahyIHFwN2+cRrf3TePew4tLL3vyvtGbWm2F9FLlzTYoneTFa46gH7CEAJsBptdRTQOOugASspQCu+yBKZxkFkaY5IiWlDwRsvc6HYqTE/UTGEOMiX7tbPIVMJSNu2k9vehARTzgnKaXyKliGo297qoQmWGvcdkTLQK3TNcy1gFNpfJYDMYV3GKaH1MnH1V/13KCvC+G7Sgi5ki2tdZZJYGm8Vg41VZ4wBB7EOYNhW7n1agnu4j1P40AwRHaYpoMYPtL//yL/HYxz4WX//61/HBD34QvV4PX//61/H3f//32Lx582qMca2N2Synmy6u0WavVNUJ4qQ9JZWCG8y0f8k5B0iagLI5SqLeWs47dZQOLeiMr7S6He27PV+kP7eYTxFtr0mP4NbHtQYzvR6rJDMv2qBpIjTXpDgLVINt31xPXfRz2g1xuiBZoDkokwNWlfuUiL5rG4lgsGvMEp52YTPY4s1ZYmJKxq03UmRFhbtsnHR/qir9GVlpyTqDLTVkKUvIciZpSjSgi4TXv/uuPdaekR2QqqoaR1rSYIsZE7GjYKaI8oijmU669K4zBi7XSgHa33P3Mzh/fE3SGL0RwBa0Lo25FAEt1n0f6tdupTSaoL/hgERM4fl+FGFPosck9bH+Xz6nlDrVVhGNThkL3i8O1HQXztA2GWTMwNRSeBMGm7FvJO+bJVLOWNrqOLvy87TT1vVquLwPOue0SoGADepGjHPmIFspSYNEbL89jhe2AKACYjyQYhYbWjp2OOIsZfndkFJEtUIlo1GcbpNo0C5d0+GlytcaiJCsseaaSN+jtvJ2+ixjG0BL25pigAxg6Cgadhq3legaQuVObNaRAYqw9wKQ02inJjoNOHBgPp/lEPat4Qj4weFFdZzJWuOwkxo9YyWFeaYBf4X1gwcDo33TYqqQPXOoBx0sBpsMsKWfWftLolOXsWWtwFBYG+Z7zIcwJBC4baFpFOfsihjskIs8AYJcgfa+ZYqVRSmiJntPtn+A2D63MidqBpt8rVzzuL4u2aZJ0h8Ve0FKEY2zrzrCGONgHCAxr7kdUP/MmfHcP9B8A+pjJ8xnhaUMpGm8E8q159I+uwyI1BiOQDyX5yO7gq9fZH6sAWy+9qY3vQl/8Ad/gI985COYmprC2972NnzjG9/Az/zMz2D37t2rMca1NmYztYGq+Dhps5/stqlgrbbHKPp7+3NsMA+Ho6bCiqZHFSKyWvRYEjjWHCAKSKUljOXF3NQGmhFSRE1mWusAWc5P+F6qwaYz2A4t8ohSdKgJSEWOBdvwPBpsC700qhM53WzDseacXeRAvx6NCi2yyNRqTvGmY1UR5dckGYM8us/79oIdFosrYbBF85hHB42IIwXYjCqi9LO0YIW82bYaNbpBpl27yRIijgVPCQrzmKZJSloYPPVSYwIAQlqywRjlzB9NK4V+tzZeDECKpI3FbA1y3VOxMRaaRxA4FquOx2iliMYAWwwI9ZVgC70eYOl+Ku/6ZLd1Ug8uZFJEqxjY1NYki4HL1+OkTL3Cfkl16gxggoHkWgpv6izoa3ySIursP3KQrZQk8jy1vQ2o92yLiRm96z19fkwwI1xbaywGm7XOJIEuRYNNYi1YrE1Lm0gr8KAFJ8IxFNxL9iLy3XnK/uXOF5GUWOgzvTRyzqTiuDWP2DsczpkEpAwmUyzTIOzXyt7OwSNTg20mLkil6SJFYItZRTRe5+j/WvCKZ1hIx24lDMsfHG4lOlKNzxjYVIObRiCBH5ukiHqDgU7m84AVP4lE7CmA0oDkKWDZfFf4LDc3NZBJKthl2kq0qIhhA/C5pBY5YMEJLRMESIHdJjCT7BvsfVPncdX0L82PaB9m75sVSEgL/sjHJVV7VRaXDgRaNg0vrKFpsEkMtnBP6RilIgeWHe+tzJ5qU5N3g7L3+gN3loUF2vF5ZAJsxv20nvu8wWCTyAdHWysG2G644QZcfPHFAIDp6WkcOnQIVVXh13/91/HOd75zxQe41sZvXgYbrXBHX5aqItWpegVFDoyqYABJp8wwf+IiB/bCS4sSWKlGXPhTY4ZtECqoatHW+ppawMFjvOQ02GY5s0JxFuq+dZCLHsvTgj0abLzSGD9PogdhsVoYC0ONzFLWwkBnsGXL1GuVdUh6DmAz2KgzrYENJTpkgB0V7rLzqimikWCzPT+okGquimjLYNOFvwHCRhRTx/WN2YyI81RFhX4fnhfVd9C0MKhj4RWv7WXYblPMeNIYNfSzXCSxAQJ5lFsrciCliCYpiKnhCkgpJxyYkA1HbozZjDw/w3LDNKnAbIBMDRtwaXha2hgH9wCSQpxhPmsBnBRoaf/Go9dck6pJreNVRKPosS81pU0Rlc/D+6eRZruSJw2yyXtb3b8tA0D7iAAhg3XN9428BpvGbtCdGjqXpCIHWv/JmmSu8fL7lgY8YrAjYvoZcgURYMnOyVOdVM1UVlDFXJPYmhiqJqdFgWIAVssK4KAqwPX0lHeYaziy+R7ZfkTHMVmTuG6WYitw4Lv+X752bh9b7zC9JiqvkAPotXNaFWH5eRt9wGa/Bjku6j6exwZTxbT5qQbbVOqYh71bYqtxkJlfC/9eUtk4C9DrzFoaPLMyUfhcckmTGOzwum+2v2oabIlcgb4ucGB1pADVSWENY42nz2feCOBwnWAP6YED1TkJFe2cIsBGg/9L19DpVA3IFfq21hpeXKPpLxNs8ch+JCmixvyw9JnNQJOR8pqwvo1jrWAPZ0kfja0YYNu2bRsOHDgAANi5cyeuvfZaAMC9996Lw4cPr+zo1tqKtCjfnzvyUZGDUbPhaRE6ufy7bLjlnC9a5Ww4HKlsEZHBpgBSJv2fbrgs5STuuz1fXOTAH/UbkHspHqdqsOmO3+EMgy3eTPRofFVVDTNjMNQ1XWIGmw1cpQLHFjsrAKtLTqLTKNKqxkkpohplvKoqogE3stNyFA0jbb6L4J7BArFYXFyHLGJdkWEm89gJdhzOaLC1gJAdwW0AtmYeW5Fu2eG3da5kDTbaNwVJNTBuWmGwmc5kzpFWRewFx6AKoNDIvJ9RkYNI0JsaYyTautgazGq0V4m2pkYjZ7VAPJYbY/E6pwMoSYqXwkDhgZGEHcU12BzrRwCANa2UyMAljlLq9MZAS+ycIz420V9Zmh8ZBpuZdtq8b3m2bLzWDMRjeP99wtpMUrwV4Ls+rx6coM65Jt4PxCw//jdRqFtjsBmRe3oNUopopFerOSs5NkC0zuXBxZbBljp+7TllZzZlvJOAXG+gVhHloJkpA8AYE5oGmwXA5lJE1QqZBoudT+UA0ANximjCqJnU90yL7V6P17aPw77mZbFT4Eyzk+r+W4YQwAE22wahp40kCIa22H5s/+gASgI+K+mpU91OwxhfYIF6njbP+9f6tiQIckUOLPu8DZTrmmFi/87MCW3O1X3I4FEuhVhjnNNx8rUTiO+pFmyRzjnJmGna9XCChC9TKQbeE2II+dUqDMRTHwFdk5yzUC2WoRa05KZfalPJ6yzXn7PsH016gp+T2xWeIlwA0iIcHHhXpCes9YtKSh1NrRhgu+CCC/B3f/d3AICf+Zmfwa/92q/hsssuw/Of/3xcdNFFKz7AtTZ+875YA5LmxA3hdUvRJylCFxc5iI0na3Oa5JFmldYeL9BWxas4smEAbM6NMc6Nz1PL6eJDHX9N7L5NL1syBjmzYjp2AiyGkhWF0FJUBwwMo89dZoBo0RKZzQOkDCWaVjg0jI1pgwrN08va4+pjLP2EVv9u2FQxA+wqovNRap0G2KXGiwUyeTXYEgMiYrDFDCFLkJdWNZyLrkePFNPKwtL18Gu3wCPVYDej0m3aR3I9S88rONGj0chIU6jvk/Wu03OGvu1rjyN0GihDPxuwSnhaUQCrimisJ5OuxxaIQZ1zSw/LiohHrE32/vJzpg5Q+zeNgZKkiCrvBtevrM+p9M3ezTQ1mIIDLXBmOZ05JgJ3VnrN/GDgSQQI+VigOf1KgKeIyiwZPh6aFqQFxIAljT76brDnTu9bVNDEYD3VlaLlOTfVjSUdgLy2a32MvibOMkFvgGihVjyt0Qce8f5dGmxLc5OC30nBHSU4oaWIAnWqc8sQigtBeNOMwu/hI6pbaqescSdNduKzOqzR/BiYAL0UEKzHJe8FQCi80v5N03YNoJGmozjDGGyezA3ABlAiW7KvMzFpRVpug3Q78XOnYAevumnZIBHzOQOSa2tiVVVN/2EON6zridQGkVhtKfs27ltjTfJUTsCWzqHFZDSNq/q8FPjWdfLSlEaIx/E+KBiXYzJZoEzCXKRzngUSwld5lWwrGDlnSI5Ms6rnmh1vMdh431XVpr2m2TrytYV5GVVWpgEX9g5rcwlgDGDHGl+Ps33XuU4vfS/nerwaLevbYFNr+nP5jKp4TbIkOui1R1VEOQBM5XP6RyfAVlxF9B3veAfm5+cBAJdffjkmJyfx2c9+Fpdccgle85rXrPgA19r4zWITRQvQUBZyB8jikxEDjo1wH4MNSBdJHd23K15ZVd7U6ovc0MgIhNoMAx+AElcKksVzgbQqqnXtVpRd0qkJ90cDRSa6HXQ7dZXInG5FXOSAVxY0HHnO2LAEjpXIVzZFVJp3vXpzogu/qXvTo8BECsT1BoOGBm2BXLHRalXS5EwZ+RxWmXjrnHOGA0L74A6qlpbcY05vfV4dsLQjX2weqwy22LiOGCeK85WrIqqxjoB8UQBNKwVo58FwyN+h+LgwB63ocbdTG5f94UhMsbLWmsML7Zyj4Cw/rtZ0af8Wrwt8zzDS4Fj1RWvtDAY2TZsC9OBAOFf4v1PFTD9Jmyh0nzqTcrDHco4X+xktHX4/FeAqjrLb0WvKfB6NCiLNAWDjyCJ0tqz1vtGqqNI4YxYXCeBYQTZDWqBEg80qwkHnLheLBlrnywI76vnR/k2bn0Cseagxw0Kaj6QNJH3XCk7EunLtmmSxX3JASzh+oV8HpMKaMzXB1g9FOxPQwYYG+FaqXsbPfRSDYclcUu6RldZnOLOiBpuiozjDmGF2JXHZTkv1K3XgSgKaFgcS+KyDHVx/zgaKfQGxHLtzZrKDud6gCfQEu0GyQcQiB0a67aKhl8ZTooGWycTBDjoezqq1AnJcbD/aMy3dUmP9oHth1kY0QJlpVtzC1u7sLGktZtj2kT2pz48ZoxCXpkO20OPzWA4Ch2C+tmfyDC1A17rkLNQoayR5N9L9iPddHxeDTJpO73RSCMIXqLaCwEkVUXdhDX/Rm3nDh+HZIEdjK2Kw9ft9XH311egsPbhOp4NXvepV+PCHP4z/9t/+G7Zu3boqg1xr4zVTg438Ohy2BkRSVYeg+7w6FTWSuYaR5ZxPsBfQk5ufVuqxNnv9WB7tVA17wUmxo9cx4NH0bS28RMsnATZZGot3keS6BFaalQWGTRvU8ogCbz5LxtJhhoEnjdcq2iAVGjAp1iTNypvOOW+ApQ2La5gaL1Y6WBT5SlKCmNMdpQu2x03zeWwYgxHARiNPhpjwcMTByvi4pqiHwCZyX7tx36kBYYrsZhyQKEU046jQc1qGcFIUwNBga1mbujYiEK9L1GjluEijqdJLATYrvSxUQqbnkL7XMyKefO2K0voMBySpjmU4S/N0figOajhXC7AZfSdVRC1QpmXaWdortHoYHVdzLAvieJgIVrpL3X+8zloAHy+UIp0PYODRYERAGX1v42wRk6kbsV+4DSCDe7w/SaRcv5+6wx85X52qOS8vcpB7RhrTn1+TyW5g65dZ5EDR0+PMm3VMUqKx5zL6OJaNSMdDU0SnknNyZzK/rzdVRJW0Qh4INZnpmvyCAfonKaJKKjyvFJ3cdyXFXOpfc5Bt4EoHLIF2reFFI0r052yg2Cf9kCuKxNPwes17lLqi0rulVaQHJAZbe2xVVWTPjIPFYpEnkmWRC1S3/evi8Nye04pw8T6sgAdfOz02dy5FlJ43qZJt7K80AM33oRmmE2z5Wk0KMSvCYRXiGgz1rIA4QwvNdfFrrcfJGWxtX152pyW7sUgLHXE/j1Ux9fgvgF2IwiJcWPsbD0ql1cnb32MGm/1uHo2tCGCbmJjAL//yL2NhYWG1xrPWVqHFDhBzvmj03NDxiSrX9YdRTnXEYDNe6sRBTSL8slFkMdjMCmJG/wmDrUQc1WANeKnDUhRXup6IwbaQMdySRTIfJRuMMmAYYf4AUJ2qkr4TjS0lbYyneHnSkjlThV4rHw91JsVxKhFcLa2vSZN0M9h8fSdCpkaKqJfBZlX/4X1EbCIl7bS9dt+cjyPiDOgh34sFZOMxRinEGWZaO491UWt6XLgmS9eER5AtDbaGwTbi6zHvnxhaiwYLYzJO+dC0lngfh8k5U4AtdpC1Z2kLDOtgOl9nK3abInDRMNza9OUA6tafJ+wCwcCjbDfaNJDLAn+TNDhHiqZ1PUDYg9u/8XGmlV6t/UCah8lHiZi6Fuzh98hbPGnBEELmgt6aLpKV7pvczwId2MD4ahhsCpM8TvHSHaX6MxnoSRhK7JqsIgddJXBnOWqHewMVwOCBBAv0p+OZ7w2a+SExuUNLdXza/sQUUbW6cLwXRAw2A1C2sgdmjD2TM4VD4/pN1jnnezqTCTDAZ2Ot4ew9bS9qGWwyY5XLrXjtSX9AbMQYSvJ9arScjSIHlpZpaPE75CtIkDJg9b7T/c0PTGiszTpzRL8mLVBuaWKmNmJ8Pbygisl8VuxjC6g+bOzXPNClrccUBA1SQBoTE2jvR0ImINdD152WwSYHgdcRFioH7ax92Koiyqsga3OOg5DeLCkOgto+mX7O2G+2gVUaXKCBUEtyhK4fR1MrAtgA4Nxzz8VXv/rV1RjLWlul5q4iOtRLQvPqVAPFSeSotVZRiI+F63bFYFisOWRr1OjGtQWcacdJlTS9ueyxbld0WGTEWtGfqLodSxFNQTNu4JK/Kfd+MBxhYKSmcKNESwtKomlGYQ2LeeR+RoYwKwDb8SU6Ro0QcmVHaixAqqk41Y8ZNfx6+DkXDFo93xw17RkejTertyrsKNlJLDOuRyNJUFw3xGNGIIzjCvSbHHohwxG/nrjvVJRWZ1JxkNyjwRbOG5oFClnPiFcFs1JzJUcREFJEDdFkzvxpr6VMg8003JRr19i34ZqbyrFGKthif2hq9KUVVGUgLgGjjEhvZGAaRT2i5zPQ33WAgRgZgE8UCc/MzUjfy0qTNAJiQHyNCwbjip7T1AMVAl2qVhxzFqx1IeiwHWYMNpu9pztK9TXK4KLJpOrFDLYUvJLvJ3/GcYrogGQkxMdR3a50b00uqXkWh0hxHAu06xk6U1JRIlX+gQc8jPlO76+5drKiWZrtx8FfQE+95JWdrXdDsxHTNF59HvOUtaQyewDJFXsOWLp2837KoG7uffOAMvP9GECR1iquiSudL9mvLRY7C0ppqZf1eWX7x1oXLHH4IoaQwsA1pTQywZbgQwUgztbYWloXMuecigA2vSo9D3RZPuFM84wGJqAMECDQuJ5ckQO6H81M6n6mV+rFZLwbNqJWZEk+J7ufik9mMtgMWyEHxml+USofE68LR2Mr1mD79//+3+M3fuM38J3vfAePeMQjsH79+ujvZ5999ooNbq2tTDOZTGwB0qLXkXguo/lSI5mzOjQgjh9r0bt5br6mR1X3wZ0ADTjzLaaxkyYUeDAWqtiRXxmDmTrFKaW//Zk7K1aalQeUyenPcWPUAlqsFFF6aFIhUwXiiMEupbKyvZlS4NsUGimKqTieHDCcaM9X/+8DQb3R6x7Tw9IKQdTz2JeSZInS8u9aZcg5o8Yb7TUZbAoQZ6Uf9vrxWmNVjosAbdMYtEFqzXDM3k+DsTo9KV87d6im2XtpseKk8dBzhBYDljoLNU49jIEBC0TIVXCddgLA4ZmF9UDTS+MMIYv9woMTDdPNeC9ToxXqsRbQwg1hUx+H61c6j9WOKRknZ2FY+jzqfDeCbD1jLxLTfTUGW+LM6vMz2DVzSw6ith+kKcQ+MH3BACynmeC8VeQgBkF1UGZdpNk6MNekoNuVrtsCaLh0Pw6RfYOz7CY5AOtisKV7ZlzkIC5uQec7T5unz4yuH/w94IL3aoooA3/pOJNzJlkW7d+sdHQvw7E3GKICBQ4gHttqcsoMtoS959yvFy1b1hnUBtp53RvE1ac58M77186XVKk2bPNwLF8/JHBPk3qx1sSBoeVspdcnwXeudamsNakupG7/cCa5FXRo7OOMHU/fo8MG256P03pGlMFmzSP6mQUI0WnFixx0O5Va0G5uMcciSwM+gF5QDQiSIw6ArZerJB7vw9oz6ip7lnRO7r9pWUWAEQDPnPNobMUA23Of+1wAwMtf/vLms6qqMBqNUFUVBoOB9tW19kNqXkHeqHBBQmGNAbae4iSmugC+lLFUC0yOLMz3B/E5jcgCL7JgCehri1SuyIHJWjCAich4GejGC610dmixH51fq0wKpIxAzQnJa7C11RfD8VL/nP1ia+/Fc04TKU+ekSpgmxrs2jnpNVp6Q/yarI2Ep2dYrBaeZiVdT33O+N0YKSBCok9INsZknASItCJPvB+LcaWVIe92KlMY1psea9HvY0BogMGofVcsUNcyBieTdcECFxnAZzndle+apjUGm5Lq02qw+UCM+BxGxNEAda3IqAWCLhrp4PzYKD2WOyBLv4f3rK34GR9nFaywKm4OCHCVA5TtvUB73/T3YpgULrD7jwBgY49pzpcpcmAGEnilMSMdXZtzKQtVdwK0QjZJGlxmjbXSvJsU0aAtq+nPscIrHv0mwF9hbrFvM9i80hOzkZPYVuPl8yj0f2hxkNXTA1INp/oz3fFKNBwVxnmjGaaliE7E121JP9B3OC5KJDvxQG1P0nPqGmxxtXeTwZZxzrvLWBd6/VG0Dmr2Qq+xQeTjLAabZUtb+7VmA0jnDPNwNIrtXvqcm36kAEGyX7P10AL3WJpkC7QI4J6yJiYVoPla4whAW6mk/FgrGMe1UE0wLCEp1MdWon3cWboeVoHZOKeVIsrtfcsnpAw263roZxZL2SpykKQvMxKJzSTX/DfdnqRgWHrdcfDb2rMSEomT9GBXiiZ7+0ifx4C+zloA8JoGm7PddNNNyb8bb7yx+b+kveUtb8HjH/94nHDCCZiensbJJ5+MF7/4xdF59uzZg2c/+9nYuXMnZmZmcPbZZ+Pd7353dJ7RaIQrr7wSj3zkI7Fp0yZs2bIFz3jGM/D1r3+99PKOyDYyXhZNKyVnQERFDiiDTUmlAKSNxDiWLMo8lcJb5GAw0BcKbrB7iiG4BEKj6DVlyiA+zpl+ODsdR4m8DKFhzgEiRQ40pwagUb+YvccrL5U43dzA1jYd7pxr1x5HiWKDXXL02hRRPaLExx07nsz5CSmiQU/GZLApjmdiuMXOipqyxhwvarxY78bhFWOwxc+SRgd5i9Nj9XFq9HsTvOlzJiR3LGLjSTvO1ibSx9knTK4sq8WpxxUzw+LzBeO2YSyYDDZ5m5/mVQBZ+qGmpaNpzwHpu8EDFJauiZ4eK78bPB08B2BE+m+sb81RyqUkWUa4Fmzh851eXm7t5BpwMZgfX5OXwRaxo7wMtiSI4l3nrPluMNgYAwPQGShVVTF2g8FgW7JrRqNYH8gsClCQDm6uX8wGoYweXuRAY7CZKdkDfR7Ta+LVFzUwTvt+83vk0PG1M76WcKhUlEgFVjPvW8RgW7QYbLo9qYFY3E7i952nl1nrMbWRrSqzk+x9MxlKrMiBBj5zhnTEtDNsVFMmQrlP3Ebkxy4YTEwgvcf1GPV3KJsiqgSLLfAGKGDpsDmiFQHLsc20d91aj61KmgCb84MWWLWqSuf09CLGOUkRTav7xnuWtb+FiqPzPRuIA1of0WJNRu/wKLwbo6XrZCQSpk8YBQONe2/ZsrwSsBbAifrOpYgqoF2nisFSvn6Z0jXGWsdvvSb1kns3jsZWzGA7+eSTV6zzt7/97di7dy92796NnTt34qabbsJ73vMefOITn8D111+P73znOzjvvPNw+PBhbN26FWeeeSb27NmDl770pdi3bx9e8YpXAADe8IY34A1veAMA4Mwzz8TBgwdx9dVX4zOf+Qy++tWv4pRTTlmxMf9bbNbLojEruIG5jpUR7imLXxqtGIl/A9Ic7YhxRcbFGWx04TMF9Ic66yllVsh9S5FzixE4IRzP+65/V5wvtpjyIgfDDV6HPxOx6LYOSHTfebR3sjXchtTxNLUGRrDSxjShbi0NDhD0m6JnGRv29XVBPCdAKPDk2mWRXdnx1JhhUoqoFfmizWSwkXvEzxeEYRf6w1oc1Xg3vPpe/LveZ0l1mXJGq6np4kyztpwv/jjVileWwZ5JaaTPYjiyU05oP9a6EOm6keO0d6N+f23GqFQlFoidLSAFFzUD13I8cyACvQwLELNYhvRyhkM/QO/VRqQpEtb728+IVZdqOAJ1UCgSYTZ0TXKMDdFBFR0q2eHPrfFe8Jk289qX5rLUX6dTYbJboTcYJRpsGgM37G0Wq3cdk2AI9z6nY2gyn5W9PQcAW0UOdG3XzHpsBDxarSU7GEePtT4rAREmu/WexZ9lfWx7XFLIxgDJ6bjp/sbXY14YSE0RZXugZU/FAWgb6NGZYfxdj6+djkcD80Ol1TDnbcb7wEwRVYHiDHPRYnfScVsC6fX3pfc6/n2SB3CM9ZjKneT03yaUNdHSS0tADI0NmQGZ6PeiokRcMzUKwtr721SSFi1fD9DOpVxFWD1FND6fXe1U9jdylXgByrSzK0WHxjXYEh93Kl5jB0YwkKd+Nv0ZQTZLg63TqTUxFwdDIUU07pvrwGp6oNHcHPn360gio0ptTzczn+0HR2MrZrABwHvf+1489rGPxYknnoi9e/cCAN761rfir//6r4vOc9lll2Hv3r3Yu3cvbrzxxgYwu/322/GpT30KV155JQ4fPoypqSl861vfwp49e3DFFVcAAF7/+tdjbm4OAPCHf/iHAIBnP/vZ+Nd//Vfs3bsXp556Ku6991686U1vWs4lHlHNQsM76mZvGKKskid94Ur0GJJjlQ0iovT3MiwdQwRaO+dCTwcCJ7qd5nueIgfq4mOkJFkl0Ol9P9yLI6PWIknTnKRFsmGwjeJKQaaDPNA3Zq4xYRkQdA5So8TanBaZgL/GqOGiyVKELqoQZbCOtBRRjdXSG9RpJMtKncpseOGU0vdpIYro3XCKyOcMYWpAmIByRodMYwQut9JqWvHTMgZldgM3Bs0iLck425+HUcUrG6y10j50Bpt+7Zy5yJ2V5WiwcQaK6Xga46Ri6lTzR0pN0UHQeNw8Kt2uc8balalA2GWOksb8iZ6PwVgAdC3BtO/258FIB5kAgSFupHiJKVZZ4Ntiqujzw3ISo/ELzKxwaM6ho2mKQ7Im5tKHrDXRW0U9nvPkuEwhCWtvjwHgWHbDYrBZoIwmum4xVXJOLz02/owDbPG64NHD4oVK+LEWSG4V9aBrPL+XMbPCX0WU3iN+7dw+tkXkFRvRZE3aYH56rGzXcD1jc/1Q5nE+yOZkdxo6eYACfBlBtjyDjduyuu3nLXJgVSzW5lKfpcKnjOaW4XmYFBWxJR182nfhejRZBaDdN3oZ1pNWRdTSr6SsOMkvCUyu0chmR9HPLHaWBLD1lKA6L1QyMt4NNcPDtI9t8Dm8mwvMv7bfdRJ853ZSSeECep+MrCLev6V1ydeFo7EVA2x/9Ed/hFe+8pV42tOehnvvvbfRXNuyZQve+ta3Fp3riiuuwO7du5vfL7jggubn6elpDJcWwKpq9XzC//v27cOXvvQlAIiO4+2Tn/yk2v/CwgL2798f/TsSm6kHoWoDMfqskSIaFTlgURUr/dALykx0O83vC4zBlix8zkUlclANZxIgaZI9T4qoL3odLdDUQTWKHBxe6NvPMtpM9IpX9LMBT/HiQsxJtFfRqDGMUb7h0vEMR3phjSTFS6PfCymidmoMMXCXntGksYED8WafpsbExq2lW6Gl6/HnnqRPNxGldJy0OpYF7qmlxcUILj027yg142yiwpLBTN8NHeCLKxBaDkh8PeY77BTQ50L/FBCSDOHQejQanwMsjapT0XpMgU12Sq695wXetXMAPNIcM6kmWdAhtNy7DhAB7r6dmuJ9RgmDbiQbrWlwwHovZQeIH1dVVaR3ZEaaIyfNV1E6dz8tEMO6JvOziK3hY1emBQnicUrMCH4OPqY0PZY500TI3dKIoZ/RaLzUf7QXDVvmNb9PVVVFDl3rKNlgulXMhYPkkb7ZhP4s5w12lubwWwGkPitoknOqtDFOcnvOwRhtUkSVY3mQjYLklu1lMdgsBm6UjZFo2ur3aJoFB6xrjyvIW9pm9H3LpIgqgSGbwWavH+6CTEoKoLTGx+mPuuwG4GPgasCi1H+aESEfB+h2fG7f0DRGORhmAbC0/8NkHvM07bTqt8Vg49fuAN4Htl1BGfC0urC1dsbFoNJnTs95cEGvTEo/49euMT1bgE22+WdYlpZVqEQrcsBvJ08Rtdbj0P88A9jMiufGXlTEmuzE59QyZvh3TXuBrQtHYysG2N7+9rfjXe96F6644gp0SYWfRz7ykdizZ8+yB9Lv9/GOd7wDAHDaaafhoosuwnOe8xx0u10sLCzgzDPPxNlnn403vvGNzXduu+02AMDznvc8AMBf/dVf4ayzzsIpp5yCm266KTpGam9+85uxefPm5t+uXbuWPf4f5WYZJXRfi1IUjBRRXuSALlSdTqt/khNW5Dna4VjJmW0XnzginepbyAsa79/S59E2J679Ih3rFSP2pg9NdjuN8VRrsPly3r2Vzjh1OEmnSKpUyhuzVV0vy2BTomncQdaufYoJ3QJxkQPepHQbGWRyMthoimqmsp+Wrpd7llbEsa0oGQPfCaNG0NGR+q7HHd/79pz6d6lBJjt0mnGtb/Ymg41WmMukAGrpDJqWDeCoDEqBQMP5qj9rf45SAJNrlw03U1OlzxnFuqGlnYN/j75vE51K1fbIlX8H4vVTS70E9Cq3VvSYOsgSABrW48WltKDmb6z7CDyKAOVkmG0KzTDDqFEdaYtRE6fXW/qViai24QQ0Y8yAbpYOq8Vw5F1pc04GpOrPOLio7cO88qPsoFbtOQf6M+JsSCvNOxzby6ReaiBCkrbONPqsIgda2ryl70Xnp8Vc7BFmunROwKfBVqIJ1bC+WWGgTqUXOkqLivDxtN+Lq2SzAF8Vv28qU5cFa61ApJXh4bX9rPet1+fVhaND0/uk7FsmEGgx2IygUCLLYsy56N0g55QDnOmcS4MTVfxe0nls2rIxmzrpW3lGfJzJXqjsMRpDmp+Df3Z4gaSI8v068nXsfVgrbmHtB8MRY9EburYxgy0952QE5uvzIz6nDbCFfvi7qWlDh7WjTQ22SSQWoB2vx5asAn2H9XRO2v98riAT14FV7qcVSLBslUFm3+B2YnsOe104GlsxwHbTTTfhnHPOST6fnp7GoUOHljWIQ4cO4ZJLLsGnP/1pHH/88bj66qsxPT2N8847D1dffTXOO+88LC4u4u6778aLXvSi5nuTk5MA6mIJr371q3Haaafh1ltvxQknnIAnPOEJ0TFSu/zyy7Fv377m36233rqs8f+oN/pi8c3Eqw1EDYj5Xiy2r1GCc6mCXLC5oWxLLB0CIliV2yygh57Xqr6oObOtBpvPeIqMEgPdt6qN0j7qRVIfZ4dv9sZiToXCoyqRBvOHRv3MSF62Yk286XlFyuMKZu3fuOMHEIM9A/SESHeuTLzFGuCGsBcEpc1ki1BqueA0TyuOp8XoifsW5gf5as+Yn1HVzUgPwnbk5w1quVdcmQKbuSqRWvqhzcjzp7tY+pXmseZz9zEmFjKCwFT0nbYZQ4OtPxg1QJNJ/U8i50k30fpp3U+NwZYAZ0pan6UdlZsfWgqvBUx4QQTA1v2jvw8ZIGTde76/Wk5Acz2GJiXgFzNP13gGYijrnKy15LMXGpHyjLYrHU8uck/vWY6Z1gKrmSqiKmAZn5OyNZL9bYLfT3kuWexwOk7LUaqP01k69Fjrs0m2Z1kBjwZgG8ZOr5YWDKQaW4nsBfnunMH86XTatGReDMpK67MKF8xEGlccYIsOVVOyLTA9edeNtFMqp5HYspPx/fTqMi0Y+5uWqijumRE7XQeUAfndkudm/VmOxZ6w9ywQgbxvVvpjVFTNYkNyENIYJ9BeO92LOMA2wexeTxEMIM4GsZitgJ2OTs95aLGvHlefc2mNH9pByxmVwWb7MBojMJIAYAw2S2ecp4gmATnl3bDeodx6HK49B+5x1qZ2zjiQYDOKI+YzHWfGXojOkYwzXheOxlYMsJ166qn42te+lnz+N3/zN3jgAx9YPIDbb78dF154Ia6++mrc7373w+c+97noPE996lPx+c9/HgcOHMBtt92GJz/5yc3fzjrrLAA1uPd7v/d7uOGGG3D48GF8+ctfxsTERHSM1Kanp7Fp06bo35HYLMFCLSUp0QLjKaImi0s23MwXkBgw0iZKGWxWtJX2kRjspL+YLj6IqOWaVgqvpAnY4peUqWKWQM8IzsdsM93Q4WmaLc03OWVj9A3Z5mSVtKdaTxYwUDvdPp2pwRCqQcZTaKKUNfI3vuEAyGjPtMdb2mbLESmnLB3AZkxo5+C/02dpOUo8jcSKiMd96Q4qkClDrjjdMjChOInJ/NAMPN35StkN+lw6bFW8UkA7aR7FaZ96ej3/zGIDaEBczlnoG6w4fl7pHED8fPqDYRN1tBiGXOfSqkBIqzXL4/GBoDytr3Emjb7r+dF+njrnvucDxO+bDSLQ9YOC1PH5eJpRz1rjjTmfvpvpPBQdVGewJ1pnh3aFOem+8fE3/VAmwtJa06n0d3ixrxcvasfantMUnCfj7BkASj12ck4TeI+d2fbz+DiuEUjXWYuF6k4r7A+b/U104oXrkc7Jz6uNMWZX8gqV8jh5FdF8gE+3vUo0RmlaMl0X6KGp7IUvAM0ZbNYa79Uw4muNxUChadEpi4sVObCC1ZGNqu9vXOqlZbHb649VOKH+zAe60QIPVso+TxG1ZDekIGzdl70Xhv65xiifS9a6DUDMdMhJOlhpp4lv4EgRBXh6LB8PsakWbB9GZLAJ1xgB6k4NttGoBep5/1EAZemQsObwgHNUCZizpBN/R17jrYImwwxDOmLGG+txtxPrlmp7EdXyy7HDk/lpPCNN5sbKxjhaNdiKq4j+1m/9Fl72spdhfn4eo9EIX/ziF3HVVVfhzW9+M/70T/+06FzXXXcdLr74YuzduxcXXHABPvShD2Hbtm3RMddccw0uvPBCAMCtt96K17/+9QCABz3oQXjwgx8MoGbVdTqdpsLp+973PnziE58A0KaPHs3NLzrq1GDrxcLWiag2yeE3GWwsR7sxCgznq2bP6QtaVH2RU4dp6gFbICMBWRVgS9MPrQortFkLmhUdDP0AoWIe/VxfzCNtIsmpWfruYKTfI0DQrQgpXtazzBgQeooo65ulAGoMtkgvrGGwyeOsx+oDIHSnhkfyYgeZOnRWCo/Vvxbx9Dp+0jlDOgU9Rjqu/qz9OWI4mtE0HYDl1zRnsDCWo2GUvMPGPJ7rOUGEgQ0IeVlpdT9QjmUMFAW0SwSbGftFKwBCP1tkn9kpoiPVEE3edcOwp9/PRc7jNCefMUj7z/ZtOF8TyrM0Ax5ceNwwwueNecwDDhGDjVcW5OCm5VSJQGvykcpUsZyFXEECjalrpYJFTF1hnaTP0mIJ0/Hk5Aq6ylpjacWVrHOxjqK9t9I57y1yYDEmckzMCFg1inAAcRXCdoz6fM/pTCUpok4dRRtkIvvLog5cAfX9CGl1GhgWB2tHUeCM30/KvJlPmOT6OmsBbBGY3rdtKm77aQyUpMiB8YzUd8OwuSNwr8Cm8hY5sNb4HMsvDtgO2myMjM6UybZnwRFN24y/G5a2GT+vNH4ASUG3aD22wI7hKGMfa4HQuP9plcGmX0/tN9bfywW/c5XuNd9V2reonxHuvVVFdK43YMC7z39LK54zn8wMQJM9KwPATnbqiqNRwR1Fyy8wvr0Vg73FcXjjds0kO+fR2IoBtpe85CXo9/t41atehcOHD+MFL3gBdu7cibe97W3FYNYll1zSVCE9cOAAnva0pzV/u/TSS3HppZfi4osvxuzsLI477jh861vfwsLCAmZnZ/Gud72rATe+8pWv4LnPfS5OP/109Ho93HzzzQCAc889Fy9/+ctLL/GIa2FuS0Ug4mqBeqSGR+hiurzsgGUF3zUBSClFNAi59+xS3Bpox//W6dTCm/3hKBFN1gRkmxRRJ72aNouSaxnM9LOEwWaAXFR7xjrnaGRryqWptJoBETtfdD1NIxvtz/4U0QGL8LfHTkXGS16DzZPuAjBDwzQwY0PYmvPL0mDLMMMoVd7DROAAW47BZrJaGChiaRNpmlRWVLiEwWaly8VVRHVtDw4yuVNEM84sHU907RP6tVsMWK6pYukDaWPiEXFe9UkzREMEdTSSGCC6Y0BT+0SATVk7rRRRymCzQLuSCoS59XiCrMf0nPzSIyaAocUVG+FD9Ift7xaDLRHV5qChEVhRx2noyXDGhCWMrxc50FkpOQdEmkfasa2zYjMRNBaqpRVH2ZA559hfRXQYFT9JnOloLul2Gl2/LAFqIH6e1v4m9cP7AgT9W7MAyNK9DE6vwkKNQPdMJWBVN8sAaqjjXY+zPTak1od5aTm9Myy9LLYnWd90L1jU7/sUe9et4CpPcdeY+XTNn+8zECFZP8g6S45LnfPY/rLWY43BJs4vJwO3YSlnQEguq9DKiCSnjNapOeMZJcCEGoCmx9nMY+2zNEWUnbOEwWb4WlqV25TBJmuw2VkWI1SVPj+oPWTpsPJx5opmDVBf82ikB3F4iijtM/e+tcfFY9QkmKyg0GgUB9lkFn2FxQHTCdYyFwaO4HtCekjH34zdmQnD5ZqOxlYMsAHAZZddhssuuwx33XUXhsMhduzYsazOFxYWmp952ulTnvIUAMDTn/50XHPNNbj++uuxceNGXHzxxXjd616Hs88+uzn2tNNOw6Mf/Wh84xvfwOHDh3H66afjuc99Ln7nd34H09PTyxrbkdSsCL/Gwkgo8FGKaD8S9eabY4hsUrp4fZxuNFJHzUwzGth6Q/Qlp/n+9Xnjc05PdNBfHCxF8vTFL4B7teHir7BCWwJMKClJ1jOq07HSz9vf25/7mU3Uy77hLCHNeIruO8u3TxgbSVSn/tmKOPYGo2acU91OBBaLKaJWVMeZQqeL8uuMnjBH1HNq8yOzOWnVW+lno5HNNgPqe0WvRTtOY7BZKaK5ClEqg80QfbecxLTCnO7QxQy2tm8+PSLQrm+nu9Dv5oyniF3hjIhbhhtPn6aM4lz/oU1PcoM9Biy1cvbhfKFqmzdFtDegKYD6cbyZRQ4IyGWBdok+j+EoxVXBdCcxcc4NNqRVPIDrn9hFMOjayfRAkz3GdnDbPhQmU/Kux460xd4LnyVgvpgKtrS/DW1ts0ijzxCxp+MZcJafsWdmgdWlcVq6RPy7FvDO91abwaYEPAw2ZM6uiIv42PuGBH7zojmW/q2mGdZb2i81ZisHIb1pktYaS/sZjEZ2CvHSHM5dD69AaLFFJpV9ML2f8d5qgTJx1W99zmkgk3RN0p4HSI40B5mMoJSiwSZXHfftYzRF1AwWT8YZEVYlTTVF1GB9DwY6m1oD4tT+DQZve0xsc3u1oSOGkmgryOtCwmDTqogaz7I/GDa2jPUsAcb6NnQ2AVtOo9MBMKiD7tQfTORw2DtMfd6E8R7tmZbWNl2Pc4E7+Xp0IsfA7RvkilEFXcoQNLVZcbIPkwYD4/XraGzLAtgA4I477sD111+PqqorjB177LHF5whMM6tdddVV2WMe/vCH4/Of/3xx/0dLsxZTL8I+w8RRw6IyPdFJnJCm/PvQz7iiDBRx4XUCgSHvfDiyo5NAbbwdWhwsbczkHEmqYj3OGsCwHTpN58py6KzUXHrscGSzBrRKRVl6tQHKxMLWujAsZ8+NoDOpYl0E/X7SlMZFUmUtje7HRjhAGGyZjaw9h33cgqHpwquY2tp3zs2JRTwtnSkv4wuQHSV5Y/YZL4nujqM6FW82g81gDkbOl21AxEUOrPWj/Tmem+m4Y/0m20HVromvF13FKEkZebGWjlV0pu6/zGAfjNoUUY3d2RsMhFSw5NC4OujSe+RJgQnNYoDQyKwVFR6OWr1FwHbOI1DEeIdzrBatyIEVnBiORrH8Art4nl7v1Ylpr8d+L2NAiH3XYLBp954DbFYxGco2kzWIZADFclZKUkTpOmcVY7CeJe/DSvOmVZAX+oO4fw62KM/IStfLOXSTznW2Pq+0Zy4fEJokNlUkZ5EBIb2VgOcMYXo6nhxIHlLrBwnrKD7fOuac23NOXhc4IB4HkOwqorrun3E/OcvQYOnEfbFxsqwRz3oM5KuISu+gVbQqmyLK1mMrs2dSA2sNQNsCrpJCEJmglMXgDa2q2iycEoZjVJVeZO/JawgfUqTBZrD86Ge9wQjdjr7Gx8/IHzS0AhlhXvOCbnz94jrj9H4nPq4GnAnAVTPGHEOa3ndHoDyc08xuUbRIZYZ2GjT1zEP6/WiMbF04Gpt8p4y2f/9+/NzP/RxOPPFEXHjhhXjc4x6HE088ES984Quxb9++1RjjWhuzDQ2Hn34Wa4HFU4NH6MJiQT9vv9tueKaWDt90DBAhjmxkFt5Gk4GXVpeNjZT9kjFKVoIdpYEimXQG06FSHM9sepuxQUSsFuOcaZEDg4XBUrzMtCCykSw2Dr9uvHDRZBkEdT4jrciBkZZTpyXXP0ssHWnOAJmocMZo1VLRLIH2aEwS8K6kTllOPHUCJEBKpZZbekMUDEuYsrFTYaXmUkDKSj2ghgdNPyxhqkjPiN5PajgmTBXtvlspoj27wp302VS3Y6bsU8H5oshoxiALzkpJiqjJBhjYzOeG/ctTBQ3n3KvBlmO1uI3wKr4eq0ImT6/XRLWl7wK2gwqw983Qk+FsAPHeF+6PA6L7l2Nw5Bw6CqBYGqPeda4ee91/zGaWnBoF7DBA/7TIgT7n4zHx45TASA7syKSTSvsG12CbVAKm0jnjwEwrLWAFcLjOpqUHagnT1+Opj82B5N51LraPMxU/lfueVqhkNlWUju5ca3gAyQDorSBw3JcOrNL7lJ9zNstQ3HONAIFVERbgRXQK0qcXddsvSf1UfK1UA80OSomMcwHYaJlhdgE03r+3CNgC2a/5nKM21SFDdoOeMycF5A1K8c+sdbZL5kfMDo/vJ/fzaEDOkkvwgHu540quB2jXBmrXaKAZPw6QgVWaKWUCsCrwbq0LRyeDrRhgu/TSS/GFL3wBH/3oR3Hvvfdi3759+MhHPoIvf/nLuOyyy1ZjjGttzGaxebwLAK8mGTZxadEPhlbtLOgRA7VSorSgKBXm5KpoYaGwKfC0eEFsPEE8DghgnNW30yhwpg/RfmoGG9RjeTTNcpDdEU8KXhki5THTjYm4GlGduMhBMswoNTgIImuRvNA3ABPksir4aNdkgbppFVHZWQBahiVvVmWuOO3CZiflhLq55hfvS/puz2C1cHCzb4xTpZYb89hiVnDmYKy3qDuzc8b6QX+NBPQzoFmvr893/n1LH4geFzPY4vNp1X21sVrreWg85cRKEe02hn0+RTTS/VlybEoio5bR2ssAmxFTxSmQbjE2af/D4chkxWnOgsUSHmSi7JqDLO6ZbgdVXj/sIgd5vUdvcCOqgmwEErQUUTkg1zoWUUU2L1vWyfTNBs/MAjHxfq0V8dH6lvpXA3cZ0Cxng0j7hsVg4/PD0kujTKrU/mB7q/EOd9n6pY2zPrb+v14X2s/56xHmgVUMAYgzPOYWByZop+0Fpt5ipmiEmhpsOL0UoJfGuZw5V2tIGnbnmCmi1j5MU8x5X0Cc0hjZAMJlesFaN4ON3aNcUEreH1MyQ1jje5ksHC34bq2dQMsylMZD7yfdB621hj6jHJCf02CbUN4jjfE+SNjh/BnJTEzpnHTPHEXrhz4/SmRErOrTQAys2vrMS9eekUqo+0+DDjkQVBs//53LBh0trThF9KMf/Sg+/vGP4/zzz28+e/KTn4x3vetdjW7aWvvRatbL0lFegrTiVVzCOGziXMcHIC//MGZWWKynXoaWOqkspqZm2ZAz2HiEMI2q1N+Pj0vKexsL2tgMtoyTGKWIWtpEQ1uImQ7Ty1CiqYpmlaThCPSvloFpFTkAYpZhy2ATQN1uB/3hoHFOLdDOKwI/oTjISaRZAXoU+xShsk/8mb450Wq8JRuzqHM1JoMtxzBozined/mGWMC7pTdEU6xyGlsx+4VEW9n1cGFrj/EClKaIDpf6sp2VRWs9nozTy+g9E9PbEr0RG6gdDEfoDWXGaD3O1mDOVRGVwLwSgC0BQZW109LE5I60qcHmjDQPRtxojY+LxaL1NT5at0cjoF1qzGOHI9tRsvTOtHFaTDueyrocJ9GSQMi9b1MT8jucSw3uDfX3iP6e24e9mlBepyrer2lKdsoW0di/SZVZBTTLBZpy6VjTyp4bnY+uhxk2Ede6DK+cFQjgmQZ8mFqFbksCIbd+RawOZzp4fzjEBClUYoGLFLyxQFXOYDP3DWvOMbast4qoNn5+HK22qgUYQ6Pvm6eIhjamMJ7hKCMJQ+25RfvdoN89bFSk5Rpsmm9gBSesNZE2k8E25GQGu39LlzvWYtWPk8ajjZ1Wum+KJxXo9MoabNpc6ojHcTZzkomiSL0AMpgfNMviz+Pftf0ltzfm7HhJd1Den1JgU++f+plldoV0TjqPuFTE0dKKGWzHHHMMNm/enHy+efNmbN26dUUGtdZWtlkVQSI2gIGa86p1IfrEK9EB7YvFUzSt1L4cLbWkOlYbLeHsCjZOYUEB0s2El/c2ixw4jQItimkxJurIAvk8E00LG25uMbdE7DUhVbtKkp12ERc5gHk/g1G00B+2RQ4MQyM4xyZY63SUtAiZZbhRQ1yrpOdxRmPw2Q/05AS4c0w96bNFJ0ieAya0jdky2C1ngbPnLEeJAkq59JCI9WQx2BSATQT9FSMpiXhqgGXG8Sw12MV1m9338ApbcyYHXAHy+yq9GprBboHPXjBsOAIzmHkf8v5igaU8vcxKWbOYYVXVslprYFN/3ziDzRLqFjWMRGdSA7Tt/SVmsDmdYSOQQc8prRVaiqgVjQc4C1Z2vurjMho5y7hGs7gFu5+25qGyl5iMvAwLQtEY9b7DXCeuqqqWOZhh1PAUUU2HleurmjqKyv4irj9LHw257aesNUmKlQE+J+9GklYos6PsINvIvJ9aVXqL5UerBQI2S0c7Bz9uQOxOOdjc/lySMmd+Rhhs3iIHcxmbW5dw0dcPCtamczOe71aF3fp43zvYrJ0Dlv5oFI6KtHJF5rNv3dYkHcQAuLAei0EULaidXWd1OzFc45CxhC2wtDcYMb1H6T4J+8EyU0n5uBcHGUYxyRLzSAF5AqETwrFWcCL53EifPlqLHBQDbK9+9avxyle+Et/73veaz26//Xb81m/9Fl7zmtes6ODW2so0ywjvsoW3+dxwUBf6w4Y6LKeIysBEuujHII9JS6Upopl0BkqfHRpOQCSEbABxXOvJW4yhOZ9g92msAVG/KXISnQwDYjzJC2/7c1ytkIFHE/Ez0hbeOD3ENka9RQ6Adn4t9gfNOKWNfaoBdZcYbIYBIaf/2NE0CiJwx5XP43Cs1Hd9fN6A0YoMlBgaXpZQLjq4aDAhNM0w2Wj1sTC818MraVqgrmYMWsUYIkZNBjRbLGCwhSatFfH91O97XORgaEZmgXTeWMxjgDl+BhOKVy/zsiZlja0U9JPOGQGbTr20eqw2eBS6WcyBpQIAKx2rMYSsNM0+qbQqMZnotVPQMAcy8bFr41wwAgkUCKT6hPWxyWndGpBhbo5G7RoisqjInPVqsAEcMDWOK1hn28/se2ytiYne40C3KzQ2Ucpgk/vOFfbJFscR9g2uwUb7yTK+eHXypTlvBTdTVgnrWwvgGGBpavvJgBRPMbfA0lzAlh5rFWPg+rdmgQcF1LXsisEoZj1Z4LPWFz+un8mcKKmUKAEYFisuVEDknzfnK9D30tLg+J6tAVdWoDpnH9ffT/u3fK363bA02Og4bd1SyT6WjquqSrYnM3tM6DvHpo4L2ejgImDvW5RxHhM+2Nqp+KPSObXPUskR394KxHZ4Xg+0/mw+U5ymlc7xXw+1e+U93LfOcm3qo7EVp4j+0R/9Eb797W/j5JNPxu7duwEAt9xyC6anp3HnnXfiT/7kT5pj//mf/3nlRrrWlt2sqoZRlZOBvjlRh+7w4qCJloiLfrSR6Ys+1yAxdQEU0M7axDmDLonQkWirBcRpjry88Pk2nOgeLWao0JTBZkToNAZbzjGwAJxIC4zcz5TBFkd/or8lRQ7an7NFDqgG29J5xWg6ieTV560/90bopPvuFfOk1PKo/Lv2fUcasVZgIc9gKzcccw6dVahEZZs509Okz7XrSRlslvPF1i+hGAtgA2dRVcMMSG3p1Gnf5wwQgEf99Ovha9LURA4ciPuSGGwaq9ZmsDHmoHDtMoPE58TzcQHxM7PmJv+MAmdS5biJTl1Fy1vkYDiCCS5qDp36vg2QZ4WRPobUURJeLbHIQSYSn09jqTBc2gdyrMnlpFmG+5QDYKM071xFNgNoUh0g5/o1DohA3xUK9Hj13+RzytedS/WZzzizEkgurgvdCujVkh9R4ZWkIAJ9h3VQJtW/bc+ZCv1rjBrjHc6B5MFBHdr6t5zFNXQzW3XdvTjDw9btiliozirZaZGW6FB1v07XOXnOiZI0WlAqk8LcnDMDfEf7QQJstj9Tv0CKg+q2ig5CDsgcsZiD/aEN1gJ+kJuyf61CR7yAkV2Mym8LT090ojVOO1YE7XJEiowUkBSIrQNlbM43/hMiDbbEnkykXuyxhrWONgtMzxXCKpF6oVWYpb6iMWIpEEpwAM3+AQJIrjPJNfDZ8mGO1iIHxQDbs571rFUYxlpbzeYtctAzNsdup6b/9wYj7J9vVxU5RVQ23CwGW05nSgPtrEWFO38abXo44o5afD7OFvGWuLbHKDPyLAZbEcCWqa7XURZ+S4h5IWJ2QD2uPxyiU3XIsfo4B5GTqBsV9JmLFPSJsJHkU0SlzV6mxfuimDxF1AK06/Pm+yphpWkGu/we+eanZhiYAFvOYPZSyyNGjZ6eYenz+Bls6WdSaXPpHlXR2mnT771gp8a44l+Pq4gOohLz0vzmjDW5yEH72VwGYGtSDzJi5oDiGJQAbKbRmovgEhA24/x1BYAtVwm4bwSlNOBKE5ae6y0986U/51KsqAacf34lH8VpLLlrX7pHfC9yFznIgGFeDbY5o7If/74lGK2lG0v7wXKCE3a6XgzKhLmU04Sy+pcqAALpfl1/VwNW02NFgXUDdEuqGhrjjIv4sL2g02od0bR18VgFFBHfA5pWaGmbhSIHmXUuDW7q74b6LJ0C+oAt0WHt15w12YC6AjCxnHHmAfr25xz7uLTIAWC/6yUVgzU9v1TmJrb9PKnOqQab7zotX4sWmOL91edj/VvZQk7mcxjTAfSzx3rTTr3kDN4PBdi044Yju4ooJwnEBfKS05q+WtO3Oufse5xLJ7V0caXPctVGgdjutTI3vEUOJtn9PBpbMcD2ute9bjXGsdZWsS2HhaFVg+sN+tg/1y6osli2b8PtMsPa0uKi0QVvZKM/sKsK8eqPoVlskcV+JpXVuTlNKiCCKdTNhaXHiJbQ9dkyNjSDPS3VHm/gEx3dGKS/56ofSou5GE1fGk+4llKRzhwLIj5WN257RCdGSxHN0cPrvstYJdKxsiNvAyvSOb2OhZfWnoyJp6YowrB5Bps8LkBepwD7fbMcPz7O3NrpTp3syudMrseoIiq97zPMOM8VHpjLpODRqmC5aPy4DDazIEEGEFIDCSrgMGTGbXqcOufZOaXKi/Vx+rUvDobNdUjvqlpF1OnA5I7LMWApm7pvrAtASQDKt/ZqlYBzLDKrqmJHXb98+3jufpoFhDrys8w5ns3YK/vd8IC67bG2JpXFGqctjJ07/IldMRHfI832q3XdOktFjnglYDYeZwCHjmfAKrNr2mrpOgfxOECoOJrsW/K6kBRPYgFobzp6CYOtAXULQCYLtMux2LX1eKwqyMqeaYOg5ew5QBfQB+z1OAFLM2unNwBFtbgsW5qnsjY26hjAJpDPYCo9p6bB5t3frD2PV+jmKe5TzJ7MsgwdARc6hXMVz6N9OOMTeguATDYALM0QSw5b6r/1ocKle8E96dg1BtsyADbaDh48iCG7cZs2bRprQGtt5VtDv89Qti2HDqgX04MLYAw2e5GJU42YocGiKlZqHd3E5zMi1E110CFbJK3ImyViTwG2wTKqiGbYPMthsFWCca0ZOjmNBzNFVGEj8kU60n4ZDKPfEyAwShOwmT8imGZs6lycVNoLJMPNGxGifUnjoSmiGsDmYfRMKHOzZGP2CtN6jRfpWI1xlaP0h5ZzEq1IXqzPYxutGoPNiojnDCJ1nG4Gm32c5SDHVUSHJmOiPj6+ftlhVtZtA4zj4t/uKqLC9PLOTe0e5VJbciCo1wnwzs9cpJg2qiEZ7mFuzg2JfqW01swIadE5TUovmF8DExlA3QmciSn7iv0RWk6DTQO5EjaRAua7GQLSnFGAK018G4gZSn4gz95H8lVRafDMfpaiBpsAINN92Ep3VvV3lT1rsT9M0rbSSqs+UIT2M+DaZh39OGud63Rapl0CxjmZYdzh73RqzcNhc079HMthsOVAXWmd4ufgx+UKdnnBZ2B5DDZTZ1ORFvDq9AL2+tEjGTMJ+BulaObBm9z6146z3YdjdpYxPzJMbi94A+QJFtY5c+mHVgGQuh9f3+Gj4ZBpDiZ2PF2P44CtlFIpB0j1dS6675lA00LGF/fKCNDjQv/SM6f95NhzoZgNZ6VZ4PPRqsGmYJl6u+mmm3DxxRdj/fr1TeXQrVu3YsuWLWtVRH9E25CAMrzFzoLPUaILhWTEuxlsNPqTSXfRoteWk0rTLoBM1G8ZFfu8TnNe/4QuvLYzGha1nPM1nxEp9xY50NIPk4g0i7ZG0WvBcAytF4EIyTAVcWUJdJMd/rG0PZyRGo3+r9gkWf0rQHeUckZFjongTXNS2XdKhB9wGMwZoVrrOGmcfG5aDAOtQqXlBCxmGCBqFVHn/LJSl5L+uaYcq2xs6R0BKYMtt25HKdmG4ZZLXQI0QFly2H2MBS3VJ5dat9jPrAuKMWmd0wLt1EivoT3TG7RVRHOOTo7BNjuVX2cAfa2x7ifVG9LOK61/boZ3RgeMMizFcSp7e8pqaX/Opo1532uahkd1fIzg1SCj9+jVs6uqqvl+Vo+zIEBQpMGGeh+2GGxacMSy/XI6m1pQKGcjWsAZ1SXKrXNUl9KuTKrtb/r+yIvJ8EcUa7DpGR7J+mEGtX32Twmoq7G+vfujdd95/1bmRLxvJKd0X3sAQQH7fkZ7xpAXiPHdexlga+cH1RdLCkdpMgDOvnUGm12NvBmPV4ONjDO3xnu14tpgIE8R1d/LXj/PzJ8RwEW+1tDHUFJEJw54JIcqNpnv3dCepWT3asdqjGrtGDrfj6ZWzGD72Z/9WQDAn//5n+O4444TDdC19qPVrE1UcxLFFFHBKctp+SwYWj688qSlxaWxKyx0n0dRzaifE2Bb6A+IMehzHHPGuksAe6mFZ5RzJmNWnDQmJbJiOIlWdLLTqQ37wdImZkZwC4ys5UTOrUpSQEH0R9uIEh2O+Hos7TtAYeoYhnARgy3D6FlO1Sfa+FTSRIu9Dqq34IR0TrvCHH+HlSIHRv+56q2q2L6TwZYriGIxAjm4GDPY0vNyY3CdsJZrrNpc5cfBMlioko8p7SVimqEGDGTejdxaI35WArAJ6W0TnSoxLi1nstcfYrQ0/3JFCqiYurQfrJMAtoyjYmkY1Z91kr7rz/P3s1P509Zze8HhojVRDzZ11OOcbMoCvTQb7GgFuL0OruUoDZgzmWUuZrICvKlgsQabzqrV0lPNNKf+0KykGcDFAXvfirQuFWBkOIIZrA3H1kBHxu5UU0TlebwIqZiMbssuGEyZEoA+54hLv+fSrL1F1aR+tM+8TPISu1Nj/4vi8EsMyzi4qu/Xg4FdWKMeU3rvJBtGBcmT566wo5zsPR1gc9qTzs/UwkBuME33dbjEjrUm0UwUQAZhZ6dS+MRiTZYwNnN6xl6pl9hOHKh9088tpmx83ngPljQcG1YvjcYdRa0YYPuXf/kXfOUrX8FZZ521GuNZa6vQLG0zddMR3itpMc2xcSzUPjZychEdOXotpvs5HbBo0+nrUb9Eg82g1S8rRTSjKSeBGCUREDmC2/5sRfO01FxNQD/oHHiLMVgOKlDAYNMEm0VtD59RoacJMGq5ot2gscA4rV5yPKlzPl9ALc+zMHTWQTwmexOWvpuLjI5DdZfGSedBtsiBU0C/7r8+tkiwOQfeiMCTvX7E7Jf4OPpOD4cjszoWkDLWpOgr/VosIm8b0XGRlOTQbBAmtByjr+2DrB+ZZ6QFkKTp7Q2OlACrE90ygK12fjpL47HfoWGO9d3tJICD7MjK+6AcxKn/5xpsHmdHW0+9AH9c5IBUES1JtbbkCrIFYuxAlTV2QEg/jMBSvZJmfU7/OjnZ7UTXrJ+T3qOV12Cz1kTNrrBS1hZZiqjmyHOALfdeW++wKruhvkdDNyuON+t+JqCdFZAzq8LTOWeniPoZbIrtJQH0dO10FJ3hLc9SNvyNKKBvg89eOyn0U4OguswN/Z2nH+Zsi9DkKqLtdy2/qCTTQPQXSuRORLvGt3YWFbNzA7D1/8PMe0ltbk8mjBTASvSEnXOTf7aYIUh4s3BigkRgsGl+TX4Pb8+rX2d0XKeDxUGcvnw0NfnuGe1Rj3oUbr311tUYy1pbpWaJrkeGRmbhlQE22/CzohBq1C1j4GUFjlXWVXwcj1g0x3HnnDnywbHwRuNzx+X0T6RnlAMwYiPLdnBp5TYehZAiINo4w+bSGwxBpRkltltoixlDZ9qZmkL1E3LjXHkGGwXYbC1BIAUIVa2mpe9bKR91/yXv0fINFUB4lhqDzWm0etOu6s/j71sMNi/AJt368NVcGkdJqqKfuaOM03CoetxwdKzdEoMtGJhAXo9Km3NeZ0Vbv6QUnOS4EoBLAdhyTK6m/8yeuZyiIjIYRoCJpcUzX+TALmBUVVXynLXASGg5UDmsVYMhq7LmcBKlwIY2Jg0wDC2nwTapACNWkC9/7b45sxwGW3Dqyvr2A5bWfg14qog6A100dZwCsDw4MuG3K0I/PIgisYnEokjCnqdp71nACK1YbN3jOlWw/TxNDfY5rfSzXiZF1ZvmXVIkxctg0zUHhbVPsbm19ct6X6XPTDaiQibw6nHmAMceSYu2gE2PrIJ073Is0jmj6qYG9IyzZ2ljkoNnvvsZpYiukAZbU5iHF4kzAL46RbT9XLIDPBIMEUM6mu+27Rc/o+RQt9TLhOC/KcuPe98B0uee85XWihw425/+6Z/il37pl3DbbbfhwQ9+MCYnJ6O/n3322Ss2uLW2Ms1MEY0cZHvRF1NEMyKXVqpiJzJy/BVj8tThdKGSwKM4Dc/LtPNHIazPosiCkcLC+7cYbNSAyN2jHJtRHGeuss1EB1hIDQhTGHZZKaK2oUGfpRR4Ezf7AoOKf86rD9FCFFLj75FFw17oD/O6Jkrky8tgy6VyWGNVRVydBntOqNv6nFLQF5nunwRIedP1RMegIFXQa6h4GVvSOSOx6oFdfh4QGGyCcVh/N71HuTmTT32QrlPsHlPdDuaG/gBKVC05t3YW6LW1n6Vj1J97emxp+uNo1K6zueupixzUPyuvDNZNdXFwoWV75VLmybKtMALr/3MsHekzlRHsXHvpun9okc4R25G3ABQNJPfuESVOicX+zbERS/rxMlBU9rFXg00K1iydk6eoWoBDjqlC5R9yaVvuPYbJOjTnNJ5RThy+1WtrC4CME7ijn/UHo+jdtAIuluRIDPS0e2Yuy0Lri58zl2pckjIHpPuRdO+0d9jMnBja88irEUrHRCvIp+86CWi7UkR9tnB8733PPQ7CJqd0BzwATWrCaVNJgTtyjdmCGc41OszDUICk6V94nBPdCujFBSvqY9PzSgBbAmwWMKRV6YuMX2aNMZavCeCvNo/tgJ7Vfw6MP1qLHBQDbHfeeSduuOEGvOQlL2k+q6oKo9EIVVVhQKI8a+1Ho7XleQucRIlN5EwR9ZYMnxBefuk4QM/Nz6c+LAFsmWinxUQoiXJ7xTwnIlDGr2VjCVXSSlbzhvZd3b93gZaZg2Z6CNOESu9n+3MvZ9i7U1P8EfGcJp31XelzbqxbjFFAYrDZBneJIO5y5mdRekjCRmx/Xk5VMMsgSvpWxhm0FocZQ3x6ooP+Yrw/eY3bXHAi9w6LkWKnfgnvC4jvG3XoAOXaOcCmaNKFNCetr9AmozlnMyxLUg+mJjoxQzmTMp8V5S8IIInOW+az3PqVC4SE5tVUoYflGChA6gR4nw+gXQ9hKBnVF6UxqUUfnFqmWopoPt3GyVDK6Ed5gwHefYM+C5oC6GXKeYvwaJ+VVI/17sOUFWcFVyVmBSC/b7TIQQyw+RzPEuDdW8THWhdoARCvVAIgy51E75uVdqqkCvLnRm3EwagtgOYtzJMNVBcEA3PBCaC+J/Ow77vGUrbYe7n01JKq8mEuW+sMBzZza6dmv2h9A619nntGy5IRce4v+jl9++CUsiYtp8K31E8vwyKj1bytolkAsG4yhU+8qZO5sS8naJkjm4SmTOPCIE7H/L0dU7t+HY2tGGB76UtfinPOOQdXXXXVWpGDfwMtjpSkf9d0hGShW1+RA43BlhQ5iBYU28iaVFJEc9ESS9gxNgx8lZc8mjtWP9a4tXNKURArYtAbjLKGjpfBoaXbWhvzIonQ5YCJXERJipxLc46mgeQ1XWzAIDRNpNzaXKg4qsZG4qxPTdTfn5KkGCVO46kkPcRKu8hF3by6W14GGxDm0iiq4CWNE6idjUMMYPNrxWWAloyW4HI02KK+2McaE0E7R5IiqjDYrBQt7bhcmmSuinHUl+AQWt/NRoU1poq4F/oYhV6HDlieZED7mb120jmvgfmcYVCyF8nvW/3/cFjOwtCZusJ3M3M4JxOhMXrMFJ4VY7D5mD/d6B0e2RpsBf24Cy0VgOTeIgeRvbCo3/coLdmh7QospdFmQXLdaaZNTRdkp9T2Vov50yfslxJA22IE9gc2KEPHSQuAaJWZ+6M6KNOmNC4fPNbs+HzGjL12AjYjqPmu8g7b7xvNclg+gAG01+8F2Dj71/O+dip5TFJKZW5NWk4gVGWwCUL/YkDOaedpQI0c8PC9W2q1d4Nx3k+q9qbn9YCLOWaX9lkOzM/ZZM05C/T0Sp67F0hsGWxrKaKutnfvXnz4wx/GGWecsRrjWWsr3HIRv0pD9yUjS0gHzVcRtTY8ZdEX3lVqDMbGdY427dM1WU4aiT9iULKR+DYIK5UsAdicm5u0Rmqpl7Yh3KZJ5hyvnA6HN3JONxzqUMkbo1D9RzOeHCLlkfFEmAhqiqiXweZ0lGLGaIYN4EzH8rMgFEfF+SzHYYDQz4ajvMMv9e8FmosKxDgj0iVaJ5bhNmCOp1xFlDPYNOfct6bplSeXP7+A1HDMFn0pKKyxHNZCLiK+mGVe++6Hn8HWfpfOed0Bip97jk0dHWvMBc5g87wzXuCpPtZ+f+cyGmzevb2oytuYc9u6H/m+/WuFGwhU9nbv2i05efSclvSFVrE4B1LHjNXk0AKBdd++paZtGc+dAt/S/NCqnVogV5JWyAFLCigv2pkG3U61xIijBdCSwyK2Gx+Pdj05DdiSfaM+ngdchGM0ACUJlLc/x+u2fc7Qcja7F9zrDbgWWHpO/r5pVdClYmliZXYFTM/pM0vfp01Mk1whUf7o2DGY8ZreopV2SjNRtP6la09SJzU/LRNU8qajx5/ZjOLmfMuwr5PzOjXYWg3Jo5PBpsSR9faEJzwB/+///b/VGMtaW4WWY3VogtEeFgQg67LpDLblGy9RquJiBuSSUkQz4IA7jWSQMwale5x8pEfDMhGHJsqtRtOcTIiMwd1+188aaAVCh6bQf0mKlVeDTS+CkRyK2WmfbkT9eX7TotczGI1UHY7QEgZbwYaXM35WisHmBWB1/ZP02NnJbgI6yuBvATOjIk5NVuhfWKvcxos0j9ufc9F47/umGWSWc94fjLIMNl41VGOweVPR1Op6ImApzTn5GfM9JsuYGNjMG41h6WUullSt84JXciDBd981BpvXAfI6k4AdHEkFo/P3U3OevCAVnRuHDXZU/ZkWvNOd7tjx9D5LPwM3sSsKwIbxmYe2rbK8FFHhOEWz1QpKxUHY5JSsIEJ5SnYOOF80shIiLb8MCBlrsOmyLCXjjIocOKuIHu616dNWEbIBOae+5zoBAwlkyqxfHoCNg0UlFWH5oVHmRGa/lllY9rOM36G4c1qwgdsqHgF9Vf9NeN9y7Lt8YR4/0OJPEfWBbiXEg66TOKCB6WIQh6T7LqeKaKIzXvD+l/jDXrtinCI81rE8UG8RFIA1Bpu7Pf3pT8ev//qvY8+ePXjIQx6SFDl4xjOesWKDW2vjN1q8o+QFEis6Cg4qd9wA3Xjii0KJo0IRc0vME0hT9nhf7Xd9RrimteQ1wr1pC/U4fQun7oinn3lF23MGa65wAo1W9A1mxbhFDqRNmM7NnPO1XqK1q/oa0sauOwtDR9qWt4poLkVM6j+3MXuMAq0fS5MJ4Ol6MpNzw9QEDhDRdfkak48AaEZW/dlwSVOG9sWbyGATbn1Od6vpO9J0sdcFOR1h+esxnZcDUoFQ65+v3ZzR1n7XyVRR5py4/jiDDkD6jHJgA73vso5QuhfU4/Q559n+M9fu1eS0Kghq36Vgvp4iGq913hRewMHSyQBsiSRERqcl+q44D/1rfAwe6axeTc9PDqwsf85In8fMigyrpCCd3M18Lng3prvxelFV+XPGYvt8LsjrR05GwKoKX5/X9x7Ftqc+P0qEx5t3Y5DXRpzoVFhwjJMWjaAkEM7M1zTYrBR1CgRaczaSRTFApkXhM+l8oeUyZgDJZ5DHGJo3UL6cVOOcBlsMgMrj7A9Hgr6XYKex/VkCSgFNt8++73lZBT/rSbQnnaxt7z6ojtMbJHPOD4AAQkNWUEUKGIu2tDwmzlbNBSJzgQRvJkpJpfoiBpvTh1krclDYfumXfgkA8Lu/+7vJ39aKHPzotdxCrhnm0rESmCayQjRQxtjwssKb5LMck2o5jpItyu8fp+SMirT2Aip0iVBuTqfB6t/SJAA8qRz1Z71Bq0EiDTOOHttGlnQ/JaCEGiC56kOe6j/N55m5yPugG7MWvfJWEfVGpOgYc1UAJYNIMpq9kS86t3NGAQBsmIkBNi3lRNK+s9idfV71yakjtFKpYDmg2FuZzwt2ROBeosGWnpev3RrA5p5zCrPDvx7LBpkHYFM1VTJMBArG5dalZfWfAXqaMTn3jdyc62fSUwFfkQPJSQPsfcfDwuBOYgnjSlqTNBZH7rnRZSRJQSbH5UW1l88akI7V+vbu99o75E8R9e87/N6vn5pQtKtk2y9hsGmgWebdoPdJ7N/tZCo2SAKwKUxdA5Sh7E5dW6wDYMA+059xbzCK1pp0Hre/W0UO6nHW/QxJYEYHAjugRW+87EwgL6vgrSK67HMagfJcUEhmExasXwrwtQDf2smrfEs2K+C33SYV8Cbna7XHyWvNrLeKqFuDTZlfbv1LaX60P+cK2bQVi/MFVcQKqspak6aD22PPPSM3g018lslHS+e03y3avBpslIF7NLZigG14lN6of6stFmpM/z4ugy1f5EDfnDUDMxcNj8t2+5xUb0GC3IKUT2VNdSu8qX7asVo0zPv9XKqRNabJyGD2pR+ORjZzMGIN9GynRixokHG+qIEpXef66QIGm8Op4myillUintJdRdRdkKCAVu+NunmF+un98VQF28DuvcZqCdFe/lkyzsZZANOESs+pCT5LfXs+iyKjmfTDcQs88I87nQqdaom5NxxFFHzpHLxqqM5g8zqofvaLfD/F7pN3Q7odkSGaue4SENRdAVo5p1dr01tRVr7v7c8eBoinyAGdS9GxmWeZq27M1xqdneB7D9Q0qYI0zUQ0XQmejcMi86bgaKLWfn2dEoe/wJl1SDXwdbw9JwXO9GuKCyxk9HeV7AVPNV6NaaeyYJ3PyHo3KDOsBFSWgO5IW83IIKDni4ocGDZErrCG9LnFyPN8pgGbWjCS35Mc0GzZ5yXsOTnN0m9nWWL7g9EoS3zgwJVUTADQWLXCM1cYvW4Gm2LLinrGTpka8TgtiDIW49xvo7YAW56h7S3wIK4VWVatb5xR324gTpvH9ryx+s8B7xxgPFqaYub62vz8/EqNY62tUrOEUevP5O9Jx4oabBkGm2W0FmmwFUSv/SkSttPcfFYQdauqKrlPXq02QAHDCiJKbpFy8dql8ciRZjFCJ4BxOeM2V4zBq8FG52GO4egFmeox5TctVedJSxF1sHS0z72GLB9XaDxlbKKTztf6cx8wEDv8dtoFkIKbJVFhOTrZbuC5qLB0nX62iG045Qx2r5GkvdeWhlvfYQxy3T8p+qp9N8fCWkmBdheDTVmPc2m8ixn2i9xXOsaYCZGpKp0ZU2heNqN+7ek4AV+Rg3qcNpjXfuYHHDgLQ2LAA36QqozB5tsfy4J8TuDKGTzzVj8EyoA8r7ajFlTSArG0vw0zssMfszB8DLactpmmFScNn/fjSTmjaze/9hKdPJrOmdNG9Nq4UepnT0/9pOej6dPSOcOxOVBX+jyXJhn1k5mzObkVfrz0e/1Z+7O3kmf8zKV3uMBmd9oLEXMwc+183dYYbN5qpxo7yl/1W37usuSI0wcRNRz9fo1/nWx/zkoRKe+7tCaWpIh6jtODqz5b1g1syt0UjYn3r2uKt4DlaHT0gWzFANtgMMDv/d7vYefOndiwYQNuvPFGAMBrXvMa/Nmf/dmKD3CtjdcsYVTAShFNPxOriGY02KLPndFjOY1FPqc//dG3aZRUrdOuk7NDvBRf9dgCYNQL5uWc0dC06pw5gdIFo2S4JiwtPWN3FVFFAFvbnCwWWvS543moaVvKu+URcq/H5GSwqcZx+n1uFMxOdUUD0+O81J+R6HHmHQaAjTMc4PMDSta1D3gVUXEuLb/IQW5dyIGLsq6kr5/cOAfDUdS/9H4kVURVsMPJtFuG40mbF2ArKTJQpvmT9r0c4zhXpEUEUZ3pRyUFTTQggb/vJYGEksq50pznLAyJ7QD497wS50v7jK91mg6al3HhTW8FNGbrEtiRY9SIDr//foyrvcfPy9fx9pztmKxKrxoQl3vuC06ZiuZ3B3Bjp4jKx+XSpxuJDMVO8zJQJpX7aRYMI+uCnHpef5YDWgAfwKWN3St3Auh+SFKVMTO3rQAnPS6XXu9lOAPldhqvwCzdE86O0gE2r79A3rdcJooz2KKNy1sgouQee4/NpfEvZgr5aRWLxWC1W884+Whsn1D0u5dhQ+Q+97+X8tjp+ns0stiKAbY3vvGNuPLKK/H7v//7mJqaaj5/yEMegj/90z9d0cGttfEbndMlWl7jpYj6ItUl+hZlDDangeoGs/xOBSCg+wWRAXfKmqrt4Vu4lxMR6mWMkgiMWzKEc8BEjsGWA9NC0zTYpD2rqiqhup52P/MbmTY/lEeUjH8ccE/7DPAJs0rpsvU5JUPBnoeLmXQ9IE0tKmOw6cbCwGG0yvqIzvdNZPS1P+cCGV6mi+qcG+fsDYfRvJPuKU8R1Rhsy9FPWVbxAI3d6dD20AA2C8BIxul87jmAL94PkkOVCLLPWcgVOckBE0D6vpdUNcvtB+Hea2unm4XhnHMqg20M561EAHsc0A2w14Uo9dEdICywAcZ0ZoF4ruspou135y02kcJKyz03mnYqa7DxvTV/jXaVWXI9mfRUCeQqkQLJSUIEBlstQ5IHngC5OnEY0vIYbH7nvGTd99pfuftuyQDomQb5fnk/0XkL95LhcJTVi+X7s7Zfi2nFmbFbzFJADvxp81gal3tuK+uh/Dyc+1NmD+/lbBUNYBPOK+rPjTHOEgYbt+fUfkqYzwVj8qaI0v655MvR0IoBtve85z145zvfiZ/92Z9Fl1QWOvvss/HNb36z6Fxvectb8PjHPx4nnHACpqencfLJJ+PFL35xw4oDgD179uDZz342du7ciZmZGZx99tl497vfnZzrj//4j/GIRzwCW7duxbp163Dqqafil3/5l3H33XeXXuIR1WKhxvTvJUUOvCmi+matO0+5CG6RfovXkXYyu7QF2stgK6mWsxwnL/e5N6Lt/a72uQTG5fqh0TQRTFsG6JbTYAMkZkcJO0KfxzmdJyB9Z0rSfa1Uwdw4Ab/TK6eHCZ8pTCbNkU802Er0IIy5NHAYrVLUz2scF2ktOc9ZpMEm3KaYwWa/R/zaS4ociIEIga2qfb8kha+0imhu39AKEuSMa6v/siILvnOKYuSZOWdV6A6NMyFKAgm5vXChEGCTIv6A37DXKunJ4JHzHdaCPc4qgl5gErBZwbngRJHOnDO9v8ShA+JgrcpgI33TCpVJ1cuSinlUg62fAbk4g02zs5xMTK3AQi59Ohyr3OJknJpWHL1Pwa7x6nkCceVdfs6cLAuQ2sglznlJQN973hIZAIt9l6siKq8f/vXHsqUHo1FU8Vw6lgNXJQy23J65kAFWS1hPXhZXif3kr7xdfu05nc2pCPhv1xoJzJcY2fJcWL7dqX3uzRwrqVRfMiZOePE8S7rOHi2tuMjBbbfdhjPOOCP5fDgcotfrFZ3r7W9/O/bu3Yvdu3dj586duOmmm/Ce97wHn/jEJ3D99dfjO9/5Ds477zwcPnwYW7duxZlnnok9e/bgpS99Kfbt24dXvOIVAIArr7wSv/zLvwwA2LVrF3bu3InrrrsOf/zHf4xbbrkFH/3oR0sv84hpOW0e9WWTUHPBKZMWfumckgGxXCZCri8vM02mQvs3Jx1A8TmJnSoVll7Ohhl97gTzcpGe0KqqwmQ3LtWu9e8V5ddYGNJm4NdgI4ZopioZUFdBAxaa33UNgbwhrFHQvRps3iiRdmzJu8GNAj1tyxlxVKLCWqSaa/eMy94LHw0Zgy3HsLTGKbLVMtceHesF2KQU0RLgnGiw5fRsVrrIgc5gS8+ZE+unzZUiWqCJGbMb7HfTDWgX7AeWyDht8j22vxuniCoOEJcrUDXYfPNbeu7aOXmEf72y1rhByIKglFUhLvfdeky++ZEDRXKfNwCbQ0C/quLiSSVrZ0nQUrsntG2cnhQ/965pka6aUWmej5My2KRh8u+rhRzIs7CE/icUhztXJMoq8iSPU34WdPxB+qLEaZZZsPX/Od8ASPeNcQO7pQCbhymjidhbKaK5YItYvb5k/TGCPTwYKKeIOoscOIsxqID2mKCMCDI5UxU1u3Wq24nGqH3fax+rWrli0JIGDu29XQIXvbZOyf2QyS7L174rCeirzFgvg00BtY+WVsxge9CDHoTPfOYzyefvf//7cc455xSd67LLLsPevXuxd+9e3HjjjQ1gdvvtt+NTn/oUrrzyShw+fBhTU1P41re+hT179uCKK64AALz+9a/H3NwcAOCzn/0sAGDjxo349re/jWuvvRZPetKTAAB79+4tvcQjquWEv/Voq/RSp9PFm4NvOcdAvmqKXkFMdzzjvnzXLh/X/uxhKCUMNtWIXz7wVeaIO50n1WD3RkvGAyzFiJJYRdTPYFOdv2mfNhHfjLIpxA4Wl1eDzes4lnxf0mATv+vUTykByQFgY5IiWuI0658NRqOIgu4FUKTp4Qb3CkBur7C9CtplNdiGzTmlaCvXXNM02JbD3otEyr3r7BjvRuxw+9lzscBx2rfbUVIMdjFlzSvgv4wU0Vw0HvCniLqDMIKT6mU3FKWIKn17U27HfYdzDG3znPIpzXEOM4wWqS9dcN55PwqqiPKmFTmQgpY5G20+s2+UsEq4TaUXxhA+y4CQ8xmH22tPAumzUyvCUg22pbVOZLtqjrCzgJE3xbzERpRtFfHrbsmTvH2ug4YlRYkmuh23lIdXZ5Oy7XOSEm4Gm7Q/ZuYm7dvrP+kAmw/oEdftgkJv4wSvNBkAWRdXY9am4/SSS8apVK+NU7LfpMqkJUUOSnyLRANStePbz9dSRI320pe+FAcOHMDrXvc6/Mqv/Ar+83/+zxgOh/jABz6Ayy67DG9605vw2te+tqjzK664Art3725+v+CCC5qfp6enMRzWE7yqWop5+H/fvn340pe+FH3vwIEDOOOMM/DgBz8Yn/jEJ3DyySfj7W9/u9r/wsIC9u/fH/070hqNeEovakmKqKS7IZdplgy8dKpVVdUsxv1o0S9Ih/DmvDtTRnIAl8epSZxETShyDDCtJPIuGb3eIgdAQYltp/Oja7DZBm5zXCaiQ4sceCNv2gbBn5FoSKoaD+IpCxhsy3cctf6506tpsJUCXN4xJQy2gnlsCbEPWGUuSXvGnQLoBRcL1k4343MZGmx9osGmOQE84qkx2JaTpr2QCTqUzNlEgy2TMjaXYb/Q8cwbVfj076dj1Fhx3n3Pm+6Sm6+RBpvGYONak8qa5K1eLelMaetcKtRdstbI67G32qr7fVMde4kl7WXrV7IdIYE6JcAX34sKwA75Wcr3WBPmp03TYFuOBtFCRtushMHG3yNJq6gek3SPpPNRh9tmxpeAmIkesdP+4GMKrSTdrmQfT9aPAlBXuqQSfwNI52jJWsHnEj0sZjOLX8d6p4xIKXtvMGTBQOG041QR9Y6nPlbY2wtsHYnFZbHtPefMFVUKzQs0qzrBmWIMOcaql1wy7loxFoPNWQhC638cZml9XPt5f3j0pYi6Abb/+T//J+bm5vD0pz8d73vf+/Cxj30MVVXhta99Lb7xjW/g6quvxhOf+MRlD6Tf7+Md73gHAOC0007DRRddhOc85znodrtYWFjAmWeeibPPPhtvfOMbm+/cdtttAIAXv/jFePvb346JiQnceuutuO666wAA97///XH66aerfb75zW/G5s2bm3+7du1a9vh/VFsubaoENefOeFXJSPq4aWwlmmUyddh3Tq/WQJwCaEdAgHTx00EEX3SxyKhw6h+URPPdqYpuY679eaFnp4h6+6Gg5qHFvnlOQDKenE5NxlHJpR7wsUp9WJ+XfCbqRjgjo+NE4qzPN7DUopLKSZYzynXIJO2ZlWa/jPvcSjTYLKO5T6qIausk1+woYQ7m3ut8FVG/cZ2kiGbYzPOZdHB6PykYJ2ue+cCwEg02EeiV5oJULTnzDkYpok4G27hzVmIDqEEM51rjLfAAyM/Nu+fJ1bTFbpQgjq+fekzLX7vVym0OsEEbk/S66+mTCuJAmqbB5rcVlPUj40jnnF4+F3SmbvpZjvUcMdhWOAhTth77bFlAK0Lm38t4WneJJq9cAEQDdfMOut6P+NXk3abPgjr7qowI83ektVwbkyVtMBiOIm1sT7V3Tb9Seoe1Yi7SVHTrhiprhcxgcwbfC/yNnDZje047uJBlsHWobWEfK6aIev03J2lB+773vS55X7w2P5A+I30vIgy2tRRRvY3IgvDkJz8Z11xzDQ4ePIjDhw/js5/9bJOSuZx26NAhXHLJJfj0pz+N448/HldffTWmp6dx3nnn4eqrr8Z5552HxcVF3H333XjRi17UfG9ysnbWPvWpT+Hyyy/Hpk2bcO211+LOO+/E+eefj49//ON45jOfqfZ7+eWXY9++fc2/W2+9ddnX8KPasimiYzDYZie7ohPvNXgB/wKgU/19G4x38ZHWuCglqG+XeQZSo85rPADywis/N/GU4udeAesSNpG7SmMJg82psyDdtwhgW2gBNg3AmU3E9n0biXwv2p9XUoPNm0JcIkrLz6npInnT+koAeiBlsKlOnhcQD0briAn9OytheYuflKQ55gSwm/EUGJ3Sx+FZDgbttasAm7J+Jud0O3T+5+51vgBfkQN6DGWr5vpZHoPN/ixXRdT7bsrMLJtlk2P/AsCp29ez7/vAGyD/LPtExF5qCQtjugDMV87pZi2MCfRK91NifRYVqHGuadq7tWndpOs4L2inBjccKaIlGo45oGUhoz8XscgyaZp8nZtWi7n45oLGYPPbk773Ta2mnWEPN+MpAqT963HKgPXPOa99bZ2XX79sg/iC7/G6nbfTUnCxAAQ11qTBKJ8iyt8vqWKlNqaSrAJvpoD2fCSGqNR9STE87xovBjwy/mRcTEZ4t4jdmHvfp7qd5HPRdhwjiKv17S9yMN788K4rqv+k2EpHS3MDbICseTBuu/3223HhhRfi6quvxv3udz987nOfwwMf+MDm70996lPx+c9/HgcOHMBtt92GJz/5yc3fzjrrLADAa1/7Whw8eBDnn38+HvSgB2H79u245JJLAABf+9rXcNddd4l9T09PY9OmTdG/I60NIwZb+veSDY8DbJrwppd1VI/JZ5SURM7GocXnNixP5aWkSqRTh6P+bDwHVdw0vMZPCWVbvO/lIAKlyi/n+6FNRQCb7XQDAoPNmcqRcxY8KaIrX0XUbxDxpjm9XqHsEoMbSDXYSoxWa60Yjbjou208WWP0Ouza8/UycIs02Ix3uD+kAJv8fe/e7QZ/CozBHIs17itfgZmOJypokjFkqTajxEbw7xFkP8hFxMeIxue172zAEABO2job/f6DQ4vice7iOgUsVm+ak5e5DPgBg3ErfooOndOp0c4rr1/Sd+VnmQBsalqhjzmk6X551gpVE9cZENNSscSAKWWsRhpsaf98jpUAgTnB9xy4V5Kal6aIarbXeOvxOMFmwM+AdQevilNE48/lNG/xq8m7pQfElGvnOr0lGmzG/BgOY79Met1TrVx/SrYK1jrBOC8LC6jvKdWLm+zKmRNcUw6AqBkWzuEap1f7TpNwyQTEcunoVVVhhq2DyymcZ30GKACsU65A3tcLbG6NJOBmsMm+3tHSiqqI3u9+98tuvvfcc4/7fNdddx0uvvhi7N27FxdccAE+9KEPYdu2bdEx11xzDS688EIAwK233orXv/71AOpiCw9+8IMB1Hps4Xzz8/OYmZnBV77yFQBAp9PBzMyMe0xHWosW8gINNukdXM82HP57aGWGhjOSqDHYnAaIV9RfGqaaDqWlAHoZbIKT59Z/KqD5jlP0ASgw0pbBYMt93wugUtCKpojq4t/x0ucFuXJpRp4iGDzypoPHywdgtXPytloMNjXlJCly4HNAgDzoRx0gUTeMR7S1tc/LwipwFmQmZoEhm9Vgs1NEvc2rf6IZx+La7XS+AF9klB4zyojD037mlsFgy61fOQ02EZRxpvXkWGUx+1d/3x++ewv++ZZ7ARiAg3PPLDHCU6HugorFJRpszmCPBArpTre0xxSwAbw2SIEQ/BYvg82ZIloS9ORNY8R6nWPadw64mlJALk/aFneArX5y48wVVCkJWvK5WCKBUsJ89gLS2jhTrVr/njeurIL0+eZ1afVaLzChrVOaS8sJBStVkKk/HGYruPK+SlJE9SrGTtuxYH4BNRgY9lYVrHQWQwBWQYON3I+c/6a9LxruMTPZxaFFWwt1nAAQIPvicrDH95mqw1rwvvJ5p65f5POjkcFWBLC94Q1vwObNm1es80suuaSp8nngwAE87WlPa/526aWX4tJLL8XFF1+M2dlZHHfccfjWt76FhYUFzM7O4l3velcz6Z/97Gfjuuuuww033ICTTz4ZmzZtwre//e3mbxs2bFixMf9ba4NMOeiSDY+nd0lRCcC/aAN+oEcrkS05IWJ6mHMjyhkfy2KwKQazt+KW1zAH/JTvcaP5K80c1Pvx3aMpNUVUA3riZ7Rr6zplTPlITRQhyzBaAEGDrSh92vmZtouyVpa25TvO+pxr9+gGu/PdJJ9lUwBZXyX6S17gG1BAJmekuaoqdDtVtG5r5yxhsAHAbzzxfvija27Abz7pLPUYNziosV+kOTIGQ6lkL8g5eZEGmzclM7M/5TQ5JSDCy3SzinoAPEVUB1b/x88+HM/5o89jolvhWefsFI8ZR5Rfew+8FYtL7IUpZ+TenQKsssulZ+l3EvmYqspvf2ngIgcXtEID3uJJ41QR1QG28qBQSYrofIaxOjsZ3xMNUPaCTHGKaK5ash+A5fdJ01Acp/BTybFjM9i8DNiCPRMAvnvvXPPzzi2yjeZl5JT2za9dZ4b5rjPMmeEoL92TG0vbt4/FpX3uDSZaAZx1U13gkD6e5hg+noJAu7sKe8ZupRIuXvafde18fXHr8Y35bngL7ngL1Gmfq+uKU0eafp/btEdDKwLYnve852HHjh0r1vnCwkLz89e+9rXob095ylMAAE9/+tNxzTXX4Prrr8fGjRtx8cUX43Wvex3OPvvs5tjXve512LFjB/78z/8cN954I7773e/iAQ94AJ7//OfjN37jN1ZsvP8WGy3ckavoSJv2UneqtqR8iUB6SVTFu+hrfXnTcnIOjNTHooM1wDXYSsAwb/RZc2pywp3tOf0LvBc481YfKunHC4zGRQ7swgkAcPu+hej3YzZMi8fx55G7F3QD1+wmvwab79pzlU2tpml7eJkqmu2h9c81ocaOtioAikf8V2WgjalLIqcaSYEA3THgxoiYzrB0TpoeazHYfvWiM/Hvf/wMMxotAucFjqNXb8TL7BDXs2WyUmjKh3QOrx5oVzEaRQbbGIZwjn1CU+ssYPWEzevw2f/w4xiOyoIb46a2+Cvh+fd7mbXgY4d6i/BoYyphsPG9UF1rCmydLbMxwLZd2bPGrSyoBR5oK5EHyaZZR2lb9nsQgVzCONdNxR+qRQ5EuyQ9Lk5lLa+WrDLLHNqu2jm9cxsoKHLgFLEvKnJQYPtpc+6btx9ofn7ACRvFY6RLr6o01bmEHQ6Mp8FWMuc9jNGiIgclAWwlyDfRqaKUPmuM9D5px8n6lb61UztW2gu0Ag+h5QLg3r0kNMok05hu3rWihCHpLi4o7gViN4UMNp8P85Cdm/GTZ5+AyW4Hm2ZS9umR3twA22ror918883ZY6666qrsMZ1OBy972cvwspe9bAVGdWS14XKriBqA1nAJRODpXqGVGMwlhkpVxSlB2rFjpdYV5fDL18SdKjUl0jnOcTXpxtHXAfzaaJLTWpKO4I7WZpzRxUzhBAA4fUcL9DznESeJxwCCoyRcT1VVDfBMq1P5GY73ndPLWwlYIc1DjXGlvRvc0LrlnsPu/vMACgEcHABKCQOtiMHmNJ40JtZEpwJXyvIC/7kU0dy8EMcuMIKLqt4VrF/TDm0P6755xqOdw7tWlYCLXkNYchZyUgc0PVVb50KrqkpNDQE0bSPn3jxmimiJUDefH4DsnEsae94iPNqYvGk5QApYlKwV2rVzBtsxG6bE4/wgl/8dBoA3/tSDccUHr8WJm2fwY6cdIx4jM6b8gFBu7cyxyDjwNy6DTb1H0rowRuqmdj+kz1dDg019hxMpDW0elzNwo2OV+3zmjg34wk217NBjTt/u7rtEL9ZbRbSEgZurMpurPs1bydo5bmX2+hx+gO3YjdO4/vs1EHqYyLPQJmU7eXWPAfk63QU8lAwk7zm1cQKxFlqJL+19FhJQDCi2gRNsLdJgc0o1aNf+04/chZ9+5C7xb0dDcwNsI45srLV/E20wshk12rqp6xVUAOpzaimiJVR5b4XKqqow2e1E4ImWdiEZ1+5FTtwY2589DLYkBVDxfUQ9L6dhoDIPRQN1PFBGNtK8DJCCTd0LjDrZBYDO7PjpR+zC3+y5Hesmu3jt0x8oHlOP1ck263SwOBi6UkT5Jr5lneIoedM7CjUzaKvgBwsszbEkpdHw95/8oOPw8eu+D0B/bvw6J5ToIL3HcxkNtqQiWUF6WAl442XLqiCV8957tadK2jip9MD46RAJg80JRpX0DRSkEBaMXZpOEoPNW4FZqoCopjWP+dy9gLr3MyB1CjUHVWJnaA63F+TixTIAZW4XMIe8bERpTCXVSlWAjTHYjlUZbL5zamuFti6+4NG78dCTtmDXtlmjyMF4fYvgs7JOSmPgjOzxU0Q1pzn9rAR85uedUvoRC1QV2HNeG1ebc0kxqDEzUUoZbFdc/AD8/Lu/hFO3r8cLzztZPMab4aFnfch9c/mMIsZoJlAf/AjNh0nGsgLs3xLdr8luJ2J8W/bkcZtajXMa9InPlwZiS/ZmaX64JXYUYNP7DlvBq4jBVmBPuoklRhotZxmOzWBzZk8Bfgbb0d7cANuQ5hqutX8zbZgpB03ZN7TpDlT7s8pgczI4tH4s6jBldoyrO5GjE0vj8UR1uFGnbaBeAKUkvWMcB7kEBPWyMEoqSclMOadDVVDVDKijblf/6vni36wxqVqCHQADX/l3Dio9/qxjxePEuTCmnh5vWvBU1OsoYO5okS8A+L1nPRhf2fsDLPSGeOn5p8rnZH3pkfP281xVRf4sS6Lx41ZE8zIxAf+9F9+NMYscyCkS/vVHY3hy49pb5MCrvQKUORtypHrln7vEYMvpTDVjLEhpHBdYFYMwY+rz8LFqLAyxwpz23LxyBZIOa6ZoRHSscD9ENqJT9H1cQBqQGGyKrIGT0VNq+1VVhQfvtDWYvaL8mtPq1ScE5LmQVBEds8jBuHarWuCKnVezX0RWipNtqq0JJfYkB7+1VEWvXaKuFcp7ePZJW/ClK37CtGe8870+VgoGauBivF5t3yi/b26dO3KPgp3olfLQyAxFdoUTBJXOa43z+M3yfaGtqupqoweJPnLJPqpVqZ3sVtlCQx0B2NSO9diNtFEGm6Yx5maCF6wfQO1nRvfTC8YX3HfNjk9t6fHsziO1FWmwrbV/e80TMaBpn6F5NL6KxKZLBEK1RX+iAyzalZyA5QFnVt8lbDFAYLCNGdkoSU/zsmfGMQa173tLqOssDKdzLzLY/PT9ksb70quNdgAMmei5fE5uTJ+npNt4N8cShhFv2mElDLaSdxgAdmycwecvvwgL/aEq1M3H73HiQ4pop/IZafp7nX7mFYHXjhU1tpypjtozKmF7eJsfHNQcZPm8E8yxUYEvT4poAYNNX9OcRm9JiqjwuV+DTWCwOQskAHaU3dPcBX8KnDTeVAab4DxqTo23cpzXUSphU5cAnnxM3uO0z4CU6bxdSRH1ahiFz7nt53X6xb7dVfT871DJXEiqiBboBJfYreOCz3zsJUW8xFTnTgqWlgQitPnBQfEdCsg0LmBgA2j2fCxao6sKA8TzXZM/4gSCY9bL75sYWM74EQHo8bDXrONKGFclxWSS9csAmY4nDDareQChum//OjvV7aA3IFU8M/OwN7AzkLz+Rmg06NJXSEjeYkGlWsrTEx0cJFLSYnC0oEK3V5cSSCVYxg3wHaltDXY8whvdcEtAGTVFNDq3jNiXGBolThE/h1Z5aZzKSSVRHr3IgU8YVqqYJ232ZTRwn7NRUkhivPtZwMJwbjpi5dhuJbKxcppUucb71wRkpY8tAPjcU7cBAH7xcafp7DsvBb4wRfS807Y1P9//+E3iMSUMRxm8VrsHUN8DDVwD/A4qXadCkQO9ZDg/p9y3u4Kppukypnjucth77TnHM3S8Rrh0nKYXIh2vRs4dRQ7U1KcSB9ddgazgPXBqsMmgofTZfcdg8zrd47BlNRaGWGHOuWcC8vonPV8v80frP6Tl0OYt9FTyDnsZbFtnFYCtYN6U2F+e5mXlB0CItxJAXWawMQ02JfAmr+fpcdoaLe95vsAukI69JOVWT6/1nbOENcnn97EqwOZcT0Um5Xga32W2ivCZ0jVPj9VSRKVASG6dDIFYC0D59Z+4H4Bah+4EBcTyvm+8//Yznw9lBkydAFtSMKOAdOH3oex5mNNwlCum68Ys9fW0IpluMK3QjufzziuBoNu9/vnh1WA72tsag+0IbxQE094BOdIkH0sXpXEXFEBj6cjnTXRNtMimV7B5DCcLsIocdFzHJSBCgcNekt7mBsPGZNrJDmF6Pj0tp9xQCa2qKkx1O9EGWp9zZQEHPY02HbtlNL73F87Ft+84iLOOlytjSX1r/ZcYJADwlp95GH736uvwoBM346G7tojHlESfvforJY33r6bQkOOCZoh2bEJrL5jv3jWFj0nrW/tMOm8JwD8uoCwL5frSUCwjPGEkOtduS7/Sk+pTwnIeW0dI+FhksHlTRKX1tGDtLGlu/bkxABntuBINNq/Au1esuoSFCtR7e5+w6L0yGSUseG1+8SqiXvDGOnaiU4HW0x7XUSpiCTJNXe1YNUVU0mDjDDYF1PXOd+8arZ7TqcOqMvAL2MPdTgW0U7OoGIw23/0Am3P9KLRVPK3kHSph5s+yd3ubwmBzV2qlANvSvLfet199whk4/8ztOOv4jWVM7DELENXn8Nm9gJ/BxgMsajZIgTxJUiwks4fnCqCVpNwC+vqi9R+aN6XaejW4RquXkVdy373r15oGm9zWGGxHeBtkNNi0z/UiB+3PI2gMNv8iJUYcnAwUlXElsAHGicaXOOJAuuh6nSLN2C8xILylq1cjRXQ1tN6kSLdm9MqRxJUFHNSItpgSoJ93aqKDB564yTRcZOPadz8tgGvnlnX4k597JF5+0Zl63+J7IB8r64ONt+Hy56bpN9G+5/u1d6E7Fj7gW/pcElfX013Sz6qqShm4miHMKxAWgCrjAmwcTOt2Knd6vQW0eAtMSKxe8ThvEEUDapwabEXOm/C5yGDLVEFuPisESsZpov6cU1vRetVf85MPxFS3g1983GnqMRKzbd2U/7l5QRk5XUZet9XgGa+M6hTRL2ENaM+SM9i0Jq1V3gqK4/pJ3iqigJLKKmkuqgGT9PMkRVS4F4B/zyyptDoOwK+z2P2AIz9WD0r51xW+72qFNWTAYDwmuLeVBHFLUtw3sCIHKpNSXJPsdzCkKlrvW6dT4REnb80w/SUboMC+dvo2JsC22Zkiyt5NLRukREDfYy/Q02WLHBToRQL6+hJ/fwzf07j2tJie9x2Uz1eUbZQEQtegJKmtMdiO8EariJY4lB7WllZYtihSMgagNW4Ov1+bTOxGXVT4wqeLozKDSHO4x6D0A+Ol/5R8f5yqqIBOxaaRbi2NFgCmJroA4jLhY4t/C4CDOMbCzdHTvCm3XoZRSauqClMTnawoLHDfMNjUVCxyWFiPNAcked8KnBor1YgzqSzh4P6wpRh4U4NL7vu48z1hmpWsscYz967dfO3kQtOhSe/6OFWwtDFJ3/eCFcB4DDYJKKnHlM65sYFVd2VCeTxa+4XzT8ULz9utMnTC9/laozHDZA02n5Pp1rQ07iWdnzOTHfVYdxXRAqCaVhG1ltcSrTj++bjrdsk+WN+7QfbY1WCweYGekhTRkmsfB2DTKo56g4FejVEgvZ9aOqBXo7QURPA0GRjQjvW/b1pQjzf5fbP7DmvduMzjcXUlvbIwFsilpc7yto7tZ1uUFHdvej0gjDPD2KLbpncuWjaVta9Z51xOWnFyjoTB5vMDNKmGEmart/jb0d7WYMcjvI1G+aqGJZtOnCKqMNgKaKleI74+L1/0FcPLzbjyGdy6cSp+nBh1Z+7YIB7Hx88XzNBKAFARYBtDwFo7VnRqnJuGypQTmIdAHOkqiegA4xswvL+SylxjOyteIfbCdD1vm3ayjkrS6LyNX6fmcIuAozKPkvetQJ9HBTsKrt3LwOXf1x5liTPqbQkLYgWEsqXzejVVdh8zKx7nLQDgrYKljakoPV84VmQTCd+XjN6SgMu4Bq6XuV0S5Q7N44Tw69eBVem5+47zFj+ynEm6t1vMksRJXIGKjptmJvHbT70/zj5pM/7PL/6Y2rdkR3hB+vFTREuc+PEcXFGDbZJpsI25bpekiJZUHHYXOShgKXs12OR3WD7WmyLqtRFLAq7eVpKBIxcxU87rfBfcDDZyvv4S0jO+jVgyP3y2Y31evi7odkW3U+HVFz8Apx27Hu/8uUeox/E1Xku5TcAb4zl4tMC0rdG751k+xHJTRL3Fj6z54WGwySxfX2Ex7TMg3fu04idHe1tjsB3hjTBidVZawQZ10f134P1f+Q4A4GEF+k26MKt/UUmcNOWc3hRRL1VeByYVBhsz6s7QADYvg62ARSEt+G52QgGzTHzGBakHEgtD1+lrI90arRyQnW7reE9Ly1HfdwDbOMUpxnWUgHoeHyACPSXXPrbR7GWwCVNGZbBxp8ah6xaaBhJ0UhKGnv7IxiUB0kB670oYbGMDys7IZKleiDftld+jXdtkgE0GyHzOfV0QxXfvSoxOsciB05AWATZNpFyYc6tRRVRmoEifjb/WrJvsYt9cr/ldA9Q56K8xmrVCOLx5tbSa/skz0cYICA5qkQab/ix/6cLT8UsXnq7+HShjsPE5O+66XQK8e4N8Jal5SYpoSZGDgvVUTC8rCCZyFppku9T9+8fkliBwvtdAyuLiwv9WX+402lUIDpQEi0tkCMTjxmAjjbldF7GOyjKL+Dprj+PSC07DpRecZh7D302uKdn2xWyFApu/xBb2gux2wCX/AKVzepnY1t7qKaYnfVbCYNP6371tFpecsxP/fMsPcPHZJ+CZD9upjvNobmsA2xHeKIihA0XSZ/Kxv/O0B+D2/fPYODOBF553snhMieNXsuF5hTfHAibGZCwA6aKvUaH5Bq6xZMap+gTI936j4Bx47zvgT0+zIom8XLoGwtLPLQDBq6tU0vj3p8asSlbSvELdq5F2AaSgUlGRgzH75+PXGC2i8aIBbOxYzamRzjkuEwIoAdR9Tq80F7T0IW/zOmmlxqA31TphsCkAm8hkEoYqrZ0l4t9FRQ6E04rafcLXO50K0xNxkRYVABZT2VY2kAAUBKVWgC3Lna/10/I669Xo63RqzcM+sX9EnblCkDoC2IwUMq+TWKKR423ynPM53eOu2yX6u15AXAMMPYFcLSvAy3QpYbCVOOf+FNH0czVFlPVVck4N1OX7nibP4QbT7oNgnPaZ9rl2TWeftBnnnbYNX73lXvzRCx+u9i8F37yB+nGv3QtsAv4U+fq83Ncac1FCCgjpBUjyoFloniqiZWuvtKaMyWBLbCp/FfSSjB1x/REZbOP74lVV4b8992Hq2NZa3dYAtiO80TROVZdApE3LL9bW9VN47y+ca/ZZYmgUAWzOhdebpiBuOCUgkdJ/XyuvmunfK85u9S1FJ6Rr37Z+ClUV6+iVAJbexdx0RjkLw3H9XnZBe86VBRy8oIj2WUlzV6dahRRNqf8S7anxRdfj72sMthLdHD6/VNaAMHadwea/93xc+jjj72sOgLcKVknj5/SOEbCBlgQ0dAJsO7escx2nnVMap8ocHBNgk94PzqDRGFdAPccpwDbd9c/5lQ4kaP1Iy+lKMdhCm+xW6vvGP7fWGa55OA7LpmnknmgBsXpcy187x3VmOcuvHo/Sv5Mt620lVeu8mq1ymqTu+NFWUuSgxLn22rjeda5kL/KuySW2ijY/qqrCo0/Zhi/efA+e/+hd4jHa9733Y6WDcYDxvhUVdKtw1WXnYb43FCsdh+ZlsK1GIFLc39TnXgDGFTLYPE2z4XgrAfc81Sz1tTf9zGtDhOaxt3j/asXgMQE2eS6kn62b1CpflwVN11q+rQFsR3gbOjTYSpxETyuqbON0aqRzaAuvN0XCuzGXVm4767iN2DA9gYMLffzKj58hHgOki7MebZU+UwA2YROTS093sG12CncfWsye07vplFS9E1kYjshb6WanFU7wNv6MS7S4NEfa26T7qRlpnSoWcB03ZQzws0VWw3DkFfNmFUZLUTr6GA6IFqksAWDo/OxU/vetRLB5fKAlPmeR5qDxzJcLsGn33RtEKXGax63sJaYWs/XCYizMTk3gB4fbNEk9RdS/dnqb+9qlvXWFGWwWK8C7JoVj53oEYHPu99a9HAyH5DgLYPPN95IUL2/z6v4B6fu+KppQat/LZ5B40/fGLXKgApPOd8MqeEObyjYbI0BQIoFgrd3vfsmj8P9uvRePPGWbeow7OLEaGmwF11OaaVBVlQmuAYrd69XoGxfQLgLN/OARn2MrwWDzaHFKfY2rwTZuurBlS3uY44kPYezr3I633g1+P71rpzafVysT5mhuawDbEd48KaLiZjDGe7UakUDp2LGrXhZsTt1OqhmmHbt+egLv+8Xz8I3vHcBPnn2CeAyQGn9S5Bkoc+I5g60yHPntG6ZdAJtbbL/gWZak5tC5Y212sl7JmMYbN4QL5vG4e5OXpQMgqrQKjA9wAakhUFTkYEyjeStLqy5JEVU12JKiIv5nWXKsJ+3CinwmznlBBcJxU0STNdZ5LwH7madl3X3rl9a8To035QzQHP70OO09kAD15B0y/BTOtilxkMcGVp3PsyQAVdLoc8+BZrTlGGzRsWIAKP2epQnVH9CUUwNQdgJXXmCipE0JzEdvoGtcpkpZVUPpWN85NakG3sauIlqQpu29HmC8Ige6blb8ubaWlthpQG3PPuaM7erfte+LLOeCYLG3lbCWVoNB59dg842npHlZS1pfKrvUaYOUtB4RBLcu26t7XB+7fAabn8VqrPOO58fnlwawAfU+vDjw2fE81dObcq8xCUsLV621fFsB4uda+1FucYqob6HpVOOxb4po7QU5856SzFr/cjTev6CUpuE96MTNeM4jTjKj8dwAKnHi9bLqMRBhRdm3b4xBjLIiBxIrzu8slFCx6bWWMtjGZQOMo9s1foqoryJs/bkPfB6nf81ZWI2NmQNsfF43/UgaW042QIkWlyaW7Y1U1+dt+7MBtvhvaopoQXqIt3nnUcnaKf1NByE7+E+XPATnn7EdH3rZY9XzeUWCRQ22gnSscYuKVFUV9ceZmbTROd7tyDot6pjGTYVP0pL9qd8rzWCzAKaUsWCkDznYmDKDTT8nlX+w5ru3INN9xWDzBrrG1oQq0WBzppNWVZU8d28gYaZIh8w/F9wZEc4sCw0wFAMEzuqgK1H52tu86YerkYZWpJMpfDwuoO2V8vAGMUqaHPwuYGg7bQttzpW0ucWWTWwF0rxsd2lcRYxzZwDJCl551mp+Tssn9NpJAHDOrq3md4F67eSFSUqA95XY24/mtgawHeGNVhHVHD/+8dibrZPxpPXlZWxYuhEe6nAJC8NbNaqkJYwFtWKVH7hKohqGIbp9Q1xauYRKPXY6VYFjQzc4656vSlXFMQC2sVNESxhsCUg+/sboFhRfBYN96/oYiNBEz4sYbEnlNu2cHOCyosK+MfH+rffSe99lkHvc+e5jUUlpXxY7y5syBwDPe/Ru/K9Lz1WrVANaOrrQ79gRfudnVioHGStfc2mLQSb1MJnls8Kp8EVR/zHBPSCeZybAVsBg48euhAZbnxhUVt9p0NIHcAHj308vuxNIr2HcPask2FICOPB31uvw62BU+pnMqi8AuQsYbGOliCon9abXr4Yj7QWvpakwPrhXYHcWPCNv8wJsq2EnlRQVKblP3I7w6qdZjabrW2m3HlZaaMl+ILImC/wa6X0zfY785OH9W2tXYscbfT/9oSdGv2u+CQ/q6cUlVn5+Hu1tDWA7wluswSYf4zUGvU1ksBWwBrwOpU0dzjsMRfn6q5Aa42awFTAWuICltTkdy5w9r3ELjAe6AWXGLD2vyfxZDQab0xBeDaNV6kubIyVGibd5U0RXY2PmlXc1BpuoR+WsWud1vmYmunr1tIL0WPqMbG0N3zrnreRb0vj3VyIwAqTv9rjzwws+lwCw41QRtexsWrjgGAtgI/uBVSinZD/wNr52FunWrESUOyq2ox9WosHmYbxXVZXYRRZI3RvYVUmbvzkB5dVgBJZosK18kQMfs7Q+1v8ecfvRclJf8RNnAgDO2b0FG4Rq6YDCuBIufdziXNqzTFJEC5h22vo1y6s0FrDixpbScNr80vs2rqlSYsdL6/lqBEK9YOu4vla3U4GfoijdWNNgY+PP6dB52jwB2Cw9tpJgXGor+UD7TiU/d29mjudv7Tnj3zWtbUDSvtPPOzXRwf++9FycuWMDfu2iM1XgbBPXMy7QYBt3XTja25oG2xHehjSlQY1Kr6xzLrPF/ECLniLKnT999Zmc6ACEkuxl1WkL2mpUSuQLYom+l2Zk8Y3QAqS2b4ydPT2VY/nObAmDzaOpZxlDksE+dsqcm/Ukb+LjNGk+aFEqr8ZVSUsE2kve4ZXWYNMYbGIKoE9jYtxUG0Bbv+Rj43msnjIZl3as9DzGTeVwVxEtSO2Xjr/PALaiFOLlr3PWfKeaKtvXT6nHUcN3ZBSiLgGVvc0TkALKGV/e5tGKBcYD2Kx0vyEFziwGGy1yYGrzsHGWSCWM+24UFKIoScfytJJgi6wZ5NvfrH391y46E0964PE4fcf6ssCIMM6qqjDZrSJgFZD3djn90cumLmGwydfEHWetgupqiO1Lz33TjK6bSt+3VWGwFeyZqxEI9VYHXom1c5LpdmnAf9G7yc6haeCWtBecuxuf/MYdAIBffYJe/K0oRdSjwTauX1Ig5+E5xtJg8+7DoT32jO34u1deaB7DATYtRXQ1UpiP9rYGsB3hbUAZbMqiwjeIsUtHF0TdxhGlLDGuNQZap/JVX1wNejcHwzTwpqS6FTeyTICNp4iOyVAqWaD59yc6lWoMU8fIuuMlETpv49eugjKrwHCUgBZdoH1lHSUgnY/3JYNtm1eDrQBsSKr2Olm1GhNA69/DYLNaAiIUMEvHBZS960eJ3iKw8o68mO4nrpNj7kVeVpvTED1mgw6weVkC3rW3pHkB0FJw0dsGjmrnQFoIyCxy4EgfavvzOfxRkYOCKqLaoauhhyWCz860sdVgE5UVo5LPm2qW6fe+qio88MRNxijL5vFEp4PeYECO09gv/uvxMuPFyujO4KruSK88yMTBo05lFybqRQDbuGtXAYCyCuuXt9q7Ny25tE10K8olKNM8dNoWK5Ei+uNn7cDvPfNBWOgP8dOP3KUeVxIs9hw7bgqxlSLqWav5/LIAtpX2xYE0RXStiuh919YAtiO8eUr+elOSvE2M7pVUX3QaJVYE2aPBBtQgAtUGKBHlHxtg4wy2FdDh4Ky4bQZj4ljGYFNF7J1GcxFVn/VlAWFe+0d0plfY8SxJEV1p8VwrVdETyStt3ndoNVgYG1n0mwu1Wn17ixdoz5I/N40JAJQ5yPE7a4AIjvLr9ec+w76kceOrSM+lgF26GiCCCPBLFQiLKgH75rbXEDY12JwVVFclRdQJtKyGhhEAjBzFmIAyBhsH47yVzC27gqbumlVEnYCyyKwf81nKxXF87/G476XE+CpJj9X2TG/VTW8rsecmuxXmevnjStYFvrdrFeRLshdSBtt950hzhvnGmcn7rHJtCYNeLko0Xv/jMNhWwk5L7JoC1rmXXboSKaJVVeHnfuyU7HFS8F1rHk1OUSe3hFFsTNBHnLy1+fn5j96tnDP+3UqP9RBDStummRhg8waWgTWAbdy2BrAd4Y2miGobSQKwjflSV1WFiU4VGaO6LpLkwPgWAOvl9zJ61k9PRACbmiK6CpFmbgBpC59YPt5pZHEQjbaTtq6Lftciid7UqSI2Ivt8XCAMkOfY2NoizlSOVUkR5Ua4AfTw61yJyJc3RbQEWPU2/v2SqJvOuuIMNl8qqWUQ8eldVXoaszeNj88xtYqoBC6OmSLKWQd6wQifUxFa4sivAmtAmiNiMZVxq0+PYYhumbWqiPqcGDlFdMxAgnO/XA3GFcBTRPXjilJEJ3zAWerw6+d86oOPx19+6VYAwLmnblOPS20Vv1MzbmAmKQjQ7ehgC+trJdiIk92Y8aUz2HwgeX1OX3DE20oYuPzdUoOwRQwhJ4NNZODK5+Qsby0wtBpaS1zSgQfIaFvpyrVlackr/765NdjGYD5bzau/K1YcdbLdVoLB5m0lwTjPflDiu5W+G8dunMb/vvRc7LltH15wrgyw8flu2fHcrlkNBpuaNr8GsK14WwPYjvDm0TZJxMxX4KXqdKqIPqdHjyXwRj4nX+hMDTbnprNxZgJ3HVwgfWjjlD5bWYCthB2lipOygRYBbMrliMCVky2ipuXwKNVKMNhWAWDjBm5RkYMx54fEYNPaD7PIwWoZjrStV8SqS8Bnr5PGn5vJYCuIttK1pUSDzbseAuMDLamGo/L+Ch9bXa+2BttUt+PWZSvSYPMWOXBezoZpHWAbi8E25v3k117CuFoRgI0w7S37g4Pd1vqerolKACthsOkT+T885f6459Aitq2fwnMeoac58fukakI505pLWlVVmJ7oNMU1Nhhgx0oz2AA/uFhU5IADUuMCygVBIW/KWgnQ4y5yULDGJ5IjBSmi44JMPFOCs2ZoS9KSxw3GFQAoq6E/563aK6eIjtU1AMEvWgENNj7HLNtzpVuJrcDfm1OOWZ8cM36KqP2QHnvGdjz2jO3q3/kaX5IiuhJ2NAfYtFZSAXqt+doawHaEt6Ej9SJJSVqBl3qiU2GR/L4SWj4lC28SdVSO5VWmtMjbajg1SRVRTUC/gIXBmwWweVPRvNRyaSPygjIWDZs2Q/t7VVJE+XWWpJetdHUqm8G28iB5Oj/k40qE/pfbSnSzOHNFO4dXT89isPH5bTkq3icyTvXWcdcknuqj3XcxFcy49hWvIsrGNasUwZArrfrnUuUMrHgdVAvs8IKjcgXmlQUc7msw/WG7tuAf/vVOAMB5px2jHpeCz342gFbJvARk2rp+Cu980SPVv4fmZduvlvD5FAXYlOCE1NdK9O2p3gqUpax5125vk8F07VgOlha8G2NeTxHAxquIKgCbXLBrvPuZAGzr/Ovc2MGBgvVYqyg5TquqClMTHSz2aaEBaS6szrueyJg4GfyAPpdTDcn7DmhJsjGM/eU7P5iLft8qSOKUvJerUWGXn7MoRXQF7rv1Lub6WgPYxmsr7AattR+1NnSIB5ekXXhbwuwwBYbt72rnMHPznUaRpB0hjlNcfFaWLaJqQgkfe52xYw3NH972z/fFz0VmmDt1Su4r0b1ZIaeCtk41vmGQVPtyptrUn43VdWIoWVFEPt9XRIPNGU1bDdFkADhtexuN5EUPQpOer1eDzZvuawGbq+GgJmkCKqVfAJTHdDxnJ2NjzHK8SpgIK32f+NzUBLU7nSphC5aA5LJDVmaI0nlMf07O4VwwpOGPW0XUCwiNoz9ntV++8HRccOZ2PPrUbfgPT76/epxHcyc0/i6olcx5sGcFogP8HCpIvkqsAbq2WQAbf3YrkSLqBdNLRNcTsPSHyGBTtcVKGGxeuYKiFNHlFzkYd8pzgE2zowH//uZtMmDof0YrMec9xVdEBtuKpIj6fC1p/fNW7b0vW1J102B2n3Hshubnn37ESeIxJazF1ZBf4Oe0MiLuixRRrd0XmShHW1tjsB3hjVRvLkgRHb9fv/Cmf8Mr0WDzRgJ4yo5VWjz5bMzFJ2Ww+R0/rxNgMdgARFVUeTRI66tSgKuSZ5k4NcYmVjm5P7z/cVkdQAGDTUx3GdPp7Xai52NtzF6HrqTx+VgCPq+Ek/quFz8Sb/3kt/D4+x2LzYp2lWRLWqwr2lSx1wINthJtMcq+tJ6OV/tO1GBb4RTRKYUNWPffAdBuMCaDjY31mPV+4F9qCcCmMNjCuPqjvFyBv1pymZP2Ry98BH7vI1/H+Wdux65ts+Y4PW010gq9OlOis7ICa826qS7e+wvnZo/zFl6RjvXKP6yG8Ljq0K2Sph1tlh4WXz9Xg1Ez7vsG+FMqva0kKOTVhCoBS++LFFHNXpALt4x3PzlbzkoR9e5v3laiAVtSEKGkTU10gFZpRi6msErvOl/XVK1Jp6yLdY77oiUBTuNd/6lzduJvr7sd0xMdvP4ZD3KdDygLFo+7H5RkRPCg0Eo8ButdpE1aA1bCjj+a2xrAdoQ3T4roauR988W8qBqdasD4DGbAD7Bx47MkRdTLONAaN4C8KWvAyqSIArV+wGe+dRcAXYDbyxwMbBEy5dyRRIuGPSLQBK02l47Tx1goaXweaWwm6RmNmyLanGPpmks2Zsso8TZ+Dg3kWo2IOACcfuwGvP3555jHlBQ54E27R5wtZwGbSYroKjDYVGPQySwt6jthCBmgbkEqB98Pxq1KxqvKahp9oa8DhJ1bosEmV50rc5TOOn4j/telefDI62xJ68rYDDYnC+KHXWmsxFbxMjv4OcYFb4DUNihKSVqB+0nT1UyALQnMjN21UGTBZ8/V4/E5/OMz2Px9e4NX0pi8oJ0WGJGLHMjHequI3hdaS1ZamleaxNvKimsJn60C218GK1YnOMHPWyLHU1KA5L5q/N3Q5jFQp4T+n1/8MfN8IrBZkFE17r1IihxYGmyrkCLqtbVEfdUfItB6JLQfKjz5lre8BY9//ONxwgknYHp6GieffDJe/OIX48Ybb2yO2bNnD5797Gdj586dmJmZwdlnn413v/vd0XlOOeUUVFUl/nv84x9/H1/Vj1ajRQ60dWI1ihy4F/0Cg50DJpZTkUQClHOOkyI6riHsriI6BoiwfYOcWhfaf/3ph2LHxmns3LIOl55/qnhMUfVWb+SeP8uVqCK6Cgw2bpSUMDFXwniiALmVqsivfSWcRE7N36JQzVersqCnye+Gr2/tHnFQuojBZl03wYbtIgcs1UcxkFajimjSh3EvU50W/TwrPR22MBDUSoPbOO2rjOoN9sgMNrV7d/O+M9KcGxfM9zIxZb3F+84IT0B/I/2FvwsaO72kyIG3+TXYVmftXCSpC7YGW/z7yqSI+hhsXnF46RzjBpBE7V8nuKdNj5LKygkzvojBJp9zHUvv1yQlVksLjDZrzqVSHuP1PW6VyJXIgvNkAa3Wu55qHmppn9K+5Qs63JctrfY+3rs+LoNt3OBVieQIzxhYqarOnrZaPszR3H6oDLa3v/3t2Lt3L3bv3o2dO3fipptuwnve8x584hOfwPXXX4/vfOc7OO+883D48GFs3boVZ555Jvbs2YOXvvSl2LdvH17xilcAAM455xwcf/zxzXmHwyG+9KUvAQBOOOGEH8al/cg06qBrRvjqMNh8YFhJVTJuGFiRDQ44eFNESxhs4y5+fONQjSzJyctU3QyPfXtGg+24TTP4/OUXYTQa6dWHnNXYgPo+U+Fz1cBkH2vC9EBBiqiTKl/SvLpdcurB2N1HbEAL6PECgSWNn4ODGqGtlq6Jp40DMmn3s6oqzE51cXhxAADoD4ficUC6LqxGai5nJjR9C+/hSgNs1jwqKTpzz6G25E2OVetpXPNHu0fAUtBk33zzu3ednexWbqdoJUAmN8CWaIatvBFetBfdlww2Ns7TjtU17fg1nbB5nXhcCnasxLNcPgt1RQA2wmD7YVcR1Rw8yX5T9aNWOEVU3rPkY5NsiBVgsLnlCgqCqymDTQM2V/8dNhINkmtdlSIHWmB3lYKBHgbbalQwBdJ3Rsvc8LLqAKBn2Dyr3fiYrAyC5ZwPMPwS8d0Yc60pSRF1FogpaScf08pSPOCETepxa0UOVr79UBlsl112Gfbu3Yu9e/fixhtvbACz22+/HZ/61Kdw5ZVX4vDhw5iamsK3vvUt7NmzB1dccQUA4PWvfz3m5mrNqA9+8IP4p3/6p+bfq171qqaPX/3VX73Pr+tHqQ2H+SpvK03ZBtJFsYjB5jRGrciGt1LRhh8igy01spSqT2JKkH7tV112Hu5//Eb85pPup4IitHU7lZ1uy5kqxmUnTrcq0L7ygFCSErQKYtW6GPHqMzssQ2Olq6wBaaRNSyH2snxWo0nvhncuWfdoN9HKuuWew+pxvHur65FZA1cfVwmDbSVSg6M+DAMvKXJggIt3HGgFanasAMDG56KVIsoBBi19KdV+0YDN1Yn0esWI+bK2GowrtZjLDxFMB9I19VSjaARfB7Q5wp/dfclgk97XlbC/iNmnit3Xfa18ShJfv7TCK+K1u4scjDfOEjAsSYVX7pG073gdZG3PqqoU5B83RVSyCVc6MGMBNCudMSPrQsrHrtb6lbDyhNu5WjYiz/7wpohqWsoA0Ov7bJXVaCVVNz1N1hzUAv9lZAZPK9GUW+kCIEBNonjTTz0EFz/kBPzhzz5cPe6HmYlypLYfKsB2xRVXYPfu3c3vF1xwQfPz9PQ0hkuLdEj3DD8DwL59+xqWGm9vectbAACPecxj8JjHPEbtf2FhAfv374/+HWlt4NBgSza8FRItpk0DO0ro6l42EZAaddo1cSq7ymCTKN8rnJ9eUuTAcgLOO+0Y/O0rHodfecKZKzKuEu07b0ScP4+tDiAw11Yj+uNN5Vgt8VzaTMbmCldZA1LDRgMAfpiRL6kfC2yhzQLiqBj9rQbAVlLkwNv4HNPYWdJ6MdUdzxjlzQKpef/WM7/jQMsgWwmAja8XWhVRIF3jtXnsTUNbLUP0qQ8+AaccM4uJToUrX/Io9bgS/Upv4895Rrl2EZj4IRrhFoPNe1+8AEZJ4+fU1m7pc6ta9HKadT38Fq1IimgSPJPPKV27F7wad52TuvFWEVUlTATmo/d+WkCLxKyVWlrkQL5HkmzIMevHt79oGwx0gCbZN1Zhzt3nRQ4cWR4ie24Vqvbq+pl+5mBv8ENksCUabKvBVvUF/oFVSBEt8FtXam99wbm78T9+9uFmQKrTqZJ1cQ1fG6/9UAE22vr9Pt7xjncAAE477TRcdNFFeM5znoNut4uFhQWceeaZOPvss/HGN76x+c5tt92WnOczn/kM/umf/gkA8Ju/+Ztmn29+85uxefPm5t+uXbtW8Ip+NJqnimiSIroCbxWPmmppF9LapW2OaW6+BTj4Np0NjLG2QXHU7osSxmVVRO+7la8kjWS52jNbDQPPe5sTqvyKsOJ8Tre3LPs4zWZs+oDAksbP4QXYqmplCjx4mgyw+ZwvSwvj5847ufn5ZT9+hrt/b0TaSntOU0TlNUka/0ozEaw4NnfgrPWQpqwdv3lm3GGlAFsJg01jKbPhW+ng/NiVmO9TEx383SsvxBd+5yI8/qwd6nFJBeaVYOpydrgmkP4jlkZy6vYN/3979x5eRXXvDfw7ue3c7yEJIQkQwi0hyD0oVC2oXFRsED3VIhVpvbWn9u3T05dSFW2tp8faepSn9al9K9W2lp769iinT59qtYJWRIvFA3gERMEALwVpy1USkuz3j5jN7DV7Jmv2rFmzL9/P8/C4Y3b2zOy9Z82a3/qt37L93fGPzi1s4fTxiOeRinNIdjAwVnZZbo7iad4OxyO2V/6saiifwWbXrxGDV14/I8MwrLXVJKd+ymbZAf7U2LLLCBSvE3aBCXEF58wMQ8kA58MfL0iUYQA3zBxu+zw/ZsyI7Zf9Igexgi2eNy91D+XXQKTs+eZmUaJAA2ySs0ZkxXo73Cy65/X6Kvab7a6tgPwCV34xH2tOVoa2fnyqSogA26lTp9DR0YE//vGPqKmpwfr16xEKhdDe3o7169ejvb0d3d3dOHr0KG644YbI32VnWzvK3/3udwEAzc3NWLRokeN2V65ciWPHjkX+dXZ2qj2wBGBeddGuLRcbMBVpy+LNl20GW4zWz66GgNghciwWKZlqK04RdTPypfrGwk3dG9U30k6sUy/tj1s2GCdmlYg1leIhpsqrCEJKZ7D5UKNP5FyDzYcposJr2I2I+5HFJSvWe+yUzWTmlMH2idFVuO9TrfjnOc24dpr9wIs12CEZYHN4mmWKqM37Huv7oHyqj0NHW8yYcLpufOuqCQD69++LCjJrxW2L7biZuMhBsU2g2DCMqM/PqSNsrT9n+1RXsjMzUDFI3Uzr9HoVN/FC1oDttUguM0OXMptp6wBwxDQt2akWqXge+ZHBZtdXsZxDhppyCWZOx2PJ/FFSVFtuoCvWeyKbRaaivqpsX0X8jOwz2PwJsMnWV5WdIlqSlx21X+UFOUr6/Asn1OKH10/GuptnosFU90nkx4C+bNDOrwECcWEi6dqdKs43yQxc8did+ipdPcEF2KzZv97aQzeZg7H+v9e2ZmZTRdTPjlNEfVhw0A3ze+9UWoDkBLrIAdBfb+3yyy/Hli1bMHr0aPzud7/DyJEjI7+fP38+5s+fH/n5qaeewk9/+lMAwJgxY6Jea+fOnVi/fj0A4Ctf+QoyBok8h0IhhELep6sksp6+waeIWhc58L5d8eR0U4PNbgqipeF1UyzS5rsgLnJgx6/iqGZ2AZSYxYA1NrxuipnLdtjFLBYVI6jWVHkVGWxyAbZYn4fq0R+nC73Y6VZRi0v2NfyoYSQr1vsuO0XUKYACANfPaHT8PeAug82p8HPUfnmYIqrixtPsrENHW2zjnZqkueOG4D9umYmy/BwMLY1dbN4Luyw/wBrMt1tNEuj/PAeumU7f/8wMA+g1/awxyCRuS03GldB+2GWwxSzK73nzrnxt3lg8/MJufHHOKMc29ugpuQCbdfqh+qCI3bVdPIfysjOVXzcG/R5H/ex9e+J3yXaRgxjviWx2mIrrW3ZGBs7gXPtm13aLq2fb9qNd1HUDgG9d1YrvPrcTt13U5LifsoERsZ9o975nfJyx9uHJ/vNjsIWwZGVmGJg/YfBF5dyUFpCVl52JYx+dHfQ1/ZoiKrNwg18zUSzZe5IzgJzed/PAmuo+xWCss0a8ZrDF+Mwdvh/mReIA7xls1cXR9zpnzvbaPDPGisXaM9jObc9rYJMCzmDbsWMH2tvbsWXLFsyePRubNm2KCq4BwIYNGyKPOzs7sXr1agBAS0sLWltbo5774IMPIhwOo6qqCsuWLfN9/5NBV8+5k9luRMuXC16OeLGXG5l0fK7lJsDNSEDs5zmtsGUWs/il4iCXXVsae7WtBM1gk3yuNcBmH+iUnyKqPoNN9jX9Knxu5nTjZa17oyLAJtexsXzmGjtksTpKKmqwyYq3Q+T0LPF9z7c5Hr8y2MxvqZsMNqfrhmEYmDa8HKOG2E/p88JpWrC4cI1dBhsQfR453cTL1vzxg7gtFZ+5dfBKbppR/9/q7UbeelETtt9zGW67yH7qNgBcMr468vhTk4baPk/sR6jJYBOzf22CTGKAzWE13Hg5ThEV2is1UxrF72fs14zVf7PNDhM+E6eAuizxumV36OIUL7sp5jHrEzpcCz/T3oi/3HkJPv+JwQJs517XMOzfI6eVlEXmzyhWTTY/+VHzWTy/bEuTxJppoOA7X2DJRJXrD6rYtuy9gJjp5vR35zdVRh7/07QG2+f5QXUNNjeLHMT6nYr+7OLJwyKPx9bYr+Qp1pbUnsFmOlZmsHkXaAZbR0cH9u3bBwA4ceIEFixYEPndihUrsGLFCixcuBD5+fmorq7G7t270dXVhfz8fDz22GNRN5yHDx/Gk08+CQD4whe+gNxc73VeUsGZs+dukOxuGCzBKBWLHEiOpsUKpsnWEHC6ARKzFuxGIWRHQsU/L8hRP9Jsl+GSmdFfL+SsqXCs6mkkTtzVYJNLca4VA2wOU0TN74tTFpCYeaCm+Hf0a9h95rHT/z1vXti2/e/E6SkqbhJlV72UXcXKD7E6rWJn146KwISlDpmCDDbLIgd2AyOxarApqjs4MEWk26FYtTWDTW9nUJZsDTaRU4DZenOe3BlslqwBm5sa8Vzv3x/Pm3dNJhC0tH049hw+hZysDCy/YITt88Q+gD812Gwy2CSn9bk1Y0Q5Nr//NwDA+Fr7Gzpr/UwV10wPGWySsyxkV9x1Irviubgtp9W0M4zoFVwH61/KvN/mfkx2pn1dJDfX3bCLfVTNOkXU+2uK541dexw7g8379sWBI9kMNhXHbldSZ7DtO12zFkyowS0XNuFvp7rwL/PG2D7PD6pXEXU7Nbf/d+dOEBX92W9e1YLS/GzUluRiTE2R7fPEWpO6s8OjM9gYYPMq0ABbV9e5FP6tW7dG/W7evHkAgCuuuAIbNmzAzp07UVRUhIULF+Luu+9GW1tb1PPXrFmDM2fOIC8vD7fddpvv+54szHPpdWawWWqwuchgk80Scmp4xdVA7Roq2UZE3LZslowbThl5uVmZONt7rmizziwh8TNyGmW31geKfUxi2rSKGmyWjr2K4t9xdl4A9aNPTi8ndrL8mDZmu20fMgdleVlFVMXUBzc357IBS/GckZ0imuNw8+VGjinA5pjBJi5ko7s3aOIUCBRrsNmtFA1El1Rwao8ti7noDLD5kK1qyRqwubbGzmBLzMBqXk4mvnN126DPE+snqbihineRA1VZA99dMhF3PbMd44cWY+rwctvn+VE/U3awJ2YGm2TwqMQh412WbBaqGGBzKmdhHpwAvAcHBl5zgKo2NvpapPf8Fd8TFbMxxCnt9otrxfh/Cr7z44QgtmzNZjWriKrvpxmGgf89f6yn/YqXeDx+rCLqdP+UlWGgS/jZq/ycLNx5+fhBnyezGq2fzP1HBti8C3SK6N69exEOh2P+G5gK+tRTT+HgwYORRQ6efvppS3ANAO69916Ew2GcPn0alZWVlt+nK/N8b7sbBl9WEc2Ru/mKmVYvOU3A6QZIzFKwm8YyvCIfs5srkZVhRFZBikUc8VAVYHv0M5ORk5WBT4yuQrPD9CmxA6G1BptwMcrPtj9265Lysd/32pLoOkxOndZ4VxFVEYSUPRf8KmAr+3ri+6wiwDa6uhAXjKpATmYGHv3MFPttZ8l95n6I1ZF1ukn95lWtyDD6R2hVTDMSbxacsgEm1pdGHs9ssr9Gie2aXUBb3LaqBQ7MN8hupoj6MejgxHxNscvyA6wZbE4dx15zgM1F7Sqd/WA/pohaAkJ2GWwxzm3d01hUixWo9sq6KqtkgE3RFNH68nw8fuN0fPUy55tk8QZfyRRRyT5ArOCT/SIH0f9fSQab5PR+MWOttMB+2+K5qCI7zPyZDNanuX5G/3S+my8c6fg8cwab7sRj8T0SZ5vEQ5zSbjtIH+NgVQxKiQG2WGJmz/kwJduObK22oKnOYHO7AJn4megsxyOeG06lL/xg7v9wiqh3gS9yQP6KCrDZNFSWVUR9mCJq10hZV5wybC94bhpeSwabzWsahoEnlk/Hya4eS62eqL+3ZLCpaXzmtdZi611VgxY3No/iOL1HfhCP3ekmwLLilU0Hs8aHDDZLpp2CC4Ts+xzr+6X6uuy0J36sImoYBn520wyc7u51DJ6IN6Q6i+KKbUJBTqZjp3VpeyOunDjUsdC9G7IrrQLATbNG4M19f8eprl58Y+E42+dZM9hi76v4GasKsC1tb8S/v7AbAHDp+Brb54nHKlvPUpW1y6dh2U9eR01JLi6faF9c280NXG/YHGBzs4qozimi0T+LGVjxsGQN2LymjlqTuonnsDhgEA9xQE/3FFFZbqaNyZJd9VLMTHEaNBTbNnHhgXiI/QW764ZYs7E0z76v4sdiDOb3ZbDBq/s+NQFfmtuMIUXOJXJGDSnE4Y9X2a3zYdEZJ+J7IrvqtxPZWoaymWVuiSVPYok5bdSHKdl2xOPUOQvGDdnsX1myK7rabV9nf1Y8v2UX4VPFvKiVH/VA0w0DbCkueoqoXB0yVav6mNk15m5SYt3UYBM7RU7XIMMwHINrgPVCqCL7xc1rmTsQutOGxamWTsV0xRsLu4uT2Hg7jUibf+c0NUS8MOq8QMQqZqw8COqYwaZ+2lj/Jo1BM5MsUw90ZrCJ56VEMEVF9sMAsWPv1CaFsjLx42XTBn1NMVvV7nwTazOq+sxvvagJZ872B1UXTLAPsIltvIpMBDfOb6rEG6vmoiCU5Xjj6SbwJ1ubSLwW6azBZslg82NKo01fIdZNYrJnsFkC1ZkKApaSN4luAvR+8GUVUXHAxW6RA3Fg1+F7JJ7fTguVyJKtLWudImq/bdUrIIqvKXOuDxZcA/ozua985BXkZmfii590XixENUuATcFgtXhvY3vNjJnN5HnzMAwD106tx7o/d6J9ZOwp2TEHYX1YsdiO+N1M2Aw2y0wl9TXYHBdqy5C/J1VNPL91D1qe7Rs8XkDyGGBLcV0fZ7AZhv3FWbzg2RVxdSNXcoqopTPmODdefm6+mMHmtZEUO3+6bybNx6p75EncnmMGm+T0EACoL89D598+QkFOpuPFftXC8XjxncPo6wPu75jgsJ/qR0YBoKmqAHuOnMInRlfZPid2x03t5+T0ataOvb6LYyLVYNN9Xorvs9fOIGBtK53Ot5CpNqOqDLbc7EysXGCfYXduv8TzTf+IZ6nD1PIBblbXM3MqQeBH5o8s6yIHKqYZyQV6DMNAVoYRVasu+TPY5FY8d0O2Xqw4CJOn+abGzQJGsmSniFpWfnT4HoltoopApGwdRbGNcWpzxGCiUxsiK3qRAzXnWlNVIV5fNRdZmYaSIKAbYsatkimilkGp2K/pZ63cexa1YNGkoZhUXxbz9zGz51TUPJSMiovfd7ss5aDpyGBzul6Lb6fWDDbhWMX6sX4zL6THGmzeMcCW4gZWEQ1l2RfAFi+wVUUhz9u1ZLBJ1tZwuli4myIq1mCzfaoUawab3sbHfDHUvVqf+Jk4Z7DJXxwf/+w0rHujE5e3DXXcfl1pHl5bOQe9fWFUFNp/N90EJtz4+Yp2bNx9BJeMq7Z9jl9Tp0ZUFuD9D08BAIaW2o9Mi5+RzjpostOC/SAepu7zUryBUhHYFNtEp2PKzc7AyY8r8up83wFrG6+7BpuseDO8nKeIBlfPRuz4qshgE3d/sOw9c4AtUacaybJOEVWfESibDaC77o3Yl1AzRVTuWmQpdu+UweZD2yZ+b+0O3UsGm+rsUpXZ4UG119YMNu/7IZ43dtfM2KuIqmm/crMzcb5DbVXZlUXdkh3QtA6iJGaGkmXBHa8ZbDE+X+ckgeD60pYMNs3nqLkGGwNs3iXmGUbKdPX0Z7A5nSzijZlMivlgxAue7MIFjqu7uFjkwLqKqNpREO2ZMqZj7euTW41QFfHYnaa0uslgGzWkCKsWjo8q/m6nND/HMbgGWL87qurk1ZTk4pqp9ShzqBMXe5TM+7Z/cP1kVBWFMLmhFIsnD7N9XpBBLus0b43T5XxafESW2K6q6JSIAyFOi4qYb1J1r+JpqcGWoAG2EZUFmNxQCgD4zmL7DFiR8yIHQv0mjYMelgWEFNVbNHP6HoslA3QP+KhmnSLq/f10s+K5me66N34EimVrsFlKkzj0/XJ8COLK1lEUM3Od+gGWGmwqMthM+6nzZt8vvixyIJvBFmuapqb2y6/gnmzQNd42STfxvPQ6aBnr1s8pe098vta+tJABq3uKqBkXOfAuMXvEpMxABptTgyI2YEoy2ITpQ3bZc9bpZW5qsHlf5ECWeHHUfiNvOtYezQE2S20zh4ZXvIjrvDhZM3/0fUZ+TT0YV1uM11bOGfTGR+zY633fg6vBJrYXuqcpWqaI+vC+O910m7/zujPYxPMryM6gE8Mw8B+3nI8PT3ahulh+8Mgxi8syRTTu3XPNksHmw+fupv5cotbykWVZRVRJBlt8gRbdWQPiNUrFDb8YgLWbYiUeq8ramDJkg4ti39WphIofwVrz+eZHoFE3PzLYxPPLbnA11gC+rvGB2AthqZ+Sbfs8S2ZYYgZrxfck6Ay2IPvSQQ5aMsDmXWKeYaTMmY8z2Jw6eNYMNu8BNtlGMdYqonbczM0Xg29ei4mKf677Rt78fvZqDrBZMmoU1WBTTbww6pwu6LbOg9fXFgWZwebmHFZNjMfrDnyL7YwfN8hOn6X5O6Z9iqhYgy1BM9iA/nPITXANcH4//ahdJUvs+Kooyi9yqiUoZu8lfYBNOFYV1yw3pRLMdN/U+FKDTbKYurX2r31m2Ecf1xJWKd6FSpxWETUfu2GoGWwyv2YqZLCJ55uSRQ6yxAy22K9ZESP7UFf75XY1S1my3UxrZlhyBFC8ZoHGeo+dXlN8epCzQcREEZ109ydTEd/BFNcVVAabdIBNPvvFS+pwsmewmS8IvWG9ATaRm1VEdU5bEzvMWgNsPq1OJcuP2i/S2xZrGGnctth5UrWwhSwdGWyOTIfPKaJqOV+LhJtzrQE2/0fYnb7HlhWLk7wjHnKx0JIsN9n20X+n9730IxPTWtss9ouK54xTbbPT3T4E2FwEijsm1QEAWoYWO37fzd8dVS1CdA225A5mA/7UmZKdIlpTkhf1c3amoW2KqJ+DsPFsP1Ez2EReF2MwDMMShHS6P7VksAXYlw6yT5UKwfygpVaPmKKEw+FIBptTYyp26lRksMnWEnFTnF3s+Np13GLxOlJkWeQgwFpPujPYRHkuarAFOfqTClNEZVluegMszKpzWXPxvEyFGmxA/w3d//3LAVwy3n5hDSD6Jk53KaxkWeQgXk61BC2ZP0leg03k9D22BI+SvCMuZjP4U4NN7jV1h08sixwoyWCL7zVKHaaIDi09FxgZU10U1+uLLFOdHc7hexa14MIxVWgfWeH4mtEZbGo+zehVRJP7XAOs55uaAJvc7IUaIYu5rjRPWz8tVh9RRb1a2fF22ZWiE42SVZ0NAz2mN8opwCZ+H4LsSwdZdkPnTJRUlVo9YopytjccaXzdpAOruODJZ7DJTy/zEiTz2texLnIQ3CqiQXPMYAtwuqAYKNaZwRbrJlfn6KTYedIb3FOfASJLPC/H1qi5+ZLlVwbbd65uw/XtDZhQV+r4PPNNnO7EVjHQk3IZbA7nkHV6md97c444wOFH1qRjBluANWr84E8NNiHAlqDZIn4EiuMdYHGaInrR6Cpcdd5Q7D58EmuumxzvrkURPyOnQy/Kzcai8+oGfU3zDbKqNsH8furOUvaDeAwqBmbkM9iiA2zDyvI9b1uWX4Owspd9a1ZtcnyXVASqMzIMQHKFTHO7kJ1paO1Li9eeIKfxJvt1PRGkVo+YogxkrwHuOngqGjTpAJtwEjsu1e6hc+G142itQ6b31MnO0ngHNwjnAqHR+6m14H2AixzEumDrzGrRmTUmsgbJg5siOrPJOcNANbFdVTUqnJ2ZgSmN5YM+z3z0YemuthqWDDbNdSn95jSgY1lFNNAabMFmsCV7Vo14I6HieCwrnkveKOnOQhW/t2pqhsV3EGUOATbDMPDQP02Kd5dicjNFVJb5u8QMttjEbDMVgR7xNe3quok12OrL82I+zw+x+oM6p2mKffNkyWBTQXzvZTPYdAe0EymAngptTdD4DqawM6bCsIN18L6zeAJGVxdizXVqOjG5kjdblullTnVvXHbc/s+yqSgvyMFn2hscl1aXIe6W7mwNFankquS7WEVUJzGzQkXxXFmxLtg6b5aCTOe21lEMbl/qy/WNSAOxFjnQe0k1f8e0Z7AJ33nd9aP8JgbRzCwrEOqcIhrwKqKWOptJPtItnsNKAmxxLh6g+xx2s0K49GvG+f6VFehdRVTMtle9wIOqFsHcr0mFGmzi+ebHgL7djA8xoBx0BpuK+wjZNsMa9E/udtsNNxnF0TUP9b5HYsJJkBhg844ZbClsYIEDYPAbv2unNeDaaQ3Kti3bUbOuOqluiuiccdXY8o25Si7glhpsmrM1nG72dHPKDAsyEBjkIgexsvp0BhuDvBhapohq/K4OKcpFYSgLJ7t60DF58Ck8qllH4/W2C4bpNk73zbnsIEqyclWDTWcGW47/AS6n7IaUW+RAnCLqQw22RCX2a1QMEMTbB3CaIuqH7Djr5Dm+ZtQUUTXfAXMgMJEyXOLly4CA0F7JZhRXFur7zsVqE3QuymQNMiXu9fsXn5uBJzftw9L2RiWvJ34fnO5PzZ+T7vuZRKp7lkj7kqwYYEthXaYporrTgWVv+MWLjtNUt3hu3FWl6YsNtO7lk3VmSAzGaYpokIFA8WKoc4porAu2zhpsQY5sixdinfuSl5OJJ2+ajr988A9cM61e23YHJFQGW8BTRFONU5AkyFVExWu5HzfdTsEGy0I2SX7TL97w+1GDzcmUxjJs2fd3AMDIqgLP23bDzY2nrHjfv2LdfSqhr6Kij2z+3FVd/s2BwFTIKvEjcyreGsUleQEH2DTOhEmmKaLnN1Xi/KZKZa8nvveO9zCmE1f3QImhfZkbe6nQ1gSN72AKO2PKYAsiHfjfrm7D1MYy/HzFDNvniAEwp5NaZ8BCJAa4dE9FS6SpAU6ZYUFmsFnr5OnrQMTqrOh8K4K8yXWzErAfJjWUYfmsEYEU2bcuchBcp1V3Bluqd8Cca7AFuMiBhimizjXYUmuqkXWKqIKMdxdfiO9dMxHjaotxWUs1rmgb6nnbbvhx0x1vPVDdqxCLn7OKATnzIIeqJsF8viVSPzBeflw33AxsPfzp/jI4daV5uGhMlfJ9sROrTVAxUC87sBbvysapQLx3lK0xqjvAVlGQgxGV/YMsN184Uuu2Ranev9OBGWwpLMgMNgC4Zmo9rpnqLqvEqXMb5EpcZ3v7on7WfSOdSFNOHANsCdQB1JrBFuM90ZnVEmT9K2uR8MT5DvhNnGahO4PN3HHUHF8DANxzZQt+sfkD/Mu8MQFs3V9Oba7Y+dSZYSy2a6o6wldOHIpn3zqI6uLQIIsNpdYiB+KNpoprrZsgU2NFAX73pdmetxkP8RqlZIponO2/7oxYS1aLgu2bBzlUDQin2iIH+TmZaK0rxvYDx3HrRU1KXtPN/c2VE4fivGGlqCoKab0vijUdVGdQWRyATuQMNtXE08ZxkYMAM9gyMgz86uaZ+O/9/8CsZnUZfLLOb6rAq3uOAgDG1hRp336qYYAthZ1xUYMtUTgFCnKzM3HX5ePxX/99ECsXjNO4V8C7R05GHg8r07fy0IBkmSKaSIsx6KwNFOuCrTOrLLEWOUiOtkaFoDPYou7jA4iwLTt/OJadP1z/hn0yfXg5Xt/7NwDAGIcOpiWDLcBVRFVlInzrU62Y3VyJmU0VjqUVxOBRstdgE/dfSc3WBLoOOhH7FbrrMn157mh8/w+7MKwsT/sNnXjdEmsbxsPcBKvqspn7VMl+rgH959e6z8/E//y/45jUUKbkNd0GHhsq9M5AAfr7zbnZGVH3ZToX4hKlUwabm1qT5qY7iHa8qiiEOeOqtW8XAB68ZiL+/Q+7MbmxTPssrVTEAFsKc7OKaKIQC8+Kls8ageWzRmjam3P2HD4VeTy2plj79oPusM8ZOwQvvHMY+TmZjoGjRFqMQadYATaddfqCnD5tyWhJkptLFcROqvYabOZFDgLJYUst3/+n8/Cvv3sH59WXYnS1/Q1/kKuI5vq0yEFxbjaWSGScW2qwJfmNmh83mok00OTE7yyuwdx+cRMmN5ZibE2x9oEZ8dhVZPSYj11V/V9zQDtVssMLQlmYOrxc4Ssmx7WvPD8HB4+difysoqxFXem5Af/R1YXSf5dOGWzWTF37Y+8zfZWCvu/SrbYkD/+6uC3o3UgZyd0zIkddPcmYwZaYDdr/umR05PGtF+mfGx/0+/LAkom458oW/NcXZw2S3ZCYn5/fYt2k6Uz/79NdgMsk6BpsQRLPBe2riJoXOUiOe4yEVleah0c+PQk3DTKIE2QGmzjAoTvAJV6Lkr3N9yNrKyPDwMIJtQCAbyzUm23vhh9BJjfBjqzMDMxurkJVUUjBdt0Rv8dqgovnjl3VaWEOqsVb3y7VDSs7l21zeVttgHvizLxSrmGo+c51TB6GWaMqUV+ehx9cP1n675LlnlAFN+1crynClkgzhyj5MIMthZkz2JJltCJRp5ctmjQUp7t7UFOSiymNKkfe5JhHqcyPdSkvyEmKqWD3LmrBIy++i3+e06x1uxkZRlT6f252htZAU0XBuRuUCXUl2rYLpPcUUZHuOpHmLEmnqduklmUVUY0dcTGoq3uBE/H8VpWpExS/3r81103CPadaUFmoP3gkSzx0FTfdyRLoF1elV1Gz1TzQpSyDzfQhJXu2qF9yszPxn7dfgNffP+q67rNO5QXnAmzhsLrp6D9bMQPhcNjV6yXLrCYVxECZU2AzKsCW5INHFCwG2FJY0KuIxiPI1RCdhLIy8dkL9E9NHfDJsUMwr6UG/3PoOH54/ZTA9mMwQWZSAcANM4djaXtjIDd9+TlZOHO2G4Ca1H838nIy8dPl07Fx1xHtU6jFTkiqTGOJh+5O6z1XtuLS72+AYRhYfWWL1m2nM3EqfJCXLd033ak2Bdyv9sowjIQOrgHWwLCSLC7Pr6CHH6sqRtVg8/xq/czB/HS+tg7mvPpSnFdfGvRuOCozBdhUc9vnTacMNjFbVTaDLeiZQ5TcGGBLYZkZQGl+Ns6c7U2eDLYU67yrYhgGHl2auIG1AX0J0LsOKqPCfHOiO8AGABeOrsKFo/UtO28nnc9h3Z3WUUMK8crXPgnD6K+fQXqIHe8gp5LonyKaWjdmyZ6B54U45TBZ+okqiMEqFdO8/anBllqriKaz8vzsoHchIp3O9YbyfOz667mF6pwy03rDnCJKajDAlsKundaAa6c1BL0brqRa5z3dBJ3BFiTz9MBCjQscJJrsJMmW9UMQGbhDA5gynu7EDnqQQRrd37lUzKIZXV2IXX89iYvHBD9AoZNY0itXQQZucW7iBBGc+LEgky+riJrOb/aPk1tJvn8ZbG4ly6wmFdqGleIP/3NY6rk9nCJKiqTvXSAlJPYfkltfIqSwBcQ83SaIDLZEIda2SXXDyvKw/+8fAUjvbJh0YllFNMCOuO4bpVS86XjyphnYuOsI5o6rDnpXtBIzNMQVauNxwagKTBtehh0Hj+OxG6Z6fj2/+BEo7vNhkYOa4tyYjyn5JNK0zHTKYGsbJl+XuI8BNlIk0LP9wQcfxEUXXYTa2lqEQiE0NjZi2bJleO+99yLP2bZtGxYvXoy6ujrk5uaira0Njz/+uOW1enp68MADD2DChAnIzc1FSUkJpkyZgt/+9rc6D4k8SuMEqJTQm8YfoLl2Qzp1XkTpVrfiZzfNwM2fGIn/vP2CoHeFNBE73kEWH9fd4qbiSobVxblYMrXe1xpJiUhsq1VkQxqGgV/dPBNv3nkJLhhV6fn1/OLHzXPr0HM38jNHVih5zYvGVOH2i5tw+8VNaZdhmWoSqcZ0umWwyWIGG6kSaJrFI488gn379qGhoQF1dXV4//338cQTT+C5557Dzp07sX//frS3t+P06dMoKytDc3Mztm3bhuXLl+PYsWO44447APQvjb148WI8++yzAICmpiYUFhbi/fffx1/+8hcsXLgwwKMkN9I3PJMazPG1dLs29fSdW1QkneuQpds0luGVBVi5YFzQu0Eaiee3iuLwblw3owG/2PwBKgtzUKE5KJSKU0TTlbjIgaoMXMMwEn6QyY/r1PJZw/H6+0dxqqsXd12hZtGZrMwMfPWysUpei4KVSEGtRD8/VSovyMG04WV4Y+/fccXEoY7P7TX14xlgIy8CDbB97nOfw9KlS9HQ0F8n7Mtf/jIeeughHDp0CC+88AI2bdqE06dPIycnB7t370ZFRQW+8Y1v4L777sPq1atx8803Iy8vD+vWrcOzzz6LgoICPPfcczj//PMB9AfeTp06FeQhEqUV8xSJdLs49fam77Gb5fAGnFKcWL9J99SfVQvGYWpjGaY0lmkPaPtRu4qCkc7XKT+EsjLx+I3Tg94NSlAzTFmNS6YM0759wzg3CJ5I2XQ6/GjpVGzZ93fManbOqu2NymBLr/eI1Ar027Nq1apIcA0AZs+eHXkcCoXQ93Ek2TCMyMjawH+PHTuGN954AwCwbt06AMDIkSOxatUqFBUVoampCatXr0ZOjv3obldXF44fPx71j4jiZ744GcoWqk8O5tTyVJxGJSudj53Sg5jBpjsboCCUhY7Jw9BYUaB1uwAQZp55ykjnAFtPb9/gTyJSaHR1ER64ug03XjA8kKz3/7ztAswdNwQPf3qSklVzk0lZQQ7mjq8e9FrdG9WPT6/3iNRKmErcPT09WLNmDYD+QNmcOXNQXl6Ohx56CF1dXWhubkZdXR22b98e+ZsDBw4AAHbu3Amgv15bcXEx6urqsHPnTtx77704evRo5HVF999/P+655x6fj4zcSOMSXimhL2qZ+uD2Iwi9rN0AIP1qsFH6Ec/vdJpuw2t06kjn69RZBtgoAEum1ge27Yn1pfjxsmmBbT8Z9KbxLBxSKyFSDU6dOoWOjg788Y9/RE1NDdavX49QKIT29nasX78e7e3t6O7uxtGjR3HDDTdE/i47u3858J6eHgBAZmYm3nrrLbzzzjtYvnw5AOBHP/oRuru7Y2535cqVOHbsWORfZ2enz0dKg+HoeHILp/HFicVR+2Wn2dQDSj9iEFl3DbYgpfNK0alGXEU0nZzt5feYiKJFlXpJ4/aRvAv8TujQoUO48MILsX79eowePRp/+tOfMH78+Mjv58+fj02bNuHEiRM4cOAALrvsssjvxowZAwCoq6sDAFRVVWH48OEAgOnT++sgnD17FgcPHoy57VAohOLi4qh/RBS/6GXq0+vixAy2ful75JQu0jqDLegdIGXS7BIdpbuHGWxEFC0qg42zMciDQANsO3bsQHt7O7Zs2YLZs2dj06ZNGDlyZNRzNmzYEHnc2dmJ1atXAwBaWlrQ2toKAJg7dy4A4MiRI9i3bx8A4M9//jMAoKCgALW1tX4fCqnC3ntSm9pYHnm8YEJNgHuiX9uwksjjEZX6ayMlCp7ClOqyhTqDaZXBZroBSecATSro7knf1tq86jcRESAMlPMCRx4EWoOto6MjEhA7ceIEFixYEPndihUrsGLFCixcuBD5+fmorq7G7t270dXVhfz8fDz22GORBQ9uv/12PPbYY9i3bx8mTpyI2tpavPPOOwCAr33tawiFQvoPjigNLZ4yDFv3/wP/ON2NVQvGD/4HKeT+jgm47rHNKC/IwU2zRgS9O4FhjSZKddYMtsAnA2hjPr95+5Hc0jnIxCmiRCRiqRdSJdBeYVdXV+Tx1q1bsXnz5si//fv3AwCuuOIKZGVlYefOnSgoKEBHRwc2bdqEmTNnRv62tLQUL7/8Mj796U8jMzMTnZ2dmDx5Mp588knceeed2o+LKF1lZhj49qcm4AfXT0FJfnbQu6NVY0UBXv6Xi/HsFy5IqyljROlGrMGWTue7eYQ/3coApJrq4tzI48aK/AD3RL/rZzREHv/b1W0B7gkRJYoVpsHxy9s4+43iF2gG2969ewd9zlNPPSX1WvX19fjFL37hcY8oaBxTpGSWbkufx8KFSijVpXMNtnSus5lqqotz8c2rWvHqux/iq5eNCXp3tGqsKMCvbp6JIye6MK81vcpZEFFsK2aPxNneMErzs/HJsUOC3h1KYoEG2IgA4LaLmvCDl/YAAC4ZXx3w3hCRWzXFuTh0/AwAoLYkL+C9IfJXVjpPETU9zkifw05ZS9sbsbS9MejdCMT0EeWDP4mI0kZudia+fMnooHeDUgADbBS4L3xyFHKyMlBbkotpw9nhIUo2P10+HXc+sx3tIyswakhh0LtD5KtMIbKUThlsYfMiB6zCRkRERBSFATYKXH5OFu6YyxEDomQ1pqYIv7p55uBPJEoBYgZbdmb6pHKZ6+JzRjwRERFRtPTpFRIRERF5lM6riy2deW464d1XtAS4J0RERESJhxlsRERERJLEDLZ00lpXgsc/Ow1/P92NKycODXp3iIiIiBIKA2xEREREktI5gw0ALubqakREREQxcYooERERkaSszPQOsBERERFRbAywEREREUnKMBhgIyIiIiIrBtiIiIiIJIWD3gEiIiIiSkgMsBERERFJ6ulliI2IiIiIrBhgIyIiIpJ0trcv6F0gIiIiogTEABsRERGRpLyczKB3gYiIiIgSEANsRERERJIm1ZfiglEVyM/JxE+XTw96d4iIiIgoQWQFvQNEREREycIwDPzsphno6ulDbjaz2YiIiIioHzPYiIiIiFwwDIPBNSIiIiKKwgAbERERERERERGRBwywERERERERERERecAAGxERERERERERkQcMsBEREREREREREXnAABsREREREREREZEHDLARERERERERERF5wAAbERERERERERGRBwywERERERERERERecAAGxERERERERERkQcMsBEREREREREREXmQFfQOJJJwOAwAOH78eMB7QkREREREREREQRuIEQ3EjOwwwGZy4sQJAEB9fX3Ae0JERERERERERInixIkTKCkpsf29ER4sBJdG+vr6cPDgQRQVFcEwjKB3h4gSwPHjx1FfX4/Ozk4UFxcHvTtERMqxnSOiVMd2joi8CIfDOHHiBIYOHYqMDPtKa8xgM8nIyMCwYcOC3g0iSkDFxcXskBFRSmM7R0Spju0cEcXLKXNtABc5ICIiIiIiIiIi8oABNiIiIiIiIiIiIg8YYCMichAKhXD33XcjFAoFvStERL5gO0dEqY7tHBHpwEUOiIiIiIiIiIiIPGAGGxERERERERERkQcMsBEREREREREREXnAABsREREREREREZEHDLARERERERERERF5wAAbEaWsjRs3YsGCBaiqqoJhGDAMA48++mjUc7Zt24bFixejrq4Oubm5aGtrw+OPPx71nPXr1+Oqq67C8OHDkZeXh+rqalx66aXYsGGDZZsPP/wwxo8fj1AohCFDhuDGG2/EoUOHfD1OIkpvqtq6l156KfL34r8//OEPUc9lW0dEOqlq5wDg0UcfxZQpU1BWVoa8vDyMGDECt956K44ePRr1PLZzRORWVtA7QETklzfffBPPP/88Ro4ciQ8//NDy+7fffhvt7e04ffo0ysrK0NzcjG3btmH58uU4duwY7rjjDgDA008/jWeeeQYVFRVoamrC22+/jeeffx4vvvgiXn75ZcycORMA8PWvfx33338/AKC5uRn79+/H2rVr8eqrr+LNN99EQUGBtmMnovShqq0bkJOTg0mTJkX9v5KSkshjtnVEpJuqdm7t2rW49dZbAQD19fWoq6vDjh078Oijj+KDDz7Ab3/7WwBs54goPsxgI6KUtXTpUhw/fhy///3vY/5+7dq1OH36NHJycrB7925s2zzFAtcAAAhCSURBVLYNq1atAgCsXr0aH330EQBg9uzZ2Lx5Mz788ENs374dv/nNbwAAvb29+OUvfwkAOHToEB544AEAwFe+8hXs2rULr732GgzDwK5duyyjrEREqqhq6wbU1tbitddei/o3bdo0AGzriCgYqtq5V155BQBQVFSEd999F9u3b8ell14KANi3bx8AtnNEFD8G2IgoZVVUVCAvL8/29319fQAQmWow8BgAjh07hjfeeAMAcNNNN2H69OmRv5s9e3bkcSgUAgC88MIL6OnpAQAsXrwYANDW1oZRo0YBgG2HkIjIK1Vt3YCDBw+itLQUpaWlmDFjBn79619Hfse2joiCoKqdG+jDnThxAqNGjUJrayuee+45NDY24pFHHgHAdo6I4scAGxGlrauvvhqZmZno6upCc3Mz2tracN9990V+f+DAgZh/9/3vfx9Af3DthhtuAAB0dnZGfj9kyJDI4+rqagDABx98oHz/iYhkuG3ramtr0djYiDNnzuD111/HkiVL8MMf/hAA2zoiSkyy7dyyZcvwyCOPICsrC52dndixYwcAYOzYsWhqagLAdo6I4scAGxGlrfb2dqxfvx7t7e3o7u7G0aNHIwEzAMjOzrb8zb333otvfetbyM7OxhNPPIHW1lYAQDgcjrmNgf8/MIpKRKSbbFvX0tKC9957D/v27cNbb72FXbt2RW4oH3zwQQBs64goMcm2cy+88AJWrlyJ4uJibN++HUeOHMGsWbPw+9//HosWLQLAdo6I4scAGxGltfnz52PTpk04ceIEDhw4gMsuuyzyuzFjxkQenz17FjfeeCPuvvtuFBYW4plnnsE111wT+X1DQ0Pk8V//+tfI48OHDwPoL6RLRBQUmbauqqoKI0aMiPz/hoYGzJo1C8C5jA22dUSUqGTaubvuugsnT57ErFmz0NLSgsrKSnR0dAAAtm7dig8//JDtHBHFjQE2IkprGzZsiDzu7OzE6tWrAfRncgxkpx07dgzz58/H2rVrUVdXh5dffhnz58+Pep05c+YgK6t/YeaBekVbt27Fu+++CwCYN2+e34dCRGRLpq174oknsHnz5sjz9u/fHykIPnz4cABs64goccn26QBgx44dOHPmDABgy5YtAICMjAzk5uaynSOi+IWJiFLU008/HW5qago3NjaGAYQBhKuqqsJNTU3h6667LhwOh8MFBQXhqqqqcGtrazgUCoUBhPPz88Ovvvpq5HU+//nPR/5+5MiR4RkzZkT+3XrrrZHnrVy5MvK85ubmcF5eXuTxyZMntR8/EaUHVW3dsmXLwgDClZWV4ba2tnBubm7k9dauXRt5Hts6ItJNVTt31113Rf5+yJAh4VGjRkV+XrJkSeR5bOeIKB7MYCOilHX8+HHs2bMnsuw6ABw5cgR79uyJFLu94oorkJWVhZ07d6KgoAAdHR3YtGkTZs6cGfmbrq6uyOP33nsPmzdvjvx7++23I7+777778NBDD2Hs2LHYu3cvCgoKsGzZMmzcuBEFBQUajpiI0pGqtm7p0qVYsmQJCgsLsWvXLpSUlGDu3Ll4/vnnsWzZssjz2NYRkW6q2rm7774ba9asweTJk9Hd3Y2DBw9i3LhxuPfee7F27drI89jOEVE8jHDYpoojERERERERERERDYoZbERERERERERERB4wwEZEREREREREROQBA2xEREREREREREQeMMBGRERERERERETkAQNsREREREREREREHjDARkRERERERERE5AEDbERERERERERERB4wwEZEREREREREROQBA2xEREREaWj16tU477zzgt4NIiIiopRghMPhcNA7QURERETqGIbh+Ptly5ZhzZo16OrqQkVFhaa9IiIiIkpdDLARERERpZhDhw5FHq9btw533XUXdu7cGfl/eXl5KCkpCWLXiIiIiFISp4gSERERpZiamprIv5KSEhiGYfl/4hTRz372s7jqqqvw7W9/G9XV1SgtLcU999yDnp4efPWrX0V5eTmGDRuGn/zkJ1HbOnDgAK699lqUlZWhoqICixYtwt69e/UeMBEREVHAGGAjIiIiIgDAiy++iIMHD2Ljxo343ve+h9WrV+Pyyy9HWVkZNm/ejFtuuQW33HILOjs7AQCnT5/GxRdfjMLCQmzcuBGvvPIKCgsLMW/ePHR3dwd8NERERET6MMBGRERERACA8vJyPPzwwxgzZgyWL1+OMWPG4PTp0/j617+O5uZmrFy5Ejk5OfjTn/4EAPjlL3+JjIwM/PjHP8aECRMwbtw4PP744/jggw/w0ksvBXswRERERBplBb0DRERERJQYWlpakJFxbvy1uroara2tkZ8zMzNRUVGBw4cPAwC2bNmCd999F0VFRVGvc+bMGezZs0fPThMRERElAAbYiIiIiAgAkJ2dHfWzYRgx/19fXx8AoK+vD1OmTMHPf/5zy2tVVVX5t6NERERECYYBNiIiIiKKy+TJk7Fu3ToMGTIExcXFQe8OERERUWBYg42IiIiI4nL99dejsrISixYtwssvv4z3338fGzZswJe+9CXs378/6N0jIiIi0oYBNiIiIiKKS35+PjZu3IiGhgZ0dHRg3LhxWL58OT766CNmtBEREVFaMcLhcDjonSAiIiIiIiIiIkpWzGAjIiIiIiIiIiLygAE2IiIiIiIiIiIiDxhgIyIiIiIiIiIi8oABNiIiIiIiIiIiIg8YYCMiIiIiIiIiIvKAATYiIiIiIiIiIiIPGGAjIiIiIiIiIiLygAE2IiIiIiIiIiIiDxhgIyIiIiIiIiIi8oABNiIiIiIiIiIiIg8YYCMiIiIiIiIiIvLg/wOQqYcxyCIENgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABNgAAAGHCAYAAABiVu/5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9d5QcxfX1nZnNSQkllCUsokk2GDAYBDZBmCwQxiCyicb6DBjDD5DBmGSwkQkmI6IAkbMMQiCEhCSQEEIoZ5RWcXOYnenvj9nuqaquqn41PRukrXuOjnZna7qru6urXt1333sRx3EcWFhYWFhYWFhYWFhYWFhYWFhYWGSEaFt3wMLCwsLCwsLCwsLCwsLCwsLCYkeGJdgsLCwsLCwsLCwsLCwsLCwsLCxCwBJsFhYWFhYWFhYWFhYWFhYWFhYWIWAJNgsLCwsLCwsLCwsLCwsLCwsLixCwBJuFhYWFhYWFhYWFhYWFhYWFhUUIWILNwsLCwsLCwsLCwsLCwsLCwsIiBCzBZmFhYWFhYWFhYWFhYWFhYWFhEQKWYLOwsLCwsLCwsLCwsLCwsLCwsAgBS7BZWFhYWFhYWFhYWFhYWFhYWFiEgCXYLCwsLCwsWhHjxo1DJBJBJBLBZ5995vu74zjYbbfdEIlEcNRRR7V6/0wQj8fx2GOP4aCDDkLXrl1RVFSEAQMG4JRTTsGbb76Z9fM1Njbi8ssvR+/evRGLxbD//vtn/RzZwubNm5Gfn49IJIKvv/5a2uaCCy7AwIEDMzo+O450/zI9/s6CO++8E2+99VZbd0OKthrP7777Lk466ST07NkTeXl56Nq1K4455hi8+OKLiMfjXjvduLrgggu4Y06cOBHHHnssdt11V+Tn52PXXXfFUUcdhbvvvptrN3DgQO3c9txzz0nnxzfeeAO/+93vsNtuu6GwsBADBw7E73//eyxZsiRbt8XCwsLCwiI0ctq6AxYWFhYWFh0RpaWleOqpp3wbzc8//xzLli1DaWlp23TMAOeddx7eeOMNjB49Grfddhvy8/OxfPlyfPTRR5g4cSJOO+20rJ7vv//9Lx577DE8+OCD+NnPfoaSkpKsHj+beP7559HY2AgAeOqpp/Dzn//c1+aWW27Bn/70p4yOf+KJJ2L69OncZ4ceeihGjBiBa6+91vssPz8/o+PvLLjzzjsxYsQInHrqqW3dFR9aezw7joOLLroI48aNw/Dhw/Gvf/0L/fr1Q0VFBSZPnowrr7wSmzdv5sakOJ5cdO/e3fv50UcfxRVXXIEzzjgDDz30ELp27Yo1a9Zg2rRpeO211/DXv/6V+25paSmmTJmCZcuWYciQIdzfnn76aZSVlaGyspL7/J577kGvXr3wf//3fxg8eDDWrFmDO++8EwceeCC++uor7L333tm4RRYWFhYWFuHgWFhYWFhYWLQannnmGQeAc8kllziFhYVORUUF9/dzzz3XOfTQQ529997bOfLII9umkwQsX77cAeDceuut0r8nEomsnaumpsZxHMe7ZzsC9tlnH6dHjx7OQQcd5HTq1Mmpra3N6DjJZJL8XQDOVVddldF5dgQ0NTU59fX1Rt8pLi52zj///Kz3JdPnyaIlxrOuX/fcc48DwLntttukf1+/fr3zxRdfeL9Tx1P//v2dX/3qV9K/ifPAgAEDnBNOOMHp27evc9NNN3F/W7p0qROJRJxLL73UAeBMnjzZ+9vGjRt9x167dq2Tm5vrXHzxxYF9tLCwsLCwaA3YEFELCwsLC4s2wO9+9zsAwPjx473PKioq8Prrr+Oiiy6SfqexsRF33HEH9thjD+Tn56N79+648MILsWnTJq7dK6+8gmOPPRa9e/dGYWEh9txzT/z1r39FTU0N1+6CCy5ASUkJli5diuHDh6OkpAT9+vXDtddei4aGBm3/t2zZAgDo3bu39O/RaNrEcMMZV65cybX57LPPfKFgRx11FPbZZx9MmTIFhx12GIqKinDRRRchEongySefRF1dnRdCNm7cOADAww8/jF/96lfo0aMHiouL8dOf/hT33nsvF+7m4qOPPsIxxxyDTp06oaioCHvuuSfuuusurs3XX3+Nk08+GV27dkVBQQEOOOAAvPrqq9r7wWLGjBn4/vvvcd555+HSSy/1nqsIWYhoJBLB1VdfjUcffRR77rkn8vPz8eyzz5LPLWLJkiU455xz0KNHD+Tn52PPPffEww8/zLVxn8NLL72EG264Ab1790ZJSQlOOukkbNy4EVVVVfjDH/6AXXbZBbvssgsuvPBCVFdXS/v92GOPYejQocjPz8dee+2Fl19+2denDRs24LLLLkPfvn2Rl5eHQYMG4bbbbkNTU5PXZuXKlYhEIrj33ntxxx13YNCgQcjPz8fkyZNRX1+Pa6+9Fvvvvz86deqErl274tBDD8Xbb7/t61NNTQ2effZZb8y4itG//e1viEQivr7JxurAgQPx29/+Fm+88QYOOOAAFBQU4LbbbiNfiwy68VxfX48bb7wRgwYNQl5eHvr06YOrrroK27dv546h65eIeDyOe+65B3vssQduueUWaZtevXrh8MMP1/Zbhi1btpDmAfazUaNG4dlnn0UymfQ+f/rpp9GvXz/8+te/9n2nR48evs923XVX9O3bF2vWrDHus4WFhYWFRUvAhohaWFhYWFi0AcrKyjBixAg8/fTTuOyyywCkyLZoNIqRI0figQce4Nonk0mccsop+OKLL/CXv/wFhx12GFatWoUxY8bgqKOOwtdff43CwkIAKVJl+PDhGD16NIqLi7Fw4ULcc889mDlzJj799FPuuPF4HCeffDIuvvhiXHvttZgyZQr+/ve/o1OnTrj11luV/d9zzz3RuXNn3HbbbYhGozj22GOzlu9r/fr1OPfcc/GXv/wFd955J6LRKEaPHo2///3vmDx5sncNbnjZsmXLcM4553iExNy5c/GPf/wDCxcuxNNPP+0d96mnnsKll16KI488Eo8++ih69OiBxYsX4/vvv/faTJ48Gccffzx+8Ytf4NFHH0WnTp3w8ssvY+TIkaitrfXlnpLhqaeeAgBcdNFF6NevH0aPHo2nnnoK5557Lun633rrLXzxxRe49dZb0atXLym5QMEPP/yAww47DP3798f999+PXr16YeLEibjmmmuwefNmjBkzhmt/0003YdiwYRg3bhxWrlyJ6667Dr/73e+Qk5OD/fbbD+PHj8ecOXNw0003obS0FP/5z3+477/zzjuYPHkybr/9dhQXF+ORRx7xvj9ixAgAKULq4IMPRjQaxa233oohQ4Zg+vTpuOOOO7By5Uo888wz3DH/85//YOjQobjvvvtQVlaGn/zkJ2hoaMDWrVtx3XXXoU+fPmhsbMQnn3yC008/Hc888wxGjRoFAJg+fTqOPvpoDBs2zCOVysrKMrqXs2fPxoIFC3DzzTdj0KBBKC4uNr4WFtOnT5eOZ8dxcOqpp2LSpEm48cYbccQRR+C7777DmDFjMH36dEyfPp0L+5X1S4avv/4aW7duxaWXXiolFlVwHEdKFsZiMe84hx56KF5//XX87W9/w2mnnYZ99tkHsVhMe9yLLroId911FyZOnIgTTjgBiUQCzz77LC6++GIpKSfD8uXLsWrVqnYZ/mthYWFh0UHR1hI6CwsLCwuLjgQ3RHTWrFnO5MmTHQDO999/7ziO4xx00EHOBRdc4DiO4wsRHT9+vAPAef3117njzZo1ywHgPPLII9LzJZNJJx6PO59//rkDwJk7d673t/PPP98B4Lz66qvcd4YPH+7svvvugdfy/vvvO7vssosDwAHgdOvWzTnzzDOdd955R3rNK1as4D53r58NBTvyyCMdAM6kSZN85zv//POd4uJibZ8SiYQTj8ed5557zonFYs7WrVsdx3Gcqqoqp6yszDn88MOdZDKp/P4ee+zhHHDAAU48Huc+/+1vf+v07t07MPS1pqbGKSsrcw455BCu35FIxFm6dKnvegYMGMB9BsDp1KmT128TQAjpO+6445y+ffv6wpCvvvpqp6CgwDuH+xxOOukkrt3o0aMdAM4111zDfX7qqac6Xbt29Z27sLDQ2bBhg/dZU1OTs8ceezi77bab99lll13mlJSUOKtWreK+f9999zkAnPnz5zuO4zgrVqxwADhDhgxxGhsbtdfd1NTkxONx5+KLL3YOOOAA7m+qENExY8Y4MjNYNlYHDBjgxGIxZ9GiRVxb6rWoIBvPH330kQPAuffee7nPX3nlFQeA8/jjjwf2S4aXX37ZAeA8+uijgW1duO+17N/zzz/vtVu6dKmzzz77eH8rLCx0jjnmGOehhx7yPbsBAwY4J554ouM4qXd9xIgRjuOk5pJIJOKsWLHCmTBhgm9eEBGPx52jjjrKKSsrc1avXk2+JgsLCwsLi5aEDRG1sLCwsLBoIxx55JEYMmQInn76acybNw+zZs1Shoe+99576Ny5M0466SQ0NTV5//bff3/06tWLC7Ncvnw5zjnnHPTq1QuxWAy5ubk48sgjAQALFizgjhuJRHDSSSdxn+27775YtWpVYP+HDx+O1atX480338R1112HvffeG2+99RZOPvlkXH311YZ3I40uXbrg6KOPJrefM2cOTj75ZHTr1s273lGjRiGRSGDx4sUAgGnTpqGyshJXXnmlUsGzdOlSLFy4EL///e8BgLvPw4cPx/r167Fo0SJtX1599VVUVlZyz/Giiy6C4zhaRROLo48+Gl26dCG1VaG+vh6TJk3CaaedhqKiIt+11NfX46uvvuK+89vf/pb7fc899wSQKqggfr5161ZfmOgxxxyDnj17er/HYjGMHDkSS5cuxY8//gggNY6HDRuGXXfdlevTCSecACBV5IPFySefjNzcXN/1TZgwAb/85S9RUlKCnJwc5Obm4qmnnvKN72xh3333xdChQ7nPTK+FAlfNJiolzzzzTBQXF2PSpEmB/comzjrrLMyaNcv3b/jw4V6bIUOGYO7cufj8889x22234de//jVmzZqFq6++Goceeijq6+ulx77ooovwzjvvYMuWLXjqqacwbNgwkgrWcRxcfPHF+OKLL/Dcc8+hX79+2bpcCwsLCwuLULAhohYWFhYWFm2ESCSCCy+8EP/5z39QX1+PoUOH4ogjjpC23bhxI7Zv3468vDzp3zdv3gwAqK6uxhFHHIGCggLccccdGDp0KIqKirBmzRqcfvrpqKur475XVFSEgoIC7rP8/HzlplhEYWEhTj31VC9Ma/Xq1TjhhBPw8MMP44orrsioup8qn5MMq1evxhFHHIHdd98dY8eOxcCBA1FQUICZM2fiqquu8q7XzVPXt29f5bE2btwIALjuuutw3XXXSdu491mFp556CgUFBTj++OO9nFn77rsvBg4ciHHjxuG2224LDJ8zuX4VtmzZgqamJjz44IN48MEHpW3Ea+natSv3uzvWVJ/X19dzlS979erlO4f72ZYtW9C3b19s3LgR7777rpQ0k/VJdi/eeOMNnHXWWTjzzDNx/fXXo1evXsjJycF///tfLiQ4m5D1w/RaKNiyZQtycnK4Kp1Aaq7o1auXl/tQ1y8Z+vfvDwBYsWKFUX+6d+8urYArIhqN4le/+hV+9atfAQBqampw8cUX45VXXsHTTz+NK6+80vedESNG4I9//CP+/e9/49133/Vy0OngOA4uueQSvPDCC3j22WdxyimnGF2PhYWFhYVFS8ISbBYWFhYWFm2ICy64ALfeeiseffRR/OMf/1C222WXXdCtWzd89NFH0r+XlpYCSClg1q1bh88++8xTrQHwJUhvKfTv3x9/+MMfMHr0aMyfPx977723R+CJhRNUBIRJjqi33noLNTU1eOONNzBgwADv82+//ZZr5xIWrpJKhl122QUAcOONN+L000+Xttl9992V31+8eDGmTp0KIE1oiJg4cSKn/pHB5PpV6NKlC2KxGM477zxcddVV0jaDBg0KfR4WGzZsUH7WrVs3AKl7vO+++yrH+q677sr9LrsXL7zwAgYNGoRXXnmF+3tQYQ4W7Jhkc5qZjEnTa6GgW7duaGpqwqZNmziSzXEcbNiwAQcddFBgv2T4+c9/jq5du+Ltt9/GXXfdlZUxpkNxcTFuvPFGvPLKK1yOQxZFRUU4++yzcdddd6GsrEz5zrlwybVnnnnGKKehhYWFhYVFa8ESbBYWFhYWFm2IPn364Prrr8fChQtx/vnnK9v99re/xcsvv4xEIoFf/OIXynbuxpklDQDgsccey06Hm1FVVYVIJMIpmFy4YXouweCGfX333XccQfXOO++E7ofseh3HwRNPPMG1O+yww9CpUyc8+uijOPvss6UEw+67746f/OQnmDt3Lu68807jvrjFDZ544gnstttu3N/q6upwyimn4Omnnw4k2LKBoqIiDBs2DHPmzMG+++6rVD5mE5MmTcLGjRu9MNFEIoFXXnkFQ4YM8ZSDv/3tb/HBBx9gyJAhGYfBRiIR5OXlcc9ww4YNviqiQGpciKpNgB+TLGn17rvvkvuRjWsRccwxx+Dee+/FCy+8gP/3//6f9/nrr7+OmpoaHHPMMRkdNzc3FzfccANuuOEG/P3vf5cWMCkvL8eSJUvwy1/+0ujY69evlyrpxHlAhiuuuAIbN27EkUce6VPSsnAcB5deeimeeeYZPPbYY7jwwguN+mhhYWFhYdEasASbhYWFhYVFG+Puu+8ObHP22WfjxRdfxPDhw/GnP/0JBx98MHJzc/Hjjz9i8uTJOOWUU3DaaafhsMMOQ5cuXXD55ZdjzJgxyM3NxYsvvoi5c+dmtc+LFi3Ccccdh7PPPhtHHnkkevfujW3btuH999/H448/jqOOOgqHHXYYAOCggw7C7rvvjuuuuw5NTU3o0qUL3nzzTU/tFQa/+c1vkJeXh9/97nf4y1/+gvr6evz3v//Ftm3buHYlJSW4//77cckll+DXv/41Lr30UvTs2RNLly7F3Llz8dBDDwFIEZEnnHACjjvuOFxwwQXo06cPtm7digULFmD27NmYMGGCtB9NTU147rnnsOeee+KSSy6RtjnppJPwzjvv+NRJLYWxY8fi8MMPxxFHHIErrrgCAwcORFVVFZYuXYp3333XV1E2LHbZZRccffTRuOWWW7wqogsXLsTLL7/stbn99tvx8ccf47DDDsM111yD3XffHfX19Vi5ciU++OADPProo9owXiBFbL3xxhu48sorMWLECKxZswZ///vf0bt3byxZsoRr+9Of/hSfffYZ3n33XfTu3RulpaXYfffdMXz4cHTt2hUXX3wxbr/9duTk5GDcuHFYs2YN+XqzcS0ifvOb3+C4447DDTfcgMrKSvzyl7/0qogecMABOO+884yOx+L666/HggULMGbMGMycORPnnHMO+vXrh4qKCkyZMgWPP/44brvtNo5g27hxoy9XH5CqxrrXXnsBAPbee28cc8wxOOGEEzBkyBDU19djxowZuP/++9GzZ09cfPHFyj7tv//+eOuttwL7fs011+Cpp57CRRddhJ/+9Kdcn/Lz83HAAQcY3AkLCwsLC4sWQhsWWLCwsLCwsOhwYKuI6iBWEXWcVOW8++67z9lvv/2cgoICp6SkxNljjz2cyy67zFmyZInXbtq0ac6hhx7qFBUVOd27d3cuueQSZ/bs2Q4A55lnnvHaqapyqiossti2bZtzxx13OEcffbTTp08fJy8vzykuLnb2339/54477nBqa2u59osXL3aOPfZYp6yszOnevbvzxz/+0Xn//felVUT33ntv6TlV/X333Xe9e9KnTx/n+uuvdz788ENpJcIPPvjAOfLII53i4mKnqKjI2WuvvZx77rmHazN37lznrLPOcnr06OHk5uY6vXr1co4++mhtBca33nrLAeA88MADyjZuhcj777/fux5ZFVG2EqgJZN9dsWKFc9FFFzl9+vRxcnNzne7duzuHHXaYc8cdd3ht3CqiEyZM4L6rGqvu+Ni0aZPv3I888ogzZMgQJzc319ljjz2cF1980dfPTZs2Oddcc40zaNAgJzc31+natavzs5/9zPm///s/p7q62us3AOef//yn9FrvvvtuZ+DAgU5+fr6z5557Ok888YR03H777bfOL3/5S6eoqMgBwL1TM2fOdA477DCnuLjY6dOnjzNmzBjnySeflFYRdStfZnItKqjGc11dnXPDDTc4AwYMcHJzc53evXs7V1xxhbNt2zauna5fOrz99tvOiSee6HTv3t3JyclxunTp4gwbNsx59NFHnYaGBq8dNFVEf/nLX3rtHnvsMef00093Bg8e7BQVFTl5eXnOkCFDnMsvv9xZs2aNcZ9lVUQHDBig7Iv4DllYWFhYWLQVIo7jOK3A41lYWFhYWFhYWOykiEQiuOqqqzwloIWFhYWFhYVFR0O0rTtgYWFhYWFhYWFhYWFhYWFhYWGxI8MSbBYWFhYWFhYWFhYWFhYWFhYWFiFgixxYWFhYWFhYWFiEgs04YmFhYWFhYdHRYRVsFhYWFhYWFhYWFhYWFhYWFhYWIWAJNgsLCwsLCwsLCwsLCwsLCwsLixCwBJuFhYWFhYWFhYWFhYWFhYWFhUUI2BxsDJLJJNatW4fS0lJEIpG27o6FhYWFhYWFhYWFhYWFhYWFRRvCcRxUVVVh1113RTSq1qlZgo3BunXr0K9fv7buhoWFhYWFhYWFhYWFhYWFhYVFO8KaNWvQt29f5d8twcagtLQUQOqmlZWVtXFvLCwsLCwsLCwsLCwsLCwsLCzaEpWVlejXr5/HGalgCTYGblhoWVmZJdgsLCwsLCwsLCwsLCwsLCwsLAAgMJWYLXJgYWFhYWFhYWFhYWFhYWFhYWERApZgs7CwsLCwsLCwsLCwsLCwsLCwCAFLsFlYWFhYWFhYWFhYWFhYWFhYWISAzcFmCMdx0NTUhEQi0dZdsQAQi8WQk5MTGAttYWFhYWFhYWFhYWFhYWFh0VKwBJsBGhsbsX79etTW1rZ1VywYFBUVoXfv3sjLy2vrrlhYWFhYWFhYWFhYWFhYWHRAWIKNiGQyiRUrViAWi2HXXXdFXl6eVU21MRzHQWNjIzZt2oQVK1bgJz/5CaJRG/VsYWFhYWFhYWFhYWFhYWHRurAEGxGNjY1IJpPo168fioqK2ro7Fs0oLCxEbm4uVq1ahcbGRhQUFLR1lywsLCwsLCwsLCwsLCwsLDoY2lTu88ADD2C//fZD586dkZ+fj759++LMM8/Ed99957WpqqrC6NGj0bdvX+Tl5WHIkCEYM2YM4vG49JgPP/wwIpEIIpEIevXqlfU+W4VU+4N9JhYWFhYWFhYWFhYWFhYWFm2JNlWwff7559i0aRMGDRqEhoYGLFq0CK+99ho+/fRTrF69GgUFBRg+fDimTp2K3NxcDB48GEuWLMHtt9+OpUuX4sUXX+SO98MPP+D6669vo6uxsLCwsLCwsLCwsLCwsLCwsOiIaFPpz/jx47Fu3TrMmTMHP/zwA2666SYAwNatW7Fw4UK89dZbmDp1KgDgjTfewMKFC/HAAw8AAF566SV888033rEaGxvx+9//HoWFhTjmmGNa/VosLCwsLCwsLCwsLCwsLCxaF5MWbMQd7/2ADRX1bd0Viw6ONiXYCgoK8M477+CQQw7BXnvthTvvvBMA0L17dwwdOhQfffQRgFSereHDhwMAzjjjDO/7EydO9H6+8cYb8e233+KJJ55A3759SedvaGhAZWUl98/CwsLCwsLCwsLCwsLCwqL9Y3ttIy5+9ms8OXUFrpswt627Y9HB0ebJq8rLyzFjxgwsWLAAyWQSgwYNwuTJk1FaWoo1a9YAALp16+bl2erZs6f33dWrVwMAPvnkE/z73//GJZdcgtNPP5187rvuugudOnXy/vXr1y+LV9a+UF9fj3/961/4xS9+gbKyMhQVFWHo0KG4/PLLsXz5cvztb3/zcteJ/0aPHu0dZ/369bjsssswaNAg5Ofno1u3bth3331x3nnnoba21mvHfv9Pf/oT15f333+f+7tLpM6fPx8XXHAB9thjD5SVlaFTp0742c9+hqeeeqpV7pGFhYWFhYVF22NzdQMmLyxHPJFs665YWFhYWLRzLN9c4/08denmNuyJhUU7INguueQSJJNJrFq1CiNHjsSKFSswcuRIVFVVwXEcX3v2s0gkgpqaGpx//vn4yU9+4oWPUnHjjTeioqLC++cSejsbtm3bhsMOOwzXXnstZs6cCQAYMmQINm7ciMceewxTpkzh2u+///74xS9+4f0bOHAgACCZTOLEE0/E448/jh9//BF77LEHunXrhsWLF+OFF17gCDYW48aNQ1VVlff7Qw89JG03a9YsPPvss1izZg0GDBiApqYmzJ49G5dccgnuvffeLNwJCwsLCwsLi/aMZNLByMem48Jxs3DfxEVt3R0LCwsLi3aOhrh1xli0H7Q5wQakiLL+/ft7Odjmz5+P8ePHo3///gCAzZs3I5lMvTjl5eXe9/r164dNmzZh3bp1WLFiBXr27ImSkhKv+EF5eTlKSkrw3nvvSc+bn5+PsrIy7t/OiKuvvhpz5swBAFx//fXYunUr5s2bh4qKCnz44YcYOnQo1/7NN9/EV1995f1zFWyLFy/2jvO///0Pc+fOxeLFi7F9+3a8+eabKC4u9p07NzcXlZWVeO655wAAS5YswcSJE5Gbm+tr279/f0yYMAGVlZWYN28eFixYgE6dOgGAr6CFhYWFhYWFxc6H9ZX1WLYppUZ4bMryNu5N66OmoQlrtsodlhYWFhYWftQ3Jdq6CxYWHtqsiuiWLVvwwQcfYOTIkcjLywMAfPDBB97fa2pqcPzxx+PJJ59EfX093nvvPZx88smYMGGC1+b444/3fo7H44jH49w5HMdBTU0NmpqaWuw6TnpwKjZVNbTY8WXoXpqPd/94OKltRUUFXn31VQDAfvvth3vuuQeRSMT7u3sP//e//wUeyyU5gZQqLRaL4cADD0RJSQlOPfVU6XdOO+00vPbaa3jooYdw5ZVX4qGHHoLjOBgxYgTGjx/PtT366KO53/v374/+/ftj3rx5yM/PJ12vhYWFhYWFDhPnb8CYt+fjrJ/3xZ+P3b2tu2MhoLq+5Wy29o76eAJH3fcZNlU14MlRP8ev9+oZ/CULCwuLDg6rYLNoT2gzgq2qqgqjRo3CZZddhiFDhnAhmqWlpTj99NPRt29fHH744Zg6dSpGjBiBwYMHY8mSJQCAc845BwceeCAA+EJJL7jgAjz77LPo2bMnNmzY0KLXsamqARsq22+1ksWLF3sE4xFHHMGRayoMGjSI+/3NN9/Eqaeeij333BPDhg3D5MmT8dxzz+G5555DLBbDwQcfjKuvvhrnnHOO9Fgnnngi3n33Xbz55psYN24cOnfujHPPPddHsIn45JNPMH/+fADApZdeSr1kCwsLCwsLJS57PlWB/D+fLsWffj0UsWjwumjReqhuiAc32knx5py1ntP2kue+xsq7T2zjHllYWFi0fzRYBZtFO0KbEWydO3fG2WefjZkzZ2LZsmWIx+Po168fjjzySNx0000YMGAAgFRC/FtuuQWvvfYali9fjv79+2PUqFG4+eab26rrHLqXtr6yyuScYs46Cvbff39OMda1a1fv+x999BEeeeQRvPbaa5g5cybi8TimT5+O6dOno7GxERdccIHveH/84x/x7rvv4sILL0RlZSWuvfZaFBUVafvgqhuTySSuueYaS7BZWFhYWGQdTckkYtFYW3fDgkFlB1awVdV3XHLRwsLCIlPUxy3BZtF+0KYEW5CCCQDKysowduxYjB07lnzscePGYdy4cSF6Rwc1VLOtsPvuuyMnJwdNTU2YOnUqHMcJJNrefPNNr7CBiLy8PIwePRqjR49GfX09Pv74Y5xzzjmorq7G22+/LSXYfv3rX2OPPfbAwoULEY1GceWVV3oVYGV49NFHcfXVVyORSOD222/HLbfcYnLJFhYWFhYWJCSS/mJKFm2LyrqOSzLFE3Y8WlhYWJiiocmGiFq0H7SLIgcWLYdOnTrhrLPOAgDMmTMHN910E5eT7pNPPsG0adNIx1qzZg1uvvlmrFy5EgBQUFCAY445Bl26dAEAZZGISCSCq6++GgBw4oknYvDgwdJ2juPgL3/5C6644grEYjG88MILllyzsLCwsGgxNFmCrd2hogMTbI12k2hhYWFhjI6uYGtsSnbotbO9wRJsHQAPPfQQDjjgAADA3XffjW7dumG//fZD165d8Zvf/AaLFy/m2p922mk45JBDvH833HADgFThiX/84x8YNGgQevTogQMPPBB9+vTBmjVrEIlEcPbZZyv7cPnll2PTpk145ZVXlG1efvll/POf/wSQIusefPBBrh8WFhYWFhbZRMIqhtodttd23E1CU9ISbBYWFhamqG3suARbXWMCw+77DAf/4xPMWb2trbtjgTYMEbVoPXTp0gXTpk3Dww8/jFdeeQULFizAokWL0KdPH5x++uk44ogjPFUaAHz77bfc93v16gUA6NOnD26//XZ8+umnWLJkCebPn4/c3FwcfPDBGD16NE444QRlH2KxGHbZZRdtPxsa0tVYN2/ejM2bN5tfrIWFhYWFBREJxxJs7Q0d2QtvQ0Q7JhJJB58tKseunQuxZ295NIiFRXtHbWMT/vvZMvTuVIhzftG/lc/dcQm2579aibXb6wAAlz73Nb6++Tdt3CMLS7B1EBQUFODaa6/FtddeK/373/72N/ztb3/THqO0tBS33HILKWxTrOwq4qijjpJWf5XlcLOwsLCwsMgGxHXH5mBrf+jIBBsbIkqsS2WxE+D1b37EX17/DgAw8/+OQY/SgjbukYWFOR74ZAken7IcALB7r1L8bECXVjt3bWPHLY6zjVF9b65ubMOeWLiwIaIWFhYWFhYWHQKiQsjmYGt/YAm2vJyOZabGE2mCLTfWsa69I8Ml1wDgtW9+bMOeWFhkDpdcA4DPFpW36rlrG9IKttxYx/JOWCF++4NdvS0sLCwsLCw6BOqb+DASm4Ot/aGC8caX5rdNoEWQCr+lwBFs0Y61SbRIIWqlixbtDC98tQonPTgVny/eRP5Ofis7R2oYBVtBTqxVz93WcGDtmPYGS7BZWFhYWLQZ4okkZq7Y2uErQFm0DsRxZpPKtz+wCrZYG5BMs1ZuxUH/mITLn/+m1Yk2VmGZ28HUexYpWF7Voj3BcRzc/Nb3mLe2Auc/PZP8vdZWH7M52PJzO9jcafm1docONgItLCwsLNoT/vr6PJz12HRc9eLstu6KRQdAQ5wn1GwOtvYHlmBri+dz5qPTsbm6AR/N34DZrVyRrdGGiHZ4WAWbRXtCQ1NmTqi8Vp6/OIKtwynYLNob7OptiLYKG7BQwz4TC4sdF6/PTuWbmbSwdfN17GhYs7UWVfU7T/L3T37YiIc+XYLKVr4mv4LNrh/tDXXMM2rr57O9tnXHZxNDsLX2BtXCwsJCRE1DZsUD8lqZ5Mq0nzsD7D64/cFWESUiNzcXAFBbW4vCwsI27o0Fi9raWgDpZ2RhYWGxM2HyonJc+MwsdCnKxdQbjkZxG+WlyhZWb6nFJc99DQAor2rA7afs02rnrrcKtnaPJPNMsvl8Fm+swtw123Hivr1RlEd7h1pbTcSFiHawRN0WKVgFm0V7AqsMM0Fbhoh2tHXd8mvtDzu2ld6KiMVi6Ny5M8rLUyqLoqIiROwi2KZwHAe1tbUoLy9H586dEYt1LEmwhYWFHzOWb8G/P1mM0w/oi7MO6tfW3dGisj6OeT9W4BeDuiJHo1a58JlZAFKl2N+csxbnHjKgtbrYIvhy2Wbv5+emr2pdgq2p7RVsNQ1NaEo46FRknUIyNLUAwVYfT+C4B6bAcYAF66tw60l7kb7X2mZeAzM+O1oFVYsU2iLvoIWFCtU7iDKMI9g6GOPUsa52x4Al2AzQq1cvAPBINov2gc6dO3vPxsLCwhzPTV+JddvrcfXRu6FkB1dH3fXhQny7Zju+Wr4Vv96rJ7oW57V1l6RwHAe/e/wrzF9XiUsOH4Sbf0vb8O8MhlRjhjldsgExRLS1Pd3llfU45v7PEU8m8d4fj8BuPUpa9fw7AhItQLAtWF/pefmf/nKFAcHWumQHu0nMiVqCrSPC8msW7Qm1jZkRbGy4e2uA7WfSKtgs2hg79k6qlRGJRNC7d2/06NED8fjOkwtnR0Zubq5VrllYhMD0ZVtw69vzAaRKfd94wp5t3KNw+HbNdu/n/83fgLMP7t92ndGgoSmJ+esqAQBPTl1BJtgKc3f8+a4tCba6xrYl2O7+cCGqmhUB//fmPLxy2aGten4TLNxQieK8HPTrWtSq52XVB9mq8pqpUrG1yQ52fCazuGtatqkaNQ1N2Ldv56wd06JlYKNjLNoTahoyCxFtbXU4a1d0NAWbRfuDJdgyQCwWs6SOhYXFToGPf9jo/fzY58tblWATE7Mmkw6iWdzRvj9vfbsl2DI1PncGgq2hKTODPRuoF8i9bBE4VJRXNXg/b6ttbNVzm2Dmiq0467HpiEUj+OIvw7Br59bJPes4Dkd6Jp3UZ2FJh3iGpG4ErUt21Ge5wIPjOPjr6/PwytdrAACPn/czHLu3Vfy3Z9gcbB0HL89cjbGTluDKo4bgvEMHtnV3pMhUwdbaziuWVOtwOdiY2AY7fbQPWP25RYfAwg2VmPD1mowXCguLnRUswZDTynKNxoRIdoQ3in7ChNwt31QT+ngthUw3/DtD4vOGDhwiyo753HZcJfLKF2cDSN2fhycvbbXzyp5HNp5RpnNLaysh2Aqq2bjuDZX1HrkGAHMYha9F+4TdIIfDdz9ux3H/noKb35rX7qsr/vWNeVhfUY9bmqMI2iOqiQo28V63poItmXS4MMkOR7Axl2unj/YBq2Cz2OlR15jASQ9ORTzhYOGGKtxCDMWysOgI4KvWte6GXwwVDDKK6hoTiEaBfE359x3FixnPUDmVzbCxtkJbhog2xNu2yEF8ByHYqurTaTBa8w7JCK2mpAPNK09CpkrF1s4jxIaIZkNdKVYAzOb1fLNqG6obmvCrn+xiwxqziJ1gim9TjP1kCRZtrMKijVU4amgP/Hqvnm3dpR0aVGGC6DhLtKI6XFw32sL2a0okMXPFVuzeqxTdSvJb9dztnUjuiGi/1p2FRZbww/pKj0R4auqKNu6NhUX7ArvhymlldZRItOg2lN+s2ooj7v0UB/9jEtZX1Cnbsclt23MeDpbYNEFbVL3MNtpWwSZsAjJ8DpmCJ9jaLynBKu3yWpEIlG2MskEqNzbtGO8bOz6zMTbFjVem846IhRsqMeLRaTj/6Zn4bNGmrBzTIoXWJCZ2RkxamC5E99o3P7ZhT3YOUHOw+cj8Vpw7xXWjLRyRj01ZjnOenIHfPji11R0z7NXaEPP2AUuwWez0KMi1w9wiGFuqGzB92ZYOV32INYJaO0RU3OypvI51jQmc8d/p2FzdiIq6uHZDx15Pu1awZUgytedrooIl2PJzWnd+FkNEW5tAaUqw71v7XZvY/UlrPiPZ88jGMxLD0aloakUCtimR5PqZjesWLzuepY3f39/7wRsj//5kcVaOaZHCzjDHtyUOG9LN+/mTBRs1LVsGiaSDMW9/j+snzEVNg1r9taOojqgKNrFdazqvxHemLd6hf05cBABYX1GP9RX1rXpuLkTU8mvtAu3XurOwyBJaewNnseMhnkji5Ie+xO+e+AqPTVne1t1pVTRyCra2DRFVbSi/FfIGiWF+LFjDqrW9iCaghn+JhmJrbvhbCuxzz2ttgq2pHeVg20HWptZ8RjIHRzY2aiKxSoXuPb37w4U45M5JmDh/Q6bd4uAvwJENgq1l5o/VW2u9nzsV5mblmBYp7Awq5bZEcX46+1FT0skaqUzFs9NW4tnpqzDhmx/x7PSVynZtqeQ2QbWGJGQhVuhuVQWbWDDLaV0CU5xnW5vk4ooc2Cxs7QI7hnVnYREC7XiPbdFO8O2a7Vi7PRV2eM9HC9u4N60LloTKbfUiBzSyQzSQdYbbjqJgo4asicZte74mKliSSZdPryUghoi2dhXROBd6uWMYwq0ZItpSCraMCTYFIdXYlMSjny/Dhsp6XPb8N1nJK+hTV2bBeBFDpTLN/ShizdZ0mH7/rkVZOWZNQxM2tLLyoz1iZ8izaYJv12zHaY98mbViKm2tZnpjTjosla3SLkIkpNoraoUQURVxVdPYds4rmROmNR/7is18Qa3WHnPcI9kxzIqdHpZgs9jp0ZIT3cT5G/DyzNWt7iGzyC6q6ztudVl2A9naihrRg6vaSJsksGX/1r5zsNHmDDbZPLBzqBtYBWJbh4hSNrPZ9IQ3tWFRkUzRmgq2lsrBlinBRiX9P5i3PqPj686VDdvFR7C1gAK2pEBfL+1/8zfgtw9+gdc1+bCqG5pwxL2TcdjdkzBt2eas9a0+nsDf3pmPez5auMM4J3aGOd4Epz78Jeas3o5/TlykDamkoq0Jtg0VDd7PPUsLlO3qMpyTWhs1Quin6naKIaJtqWBLnb/19mUL1ldyv7c6wcb83Bb82pTFm3D249Px3nfr2uDs7RM7hnVnYRECLTXRzV69DZc9/w3++sY8vDl7bVaOmUw6+PfHi3H3hwvR0LRjLL47A6gS+J0R8TbMwearIqrY/Imf6wy3xA6iYBONP1XuP7+Cbccn83kFW/bMkLfmrMXYT5ZoN2k+BZuGcKiPJ3DaI1/iV/+cjFVbapTtTLCjVBFl0ZrhLrJ3NhsbtbrGzN4bleJL3NAFkUJrt9fhxjfmaTcgJkpdKvwhovr7MO/HClz14mz8TxP26ttIB5B2f3j+G3y/thLXTpirbPPyzNXYWtOIpAOMemqm9ngmeOSzZRg3bSX++9kyvDF7x0h4v7PkgZ25Yite+GqVVqklKn+yQTr5xnwr38/N1WmCrVcnOsHWXp+7v3iBfA7xhYi2ovBA6phpRVNp8cYq7vfWtj1ZG7nVw1MdB6Oenomvlm/Fn17+tnVP3o6hdztZWOwEEA1hx3GyUlL+2WkrvZ/v+nABzjqoX+hjvj77R4ydtAQA0LU4F3/41ZDQx7QIRja8pjsqmtpww0+tIiq+wzr1F5eDrZ0arIA/RLQxkURB1B8uKaorddfkOA42VNajd6fC7HSyhdASOdi+X1uB0a98CyDlcb9p+J7ycwtjR2cIP/b5csxZvR0AcMf7C/DEqJ+H7id77TsKwdYSqicVZM8jKznYiA4rUa2oIo/EPgWFiF7y7NdYsL4S42euxlG790BJvt/8bhkFG/97kHL2pIemAgDen7ceK+8+UdqGzb8GZGcjzaqZszlvvzJrtffz5EXlOPPn4e20lkZ7XreoWF9Rh7Memw4g5SS6/Ei5LSsqP7Mx5kU7oi0dbWWa/ISynGV5rezkpEB08qmIq/ZURRRo3QiGKsFOa+3oCdYR1No52BZuSJOL7dmp3drYMaw7C4sQEBUfooIhU7Ab36AQCSremZv2blPKi1uVW3awMyrYJi8qx+H3fIr7misbqcBVNWzlnFDUKqKiZ1enmGCNa8dpv15hcaOrqnJYZZCD7c+vzsWhd32Ke9t5HsGWINgmLSj3fn5cU6hEXA90m4DZq7d5Py/aUKVsZwL2fDsIv9a6lTRbaKNEDRGlql/Ez4M2k2wI0fbaRvIxw4Ynm4SIiteuOrdIDMSzMMe2VJ4/lrhrzVyCYbAzbFI/mJdWQN79oXo9cnPfumgR1WYrSpnEd0Znf2SSriCbaEok8cJXq/D2t/oIHH/oJ03B1qo52GTrRhueP1tr5tLyKtL+pC3njE8Xlgc36oDYMVYbC4sQECc6MZ9ApmAnvZL87FTRYjeeOVH96/ngpCXYZ8xEPPDJ4qycuyNjZyTYLnxmFn7cVoeHJi/VErGs5ytozGUbYpEDag42aoio7LvtBaKRqlLAmCjY3pyTMpQf+WxZyN61LNhNbyxLHnvqcxbXA51hWl6VDvXpUZqfWccEsMTqjpK6szXDkuUbpewXEFBBJKBU6ixxM6wbR+IGVTVUZZuysBsnE7JBDINWzTXiPYobFHhQkXYtleePnVd1BVUq6uJ4a85abGLe+bbCzkCwlVfSilWISlCdWvXDeevxt3fmBxbCEMdta4YKbq3hyXPdei2GiLa2cvHlWWtw81vf408vf4tZK7cq24lFDpR5KQ2cVyaobmjC2E+W4P3v1Hku5SGibecYysY7/Nactfj1v6bgmPs/CxRTsGtHa4sg5zCOSIs02pRge+CBB7Dffvuhc+fOyM/PR9++fXHmmWfiu+++89pUVVVh9OjR6Nu3L/Ly8jBkyBCMGTMG8Xg68fMnn3yCI444At27d0deXh569OiBo446Cm+//XZbXFa7xfqKOrwya7VvAdjZIW68shUOyEqCSyXhHpmAnaRzA9RE93+8GPGEgwc+WZKVc3dktESIaF1jAnNWb2sTY1kka3SqBXbD39q5G3w52FQEm0EeobZOcEyFGCKqCt3KtIqozrh0HAefLSrHjOVbWrWUvQt2Y5EtI5h6HSb5eTZVpTdyPcqyRbClz9de8+mJ9zIbCiUqWioHG1W5LipJs6FgW7yxmnhMfx/DXrtPwaapXiyqNFUqDHH+Nemjav5qqXBpjmDLVZ/jhte+w+hXvsWF47KX/42Ktl6z1m6vw2vf/IhKoaBOGGxgCLZOmjBJPykjf0+31TTiihdnY9y0lbj6pdnac7elgm29QP7pbBWf4isLqifHcbBsUzUpbPseRun+8sw1ynZU4sw/jrNz3+/6YAH+/cliXPXSbKwRwtO9c0nW/9Z0rorXmo1zuykvNlY2cAp9GXg7vnUN+R0ll2Bro00Jts8//xybNm3CoEGDMGTIEKxfvx6vvfYahg0bhpqaGiQSCQwfPhxjx45FeXk5Bg8ejJUrV+L222/HBRdc4B3n+++/x/fff49evXph7733RlVVFT7//HOcfvrpmDZtWttdYDvDReO+xg2vz8OfXp7T1l1pVYiTfrbUSpyCLUshojtKAuzyynqc8tBUjHp6ZmDumR0B7LMs0BjhVDiOg7Mem47THpmGf3/c+grDhRuEikbaRO5M7ptWDAUDDKqIEjezyaTjyzmUjc35xPkbcMLYL/D8V6tCH8sFVcEmKm9URJxo1GxVhKEBwP9+2IgLnpmFkY9/hT+On9PqBhG7sciWEUzdlIpkkW4TsLk6fQ+7l2SHYNP1pb3A9162otROSjJlIwcbWcFGK4LhU95onuVCX4U5Ra7JFghzEk+lKtoA8Ll0dG3FcavL6ybOLSpnT0sp2Nj5Xxci+lFzUYfv11Yq27QUxPsX9Mxve3c+DrtrEqYs3pSV8498bDqumzAXN74xLyvHA4CNDMHWq0yd6J9KLrLE1der9IoZE5VytmGSh8yvYAs/z/5z4iIcc//nuPS5rwPbsvO8zu6lznXifc+Wgu3FGek8il+vkivt2lzB1sJjLmj9aokxPn3ZFjw/faW2SAkgufZ2GjXS2mjTHfz48eOxbt06zJkzBz/88ANuuukmAMDWrVuxcOFCvPXWW5g6NZVw9Y033sDChQvxwAMPAABeeuklfPPNNwCAK664Atu2bcO8efMwZ84cvPfeewCAZDKJ6dOnt/6FtVO4OUC+WJK9EugthXFfrsD1E+aSZeY6iBOPuABmCj5ENDsE246SAPumN7/H3B8rMGXxJjw3fWVbd0eJddvrSIpNVo2YjWdZF09g3toKAMBDk5eGPp4pvvuxgvtdZ7ixi2dQAuxsw69go208Vf2UejEVGzrHcfDkF8tx38RFgcbLg58uwYL1lbjlre+5vFwyTFu2GVMWbwpUVPlysCkINuoGRFTe6MJoWKXKe9+tx0pNhcxNVQ34YN56X5hbGLAbi2wNOaqBaZKDjUVLeIWzoVhoCYiK3tYsciCbArKRm4handBPdtDmGt34Wy5USlTdT9lYDLtJNSkQI/ZTRS6KIaG6Y4rzkoq0C1LsZwM6BRuL1lb1mlSPXbm5Bs98uRLrKupx+QvfhD53Mungx22pPGi6EDxTlFcy4fUa9S+VlCnKU4f3imjLKqImBRZEu0NFTDiOg/9+tgx/e2c+qgJUhm56iMmLNgVGZlDDp6kpOlpDibmLwtHVUspnKloiRNTkeKzTIxumysbKevzuia9wy9vz8Z9P9VFSba3Aba9o0x18QUEB3nnnHRxyyCHYa6+9cOeddwIAunfvjqFDh+Kjjz4CABQWFmL48OEAgDPOOMP7/sSJEwEA+fn5+PHHH3HIIYfggAMOwEknnQQAiEajOOyww5Tnb2hoQGVlJffPou3xw7pK/O3dHzDhmx+z4lFrMQVbCxQ5YCdpXcL5tp7AZizf4v0slqduL/jux+044t7JOOzuSVgnJNIVQSXYkkkHkxZsxNw127XHa+vns0BUTGg2DOzGs7UJNn++o3CGm0klqalLN+OO9xfgoclL8XAACcqqGv4zSW1sfPfjdpzzxAyMenomvly6RdkO8IdqqYocUDcLJgSbqEhSOR0cx8G5T87AlS/Oxt/f+0F5PFNwCrYshZFQSRift5UYBkd5p0035u21WqA4HlpzPmuJMEnAQMEmhm4r5xr6+KCGwrdEDjbxvdCpARtERY1iThKfkf6YAsHWhop3HYnAQlRwhsFDny7BUf+cjE8XblS2Ee+fbi5j1enZcBa3lNqEDRHVkWNUQsqEZBeP2ZZKJqpzE1Bf+5dLt+CejxZi3LSVXFhnEHSOMxE68lmcBpRrZisQm6qcre2tyEFrE2zsepQNVwWrjv1vQE5f8Tm39j6ivaLNJTLl5eWYMWMGFixYgGQyiUGDBmHy5MkoLS3FmjWpmPBu3boh2px8u2fPnt53V69Oy0br6+sxY8YMfPvtt6irq0NxcTFefvllHHroocpz33XXXejUqZP3r1+/9l++O1tozzHSc3/c7v08KQvVScSJKVv5ttgNbU6WskqyE5MunKGtq4eyRlm0tRN3EXHXBwuRSDqojyfxjw8WaNtW1KW9goV5aoLtw+834OJnv8YpD3+J1VvkuSAAvwqjojZ7uU0oMKnmxCqTWnvD39hE66dfhWGiAJEv9p/8kN7wPPipnmDryXjg129XE1f3/y8dDnzrO99rjykqOVQKNqpnVNy4rteof6nHTCQdLGom0MdrcrSYIJl0BAVbdsYc1aajFsHYKCQ7D3o3Xp21Bvvf/jHGanJiUtVRbQ1/mFNbFznIBsFGK6whEtVKMswgzxNVgSsnF8Pde3+IpkE/VXONMP+qnAMA0EAtZNMKaw81KoBKxgYhnkjivv8txsottbhonDpkz0jBprE7MkFL3Pdk0uHmEN05qA4kk362pIItyIliQj7XxWltpy1LRx298NVqaRsZVmymE2wFGvLZR9IrIw2EuTMLyucwztXWrMrqe+7ZJtgCIyJYBVv4PZlO4CHCKtjkaHOC7ZJLLkEymcSqVaswcuRIrFixAiNHjkRVVZV0ImM/YwfRbrvtBsdxsGXLFtx9992oqanBH/7wB8yerU6GeeONN6KiosL75xJ6OyNEI6uqHVdNbGnmvyUS2mdrMmUXWN0EJxIorR3SkFS8h+0J7IK3rLxa0xLk5L5/HJ+eT57+coWynbgYrtmWXaM4CD5Jv8LQSTYTkC5aW11ATSguzl9qA4++Oe9UlEfpIgC+6p9uw5vP5BESlRsi/GFWNMNRGbYlfL5Rp2AjbkBagnAV1SHZOkWSI/3V7fw52OQdqKyLC+30z/Mvr3+Hiro4/q2p6ixu3Nurgk2stJ2tENFtNY348yvf4r6Ji5RrVssRbPyGX3V+kexQhqMbbCqo4aTSMCfFvV+1pQYXPjNTq6iVHVP3LH3Eu3KuyVzBRnUktASoG25qQYwgkMOSifcdAFZsSpMm2TC9WmIzXN1Ir3wtjkdqSLYuL2RLhOslkw7u/98iHPj3ICcK/dy+5PCK8VmYSw+PZbHSgGDTK9ho12SiYPtxWy2enroC6yv00SVbqmmOLml6kCyO7aBc0+K5si1iCboW9n3IxrxgIpwwcRB0JLQ5wQakNuj9+/f3crDNnz8f48ePR//+/QEAmzdvRrJ50i0vTyuaZIqzrl274oYbbkDXrl2xfft23Hfffcrz5ufno6ysjPu3s0Ic8OLmoT0h214H8dprGrKv/srWZMoSDjpvK7W8dzyRxO+f/Aq/+dfnyuo7LMqr6klkHXu69poqrnenQu9nsbKTCPZ90D3LIkbdpiNqxcXwx1Ym2KgGZr2gIGvtpOsZVxHNwga1s6ayme8YzHF1hk4+YwgHhRn5VCBkBZu8nfh93ZinJuRtic0X9Zmbgj2OTqFEzcFmooKg5qcT5+326umtbaCFCprib+/Oxxtz1uKhyUsxRZELtjUINt0xsz0nATIHAZ3QVp3/6pfmYPKiTfjXx4sxf12FtA3gJ7BNKjCr8qWZhMGJ8yC1SEtLgHqObCnY6GHJwpjT2GBLN6WdhQO7FWfWMeK5Mj6mAclEdSCJ7Srr6fZXNjb8j05Zhgc/XYpttXE8+cXyrJyb6nApyJBgW7GZbnfqnFLU+cukiuhF42bh9vd+wIXPzNL2S7RjVORzSynYHMfBeU/NwM/+/jG+XKrOX+5Ld9LKBBv792zMpTobSnduoPWLpbVXtNnWeMuWLXj++efR2JhOQP7BBx94P9fU1OD4448HkAr/dAsXTJgwwWvj/v3JJ5/E1q3pyiLTpk3Dtm3bvONY+CeaiiwSbO9/tx5/f+8HbBJCajJFtjcd4rVnQ8FGNdZNQQ0R9S3MigntpRmr8eXSLVhSXo3rJszVnvs/k5bg4H9Mwp9f1bcDeMVcew0R7dUpXbkqaLyzxppus8DmEqnVGM/imFuzVe2lK6+sxzXj5+ChgESiJhCNENViL4aC6cKHFm2ownlPzcATU9TGpSnEzSx140nNDQSojSyTvInsfdEZTuw7GxTG7QsRTcjbUwkhUQ24pUY9H/vDGWjkXjYMN5Mk0Caghq1TyUUTFcSSjXqFrIv6xh3D0ysShtnq59vfrvN+nqMoFtISif4BvypJ55Tif6duJsOTCLLPVf10i+gA+vEnzn+NWgUbTZnmn7vUxxTnQRMFSrZBHUei4ylTiO+7CiZzIhv2p7MRqRBthWzM8SYFQKgVVMXPt2uqZLeEgu2blen5ShcB5FfzhM/BVmBQ4GGXkrQyf8Vm2roE6N8N6vM0UbAtbp6zxMrFIkSCzcS5mg2/0DertuGLJZtR1dCE3z85Q9murXOwseuUru3KzTW4+qXZeHHGKu3xYgb7Oj+p3D5TX7Q2spOZPQNUVVVh1KhRuOyyyzBkyBAuRLO0tBSnn346+vbti8MPPxxTp07FiBEjMHjwYCxZktqEnnPOOTjwwAMBAHfccQcuv/xyDBo0CLm5uVi4cKFHAIwaNaptLrCdQZyUskWwzVi+BVe9lAqbcxzg1pP2Cn3MbE9MopFYk4XEsOL9y1afub5q5rc6wXCLJ5MohH8RZo2xoNLm//o4Fdr05py1+PfI/bVt2ettrwRbphJn3aPkCDaNkSW+bzoF2y1vf4+J81P5wA4e1A0HD+oa1N1AUA0i0cDTeZ7+OH42Fm+sxhdLNuP4fXqhX9ei0P0UN2Yqjyc1UbdRJSmDV7aJaLywYRZBIQW+IgdNqmsSf1cQbML5dOc3ycHGorqxCWUFdOWf9JjCs8yWYpndGOoVbFSyg06GLRIKvSSTDqKSPuwoCjafQroFPNIqVYY81Ce8wU699/4cbMTiI5p75K/CR8thpDs/C5O8atnIFScqrnSqOFHBRq2WrHqHwqC1Q0SpRJ0492vDCtmq31l4L8SxWd+U4JT6mYCqeAIyV6dv1+xhWoLsENX9juNI06P41J3aHGy0edYkRJQt5LGlRk1CitDOXxk+o2ysGxuFXLImavtsPPcqjVKSRUs5DtPH1x+PPZ/OWfHYlOV477v1eO+79dhn107Yr19naTsTBVtLV1DdUdFmCrbOnTvj7LPPRu/evbFs2TKsX78e/fr1w7nnnosZM2ZgwIABiMVieP/993HNNdege/fuWL58Ofr3749bb70V48aN84519tlnY88990R5eTkWL16Mbt264bjjjsMHH3zAVR3tyBC9VNkKEf3L6995P//vhw1ZOWa2Q0T9ZEN4o8SXnyegz1SvIKeUycLCzMIkT1tQW/Zy2oJfiyeSKNckcQf8Rr9IJrlIJh0ux5ZuceBCRDVErS/noWaRdsk1IOUtywaoBqa4mdRt1BYzKolFAV5HKqgKNrFb6sp+dCPLRDHBGk86Q4fLwRYYIiqqQGibbqryRkuwEckj0WikGps6iNNvttRRXIioZlKihrFQ81EBwGLhfVBdEzW0v63RGh7pghy5+Sm7z9lQIlDDsaiVjU02FZnmMNL1k9rGpIpoprkZdcekz/F+okcHUioLA6KHO3eWQkRVNocIk8052zYb1frEe0Ttsw4m7wa1WIiJgq0l5i9qVWmTZ0nNwWYiVGTPZ0Jw6UhysV/KNdMgNJiF7n3zK2DD5981AZVo8s3xWd7HBuVHZsl23XWPn5kukvGEJtTZJLe2SZ7PjoQ2U7B17twZ48ePD2xXVlaGsWPHYuzYsco2d999N+6+++5sdm+ng/iyZ0PBlkg6WMVUNNqjV3Zy2GW7wm9L5GMQN8+6CW3Sgo3486tzcdzePXHviP20x+VD0dQ3wh8iGnzTTK46kXTIVWRaW8GWSDo454mvMGvlNtx28t44/7CB0nYyFdlPepb6j2cQzsAp2DR5l/y5bGh3P1vVYTNVKFEN9s3V2QkHF8Mi1f3MTFWiO6Z4j2obm6See8dxyPL7fE0lLhFZryJKJOykx6TmvamLo0/nQmlbKnwKtmwRbFzhFXU78b4rSQSDnCqrhPyWVJVhtnKbZRsm154pVAo2eR6yLGyQqe8RkRCiFl6RnYsadgrQNsm6edsfIqpp6yPOFAq2BH3doOZg8xFs8SRUdWje/nYtxrwzH2cf1B9/PWEP5bmpqkXxurNGsFFzsBHJG4Afj6IKOhOI45vaZx1MFGTUsGQ/wda6CjbZnChb7sX7qbP96n3VmmlrkQ7sOmhC+uv6SVZ9E1NPiKisi5PXAxOHaTZILirBRs2VmymCHA7sM9Gt1wcN7IJZzeHO789bj4cU7Uz639LqvR0V7TQ9uUW2Ib4AFIKtqj6u3fy0VJy1iYJtc3VDICkgCz0IC5MF/OJnv0ZFXRyvfv1jYFUf9jA6L4BoBKkWR3ajabLWmHggTKTE2cCH36/3FogHNXnLxPGpUpz5xofmRhXlpwkYMX8Zd8wMVZPZCk3JtOpm0qEtjlkj2HyEg8q45n9XjU+TJOEJMWdZtdwj7jcu1c8oX6HKkUHcHFE3nsocbCYhokQCRWyXDeWzODaz5eklh4iSc7DRSF3Af6/VyeF3DEPUR0Jq1oPqhiZ89P0GVGg2vDKoivjI5t+wBJ/jOOT3mJpDyUSl41eAqEhy+vwV9L309/nfTaovKudZUfmsK3Ig2irEeU5H9Pzp5W+xvTaORz9fprXnxDWa6mzJWogokawSQ0R1pC61ojUVfmIzPMFGHe8AXfUkrhM6gq0lNvyZOmZ064afAKalyNCBfR9040OsFK2aFxzH8aVNUa3ZmYYKVtarnyW5wEKGc2cQyASbQWjw/f9bhOP+PQWzVm4l9yOoKj17rY6j3ueWMik+HEetBDZZc02K3nQkWIKtg8CnRNBMaADw+eJN+Nkdn+Dkh6cqX1RqqI0pqCqaTxduxC/unIRj/z3FMAdJNrx+mS3gqwmVPL1zaK6JqmCL6BK5aWCS26O1I0Sfm55OzrlZQYoAdGLEhCwt5nKwaQi2DCXT2fKcU8en7HPK+6e77wAw78cKvP3t2sA8ZOSKfb4wJ7qCjRrmpMpXYmI0muWtyFTBJm8nKlN095465v3rRvgQ0ZZQFwAA+4rpnkOm6k6TMDyVIlB0hOwoIaK6OeH6CXNx+QvfeLlYqaASV7L+mEL2dWqxEHKRA80mmBqyJnu3KZsVk/AunROF2k9fIQiNksqvYKPN8dRQRZ0ij5pEXvw8W0py6npOJfOpqmf33GM/WYLnp6/Unlu8dp3jcENFPS54ZiZueet7bYiuydy5o+Rg8xFnqjleJOgNwqdVQ9lknWDfI933xGJvZsUDaCQXtd8VdbpoEOK5JeMx2+mGdPAVhFKcu7yqHg9+uhSLNlbhzEenk48fpGDzqWBDkqBG4cVEhWNHgyXYOgjElyhIwXb+0zPR2JTE92sr8eUyeWlik4oxJgjalLu4aNzXSCQdrNhcgw/mrVe2o058JhAnEOoxdZVWRYNFdz9Fw1FltGYavRkU78+fo3UptgXrK72fD+jfWdmOWjbbJOk6m2zWJERUtwEqyKXn7aIiU6NV17ZbcTpeR6dg21bTiDMenYY/vfwtxk1boe0n+Rll6D2WfdeF+Jy3KK7JZJ4zMeT91QoVm26iZ1S8l7qxlKlKpyrAMUOBaYjo0vJq/HH8HLw550dtO/Z56sLWqZsv8X6aqDDU49MgFCyRxJdLN2e14jcV1PcSAD78PpV7depSuZ1APYcLeaL/cGu2ySaR+tx948hIRUbb/OjastCGiBo4UahznZ8oNggRVRU5EK6TSk7plB2iSkf5zIX+t1SIKFU1qXrkJo67F2esxr8/WYxb3p6PTxduVLYzITZvfOM7fLZoE57/ahWXOzaonzrne6YOD5MiU9lxqgv3nrhm6s5NfY/Ed1jrPGNDBTXjw0ewEYnvVD/DkTfi9egEH/4CMeGJQBNQySKqjZppHtsgVS39PSLa0iak7g7iOGxtWIKtg8BPsNFf8rAbP1NkIs/fpqmW488rou/nB/PW4+B/fIL7Ji5Stsl0AS/XEGyiIWpU5CDLklyTEFGdaGfK4k0476kZ+OQHtTEGpAyGOz9YgLs+XBCYl4h9nrrbTt3MUkPGAD6Pna7IgcmCw+btypbnnKxQkhlPivvfrYRGsH22uNwzAO/8YKG2n74xr1R2iH1UGG7SCoTyc4vPpFphsJuQIibkvRgWpCLEqHONL0zRQNVLVrC1QIho0Nz5+ye/wrtz1+H/vTJX+YwA/j3WKdj85CLt2k2IVSp5o5u3/zlxEX7/5AyMfGy6UYEaCoIIBKoRHgaqeUb2boc9v0nYKfU9MrEBqCFzmW4StSGiBtdOzrVEVPkBsiIHijleJHqIJJdO2SGqsajhZdkLERUUZ8ScdkoFm8H88cSU5d7P42euUbbzFTnQ3PfJizZ5P89fV6FsZ5LX1p+3i0hoK+ZEMYzW/SwsyPakwbxAL5zAfy6SY9wxOAWbenxUN9D2ELKP1Tlbic9SeEA6u8KXUsIgeiErz524t/IJORTnzjRndZDznTyWyA4k+hxoc7DJYQm2DgJxwOsmaBGFufJaGC1Vmpda2pxFncYg8vUzYLNy5YuzUV7VgIcmL1VOkplee3mVuvKl3xjUyf9pZFym2rJsVKcCgFFPz8QXSzbjkue+1rYbP3M1Hp+yHI99vhzPf7VK25a992b5ZGiGPTXBsAnRoiNLOQVblgz7MAo21SagkCkAoFNidi5UZKaWQDwXlTgzCS9TbuiIhoZMzZOVvBXEcB//tav6SdvMAfRQRbGPuhDR2sYmPPLZUrw7d52yDWCmGAWAjZXpsaZTjbLXmw0FW6aV/WS/K4+pmRcea94gL9xQlZXQXBd3frAAe4+ZiEc/X6Zs46+kGX5e8is2TUjycLaFSeEEasJ5kzA0n/KISKAAtDlFX+RA0l5J5ovzMa2f+iIHvF3TqHruItFDDBHVrZn+EFFa6GW2HF3i+VVzfKZjLp5Qr0WsQ2yrxgHtzz9Hu3aT8W6Wg41GoFDJKNVnpqDak/5nqbFRM1TLah1NnH2svm5xD0gN3QbCK9hMUk9QHRktkbsTMFGw0fqZ6Z4s6L3M9D6p7Un6vTOJ2OlIsARbB0GYnAR5isTd1HwdpsiEZNB53UwSrvpymym9AHwfdZtENrSuvFJNTPgKF5gUOVDlYMs0RNRggsxGkvL3v0uH+L4+Wx8KRiW5MjVedK8G1SPmX+zU95NVsGUrNIUahicNESVsgHTjWFUNSoaMvcJZCC+jGiSyZ6caBiYeU2qIKDkHm0GRA39VVqIhrPE0Pzx5Ke79aBH+OH6OXt3QQo4Z9v6Z5GBTkmEGJBNd+UMbc0HHD4PHpyxHIung7g/V6lKThM0sdP2sFjZR1BCroONm2i8qUU0NncqOgi2z8FidukEaIkp0OqiKJ5nkmfIr82nPnRwiqiHD/Enk5e3Ee5w1BZtILqqIzQwLrwBqO7FrMY1gM8nBpvseC7GbWhVXlomBlgoVpJKgJnNnpsSqjmBLcgo2NQErHsMkr23YHI4mdgV17pSmB8lGOiCqgo34DptEObBmTKCCTdzHZJkEVY0jx3GMUkp0JFiCrYMgjNpMrdZomTCSTBRsOmOMOvEBwOKNVaS2Jvdzl5J87+f1FXXKdqK3U69goxGBmeZHM/JeENvqwpwKmOIBOs+1WA1ORwT6PY7hn6X4TFTnFxc33f00ycG2eGMVXpm1WmtgAfSNvOxaKURPtUH+OR0yVdqZ5GCjGuxKg0R6TNomUUdyiSGiqra+sAvFWDIpckA1iPw52NTP/eHJaUXUx5qQcBmhTQ2B1Nm67LujrSKaoYGZjU2i+Iyo7wo1L2kQqASwOOaoRW9087F/Q9d6G2TZdVPfI2pBAhNFj1EONsK16xyM8jmedn5qGG9jIql8h0WHKVVJTg0R1a2ZfgcO7Xqy5eiqF2wZVV+p84LJWkTNmSqei3rfTeykbKjdfHaacgz770c29ibU9YBabdSkrVGIKPF+imNcRaZL505q/jmic0Kbg41qI8qKHGThuVPHTpjCYirkRNN7g0AFW4apL8I6oGUf2xDRFCzB1kEQRm0WNl+HKcSy7irkxtKbKH3CefpiP39dJfc7Vd2gO2aU2eytr1CHiPoINp2CzVfkQKFgUx5BDxMFG3UB0hnChbnsQmIQ7psFI8+X40FbHYv/XUU4mLxvrOJLt4g2NiXxu8e/wg2vz8NdHyxQtpOdnxp2AdCSj+vKgIczrmn9NPG2Uj15VEWL6jyyz3VksS9ElLiZVYey+g0scgVo4v0Uk4aroJsSpM9I0d6fr01HWKb/ppr3HMehP/eW2CRm6OltqaTrKoibLarBrJvjxblSSbQYkEyO4+CLJZvwzapt2n6ZEFdiRUwqma8bm2Rlh4xAUdwn1v4RiRwW0tAplWOImNrAZE4UFWbK0GCDuVN3fBb+9CC0dtlSsInvW9g5XrpeKyq4dmEINp1jxKTIAeuv1dlJJlEjZMVohs44QE+01McTWLdd7fh24Q+bV5w/RHEc6nOvUhBsjuP41lJqCKAyr5pByD75GQnnqtRWEc383cgG0ZPtEFEjspeoYEsm/c+daoOo24lh87S0AkD2Ugzt6LAEWwdBmLCcbOchCwJVicBWdKxr1Bi3Bos9W6FS19aMREi33VarluqLyj3dROyvTqVo2xohosTnrjPcipj8XkbVOQ2MF6rXTWeMiQSQqqqiL3xIs0jn59AUbOsr6rClOdTjxRmrle2k5zcwSqj3SRlmJLTTjXkq2SFej8rbGiahN9WTZ3LM2rh6LJOriBLvkUzlpN7QET3nBpsFFjpFmkmOLVEpqfMLsfdPFYYRLtyFTrBRc7BRc5Vkq7owNfeqb3wQNxk6pZ04V6qJfPoG+fPFm3DeUzNxxn+nYdGGKmkbQDXmqM9IQQgZ2BV09Qt9rmHVDSYpMgC6gk2ZK86gn5kWjaDaILqUIlQHjjjeM4mikMFX5ICYg81kc66a4yNE4098t3Rkfoxh2PR2kvg7/d2ghtap31/62GxKJHHcA1Nw2N2f4r3v9LlD6Xk26eM404rFqnlc9nVyKDyxgqnumOTwQ5MiByFsWZNwTBX8BHC4fUSmER464Yk0rQLRBqKOY9X5W4rY3BlgCbYOAupGFsi8yho1jCQI7AIf04Q4FubRlD8mRKCYq4LsBdDMJ+z5qRvE1DlMQkTDGVn+vtAnSKpHRrcJYFVcuhwgJrlfqBslo4208KewpAjAb5R03vicGH26DuP1U3nEqYpVcezowlPIuYmI+bBM8jdR1URStQbR21vToBnLGVYRpSrYsnFMk3HMQmfYyh6d6vwVtbzhTVWwqYxL6eaLmC8tGyGAmeYqyVbS9aDQcheZkh26whrUnD8mG+QbXv/O+/k/k5Yozy11JFDDJKnhUNp1QxhLWcghmcMo2PQhov7PwlaGlz071bOnVkc3rS7sQkeGZRqaG6QYrY8n8K//LcKz01Zq2/kUbCHnY9l9p4YwUx3lOvuLdXibORw0dho1XUGItBcqMm7myq1YtaUWAHD1S3OUfZSen6juNFHvUdfhWoVdIb12Yj9NihxQxyc10kAXIkrNQWtSQd4EYl/riXkUwyrYxHQ42lB42bpBfJ7UMad01hqs1x0N8vKQFjsdTLytondEuVkx2IAs21SNy57/BgO7FeOx836mVaZRvfWcgk3nwRUn6CxI2/0KNpoX1SSMREdy+fInGFRko8BMwUZrqzPc2Gepe/5hDDcTkimZdLjQ3nRbolHiM+xpCktdaIq4YDqOo8yxRzUGZe+CMvl4hgbu5qpGoJe0Kf2YVC9mq+Vgo51fp9r05V8hV1CVt5Mq2EIbg5kprnTTjnQToPjCdoFgo25W1AQG/dxUxULqb9RNIn3zxSJ7CjYaUZepclGnYBMJNpMQUdUawzqQHNA3/KrPADrRI7Zzw+Zl64YvJ6fB5kt1/jzG4aKbZ+QhorTzUysl6o7pryJKJCwVxxPVsSYKNpU9JJ4rqNDWg58u8XJO7tm7DAcP6iptRw8Rpc0LsrGgcoiJbbfVNqIbkw/YhS80V6dgY8a23olCnz+otjTdNqe/Q2yBqSBQc06bpAEg583yKfjpJJOqrThXU9Ph6PqZqeNOt25Q5+OWKnIgztUN8QRK8v3UCT0HG20tF/cWOtJftg+hK9hotopqTpTb3NmxV3Z0WAVbB4GJwSzma6BuVnRqojFvz8fS8mp8smAjXvtmjbav7ESiU8Xxqid6mWeTnAj0hUR5SO6YSYe+kddNUtQQUWpoj2i0tkQONt0CoapUK8KvAAm/6TXZdGcazqAjS9lj6JWY/LXqKoP5jFGDkLm4Mtk+jTQU+2mSYJm86TVIEk7NFUclmQDNRk04hi5nWaZVyZRVRCX3RL2ZzcxzTlew6f5GJzu21wmKYo3BzBrpRkY4dY4nvsMmx2xKqqu8schWDja6go0W1if2XbdREh0syjBvKRkmPybrXzAldakkl8lco5xnieFtsjGmassSebrxIZv/VPMCdRzL1jPVeiCSw8rCQEQSQeyTXtlBtef4YwS9b2xBl8mLypXtxLAqsoKNSAQC9Ge5uVpuL4jnooaIahW9PqeQOvxQPAzV5jZxsqn6alIDjFpV2j9/aEJERQKYug5noUCM+A6bOOmpOVvDpueQtjXpZxaIHmouMl8/Fe8wNTpIfGdMhAepz8LZfuKzU80zsnk6W/nYd3RYgq2DwGRCEwk2qlGiO+aslVu9n2ev2q5sB/AqHsdRH5cNEa3TeBypm3Mg85LQ+nwU1ImXpmgB/Eonas4fFcTuG1URVVy7uPnSKdioCyF1sQXoCpQweZnUKgx9X1THNKkGt6FSXTAjU0+i7LumxxTHrZZgI+aqIxvsoXKwqdQa9GOK59cWOfAZuOGMVtn3qRu6sM9chI40UilGZRAVbLo5kTUAqcrj1Ge0caxVIhDnGtkzotzSIEUNFfQcbJltlHQEm08dRRybqfOoFGxpaAk2g81XmPB6dVv+d5PwIYrCQLtuGBQ5CON0UIaIirYKkRxQV4kUCTa6XUHdTJrkYOtSlKv8GzlElJp4XDp/0d4j6lqgs9OixBBRcT5XmT8mKR18kSgG94hqq6jukaw4DvX82VCwkW0Fab5F2lpkUjgq2wo2lbMDkNl+9LmzJUJEs512QwUTBZs8dFxxfmp0i3jdKgWbwTvc0WAJtg4C6iQF+L3c1ITROhKhV6cC7+f1GmIAkFWdkh83J0qrokX1Dsra0r1p9I2FibpBBdEQoBpPKlCJI4Au2RaPqdsEUAk9an5AQOZxpJE3AH3Mk5U/RPVLXWNCSU6I17pR8x5l+owAHdEjKBGIxzTxvFETF8cTcuWPyeY809wvAH3zp8tJJf6NHo4ubxcmRJRevZX2nmrDh2RkhypEVEh+rDsuJQebmaeXTi6SFWwZhlNkLURUUFRS5xrq3Kkb75mGXurasiHyuhBR6TGV7zBNcWWy8aQrcOlqAPZcJikyVP2UqYnUm3P6/aTac745nuhIMFGwUd9LkyqinYvylH8Tj0OtxGeyOafmTFWGFRrYfqzNbeJUNnFuktNuEJ1curYiMaGyqaShucSxpHuW4p+o4bEmc6dawUazpWX3U20f+48pW2Ooil6ATqyaOO5MII5HGaGfTDo+B49JCLO0XYh5Tnd+ag42ynWn+kl/NzoaLMHWQUD15AH+al9hJdsA0KssTbBtrNATbKJRQjFwddX6QsmRiVWndPOJbNGRHtNnhGs25778CTQDQgUTgk001KhkQ502jJc/pmrjZ0Lq0j1KdI+neKlU4kqvfnG4n6kS9A0VamWYP7wtvIFLHZ/U3GKy85sYjrKmsmdJzWuiMsakEvgsbFZ8SYZDkrVmCrYM56QMFbHc3wyMwQqhAq3W6UDIwSZVCBETzlPfYd0xZWOJ4u1tqSIHqnedWmEulIItC4VKWOgUbEYbkCStnfSYWU4sDWjuE3MuXRV12alkRKhc6Uafa6hknDIUjbq+GORLo64vpiGiLHSFuEQFMzX/nElorjJnKpnUFd9h9YvEKth0vhbxmElHRfTK5kPqPQo/f4jPY+32Omk7E8cMNRJFmseQOD5N1Gaq9028dvU6KOsPjVwEVHYabWzKzpWNVC8mEJ+zbL4xWdczVdUmkg5pLQg+P82mE/upWtul9z0b0sGdAJZg6yAwye/lU7ARX1RduB6nYKuQL2IuqAn8OYJNk7w5DMGWjdApuheVtuEGDEpHExUnviSqmu9RK+H5CDatxFkwmkMSA6ljivdTtUD4P1O9Hr5NNzWkUVfkQDimKkRDvFZdiGimuTAAuvFGPaaOZAoTjkVNtE3Oa2JgNFLVZrprp6rIqCSXVMGWoFUbo1Y1pHpfdUozkw2QSZEDSg42k3CGUFVEDcYS5Z5mS8EmrpNU4ky9QRY25wYKNqpSVtYfF1wONuWZzdRm/kI2Jgq2cMR7phslHSFEJc6kc6xB4nO1Y4Z2PzO1k0wqyFMraZrloFW3FfumVhTT5lm5go32HqnWdb+yNLyCTZoPizgOqUoqk7zD1Dl+nYJgMynqQSUwzEh/mn1uUvGTWuRATqAY2JOE+VwbbkzNX5mhYyYIfiUXbX2ijjmTQjLUfVHqs3B7V38oPn0cU+3EnR2WYOsg8E1SGgKlkpyDTZgodAUJmGo94vFZOI5fwUNJJlqlyS0TimAjLuItET6kI2X8iYNpz0gFE1KEvDALfdLl9hD7X1knL9stXo8uR59fxUXbAABqzxc1txq1alzqGMImlWgwi+oevi2RuJJWnaLdT+q7oSWZiAQOdYNsspHOdEOn7yf/uyp8B5Ao2Ki5iVQGs4FBRibJiWHWABAlJpw3UbDVCHMGNdyGmudSd0wT9V6mymdAPi+J96ilihyoxidVKSP2U6dgI+dbNFBMUIscmBTWCKWYIM6zJqo41fnZ51EXV6cWkL1v1PfATH1Ddcwo1kyik89X1S8LVcdN8i1SVaAAnWATj0EtzKM7v28dJo5N3XodjbA52Oj3XfWZCckUJscV1SG2XhFdY0IE+goXOKoQdRPVE/EdknxMz8GmmD9C5LVVHbclRA8moawmoKhbTeZtn+rbwNmiJMll1646PzXfY4aih9Rn4e/7zgBLsHUQ+BYnzcRTLVYRJUpItZMkUdEje4kpVZIam5LKMBqqcQvQixyYXDt1o0aV1QMSeXfYIgc+8kT9PXL1Q+Hc2oTvQlsVCWuSw4hqNMu+Hva5+4laurKDnDfLIJF8djzi1HFMI45SxwzuD6DwzMoMN4ONtC/ZK9Fg1h5TlNUbENV045q+6aXK+qnn1s1z7OZLW+TAwBCmzjWZ3kuA/m6YzfH0sSQjrsTPspaDTSQHDNYNyiZTS7ARnQ4mCjYe9PkQCF9UxIjMz1D1DcjvaSLJ5/xJJB3lXCN7t6jhaeowTRnRQ7NrVCGI1PVFXJ904dO+YlTE3FG68VYuKMe1qTx8SfRpimITBSy12ipVma5br2NsiKhmSqIS2iabc2oORxOyQ3w+YtVXF/I0EapnRHPYyt5XevoYAztJtRYJ7yF1HOmOSb331Hc91TbEuYkRPDpQlFwm1Z/FdU9d7Ie+FzYi+DJ09pjkYMuGcnBngCXYOghMNgsiQ69aSE28fuL5VCXDZZMXVYqtInBChXOqNn4GhCVZwUbYaLkQjW6qF1MFf6iP+ns+BVvI5yM7RmU9TcEmO0+6beYkJLXIAVV1pCNLqWFWVHVl6pj8MahhkrLvAinChKzu9N0jnfGUuYKNmvcitKrERMEmfKxX72W2kVcpMWUbcXqOLeKz1BjCLMGms69MnhGZYJO0oxfBCHePZMdQqzszUw5lrYqokAeTOncDtHunCkmWtTWqIqqYjyNgSV3lqUNtEikK+qBj+sPbaE5LgK4WU+fu9H9GDxGlb2apa2FYYlO8dr2CjWar+BS9mrV1UxWf+1SbpoLocKGu19L7TnyPwj4fgA8R1SWmpyq+TAoIkZ1xks9V9pz4HqrsXvkcbaI8on2meu7+EHNaO0BDVFNzsIVUsFHWEn2eXto6LM/Tqz7uis01uPS5r/HgpCXKNrK+yYgm+VogP54/BQFtTpL1JX1M+lii2520edZE+dzRkNPWHbBoHVCNF0C2qaG9WG64HuvlUrVVseHyTWI4z5uvCo1m0s20Yo2qnQkxIes/VbFBJTtU8IdnhFewica5vooof0xVTj35BiTcQmISPkRW/iiMkjzCu0FVAqiux3H81alMDCKZkUkl4gCZMoxOMlGraAEGhmzIZynfjNI2yCbvEXUjr1awSZ4lWcEWTukGAAzXoZ13jML1iOEMKpVPTizi+0wEdX1RrW/SOd5gLFE+y16RA1pFR3nOoWBy0ETBRg0VVJ0b4ENEdTBRm4k2gOsciQrPPUzolMk7TCUmVEQLXcFGU2aozk9NGUAOJc1CkYNMwwp1a9amap5g0ym+xGunqtOp5KLu/NRrMnHcUYscUJVUZopiqlOI7qT3p2kwIM1Mzp9MAojxnxkdM7P1WnUewE/2UseR7vzqa+dBrYoK+MeZSQEj1fteH09g2H2fAQA+/mEjRvy8L3p3KpQfV7hPsvnGqFgHMYWKyRzbEsp8cf+mLphF3xt0NFgFWwcBNR8VYBICaLDpJpIIMg8flUAJmzxX1pa6MJt400yUMuQKQEQvFbU6p8pYNzm3SQ4236SvDBkLsTk32CxQiTOTxLDU0GDqhj8bY47qmTWR3/sXZg3ZQnzf5Em1wynYqMSVybVTSX/HcXx/C0vqUoscOI6T8bVTc7DpVYuSzxTvu3+uoc3HqmOaVG6Tkx3UMaeYj4njU1QKipW1M4UYIho2/NGEYKPm2DJJoM9SXpr9vlHoFDXcxoR4p6ee8H8uu6eycxuFiGY4DnXnoq5byhBR4WPqu64jn+l2Bc2eAySFQgycKNRNqjoHrIldQVQoEe0PgK+YqlOwUfNsmhATfsU53fZSV/ykXbtJkQMq0WNWeVLoJ9E+VfUHyFxIoTsm1ZY2cdxRQ4Ol51G8R29/u5b7XSympDsfNcpKZSr5Vd8qW0Fmz9FJLtn9MHEGivslIwWb5nl2JFiCrYPATMEWYkIjenVURlY4BVt4FUamJIaJpN9sIy9fhKkb+Yzb6cZHE+0eUZKDqs5nUoZcrfwhSsvD5O1SqSalm/twBm4oQsjEICMr2FTXQyNgZceghlip2pqFM/D9MkksTZ0XTLx+6udOu58y40ul7KJ8lvqc/izZEFHdJs2kyAHZ2ZOhYQ/ocg4S753JpkZmnBPGQvYUbGKIKG3jCRAJNm3YembrNaB+jyLUvH9G85f/c9n9l48P2vlNihJRVSGqghXUMW+mSqPbadT5K9NwTh35nLmCTT2WfMofTVvf5pxI4JjMc1SVsvJ9MylywHhRTAqayPoDGNoqSVo7I5ubqmALQdqpPgujtqdWhNUdkxoWbbJe0x0RtOuRtTWJclDZdGu28tVidWOZoiY3U/kRbUSigw+gPyPZ7aD2U5mDLeOcqTs/LMHWQWBCMsny2chglodD/K6BpyikKi4MwabuJ80gM1Ow0RZHaviO7JhhyUqArioRj6lTsFHL1JsoUKihKSY5f+h5uwyIQN9mmrYBMTE0TLyT1OS71PuuJVuIoQJ07zfdyMp22JbsmCYecTKZ79ArA0rVLyFIf93cyRJsppsvFW9HDRGlJqGWfRY2cXAYR5OqLbWClylqG2kVEOVhVsH3WKtg822qaHMsoL5+soItxAZIdX45sUq1Qeikrow4k49j+foqD2UljkNimBPQEjnYqOulgYJNOX8I7QwiPFTrukwtYlJ0Rp5DUkZs0uZu+pqlvnb2fdOR6dSxZBQ9QCxEIa3KTIyIUFZKNBjv1DybsveAmvvXKF8a0QZRFjkIW0WUsD7qQ0RpbU3yoPmUpToVKkFNbhLlQCZ1Q6om6c4amg0QNrqkI8ISbB0EVKk84PduquXqJptE2qQiDXNSeGb9HnHapK8l2DKtIqpKompitBITHEslyiEnSZ8XU7NRyjSEWJeDjbqRpm5mpWFwWUgQ6lf60UkutYKO/50eEh1usQVom3t1O9oGVZujhvhuyg1UWt/puSjohg45lMNAIWSUA4UY/kidK5SJpX1kqWbzRQ4RpV0PIHH2GIRO0cOU6Iaj7D6ZOJqoYad+BZv6fjqOg9vf/QFXvTgb22vlxYO84wibg7AECpVAkLVVVzCVkUeK4zJjTlfkwERRLBs3MvW1CbEqfmxC5lOdSqoxIrvN0mdpcI/kTphw6wGVRKCSIrI+qUkZGtkASPLfGjxL1fshays7bEukZTFRE7Hvkcm7rvoslILNxP5RprMQ9yU0OzrVHxOSiWbbkwtHhSS4AP97Y2Ifq/Og0a7TiGAj2ojS9Z5oV5iMZaqCTVlYg2ojEklZgG7rmEUv0OYFk2N2NLQpwfbAAw9gv/32Q+fOnZGfn4++ffvizDPPxHfffee1qaqqwujRo9G3b1/k5eVhyJAhGDNmDOLxdMz0u+++i1NPPRUDBw5EYWEhevbsiWOPPRaff/55W1xWu4RsI6sKqfBtakKGMwDwxaOrSDP5hpDm7Q1bncqkra/8e0hCCKATBiZhtD6FAXGC1ocQ0wxMse+6KqKioRN2AxI2JIi6kTczsmhGiTpkLXNDw2R8UlWkYRULyaTj2xSr5w/auyEn/WnvRlZCToibSRMFWxjVlHQjbKICNXBOsAo23abXJCSbmieGSkKo7nuYzZ9sfTRJAk05ty68/tOF5Xj6yxV4f9563PzW98p2AD2xNXVt9xFsuiqixFA02f1UzYl0BZvsM/omUapaCBXiZTAfE50byvmYSMaHcaJoz58p0aOaE4Tno68iyv9OJQF18xw5Mb4sh5JBODp1rqCGmFGfDzXMu9FAOSh+N90ucyd9WCcsILlHBgSoioSVqqnJIfc0h606RNT/GTWPdJNiTximmAtAS1NhFlVkYifR7AWzEFEiWUq8R0oBicEcT43CMVPaCe9GFuzjjoY2Jdg+//xzbNq0CYMGDcKQIUOwfv16vPbaaxg2bBhqamqQSCQwfPhwjB07FuXl5Rg8eDBWrlyJ22+/HRdccIF3nNdffx1vv/02qqurMWTIEGzatAkff/wxjjnmGEyfPr3tLrAdIVTeGwPVAHVxNAoRzbLhpivdTJ34fQaZ0lthMvHS2so3zTRCimpg6iTT4mJE3aiI4UlcW18+iHDeEiopYXJM2XFNNjXUa6JWFcoGISTf0NGMXur8Qc39ojum7BDUd4t67eowEjpp59+smBBC9DEvuyZZ96khotTr0SnTqAo2k7AgfzgWzRhUHZN6HiBzMkz1Weo8tLYmCrbv11Z6P7/33XplO8C/gaSGrac+C76fRlVEDeZO1XtEz8GW+QYIUCjYTOYvamoB2ViQbujoRIs0L1MI9a8s9DHVJ6IjQ/nciccj5ETyjukjZeTtqM4WgF7BXfqMDAhLqvKQrgikEpsa5whLsBmkfhC/68Io/QI5VJD+rtOriErWAoO1iOzsUe0jqGSpQdg6lRSSOyfo45iiotcJPqgFYuR7XGlTX9i9bn31rcUSZ0u4PQSd1FW+w8S0MCY8AH3+oDlxOyLalGAbP3481q1bhzlz5uCHH37ATTfdBADYunUrFi5ciLfeegtTp04FALzxxhtYuHAhHnjgAQDASy+9hG+++QYAcMQRR2DGjBnYvHkzvv/+e7z55psAgEQigZdffrn1L6wdwmQTIDLqVO+P6jPZMYxCRImGgTqUlLapkB2Tuog7TjiZLkAPH5Iq2KgqP2IiZJMQUXqIgtpoJaviiEoqqkEj6yegzgklPmOlx9HAw08lN6khjUbEN1EZZpJwlfrczVSGRGPQINEtdcMfRqmieo9MjklVTck2NdQKhNlWsJlUk9Qd16cUNgrFD3mPpd8nGtcG+Xko4ZgNGgXbLqV5yr+JoObPzHRDaBQiajAfK4scMD/rKtyG3yTSwoKoicKp63WqP7Qxp1QKh1CwydqZ5J6SHVf93GmOO8qG1+sTcc0U+66y5wC/wouaKy71mckaQ3PshC3yZJIehFew0e+76jO5raIaH9R2NLsA8I9lqu0FmDlR5O9W5naakTNORQBL9gJhHNiyiARA/r6HUcWZrFlUp6mOLKaEiIZx6JsoYJWhwSEcJsp3gxw+TX+WHQ1tSrAVFBTgnXfewSGHHIK99toLd955JwCge/fuGDp0KD766CMAQGFhIYYPHw4AOOOMM7zvT5w4EQBw8cUX4+CDD/Y+P+KII7yf8/PzledvaGhAZWUl929nhYkUm0p2hAnDM6kiSs1LQA1P1b37PlWLAbkYhqwAFJ43oqeaLvOlGeFaD65wTGoIsVbVQtzIh8kPZkIyUXPqmanI5B4l8VTUypMmYUZGCjZy+FC4524iVyf3MwQZppwPTcJYiGFwJipUssqQSrCFCMtRhZGIx9CR6VJCm5iuQB2OHs5bS62qSCXdws4L1MInANCpMFf5NxHicagqIUC1iaBvVMRnbGKwq/pJzvtnkhNTRrBlWbVgsr7JQvaoBU0Av/2T+j6V0KE/C1VooTiW1SSG+D2afVqfjSIHBiGA4n02GcdqBZts/vK3o6bIAOgbeT/5S5u7TQqayPqj6pPaIZf5vkRlo1IVbNIwbZNCJdRUDWQ1omLuCpF+QfUZ9ZhqwQbROUq201TzHP2YJjnYxGcvLXgTwplnsgYrHbZk8jpz+9gkX6vOEduR0OZFDsrLyzFjxgwsWLAAyWQSgwYNwuTJk1FaWoo1a9YAALp164ZoNNXVnj17et9dvXq19Jj//ve/AaTItVGjRinPfdddd6FTp07ev379+mXrstod5CFWtIlXSTIZeZ9okwp10jc5JjU8VXbMsIoHk80k1QChbppl/aQu4HqPTmaGjomXiOqVVX0WpvKj6jNAlguDvkmjkrJUAzMbIa9UzyqVGAD8zy4saQbISXFqP6mbXjV5Q3uWsnOZ5GCT3U9VOJbs/LLHQSXyws5z4uemVUSpmwCTXIJmoZu050EN5aJWnwZo76A+zxTdmKWGt0nnVAIJadJPdR6hdLucaIpBU4Y/MofUF9bI3HEHyEkcKtlKXQvYc8eiaeZQet9lJKBJiCiZTDPoOzUEkbi+KYtg+PJmqcc/ldgME05OrdKo+iz1eebPSElsEu+7iSOUPMcT9xtmtgq1ncH65iPY6GPbxF4gK9hCJsY3Ir4yTAMA0EkmQEHaGdh+ZHLR4JgmOdjEeUka8kq8Rllb1ftrkkaEqlKWR0PQ5tmwFUw7ItqcYLvkkkuQTCaxatUqjBw5EitWrMDIkSNRVVUl9ZSzn7H5N1zcfvvtuOOOO5Cbm4vnnnsO++yzj/LcN954IyoqKrx/LqG3M4Iajw2YKNhMvE/iZlblBTUg2HzhKbSFWcOvSXKlhPQYGHjOqYSB/B5RDQgiWWlgPFEXVp3hRg8RzZxUMcnrRg1Fo4ZdmPSTqvjKRtLRMAo2erVT+n03CdGok+T0C+OhUz5zEzVkCO9kmNxkAL1SYhjvser7Yp9077pJtS9q3kHZu2ASTiVXKBDnFRMFG9HoFY+pCxGl5qRyHEeiCKSvb9J7TFSlyY5JqdhXmBsDoCaP2PupS84u3fAbzDXSIgehbAD9ud3rVrWlqmSAcJsvqkNL9X3Z59T1IBt2hahcUs8f9HfYd34DosVkLSQ7Dag2HTGdhePQnFJah2kI1RN1v2HmFKLN+2b5sMKNJRMlObUIGXV9AhQEMLFP8jBJxZ6OSMZRowKoDlOA/jz1exO+rSwfZxibmxqxIuuLrq1szZQ7W4LXYd25bQ42NdqcYANSRFn//v29HGzz58/H+PHj0b9/fwDA5s2bkWx+iOXl5d73WMVZPB7HhRdeiDFjxqCkpARvv/02zjrrLO158/PzUVZWxv3bWWEyAfhCAI0WMtokqfI6yiu0SAiQpD+0LisKNqJBJt10E40Kah4QwEDBRiVlqF4ijQciUwWb1tNMHXNEQydMVR/VZ7IxR80XkuonrU/0DYiJsW7g8SR6zqjPyGRTocqnI2tbVS8h2FogBxuVfJEd0yhENOkPv1QRTzIjj76RNiCEjAyy9Ocmlf0A/7zrwl9FNCxxpTgPNeyDSIIaVd4mzGkmyrDyygZlO/+aaUAOEO6RrrIgPQ9Zul1BXqy5n8EbJVNS18RBIX3fQpGy+k1Nfk7aNJeHiPo/U1eopH2fPN6ZQZTH9pN4ftWYE0+vVP8S51jAf5+V0QOy61Sc368CVdleEntOYQORCU8DB3SmCjbdMdn7F0/o0gWEmU9VDvXg46k+V3Hv4pxm8g6Z2ai050Zdh02cAyZFOMgKNmLIPCC3dUzmRH/eY1o7QL1umlURFZxdRFuB6qQ3SaFCDfMG6EQgPcKD3k8bIppCmxFsW7ZswfPPP4/Gxkbvsw8++MD7uaamBscffzwAoL6+Hu+99x4AYMKECV4b9+8VFRU44YQTMG7cOPTp0wdffPEFTjjhhNa4jB0GRvHpxCqRRmy4MHGHra4XhphIOuqKY2G8JWGqdQEqFYbEkDZRsBGNW2ruqFSfgvsoO7eO2KQm5A3jCTQxyKgqG2q4C6DY1Ehz7oQzmMN4BwH6OCQr7Qz6aaJgq26QEGwtkINNrmALt5lU51DRH8+FTFEja0qtyqy8HuKYFUNZjdUNqhxs5IrFtDFroggkkxAmRB5xo+WvIqomrkSiamNlvbSdnNTN7jqsDw3mf1cpZdjPXCUXxV4wDUtuCQWbbN3IpKhHTiyCvFhU2U95rrZgUsQFdXMvD+9K/1zAEGyqEHf6hpJIXBHD+oBwqidlDjZfiCidwDBZ36gbeZVykxqSLU9TQbv31Hx6gGr+oI1tQE60yOx4EwWbb/4yIUslbWXj3e2r//u0tTX1fdqYN1HLUnM5y44pC5lX9UmqYAtRgdnoHSb2yajIAVXBRk4jQnvXdMeUO4VodivVPs5GzueOhpy2OnFVVRVGjRqFyy67DEOGDOFCNEtLS3H66aejb9++OPzwwzF16lSMGDECgwcPxpIlSwAA55xzDg488EAAwF/+8hdMmjQJQEqVdvnll3vnOfDAA/HII4+08tW1P8g3njTj2ojsIBp5RlVEQ6gLVG0TSQc5MX+IMdnrR41vNyE7iGSctIookbBU570JPocL/2JPMxq1iUR98f4Giw6RdDNZnMKEOKTays5DMzCplV7VZAPduygbc9ScP9RQDpMqSapQONnzqJYo2Mw8dAJ5QwxTVJ1Hdi4TR4L7eSzKhocpCDaJgetuQHJjEe99oisjwhnsJnl8pCSEkpAiGtcZkGEFuVHPCJV72Wnvq0lYjqyfMvLMX0WUvgHYoCLYiOpw2TEB+UZefG4muTtT5+fHO3vuSCSt5KKE0ZgomQAze0GmBqCuBya2ivv9nGgUObEIGhN0stMkf6U8hyPxepg5IT83BjTPw9JjSs9Ns0GyESIq9t+tDhqNRoR29DXTV+TAYE4yUavUNVI38kQiUtFPk4rnYtPGpiTyc2KSdpnbwqZ2jWjHm+RbJBc5oCqXjfZKNLtTdlxlLi4DO43qcAlT9EV9Hvq7QZ0X5FXU5fak34FF35vIiW+Zw5M2jpVrm2z+MHjuYaudUiNRTEQkHQ1tRrB17twZZ599NmbOnIlly5YhHo+jX79+OPLII3HTTTdhwIABAID3338ft9xyC1577TUsX74c/fv3x6hRo3DzzTd7x2poSIdELF++HMuXL/d+LygoaL2LascwebGynVha9rnqBaRuAmQLAVX5A6QWMtngp8qRqaons3As2jVRq/LI+kn10FET3cp+Vx1Dm58nBKkrJYkMCGVqxStqOCVAL0MurfyYkBsF1DBaedJ1EwIlu8ak0liX9DO0gs0gZxA1LJqq6APoSlDqdao82roQ0YKcGOKJ1L2R5aU0qShNVmyJCmXTIgdEY1RdcIdKJKbbFebGPIItTE68MKQuIN+siO10lRLF96tG8l4AdMWCSoVBcW7oHTPyTVVBLr9BT5NMES8EkeJAylaIaBg1kdwu8J8jaE7KiUWQG4sCSJBDucxCRImb3oA8PnwoK5UIpN131WZSRro7jiPNySwPF3QQhUCwmUQaEJ2Wsv6rnpHsedTJlDIGIaJUBZsRaReCHAgTcp/6XNYfByK/J1WWKtYXn42qcG7K77vJ/idzZ43scyM1kWKOJyfBl9w7aaJ/1ftKzAVGXTOp9hygCTM3sFd8+VDJe1TiPKeMaJI53+nvsFzBlvmYDTu2OyLalGAbP358YLuysjKMHTsWY8eOVbYZN24cxo0bl8Xe7XygbvgB/0tsRHaEJHrIpaMlXzeJT6eHNdImaICuelITUkRDWkLAqL2YtIXZVx1T0UfZ31QGLlUKDfg3O0b5LUKGiJIJJYN3KIwxSU0mqqyyFpJAoYYVUj1aRgq2piRpLAFAlYRIkD9L6eklRDFNCaA6D+AnxEy8frLPlQo2jfGUnxtFVYP7fZoxaOR5JzgSTAh61WepTQDtflAVOWL44TbElf2lhpyYKSZomxV/EuZUCG4sKiMRhE2vynkVIv1Cqg/BGyXjyoKasRiNsASbI1ceMd83JfdMcmeFUrAZhYimzh2LRpDbrMyhjs2wIaKycSwbS2zfWXKUur41JuRzvHhNyjyGCodaXk5wRILbp1wCKUNV5FDn8lQ/6eQANYcSNT2ISfVF5VhKEtu1QJEDsirOhPgirtfUIjomCjgjR7nouFM5iw0cpjLOkVrxM2g+zMuJetdHVbBRo0FMbBUqoa0n2PjjypRhYfZ5Rsow5T2S2dLUftLmJBP1reraOxraRZEDi5YHNV8I4DeqlIlhiZtzWVuTENGwIRLUyZyaPwWgEygmCwnVEyANo1UaWbSNr/ixbsGR3RPZJamIOGk/iQo2ag4Bak4lIJzhZhYSQNuIU6sKqTYgUiPLwONJrSJK97bSNxWOo3833bxEgDxEVDa8qPlXTEgRsoLNIKl1qk/856rzyAxc99RsyA71WRq9b4Rx7BIi8mPS5lkzItDciHcT6AP0RMzyz/z9oap6AUUoB1G5nDqmOOZM1tbMNwaAbPNhtm7oquGmSCa6Qkqfi4tOTEjJDmLVPKo6NIgUyWGunWr/qMYHddMt36BKNmlsiCijYAtbWMiXRsTgHQpdndOg7+KcrnR0Gdggss+lIaIhSDulYtPAXqAq2OhkGt0ZSHf20Oc0cU5RKstlz9LgPNS9gXLNJDrK5U4M+jikqp7kCrZ0u6I81gahXWdY57+UKFathb7nblClO0RFadnnJnOX0ZpF7qf0kJK0PbSxKftuR4Ul2DoITLw69BxsmStlVJNKg2xjQdz8mBAoYZPYy4wqet4JuseCSqapPE/i6dVhMXQFShhDSbXYik3VYRe0Z2QWtkXb8MuTAdMX+7DFA6ghjUZhF8QxbxLqI74bJgl5AUU4VnPbTkW53mfyEFET8oj/XE2m0xVK1FxkVGdAJlVEuU2vhOCjkm4A/d2ShjMYhHKQlanEylyq84gKNt356Yn+6ZtzaQ42iSEsmytUhQ7IzispMWqiwggeN7ocbPJxo35GsUhES+CICketatIg+bd0QynbeEoeMXktCZiTYs052ADFuxEyRJSa1zaIgGUVbCZJ2+VqfVEZprIBMp+PzT6jvUcmRavUqQH8n0tDRIn2gizM28TRpTqmz540WNvDzPtA2FQetPnYSKVjQCzIowJoa4ns/GHvu2ocykhd2amC1FFFzLygs+dYUOdjkwrd1EgpsyqismvPnCgOqzyWHVPdT/p+1L/fMHg3FNfe0WAJtg4CkzAF8SWmvoAAfTOrNEokG0KqlDqsgi3M5KP6zEzBRluwqSo/uSGquh5aHwG6oUN9RmZyceI9Dm240c6tLikfvIFI9SnzcWwS9qlMnkskFkxCrPye86S82pcqlE3zvncqZAg2iYLNqGIflbA0uZ9E44ka1qPMwaYxWvMC8iLJ36Fw8xx1Ew+oFLCScSjNH0cnroLeLZ4coN0n+rxPJwekagCp0o26+VIQA8R11OQeU8k9QOF0kOXnaW4WjUY4xWpQRdmmpJlq0sRekIdEUd8t+rnd9yAagadgy3aScNX3qZVJeYJNX0VU6cSVOihp3zWpoCpNPk61F4jrk0kVQJNwMBnBRq1OLrt1JuoXqrJV6QwM4fQ0UynTyBtqwnkThWEYpZzqmKrv+1VcdFtWdh7Vc6ttlNhUUvLGb9OxY5hTh4fIXyk7f1AIcTSSjnRQqr4F28IoRDS0go1G7pnY3LLxne0cbCbzh67qeUeCJdg6CExerCBD1vu+gVFC3XjKpLrUzY+J1DYMSQTQVUJGno0QoSCyjYrRPfKFtpkpEaghkVRViEmIFTWxfVgCRXo/iUaB6jzyykdUj5LiXTPJFUdU5ZmQoOL3HcfMoJItzu79LMiNegSSLAebidePWtCEGnbqOA6ZcKBuythxzKp5ZNVWPWIikiYmqKHSJupOeo4+ukEmux1UchBQvFsBY64wgGAL4wxQrQ+ysSSvIuo/t4zkSZ1LMNgNiGuTUHrK8zDOg6aZ+4NCRKlKSsCsUqJ7fpaolubDIto/JpX92GvXvcMmIcTylAH0Ta9PQcL8nkk4OkCzV6hFBlSfqY4RNqyQGuEhJTZUG35i3j+ZvRFGaZv6nHrMzO1JgP4eqEMAJechzvvKvU7CP7bpIcQ0cg+gj9mwjjfqHkRNsOlDwl04jn8+5hRseebzAvnaA+bOnGhUm79S9rm2AJtIsBGLBYXN+ye1zQ3sH2reUOr+Xp2f0P95TYMl2ABLsHUYyA0IuXcvjFJGqYSgVteThUSGCGdQ9zOckUVdXE1ISHkOFNr9kIeN0u+RL1m1ZsGRblyJm3aqJy+st5W66VUdkxyOYCDVp44FtaEhGPYm4QxGKlSq54uuGqAWBQEU77ublykSQWl+qjZPdUPc1072usoMInkIjeLdIBKWsnNTQkbYXN+6ubckP12TSBoi2tw2GoXWwAyjPFZ9JjuPyYZfTvSGdU7o+84q2IKSuWs/y0DtUZynD6GhFkOQncssRFT/XgeF0frCXQyrx+qqc8aYKqKAX3UQZoMKBM+fQc+InhKCRlyxIXjRSEQbIioPPwxeizxlR4iUIex1swo2k8rdFFtLqQIN4dhVf0Z3yPlDROlrq4ldIw3XI6cH8Z/DpMiB7N6HcV6ljilbMw2eJTmdhQmJkLljxcQelBGrVHtfdlxl+gUiKaM6T41EwaZ2hKqdgey6EVY5LV5TkNo+Gk07R9RCDv5zXe5QXzhpIklS1ZGLByjy9FIV36q2QXnydJ+Z2MeyMV9V77fNOyIswdZBQJXFyyZuE9WAcpIUFwhl8u/MCRRqcnhVP008X3QFG82oUB1TGiLaAio/f7hcFhRsVDKMqEpTfV/ucTQYmwabIt95DN4NKnGlDncJXtQB+YJH2YC4RE/YcAiqsoRquCWTaeVPLBpBSUEzwUYMEZVJ+mWnNiloQiZVCInpizQkBnsvizmCTb0BikUiyGneSJNzmxFJXbHv3vcl1y7LkadqSw7bMtqw650g+Wx4Wxi1Wgafsc9SGnIiI9gk7QD/8zAqchCQz6owSIkgvDOmCjbdWIpFIkK4M7/uSdfLkIn+gfRYLA4gtMlOOqKqhf0qq95rSvqLA8mSrisJ7eYDRyJp4l265qocHhqlCqtgo6riVH31b6TppIhyzSSS+SYErDjGqA4xt5/is5RVSwZMcrDR5km1Usb/WaPEPpfb3DRSBFCQmMQUKKrzhw7ZJ44l6v1MGJDPsu/Lnrl4XMCMLA0iZVm1Wa1EecTeT7aKtbgecerwvPTcSa1MSg17TTp6B3gswhSIoVYR1aQ2oNjoVIc84Cc8qYXnALP9BjmtATXE3MD2qmlMKAvadSRYgq2DgKq4om6uAUMlBLHMdBgFW9jkqGFJhDBKOUB+T6jKEHISVeLCrAsRpYZP0qX2JmOOaOgYhEiEMsJDhiQZVcOVhDPIYJJvkd14uiGI1Pup3FgQN77UzRd7PbFoBKUuwdbQ5N94MsfMaTYGqRUAVWNOZidQ339Kkl2WxNBVEdVt+Fn1S4QxMOk52OhzPJUoKa+qVxzT/5l08ybtu/SQCkLd3459LzOpgEgdx9LxxZyDVSNKq4hKc7WpihyIG3762hqkAOHCaKXGebiNim6TKoaIisQ7db1Un9v/Geu5LwkitImkrrpau/pdj0UiyI2qN+jU9wVIb5ZY4l1634njRrZmyPqo6qfs/LLwelVqgdBVREM4RwG/+s9EaZdq7ycMZJATbFT7J5xNJVWwhXDYqj6T2SoyElJ1fqoqTuUvptoqmaSE4RXStGPKcqABMge4n3QHVAo22R4i3a4zk9c2SMHGOgNFG4RfN9S5M8W2svNwnxOvU6Z8pubAlVVL9vpKcHaFysFmkFfNZJ6T75v93w2TBkQ8t7tmJpKOVhXYUWAJtg4C8kbJYCMs30TQjAqV8SF7KclVRBXeNOrCLvdyq8gOWp/CxLyrzkMvckA3wv0hvAqrDwqFFHEsUI1jk3sUltiUenCIhptR+HRIlaFMwSY1sjIcc65BSF1cTUJjTAwQkUhg20UjEW8Rjyf8izh7O1ziSqpgk3Q9LGFJDXME+HvHGuLicTmCjSHiRNKQPXUqya9ZiKiJI4Ga36e8skF6TGpVZyrRa9In9pC6EFHZhh+Qk7XU0CV2TuUUbMQQURnJA/jneWUONrIThh2b+oq04qniCXWhAXkhC/VGPhrVEzhmye5p8xfbrEjzvgHhFWw64ioSAXJz0moRSs4glVPMC51ilR0hyDDVO2S0jhNJJnIeRANnD7nCpdIBFKykTH0e7FwRf+fGnCxENMmPEdnxADNFHtUGMYkakdpPxM9S58/chpB9piKu5CS9fu7Wfca9Gzn6MEmpgk3yzAEDcpHsEEufu4wh2GQ52Nh5qShfHTbPKZ/ZKqLSeZb2DrPRCyx09hdHsCn2s+L3dcpraX5EYQ6gpr0A/Ndp5hSit6UX5iES9AQyvawgbdeoIhg6EnKCm/BoaGjAzJkzsXLlStTW1qJ79+444IADMGjQoJbon0WWQDUgTIwkai4LgK6Qoiq2qJOPSVWxsAo2ahiKSb4Q2WaJ/Sw/J4qGpiTiiRTZEmESOmUaKgjAq/zIHs9rSzZQ9Z4zXZ9M8tRR82GZ5PYgFzkw8D5R+24SIpF0gFgkuB1FWZoyCOOhSEyA/g6rvq8LPciJRVCYyy/iKoKqKC+GqvomuoIt5LNUSe0TSYcLrQD4d5hPti+QCCzBplHUsH2MRSPIzVFvpE0cCdTwa9n9UCvYaO+bUeJg4tyd9I1391zqMcdCmhcpg5yFRYE52PyfKRVsRIOd6oThlAgadSUgv/bGRBIF0Zjvc3KVSibUmQsRJVRvDJ+HNX3MnFgUebEoGhNJckU2o0T/vhBR4R2OqRWWqvsug1ddj8nNGJSuwLUrAD+xKrZT9RFQr7nUQlpUAsWEWJWqDA2cZ76QbNX7pvp+kwPkpX9nx2FpQY5HcsgUbFwV5JwY6uIJ8tynfjckfaSmQAjrZBPGvPu9xkSSe/eBzHLFueN4e11cug7LnAZUx07QHB8UXh+X2PGyZy7LhwWk3q1cYZqlrtfsPWIJthoJKcLbVDkAUo4zcT1ij8ldO1n1bUBSaa4zFo0yuSZpa6ty7lQQfD4FG5GABSR7rZA5B2XHBOSV5kOl91E5zpL8WFpXkbL7ahqasEtJvvQ7HQVkgm3atGl48MEH8dZbb6GxsRGdO3dGYWEhtm7dioaGBgwePBh/+MMfcPnll6O0tLQl+2yRAagbQl3SYcoxqQkTTcJYqFWSdMa67/MQ3p/U+WmTH9VjANDVXew9KsnPQUNTY3NbB3ms19skTFK4Hjc8I0dkbyRtU8clTtLEZ6nOtUQz4k1yPIQZCybjg0oAK5NVK44ZEzazJuOY/dxVq4RVDVDHB9tP1rgWPZ7sOxyNpENEAaCqnl/EOSMvV61gk5Mv/msR+5n+Pn2ukT0jVYioTsGmK3LAnjsSkINEGjrppK4zKmxAyGSrpN1GhYKN6h2Vzecqhwk19JzbfOWqyQEVkScj2MiVChPyZykNEZUSbKqNfDDxBKhCRPXzqY78BRQOgkSSI71dyENe1OMrGo14hBAgI9gMNvwZFNHIiUaQn5si2GRVe6lhOarwNB3JFItGkKMJEZXmZg3IPxczULAV5cW88SbmvmOfY04sgmgkNX+EcVCGVayHDVWkrtcArZotoHbY+EKDhXlhYzOBURewbhXmpQg2agJ9s6JEtDXTJLwtyM4qzI15qpfGpiQg7M0zSU3SvTQfP26rg+MA22obfRv+MPuIoOISQepO9h6VFuSioboB8YSDeCLJkesquySeTKIQ/DwrM8mCSMhSZi0KqiJayIWIqu00NjcjNQKJSmICKmemS7BBq2AzKcikSmXkj7KQ9118loD/3TQpFKIiuWT3ibpmUe0xkoKNIWurJDmSOxpIIaKnnHIKRowYgT59+mDixImoqqrCli1b8OOPP6K2thZLlizBzTffjEmTJmHo0KH4+OOPW7rfFoYIpWAzIKnk3hL/d1UThWwyJudgIxpjyu8bEIZkFQbxmMq2AYQUK9n2e7npBpGZxzNz8oma+8rM4KYu4C1xPfRjypLyU/M8pdqG8AQS+ukaReRCEiHJRW5Dx4YUiOosYePJGq4i4cGHiKYMx4Ymf8JVo3x6UqOV/v2g0LyCXLWSij1mcb7auGUvLxaJePnn5MYtnYSghw/5PyuvohNsVBWXyZgLIpq14YdMO5ZzlCkMMpk/igKKHMjWR3UONr6tarNAz8EmH5tUB0FQqCLXVnPMWCSCvBi7URNz/tA3StQiGiLJ5V4/1fFISd7vwqdgY36NRiK8sywLaztbmTSIQOGrAKrJMD6vG31O9F2PUqmiJwe8dkpbhehcMXiHxc9NwlMBSYgo08fSgvQGVUrmS56RtAKySfSCbH0jE5sGtmzAPWYdTfS8y7Jjpn/uXpom1LbWNPraUkl62asVpLgqDChywDvPGJtGdJ4Z2MLUeY5txjosZQo29pjFXIhoQtkuk9Bxqtoe0JN2OdGoR2olHZpiTFm9VXHvxfWAfe45jMEgD9Pkj0mtDg7o9gb+tjIFW6i9juJd59SQBXo1ZEcDScF27LHHYsKECcjLy5P+ffDgwRg8eDDOP/98zJ8/H+vWrctqJy3CIyhcxgV1cw3QPfcmE4U7GUcjgIPUxjFMhUyjyoAhSRVqXidqyAggN57UCoOksp3uM0B+nxoTfg8ZYLDpli5ktD4ZkTcGY1sW9hqGbDW5n9vr/KWrWyLswiQZsXvMWDS9+aKSoCb5CYPCLgrzYqhyvdeazWRONMLlhRLDP1lDxw3DSzp+dWemKj/dZyqlimyuiyveYZ2yo1ijemLbsWXqTclWUXhEJnWlCjZFiKjk3ZAZoibzubwitn5e0G0CROVgZTM5LvPwZ6LUzc+JeqpNmYEte4dUOdioOV2kJGbA+NCRv4BawSaDNKG5Rn3D5tJJtQ0mNlRGPXX+Euca992U5ZNRJWj3H5P2PMRwOVbB5nvGJuRi81ej0XThhCDyuiBPrUDhFMXRSCqMtikZKjzWRAkeVsGWbQW+SuXCfl6UF/PmDt21s2SHtHJtIv1u6MJ9pcUQDBRs5LzHJg7bAPKZJ3UzJwfYOb47o1jbUt0I9BT6JHueEhtVTlzp3/WgIgfstZcwz72uMcERFer9F43MD3oH2HNLFWzMaYry1LlD2dMEPcsw+fQAPXEVjcILEXXPHxSuq1SwKXOFqws8FOfnoKLZ1q+LJzjSXHZ+E9U1JQqnIDeK+ngSiaSDpkTSc4CI/ZR9V9dOPX+k23YKKJjR0UBSsF111VVKco3F2rVrsffee+M3v/lN6I5ZZBdhFGwmoWBUj2FQGEteTjqOnuw9lm7IpKcJNdEoN6gh8wilPc3pz4I2amw5bF/paJOk60QDgu0nC7lBRCNaTMZcJrmW+M/9n1G/T83FpTpmhYRgMwlNCTNmK+ri2oIIYviQvzpnuGcUlBCYy0ml8eBGI7yCTTS0khKCDdAbRLLzqI6p+75JNTn2XeUJNoEkF4geF7rrZpOZyxQXiscWquKo7No3KRRsss2KnGSizaeq88sT6Kd/1uWPShLvO0Bfi9j7lhuLeOeXh4hK7pHk3Knj8udShZhLFUYB/QwKEZWGuBt45OVrtp9EkLWVzZMylQp7TP77+rEdi0bQq1MBgNT8KZJs8nVQP8/pzi/Oc2xokS8s0SQ8liEs3cIJQUpwneOOVUfFGFUclYBNHVN97Xw7GYngb2dU3CLE5l52HlW1U/YeF2k2+OzvLMEmryLKvhu6NAD0uZPa1sRWkb1vslyovOqJHe+0eTZIadejTK9gM80LySLIpuHeIU0xFwAozuMJNq6PSgKXNmZl6wv7fFjHnYwUUdpUmly5eTlRrwiHbD2iF23wfQRAoSRnQ+Fz1HOnbH1SrZmqPZAuyoK1F+Q5W/lzGYWIEvK1sWNJVLGR7TkjBWz687JCNj+yujJrRwG5iuif/vQn7d/Xrl2LYcOGhe6QRctAHv5D81wpVQPECjwm1fU8gi2WJtiooUImHlRqjgh5xUyVoZK51w1IT2Cslyg4Rw4tzEnVRtcnk7bSXAdkZQedrKCro6RfNwhRlZ2b9g6lPqcRbHIS0sAQJub4a0o6qKxTG0/iZla8J2Y5XajPnUYUi8oONjm9ytCJRPg8IL58IVJS1aB6rNRo9H0EQEUg8+qG9OfCxlNIhOwmafYXOUj/nNqcq8PLVHnMqJ5mah7EsAo2KuGnOr/UMaPIE+Pb8CvUBVQFmyz/CNvHWDRNsFHDCqmhJCp1uDwfjX59KtDkqQMUCraQIaIsIZSvKXIgO/cWBcEm35zrx1csGkG/LkXe72u21nJt3UfEEwP0MStej8OR5DAPEQ3IwRaNwFPFNSVlTpT0zzoFCjcfx9JKO7Poh+DrUX1ODYMDFDZQiPBDk+Jc7DXy4Y/C2sr0PS8W9VSbuoIqOVHzirAqu0K2blHVwybvel2jfp7jKk9mKbyte0mB9/PWGt7h4zgOOQm+PFeu3qYxCZMs0eRBU9kV0irI0vsuIzbTP+dGo969r5WQIqrCDSJx53B2GrzxSbYriKknAMW7wag7RQUbC7mCjZZ+wYVIFqscoZSUEjLFJCB3JCidKCyZn692VtOd9PJnJnPSs2OuU0DBjI4GMsH23HPP4fbbb5f+bd26dRg2bBh69eqVtY5ZZBdU7w81YarymLINv0GFFXfRystJGxp0uTrNGAOCPV9eOyLplvq+5DwmSpfmz3k5s75POi8ZVUEGGIYVUr15RC+7CTEaVsEWVFHJ9DOKV9hd7CulBJv/u6qNNNWrxCsh0p9vrvErimQecdlxqTldVBWvggx2qmc0KoaI+pRcze0iES6JPUXBBsjHtqxpkHHNQp5fjCF6NCGi7H3LjUVR0Dwn+q5beObaCoSOfHxQNzVUdUNtYyKQxNCd2yQfqDQHicS4VSomxHAXVl0QYDDL5s4gtWpONOoRfFL1HvEeAf65V52cnVhNV6lgy/xZArR8bY7jcO9wnkZlKOvPlmo5wdYkee5BCpCcaBT9u6oJNrctT0bp1SK6/huFiErTSejvezTCbzx9DjkVIaQh6FN58tR53dj7rlOMqhVstPXeJFSRqlCiFl4BFIQW81kRU/laV1AlxpAdOrVsjHGiuBXfZe3486j6Tpt7w1RKBFRkQ/rngqAQUWLIHEewMTnYRPKdSnyL53bXzKAiB/kBOdjY03MhonGemDBRxsvukcwpxCneoxEvt5pMwcZeJquO8tlpgoo+3yPYaHNiUE47FrpiDKnUAmrnRFBEAddWMUZ0NqoY7isiTJEDiopMp2CjFn/LdP9lc7DxIBNs77zzDu655x48/PDD3Ofr16/HsGHD0L17d3z44YdZ76BFdhAmaamSpCJ+P1MFW1oCT5uMqTkJAIUqhajyMyn6YJJk1z1sYUDuBq7IAat2E8PLiCFBgNkzkufdoeYmynwcAvQwFLXqkriwE9upiZr0z52KUouOfNNNJ0GpHly2Tz1K0x5c2eYzvfkCl6uBUinNJMxSHp4mJ9iCc7AxyjRFqfhYhFe6URRsqs/dY7LvpZwslR8zSJ2ly8HGGng5sah37arrBvxkqS4ci50/6Ao2+lwhS7QrDR/S5BtiYWL4yYgeropoDnvfBUOUORxnsGrCtlg0NiX9lV6Zc7gVKpX9lF4PzcsetkK3Ko8Q9X03ycEmjk32cOI49inYJONji8SJAMgTcJMUbF0Lvd9XiwSbZF6g5o4C9PNcVLx2SoioSk3EbDxzOJWyeo7nQhqDcsXFdPkeVaSdMCcZRElQc9+pilFRq0rLFWwGdomCsPQTbKwTJZ33T0ZIuZceYZwoshBVE/WdXClDs6lMbJUgh0cmRQ6knzH97KEpcqAOX9af250/5GIE+boetBbxYYXq9011Lu+YCkeXCJEwdO0AKRmnmBd8RQ6YU0eZME2qzS/fF/k+AuAnIdnvx6LRDBRsKqe2yq5RpzExVbAZFZ4jRI0Ua1Ja0HNaquY5/bxgq4jyIBNsRxxxBF599VVce+21GD9+PABgw4YNGDZsGLp27YqJEyeiuLi4xTpqEQ5UjwGVKAHoYQomJEIYBRs11j/VJxoZZpoknPJ9eUJuxYY7wJPIe/2CjdZshIhS8+5QFXRh73FQfoug81MT3lMT3bJtY9GIJ5uWh4jS7iUQrDaRHZPPQaJWsOXEoshl5EyUEB5qf2THE4+pU7Cx4zCl/GEVbPJ+RiLQKtgyCUnKz416/ZQWrFAYwtJcOsoQUXEjnf49L5YmF33XzZw7YhAiqgv5ENt6fTJ4X6k5y2QbELMQUX9b6bmZr3OKGs3cyVZOkyeBTp87xrxD4vvOjuMYm4ONSNqpihyIz1eVT0ZKsAUUnQlSlYQNEdWRTLGIWORATUy4UCnYZM89GUBMxKIRTsH247Y6rq37bugKAqTOzd5PnWoy/XNMeIf91YVp7xDAq3pZJ4pvzKuIdx0RyCqpAvIosg4P8XpMIg0yqQjLgjqvyMernOSWV6OUr286sjQnFvHmZG2eqUAniuRdV9wPql1j4liRTUHSsD5FiGiYSubs9egUbCYEm6w4ThAJmXmIaHCuR0Ax5qUKNj/RwYVzRiLe+JSpjrhnxIxjX5oKbl5IR26EqghromDzbG7w64ZvfZQ9X/qYB4CJ32+UnhsIztkapsgBhdDWR4OE23/JCD5ewaavSNvRQCbYAODEE0/E008/jYsuugjjxo3DsGHDUFZWhokTJ6KkpKSl+miRBVBVPvIkvXSSSjp5SeaEIIY8JxbVGm7kfC4qBZt0UpG0I4YKqs5FVh0l5ItYUIioLnlu2FAKEwUbtUIdleCiJkdWHVOVyF2uQKGpbIwUbBKCrbYxoQ0P8frYlCCTfkEKS1bBtlmy+XSPKSbVJuVgM8hPGPRu8hs6dZLf3BivYBPJCfeQYv4mcXyqw2Vk73vzMSN6slQl35cZg3HF+67ztubEoh5pKI5jdrjGIuLmS03G6Ywxsa33GTF8SNZPQL4eUKuImswLQYShbgPEtsvLiXmbhaCQj67F6WJQ4hgRlZi6EFE5CRlSwUZN6K24R2QFW4gcbHzoklANjhDqo1KwsfMkn3tPvQFJKdjSBFumCjaO0NYVDzBQocqUMrJ5hj1/6n4yxLtPwZb+XftuKPoZtPnSq7joNiZ146k6ZhhHgsw+TrXVO5aLNDadGDru3ntdgnRRjeh7lgbRC/R8xjQnCKBQUgUp2LjIDdozClKwsQTb1mpiiGhQXkrG8U/NYxhE2ulUT6q1lZp7uCagMmgqRDR1/oampJb85kJENU5LtqAKNbUANaccoCdrRfvHZ1Mp1qegQkuH77aLR9x9NH8DlpZXpc+tINikeQd96zV9j0pJScM+o6emruC/T92PKnNgy9639M+2iigPI4INAM455xzcf//9uPjii1FSUoKPP/4YZWVlLdE3iyyC+rKa5MNqCQWb2zYnGkFesyFMzXcUNpcXNXm3+n4QvQMBubyCQ0TTbXV5TcxCGukEG1nBJt3QqQkM7rsGCfTlpK78fspUILJTkcMRggg2hpQB9JtuF44jX5zIYZrMPQ6qouWeP0cw2H2JraljW2EABJEIhToFG7OpyY1F+RxsvlLxacJQW21UPry0zzgiEGyica0i3uskz5J9t9h+/vWNeShnigOwxlcqB1szKaPNUwdtriXVu0HOwSbbkCluqOx9k82zUoLeINxONj6DQsG4BP7CcXklVbptkCKvm4Zg8+dgS4fWURSjqqqsYt/DhoiK1U51OYcy9bKr+iTeI1aJoKsu7EKpYFM8d3Ess13PiUbQvSQfOc03gC3a4TjplA5cxbygeU5XPIBTgOhJctZecOekunhCSzjEIvq8bsqQfV8/0z9Ho2wVUf1cUaBRKJkoU6n5Yk1ybFFTjijt1oAUCGwRH3FeY8+TE414hasampK+a1Dm0yNUC0w6iiI+UptKtg76PlKHzHprZvqz+gAFW0FAiGgmaSpKCnK8+ySqzlXjQ6riYrqjczrw4fX6AjFiP12I5JFJuhNVIQrfOBLypbHvu0jIqRRs4pot5nXTKdioz1K1XxFJSDbFTioHm5ljBgh28g3oVoSRP+/n/b5ic9rhogrR1FUC9s4RENqv6g9/TIbMZxT3r8/+ERsq0usWlQcwiURhj8mGiNoqogYE2wEHHIADDzwQBx54IJ588knk5uZi+/btGDZsmPf5gQce2JJ9tQgBqrrKKOxL5tGSenD936WUlHe9rXJPkWTyIZ5b9f0wRAsQTgqtqtQjD61LfZYb0y8k1CIDgMpopS/sQUSgd8yQJeVlG3mZV5kvQ64mWlL9pG0cjRSBTCiHKcEGANVSI492n1Q5SLZU+zfoqpATioKNSqYDcrKD29BpSGX2mefEIlxRAF+eKydt2GemYPN/7nj3KL2ZTeXY0pED6Z2FXMHmV6C4GDtpibRdbixtCDcmktzf2PEeMVCwtUSIaFGe/n1jh2yeV7SBSOAaOEzEPCmAOgebLs9UNBrR5qhRKthqBYJN2Ejna6pPyq5z4vyNeH76St/nIrmorCJKJAxEpZ0bVkgtZBNGwcYTxfq5U/bM1VVE0z/na0IV2fc/Fo1w6g524+0LZY1p8ukRw8bEKqI5mjBvtp9BqgGWlMklOuSKNPnSxCIHuUwONp2dpiMcwuZMpVbSBIKfke77ymTo0ndLvr5pixzEItwGXXye1BBRpdI3QGnnIqyj3Aufzol5YfNB+agCnT3EHMmcwjISQWkzeVVVr7a92GI/surX3LqhJcnTP7PzTJAqrlhTRTTTXHHFzDsshomK4ZzsHCI6Yqlru0jaueOzIUC9JzuP7DNdpVVR/asjn03yxYpr4W490pF61Q3p8cQ+I75gRXCKDNn9Edt50VyEAnu9OxVwf1u7PU0EkhVsAUUIVd8vs1VEOeQEN0nh1FNP5X4/5ZRTst0XixYElaWmhkkCdONavjCrJorU5zmMF8JN4soanFJjXeO9VZ0nqJ8mm7wgibH3/YBnkRuLIBaNIJF0tMnhA/NwhCxcEEaJkGpHGwtU45Y9d0404rUJynuT2hynjAZqTijZM6KSbgBfPIBKsOXlRL37WFXfhN6d+GNm4sHlihxINp9srjhq3i4Xck+v/H4EkR26UEX2HWJVXICfmGG9mLpQUtWcJiXZGVWc+CxZgoq9R6UFOdjWTLAEhYiyG08AWLmlxvtZvPZSxnirqm/yCB0xRFSvRkz/rFOqACq1bYBhn5/jXbOOtHPDeBubktJ21Dw8qT75P5eRuvxGSbPhF0gEbV4kpm0XqoItFuU2YA3xJIrSX1Ve5y1vz8fPBnTFXruWpY8rXLs6BxvtHvMb/lTC6MampHxDR0w4r2qrU1fGIkAX5qZsFQhL2Zy0rbYRiaTD5cIDRGKVVgDEJclL8nNQURfnlB3sqaPNtkpDU1KxAUn/rN2cC5tEtp+6sDG3iA6QmpPZSm5sX6PRCJdnU0f06MLW+X4CuVH+frIV/LhjcrllBULIIKk21dGlCi+TOnuIdp4yN5H0PZI7TXU52HKjUY5IqK7nn6f71agwx1OrsjYlHOQLuz5ZU+l6beIoZ4jAwmgM1Q1N8grMihxsZGd1wPiIRVME25aaRl/SdfbcfboUYs3WVI5FVvEjO6aOKBYJetemkzr/mfOXalRPmTr0SwpyvDmrtjGBUmYcsYeMRSPo0yVdzGXttjoM2qWYacvMNYz9U1kn3k/mmJH0/BVvFkhEIvJ5wfssgIgrzo95jmdR5Sc+c9McbECw8z0nFuWI0GpmPCUUz1Km2hT3QLL7A/idgfFEk7pIHXPMET/rh4cnL/N+31oTZ9qF29cEOfTZHGzVtsgBnWAbM2ZMS/bDooUh9xjQjJKg3A35zcYloEogSTPCk0mHNwaF/Ctsgl4qyWOSL43sVRGMde/aySSTflOTE03ln0sRbOrv5wohNJQwAZN4/7AEG9XTbGLIuhN8YV7MM5iCihzwVXVom0SZgWmSONg9Zk4synl1dJvuzoW5KG8OA5NV4CHnYOMINlbB5ifY3POz1eAAWrhxZX3cZxioCO2g6ouFmqTaovKHCxFVGKPRiD4Hm2JoKwhgeMcUCbZejLeQvZ7SglyPYNPl0gF4TzfAG7GNwrXzVZriHsEmeuN1CjZ+U8PmVCFuagLe1+K8GDY1/yx939wx1xzGW1XfpAjnpPUn1Sd/W/k7zGyUWAWbcFyR7KDkRQICQkS5Yh1B41N+nQDw/rx1PMEmtKXM264DJ2jNYkPHg4hVF8pk+5KPfco94b6zBNv22uAcSo6TItl2KcnnPleFKuoqaUabyShZAnBeraFP6M3nS2NtGjW5F41GuPxR5ZW8+pjtZ6cA1QD7vvGkjEhypfupU1yJoawi0cPaJKqKtOJzV9lpUoI+gxxskUjaCUEtchCUQJ9FUBVkfQ42npRhCTbxeSYZ4irPcL0GUuOzmH815O8wMbQ/KAdbNJLKYVnd0BQ4d+pISFU/gyJRopH0mlkl2Cvsd3ftxBBsAQq2ghzaOHafkdI5oVI9acgjFkHrdUl+DjYiNW/oFF+RSAR9u7DFXIRck8wxuZx2mvk4EgEnkGhKOpwDNxNlPHs9OhLSLzwgKtikIaLMmh3j380qVtHMtAsKERVfI5mABPCTutUNuv1G+uduJXm487Sf4qY35wHgi5uRq4gaRHiIeW1zYxHEE440CqejwTgHm8WOCbIBYaLScZP8ZpA7wWXtufMwv+eIk6QQBig7Zm1jkz8vkmpCkm7e/O2CjKwiTU4CQOUd0E9SLLkoNRybP4vF9KojqpdI1U+ziqM09R6VBA0K4QvKU8d2kZXKyys6ysaSPjFs+jM9EegjZWpFBVv6oOxmUgxnABQKywCPUklBjreR31arVrCxm0TZcWVezHjC0RIDfDiB3hjUlX9njYqcWJRXpvlKxafvuy4Hm+q5yQ325mNGgc5FarI0KRiDLqRhW076vouGFR/Clj6mqGBjPci+/CdElU5QiKjsfsxYvhVLy6ul1wPwBStkmyrv2qNpNZH83L6PzEJEpQq29M+cgk2XDyvKh+bq8qXpihyIG2meYFNvgESI5LvYH2XYFnNINlG3CPYjLok9UQWvDBFtvqYCzX3nQ5dS6hNXdCXOX6qxIHMksMdl77tvnuMcXakTuxum2sZ08RmVYiJofdNVZRWriO7aOa0qWVfBVzBlx1LngLw37vkjAcQ7HyLKODw0uZZ8qQU0oYqFmvlYRQjpqgWyCHLcccnZiSp2KaGseC+D0gBQi1HlRPkQUXGTyhJsplVEAVrIGhCsOFed14X7PHNiURTm6fJXpn9m30v/u0Gf90WS3l0zkw6fX0wkjlz7x0zBJoz3hPhuaBL9M19l3zcfGWZA6nJKqgI18c5XEQX6MnONWC2Z7TrruBBDScV5gZ3rfApcyfh85LNlXP7Z1LlZWzZ9Pb5Kq9y5o9rq0+yzYJXOQTZqDjOWALWCLTBElPgeJbl3w829qyp0xFxTJIKuxWzIr17BJp0PlYU1At63SJqEtEUOiATb8ccfj2nTpgW2q6qqwj333IOHH344dMcssgtpNcyAxUn3GZB+WXX5kwA5CeA4+oVElPk2JIIXnXjC0XpqgvokJ930RlawrF1y7gAvQowxhHWbmpTSTZfHR+ZxDEeaAfJ7SpX00ysK6Z9bfm7UWxyDzl0UUDZb9m7USjYqKkWNSOqyx4xF+ZwIizdWce04JUIRq06SKBGI6r+k8B5pK18yY4nNG6ZLqs2STJWavCZFmopTYlvO6ye8w+wmPC/GExOqENFoQA42I4LNfZYCWSoqangFm55k8qolR6OICaEBLLnK52CLckYz286f/4QJx9Bs6Iq4MFrxXjqQ3abpy7fguAemYN32tCHO5SBh3zfNc48xJChVWRpU3SoWjXjjOEj9kq8JI2FPHY0I5IBmLFGriObGIhyR+u2a7fz1aBRs4ngS21JyoLmhikHVAnOYsEJqGJ7s/I7jeOc3qaQZZVRs22riyrbsfZfmmuSunUYyxZpDH9kcnm4lxITwvuURCUuTa+cItu38pjeumI9rJaoBFSnjT9DO2DVEQsiXWiCpbsve9wc/XYrZq7dJ27EOMZkiT/ZqyBVsjHKQdSSEUEeJSmEXJgpt3ZjLiQkhosL1u+ePBOboMycs2ecYlDPVO2/AXBONRFDUrJIODBHVOOp1ijxfP4VnVJovXzNF8sRVo68PINi4d4NIPssJlPR7Wagho7g0IjG1TcMeExBsEM0xo9EI+rIhottFgo1XobrH3SYSbIJzRAx15tv6ug4AeGbaSmU/S3U52FhiM6K/T+yzYPsoI5q4Ku5i+LYiJ2epxpZl10EWQWlu3Dm+usEvIhHPLyq/WceU7B2ulOw11EUO9PsNVc7SjgoSwXbmmWfirLPOwp577okbbrgBEyZMwJdffolvvvkGn3zyCf7zn//grLPOQu/evTFnzhycfPLJpJM/8MAD2G+//dC5c2fk5+ejb9++OPPMM/Hdd995baqqqjB69Gj07dsXeXl5GDJkCMaMGYN4PD1Rrl+/HiNHjsSgQYMQiUQQiURw9tlnG96KnRt0BRvtu+znurwiqWPKv6/bnOdEo9pKeKo+6SoFsd4KuVLPf7wgMqwgQMEWNBl6nwkKFJ3nK705D/Ji+r6qieGnE2yyeyIzWqk57WSPUl1YgyUXNRs/VlGjMV5U55KVlFeFFeq857FIBAf27+J9/vWqbVw7dnHilQi0RU+ad1AIkdARbF5+MV+IqCNtBwCdOaWdfAMAiMUl9GNBd+1iHgyKMi0VIhpcDEGEblMlCxFVHZM1bmWbGlbFJSpz2OOKBR44BVs9q2BLf99Xpl4XIqoJy2GPyYYaA6l78uKMVem2HKEdoFxkxpxOwSateKfgndw5ICcaQNqxm5WcNKmsUzjGBDWkznvOGra6ENFYNIpdStNt7//fYm5udjc1OdEI7jr9p+jDkC1BOXqako7i3jHrlpsfJ2CDGoumE+MHkRgughTFPMmkXtfdEE13c6ELEe3OKCtkuSZVIdk6kslTsLHqkua5SXRiuLZKULoCrYJNIO16luZ7JM667WplR6eAdcNbiwLybKoKr+gKcJhUOxWLufy/V771fmavnUuUTVaw6d/1Yk2OT/H8LoIiPHSJ6cU+6auysmOJV8D4QkQZu0JbyEYxUUqdPa6jPMAhRk31wraNRdM2cl08oS2CoXNWq0OI1e9bLJraC4p5S71zCza3S7BV1MX9RQEUIaL++57+mSXYdCGv0Qg/PsSq402KtTUoRLRMo2Bjh0c0wudg84WICraF68wQ51m2HUu0yM6vsr/+N3+Dsl2JxlEuOidyiQp+qjMQSBHQ7LvJzrWqIgf+QhC+UzT3Uf8s3TUw6QTPibFoBN1KmNylzHNi12t3Lahu8Od2UzkyZaGjbL5FIH1PbYgokWC7+OKLsXz5ctxyyy1YuHAhLrvsMhxxxBE46KCDcNxxx+GJJ55A//798c033+Dll19Gv379gg8K4PPPP8emTZswaNAgDBkyBOvXr8drr72GYcOGoaamBolEAsOHD8fYsWNRXl6OwYMHY+XKlbj99ttxwQUXeMfZuHEjXn31VUQiERQUFKhP2IFBz19AawekJwvWwKSGiAL+JJli/hOdzFc2+QB+I5ydDzhVh5RwNPdsBiYJpxKbwoaOomALysNBzf+Wauv/zCRfG/Xa5VVm6WOuidlI68YcR7CxRok0J0KqLVelSLpRkS86snDOJEMi9OpU4HkI567ZzvW3STGOZceUj0X9tbN5u2obE8pk7mJus4o6tXeyc6FaaacKFZQqBwWvsEu2iPMClwdDLF6gMMRjwvWImyqTkBP3kiIRoJOGQGG9qKVcOINexSUmt93OhBGLIaJlFAVbVAwFUxuYuuISbLtenfzraoxJbs4Oq2Lic2fDSOIJv2fXRMGWYMaxPuyUJwdcY1i3AWBDRAGgvlE9llgl1ZLyKu5vvFIlgkuPGOytcau31mIzE9ro3s9YNILfHdwfb1/9y/T5heckm6dlhrAsVDEotI5VtspV376PAtcCXS4uGcHlkpY1jQnu2GzbHmW0asmp89MUbC7BJwvZEwlYrYJNESKqK6yRCh2PomeZq6oRQkSbvxuJCKFg0nB0NLfV59mk2jXiM2KPKY4R1XMHgFVbmOp2zPfYOU6+DssINr2dpcvxKbbVnYf9Kq+okTjEiDnY+M2xkEi9QU4k+MlSGnEl66c7LwSRkJkUwsqJRr28g46jXq/FflKqKgP6Od5VhpdxifmZNVN4h9lIAzFMVKb+lfcz/Ts3L2hs1GiEX19EAsUo1FlBSInEqqg2K8rL8dYuMUSUVyil17iKujj3/Pmw04hWianah+zbt7Py3CUap6VIMOUzc9LzX63i+mbiBI4LTrFShSpPlR6EWrDi/96cxzksAT6NCDsnVmoiUYDUveeKAzEEG3s9rK0iqthER6R3Ho0N4L5v7vxVH/en0+hoIOdgy8vLwznnnIO3334bW7duxbZt27Bu3TrU19dj3rx5uO+++7D77rsbnXz8+PFYt24d5syZgx9++AE33XQTAGDr1q1YuHAh3nrrLUydOhUA8MYbb2DhwoV44IEHAAAvvfQSvvnmGwDA7rvvjs2bN2P58uXo2bOnUR86CqgqIXmIlF6JFWRgqjazooJNzH9CzS/GheWIOa4MwjkzKR1dlMsabrR4+yAFGy8tV6sGcmMR5OaYhQmowoeoiYNNjks1yDKpdsrlvQkIy9EteOwxC3LTqsmg3C9sOKUstxmrGgCAnw9IqdgampJYuKFSekx2UZRV4JHn1NOTEGyIKKAushCNRrBn7zLv869XblOeu4uGCOSJFrqCTUxGrLqe3FhUW+SAzTfEVWnMRohowL1UKdjq4pJNIkPA/nbf3hjQLZ1kmFXh8iGiagUb2+9IJKAiLEeCBuezc9ux5wb4DSa7seBz76nnRLbSmPT8UkeE7yMAfM4fnYKNnWpi0Yi3YfHlOhIMVmoIT/fSfAxursD2/dpKvD13LdNHNtwkgs5FeThlv129z9jx5N5Pd/7Qqzb1GwNZP9m5U1zbfQo2rQpDdm792qqtpCncd4BXzLIONI5gC6iWrAqz8hNC/DMChBDRRkmIKLMWxRN+9SBPMtHC1t3n7oaJbq5u5J67+3xzAwgZsSorp2wVw/BYtZkuRFRU21MrkwoEG9dPTsHGXI+GEGIRRsGWTDrevMDl5wtwuOqUKmJbHbEq2hUlzHir9tnIqf9F5aAuDQBHTGj6mZ8b8xSTQWoeF0Hh6NEo/9x1CfwLiCGigWGSjDocAEnBFotGPDIbADYKRUXYaYJchTimj0Rh7YpiDVmrdIgZhIiK9iwfypr6373+zYKDQpyXunLzsTzkNhqBlmBT7QlFqNRmQQQbuy+au2Y7l4KBJ9j077Co+FIr2NLtdP1UKTEnzt+I/3vze3y/tsLXz1g0whNsMoe++75FUnNyp8JcuH5blmBj17duTLUTndq+IEc9z3Dnbm7GKxflOeM6CjIuctCpUyf06tULubm5wY0VKCgowDvvvINDDjkEe+21F+68804AQPfu3TF06FB89NFHAIDCwkIMHz4cAHDGGWd43584caL3927duhmfv6GhAZWVldy/nRVSJVWAIRz0fXaTqPPUqLwV/o00P0nqFGxsP9nKbboQUZ0HBJCTFfJE2XKjQBp6ILvvAURJYHJUJt+QzmCWn5tOmimTZVMJNpmyIkT+E7afubGoVsHmcOSAvooolwuj+XlKPdJMn9hkr9tqZQq21P/uJnFI9xLvb2xFOFUONlleBHqemPTPurBGkdA+eGBX7/cZK7YK15NuqwsRZccXu9DKPc3MZpYhj8RrFys5FWhCP91LShU5UBNxqjlJRwAHhogSjVvAr+L65M9HeiRbRW3cG79xooKNI44Mwod0akBRydRdCBNlxwS7WeGfu+x9S/0fjYqFKIJJ0KDiJ7lMjj5p1TohDM99TrpQZ3ZeAPxzA9vNaCSCm3+7p/f7tKVb0n0U5ngAyvEkEvQFOZqxTMyNxN46vpKmZpPIrDFB1a9dBNkAhRoFmVisA+AJfXauZduyCrbNsiIHyjxk4phL/+zee1Y1Uu2FiDLtIrySXBuSzdz3cdNW4voJcz21jEhcAXz+TjY3FDs+WEJGVGKKNlVxnp8sTLdN91uXD0ultgf0yfbZYwJAGTNHihWYvT5Kc6HS7AoVYairXBuk1jAJEeWrx6oJNlE1WZKvDpFNKMaxbszpckIB/FhynVJBhKHqWnz9jPBzp845oVOwqVIQyKtPp88N8OOpUpGDTazeKjrF2PWaLyCkeZYRvaOc7Sd77T7Voopgkzqv0j/z+x21QttV0LtzQzzhcP0V7QBW0MCSN9w6GBAi2sTNX7R+FubFPNJIm9IhGuXWVQBYvqnGd25AVNvr9yY5zbnyXBKaJdjY9UAbyhpALE5flrYX2NQkrNNBjPAA+PsJpByN7j1Q5WBjw0h1BZk454CGB3DfN85B0MELHbR5FdHy8nLMmDEDCxYsQDKZxKBBgzB58mSUlpZizZo1AIBu3boh2kyPsgq11atXhzr3XXfdhU6dOnn/qKGtOyJEgx1Q5UrRExtcW++Y6fDLoBBA1sATJwrRe601IBQKtu0C2cFeD2u46KTyLORl79M/s5uFoNwz6e/r7ztrPEk3T95mMqo1buWkmfz5ykgzdYUof//lYRc0ZYUq/4morGAThAblBlJ5r3XJiGOR9AZElzcLAJc/SaymBKTvp2sQcGEKCiOvcyGjYJPmYKOR16oiBwAvL/fJyovzsEevUgDA/HUVHIHDjkNdtVO2i8FVRNM/s1666oYm7r6Iif6jTHiweFx2I61TsLHPkt3Af7/O72RhSbvOBDUgIM416jHnqmRyY1FvM92YSHrXpVOwVSkUbFFftUBx05v+WVctUNz4saQywM+NnHIxP+h9SzVmwzkBWiVNdeg489ybDcLqhiac99QMZXhINJLeJDc0JflNhUB2sNekquznnp9Vgqqekft8qARbTiydc9JfkY228SWHSbJEYCziJVNPJP3qLNncHZQbSK/mSf/sGuxdiuUJm3kFG1vdzh8i6o0PX5ikmhASq4gCabtBDMnO0xTM4EgEgWSa8M2P+L8356WOKbn27orrcm2AnFiEe4fv/nAht0kT1b+6CpWemjki5plSzx+xaIScbJ991wHeocSOK5Z401VgZm1ZeeiSfCMtEhMJRR+DcrDplCrscaMR/j0vF9RRoqNLN9eklWFBIaLpn0sCCu6wRI87L8jeYRN7ku2nrpqkMkRUsxYVBxVPYhz/gEbBJthJRRrymb1H3H03KHLgV4jD62eUIb/9ZBSrDg9yXtHGJ/so3blGRYSKyuuuivxeYg7JEsV9Z/uZF4vis+uPUvZTJLjcfMpaBVsE+OVuu3B/Z+cRbj8aYKtwIaKxKCJM6CsbZaJyLPsUm4r9tXc+5jjsPBcUIirb37tKQz4HG0OwaSuey9csvYKNz8EG2EIHbU6wXXLJJUgmk1i1ahVGjhyJFStWYOTIkaiqqpKGJToS5j1T3HjjjaioqPD+uYTezgj3xWbJBvliK/++rhx2UIgon2eKjftWs+axWEAONmYccARbnToRsq4KjdhPF3XxhG9Tx3uU1BtUsZ/eeQKMwSizCZCF8LCTqT4HG23jZdpWtsel5mCjekZl52GfT25Mn4ONve9FASGi3kIWYxVs+vHBKdhkBJuwCVAZearqnPQcbOr3MnV+ntzjFGzCJhEAftqnU/Pf+GpSvIKNXezVHsfgKqLM+y4kI+bk9wn+uQPpinRiKIt7PyIRaBVs7H07avce3s+fLSz39ZOVwOsUbFxOOabKrWyeTUv602sYS7C681iTQC4q88mIYVsZhYjqlCr+HEqsusIk957bnWhEr2CT2aKqucI1hHOifAjxF0s2Y/ryNOHA5jVhjWWANwZFsoN93zdVaUJoIhG+0muDvGCFp2Arko8nkYAFwIS+qpVHLoKcZxzJ1aQnmTiyVjiXbC0LShPBV29Vr61pBZs8RJSdj1kiaotGwRaNQvtuiIovgH9HXHWJuF7nE/PFiu8QAExqnnNkCjY++Xn6uO59F0kzAPjdE19595tX/0b5OVZUHzPvUC7R9oqK48OAXGRJPLYdV+RAk4NNVwUYEIkJWn6vfEWfZJ/plCqp86fv5249Sjxn20JNJXFR0aPK8ySG+/pCRFVEoC5kP0DBJnfC6u3JHIG40oWIalWTjrxdUJEDAMrwOvEdLtQQbPz8wTiFAuYP1j4/+cEvpc4eTynb/JzEvIO8apJe5KCUI6o1Odiau8hVymbaszZVVAgR5cMPebtTr6xNO9lYp6WOOEs9o+aKtBriKto8jh8992feZ5zNzRFs+iIHnP3l2fLNqUwkVUQjkZSzReUMCwqNZddiltRln+Xt7/2AK174hssTKKo2gbRjqqq+yXtP2TmxG2PTiKQdt2ZpnC0AP38A8pylHRVtTrABKUO3f//+Xg62+fPnY/z48ejfvz8AYPPmzUg2D4zy8vQGKKziLD8/H2VlZdy/nRXuCxOUj0qlYJOVG3absooSWWgKV2WtWJMgnflqTgB5xM5TVAUbF7YlCT1QTX6iF1W1UQnyKLkIuu+phVldkIHNN6St4GViEMnymijya0g3dBqPJ3vfN1b6S6Cr1hydsR5UAp29HGousFgkLWuvbfSXw2afZVCIKBtWCKiTlKqIK/HdSLX1fSTP7SEYJSpSiEu6HvUraqoVRomOCExwnjxaLi6g2UunII/EUulAeiMkhoi4h4xFIhx5sUEYd+x9/2mfTt4G/ctlm5W5yGIRvo/iXMMZ17Go522VqTBEowQQi7Wkjq3bIFdxVUT5Z57JplenIItFI773gVUBs0QLv/FUEz0xQcG2WNh4ytMayCeLBKPoEZUy1ZL75L6XqpwqosHOEjgiwSYS1cV56TASloBOSIjioPBtloAtVOSWoypLWFUtl8coIRJ24jxLS6buIihENMZUCNcrQFL/y94L9nqA1L1x3w1dDrZYJOLNIYAsB5ufYJMVv/Gt18R0FjKCTdbO3SixZDVrN/AhojzBBgCfL9kEwL9BZNU/vsIenl3BP3Nd9IBYYVc3NtmNGsBvpvkQUZoyTKeEZNsB+rBC9l03UbAFhYiyz6g4Pwf9u6ZSACzewBc/ER1NStJfM8frnhGvqNFXmTVVsKmqiLLhbdr8lcwhdYSpSUSCGLJWRlgzRQWbigj0hUQHhE+z88KijVVYJyFFvLVIUX2RL5ZBU+8BvM0pPndxLAFQEoyis4fdb63amg699CnYGBW/X/Xd3C6aEhOoch+Lz6gwrzn9g8ZhmuMRYfL3iLNRA0JEZQ4X166tluTzc8/tzk06QlmG2jg7PlP/RwXbePXWWnz4/Qb844MFvvOz9qQsF66qyIHoLGbb6WxE9ppiEf96aRVsbYQtW7bg+eefR2Nj2hj64IMPvJ9rampw/PHHAwDq6+vx3nvvAQAmTJjgtXH/bqGHcrENyBmmq5Ikeu3z3A2vJmcYwHujRda8STA02E3AVS/O5vrGh4imNz+6KqKlAaEHqrxMPk8vp2CjF05wDQOZ4klV3hvgF9hEMk1s5gjhGZTKS+oNqmSTplKWNZ9GlzODPVdxXo5HSK3bLiHYFOcR+ySGCuoSdfPGNS0ZcSyaNgaTjt/IVOdgkykmUv+7xgtHjCiSo5YV5ErzO8iuSfuZYJSoQkRlahGVrJ8LZS3SVR9K/1zA5KsI8rbmxCJKQ1hULqaO7YaIKjzNkQi6l+R74Z8L1guqAYHsOGhgl+bjJbkQHsdxuCp8sWjEmxfF+UsM9XENE51SmCVQOkkJNjFEVK6OYoeBGCKqU6Cw77Cu0mo0EvE5X9hcMSpVXND7xm6SL3v+G94jzqnVm48nMfAAVn0T8ZEYrNHp3Xd3vEvya4nXE40A3TUKNnFjEWFUbCwBzc6nbgVWlbpUp2ATiRaZT0wXIhqLRDiFkjZRdzSq3VDKHDNB6yCbUkLnFHKJMJWyVZzn3JAXMUk3e03RgJBG2UatSOKR99k/uuIBSfn7JkKsIgpAGV7n9jtXCCl0MW3p5uZ27DwXVRLKQFqdmKrCRy1yACGvG60anXh+3hGqV7C5hywIyJfG22lqYoK1T/MCEnqriidR0gC46Rfq4gms3pquoCqug6rk8H7lII341kVusGk3XOUPoFCwyZywyiiHNFmrK3Kgym2mU4EGK9jgXQ/Aj6cqTsGW/g5r+wEyIjB9j3jHv3jfmWMKRDUgJ0zdw7kkcE1jgrNnlQq2gJxhfHVhvTIMENSyCjIfAA7o38X726uz1njPULQX+FBn+fnTc6w897H4jNyictr9aICSik9noa/KKkYQAOn3vi6e8P7uzj+eve/aiD4HtJ5g21rtVwSKIaIu3p27TtrWBZ9+I+k7vy5ElCUh+fQL6nQ40qrbEqFAR0JGBNv27dvx5JNP4sYbb8TWrVsBALNnz8batWsDvplGVVUVRo0ahc6dO+OnP/0p+vfvjxtvvBEAUFpaitNPPx2nnnoqDj/8cADAiBEjsMcee+DPf/4zAOCcc87BgQceCABYu3YtdtttN+y2225eH95//33vs44OVbhcvSx0iXn/eQ+AXpLLFjnwkR2cSkcdIipOklFmsqisb8J8Jj+SssiBpoooNRcFwBvCopHHJVwNINjYydyV5FbWN2mrPrEhogDw6OfLvJ/FfAj85kdtZKW/789tpmqrruSZ+jzo2tnEm306p/JLbayq1xrssu/L+ugPj1WPuUCPp+BpduHzpnEEGy0HmyuWUKmzVMa1KmeFiKBKwCZFDgBaQuAuGqWdeG5VWBsg5HqKRJQJ/Nl3xd10q47LSvUjkXQ+rM3VDRwxIs5f7LlZY4wdmmJYny5vRSyS9ojr8vmxBlGZZGPJkYvRKKeOqlKED4lhW7rQT12IqEhgHL5bd+7vtZIQCUAMu1A7caIRf16mqc3EgNhP972IJxztXJMbi/qOyYWyit5WRcicqETowVSY2xRQZQ2AtHiCLL9X54CQ3xizQSuUjHlV0Qd5LtTU/75NooYQEjeeYoiZbN0IqsCsy58p2/ixhIMuh1JXJiRGRSrnMrnsALU6HGBzyviVHWJIti4HGzuW2PBlETKHB09O+K89JxaVKtjqPMUCM+Y05A17zNxYlKvCF1TkgLUpxY08O8fv2rkQv94znUO5VnI97vnd65ZVofMUbERlReqYEe+dm716O2f/qRRsOhUowNvHWruiebzt3isdIcNWEvcVouDupzpsXRcimiTavezwzxEUbDoFvwvR5hSvKRaJcM9JpTwKIqlVaVnkSrt0+CHAPydWUSxWWy/MC7b9/IpesZ+8SEAcQtI8m16RgRzvc/a61ESxXnHVSRNqLbNrWDJfrmBLPZ/depTgl7t1AwCs3FKLr1dtAyDkdYtGUMop2OR7PS8UnpBbjc3rVh8XcqZK1mAlUc1V/KTlZwbgOWZKODuNTxngjrldmkmprTWNXN+CcrDJQm6jQuSEC3YtSeegTX/Ghru77xN7z3Qhoux192IK7UidV4Ji1IaIpmFMsH333XcYOnQo7rnnHtx3333Yvn07AODNN9/0CDIKOnfujLPPPhu9e/fGsmXLsH79evTr1w/nnnsuZsyYgQEDBiAWi+H999/HNddcg+7du2P58uXo378/br31VowbN847Vjwex7Jly7Bs2TI0NaUeaHV1tfdZRwcfT83kBgoI2+IWZl9VnfTPsUgE+Vqvjnxz7lO/OPxkxm4+AWFx4sJO1VVEeYOI9ejoFUJcqJzCEAUEL0FA3hu2aouvn4KHnw0RHTtpiUd2NCX4e6QLo1VXSpQYjgYhou5pCgIUbO5ClhuLYNfOhQBSC/tLM1YrE4/z3+c/58LlolHtpkZVRVQ65pPpxYn1juoqsrEhY6JqEvAvOpQcbGwIos+jpFiYZcU6RNKOEiIqet4A0ShhSPJCTZED9h1mQgClRQ4EAoczhJl7xOZpcjfmqlAWL0TUUw2kNzWLNqRVbOImUZbIXOyjOx2593N7XZwfx76QE3m+ECC9IWIVSizZ5c5PnIItJ8qpoyoV82E0EuEIYF3OMJ0aQNzwX/jLgfjV0DTJxs6hyrwmAbmJRDKMNXi5vExcuIu6cEIsyjsnAJVqIMjLzV87+76LScrFqr1sfyvr02OEV2fpQ0TZDaoLd8zXxdMKB5UiWRo6zuSf028S+X5yfRQdWJK5Oyh/ZDSizp8pCxHlFSgKgi0S0SrZ2SIYbIioL/WEcEyAXz9qPAUbuHZ69U36Z62CTZg/UueWq3/izPwh5mBj+yCqvnUEG3uPCnJi3hgRUyCIm1lOweazlXhS+YlRP8O+fTs19y2d+J1/lmmljs5Oy8+Jee9RUM7UmDDXjHp6hvcz+8w7FbGqDvW6DsiLX/Dnb56TmsfR4F2Kvb+xSn5xHBcx1RJlYWip66GnAdAp7cRzuwViHEdWbdV3icoUFew6zI55n+qbzW2msedUUSPSSpqCOpwlJ9i5SdzD8O+afG8iqn91FWlzohGUC6kpKiRVkIOSwycU1y4nddP9YdPx+HJsSewa1bFl6qijhqbz1rppX0TFeTGXg02vYFOp/UWSnI1ykJGVgNzmVr1H7Nwuqz4tW7NZG9ndl4mFNVzRR9JRF+aRYYukaEQqj7J/jmejaDzFqIGCTRciytoVPRnn4uYqdfRVmthU76E6GowJtj//+c+44IILsGTJEhQUpG/8CSecgClTppCP07lzZ4wfPx7Lli1DbW0t4vE4Vq9ejeeffx577pkuc19WVoaxY8di7dq1aGxsxIoVK3DbbbchNzc9eQwcOLA5J5j8X0eHL45dEmritVUszDoFm0/erVnstSGiCf6YhwuVYBqZXDHsYy3Ki3mTiW4DUMwYLlIvO3NQ3vsTlFCzebMfIKvvptkAiAsEuwkAgM3Nm2QxhIb1NOu8aSyk1SgDQixkx2VztQQp2FyCDQDGvDMfU5bIlSrsAqFT+eUYhBQE5gJLpheyYp23VfEsRQUbm58wIjHydKXi3XFXKZA3qtyIr8xao89Vp1OwOf77Tqm41Zkx3ESiWFSAsEoz3fNMEWzBCjY30aybz6cp6XB/F3Pf7dG71PsbqxoQ5y+eaJGHPrrHdO9nIulwio0E0w82p0tjIulT67qXzqp0iyUedD7/nFodxXmkI/z7to4pViFekzZ0SnjfCnJjePbCgzyDvFaiDAOCvcKswb5JMGrZsBf2GenC+x3HSRc5iEV9YQky49pdB1SEsrhmFufFvHVTVLA53Bjh+5siEfgwklQ/9QSbbFNTINn8quZoXdGZoArdorJDV9gjnQ8rnUdHlj9SHEvu+SlFDvgQUTmpnFKwpfu5VSTYXGePoEDx5WBz/OcvkSiKxH7qFKN89VY1wSaroMqHiPpVLak12G/Gu89fDK8vVmziU23TpF00GvE2Vusr+PlDvEdaBZswx0ciES7iQFSAAECMKdygs9OCw/D5uZO1F2at3MYk/ubnLjfnnyydBZW4AuCFnlILmrhtI5GIF7quI/359CDqccw7ytU5rqJR+abcayuZa6SOVeG93K1Hiff7N81qJ6+tQsH2xZLNXFtVtVFpiKjgRFHaNMI4LlQouABe/UvNexyNRny5X3VzfLFiv2Wk3lNWeyfkYFMq2CTOwHy/nSw6J3RVRNMVi/lrrxFyH+vWIqWDUXY/Fc5A9h1+f956PPnFcr6fkugJWU4yn4KtRF50R7El8yBTsInRHS5YBVqTxF7I497lRPP1pK+ddcLqojF6ByjYWJIcAJd7T1wPOhqMCbZZs2bhsssu833ep08fbNiwISudssguxAVclYAREKXlbHUXwaOT4Cc0LimuhuzoVJjrbW78+Zv4CXqfPp1wwWEDvc+4zRfnEU9PlLVxuefJ7ae7idUZRG4/XYjyZlUiU7mKSz6h+bzCQj/Ficz1bDQJG25triWF51wm65fm0glIYMuGaeo2dDnRKLfhB4D/zU/PFdQkw2K4i16Fkf6Z98zpiMCoVK3gHZMZHwW56YTz4rMUpfJAKteTbNzzHs+oN+6ako5AYKSPuV+/zti1edFbtqkGk4XKl2L4EjuWt9aoDXtAk6+EJTvyc7xrFzdfqgTY5VUN2HvMRNzJJGYVz8966SoVGxBXncRe00ZGoSV6hQdRVAOCCkNVTdI1BjsrNkoJ4bmz0vobX58HFmJ4CMAbrW4fxBxKAFPFqj5tjIrzYY/SfI/sWV/BG/kqj7hOweb2MxJJz6Gq/EDcJkCjXMyJRXxOFjbHmiocS1yL2PctJxrxKag44kwwRFUhoiLZEYmkVWw+RaBEeSQLtRZzmwHqHGw6gg0A6hv9HmkWOpWyf5OoJrnE4iMqQzwnGvXeX5FMBvzrW54iRFSmIFOGiAoOOVbBtrVa7sCKxXiFo+hs4uZuSW4id+PrU5znqDfd7DXlxqJgHimANCkbXEXUv0l0x9ETo36O/ft19v7eIFGw6YqkAMx63byuuhur7bVxzlb0qX+1Cjb/u1EkIfn8Ki55wne2bTSqD8MXHbb5QpEFd+7h+xhF704pW2VjZb3v/RKJHi83pFapy6taAf4d4RyMzffejXZYu73Os63EKqJ5uhBRdu7kihyoCdBUBWa1c4Sag01Uqx40sKv3fnyxZLNU9S2GrQPAI5OXSo+Zw+Tf1eV2dcdbbixdWVqVViEmVBHVhbJyYcS68OloxJeyRjbHp0kmNmeZSh2uD4vmiorkpp1CPgef8IwAcCGy7PU3CUQxIFQcjfvnxGhUXayDbeses5BxHnHhsVzUitrZIzpwgFTYqVQJmmDvJ68Mu+P9BdzvcYlTjJ3r3f0EGwUD8OQXu5cLChHdUi23Zdl520VXxg4V7RoA0srWbBVwVsG2pLyaD2Vl2nVnbEldftNYwDjuiDAm2AoKClBZWen7fNGiRejevbvkGxZtDXHSdyuxBFX2o+ZgC1ITcV7UnKjnnavSyJbdiWpgtyLvM3biFT0wXpLMBtHzJBpubjt1ZT+Al+T6EnQKGyp3IgtK7syGiIqFDhLCQrJIqKjnekF0ecg+XVSuzDXAxuvHJW4UeX6NAIKNkcvrihzEhBArgJ/c2VPzSYbVG7/UmFPngHOE8aFMii8YrdpKUoIB4XriN1U1KNVm7qLDGhxVKu91jPdUqUKiS/NzMPo3Q73f2dBHwL9Z2aUkz1t4WUJMzNsF6AgH1xhMkSx9mgnT9dvrhYWZN0hEj/jjU9IewqRg3LM5O1hDWCRWAXBe8aXl1QCEysbNBgHnSaxhDB2RYCMomVwPnSpkLiF4W688Kp3/c+L8DdwYFUMKALmCzd04RSN+j3xjIunNiWw/I805HHs1K1BEBZuqcptPsSDZ8AOQzrXss8zPSZMI4kaFTaodi6bCTlnUNbL3KP15qSTviQtR5Sc6bmokRGBQvhAZ2eEm+62oi0tDaNi27PrhjmXRGw+kNn8uQSENEWWUzNympokfHyJkmy9PNSmENPpUGJpNjaqwB5uIWWzDtgNcBV1Eem45WUl7RjoFm6dwjEY5JYZILvJzYur/ojw/uSvaH/k6R5cwh4iKM5f4kSkhVZt+L8S8+T7+Zq+eeOr8n/v6wBH0zbaKe19FJSh7jwB4RBPArxuiY4RzSmlCvNz7XsK1bybYBHvSfScam/hcS/71Wp70HPArtMXNbYWMYIvAc141JR3fhlK0pVW5o9jzxwLUqrJUDW4i+fp4EvPXVaT6qVFd+8N40z/rQlnFuYtbDzTVVl3IiHzRBijIjeHnA1LXs3Z7HVfggZ0/2DUGACYxjkN+vU6vW9J5jrFVXJQyIfuqY1JsP39oLn/94rshEiPscxdtlWLJeyH2k31/g3KwRSNytTsgdwIHkfnsdbNt3bEvpkooZIpciXONmCJDdrzUMXlilUKwueOIFVQonYGSAjEsZE4xWbVbNgoG4MUUHMGmcIi5qGlMeLYFaycV5+X4HDMsghVsfD9TYyMX+/QpA5CyoV+f/WP6eGzhl1jU26+JzkXAX+SA3dtNW7alQ0cRGhNsp5xyCm6//XbE46nBHYlEsHr1avz1r3/FGWeckfUOWoSHuOHWhYiy7wJXfUiT3Dga4cmOIK+0q+xYvbVWKYF3Dcf8XLnHRvTApKvL6MmwtBRZnxS3TJMgVEVy6SoaAWK1U72CTVwQXXKArUSXG4uiT+dCL7fH9to4Xp652vu76M1yoaswx0JV5IA1NnQKtiYmlPQAxrsutueTrrMJ0kVvK++N51STARs1VVJ80YPL58HSbxb6dEltQKobmrjkuWw7RqDE5GWSe9OoHrpoNIL9+nb2fl+2qZrvJ/Mo3TLoMrJFml8iIETUXcD7dinyjlFelVZIiZuFfElIlPu8+XAKdRgtV/GTSbTrYkkzGc3aLu5GhSW1t0gqNLltVd5WWSgF28/tdewx0+ePRSPYa9cynLTfrt61ss8pKRhkgDwHmxv6w6puZEoILkS0+Rn1biZBt9Q0cuOeV0xElQ4CWcgawIdzuFApIVRFKFLtIvj5wK4cyabqpyxMT3pMiSquWqJIdEO3lSGiwqYb4PMuskazGJ4LCM+oTp4/00UnSd7F/8/en4ZbclRnovCbe5+pTg2qKs0qSaUBiXkeJMwgHjAWIIN9hc3kAUOjrxu7LwZscxsz241pu9ufJeNuu8EGGd9utRsbYwtoQxv4dI2bi0GNjAaEhYaSkBCaSzWcYU/fjzyRuWLFWitW7DxlcJ0Tz1NPnbNP7MzIzMiItd71rneF81MwaIvgAE6VIlrAOOdpOZ+74e5oX6Asne1r/Q6sDJOAjaYf5SlysFVh/3K7YreRtk9TeKxKkdL5peBhav/oABsPJPBqmiH4I7G9pMqG43Fb2XhGcaiaFGKmwVaRtY6nUvM0p5N3tgxcyoJN0qejIhC6I18JoLbEYOv19GJDfB5ZtiwHO/i60ABszPai120FJ3q9lvVkVxFNWddqoaO1vk9bq2oNAF+77UEAaRDljGNbdvZt9x1i45TXTqtwE6/AzMErKQg7Gk9SjWJhzzz/rGObz77xnf1JX7q/0PHQ84RGmfEWQzouIJQCTVyjL/gQgH6fOEBuFTTpVxUue9WTor9LQdMSPVCqJShXEW2Bq4po+iYabIKNqlV7zbGpQ1++LlRE25avNU2wpwHYZBA4zXKQNbwlIB9o5752P7czBhtvg8jnSPeD8Az4u35cxGBLddWsxhnv/aoGn2n1ViCeezKDLa04O2D25Ntf3Mpx/S2R7eHFHcL13HdwVS1iGN7hc0/YjkeeWEuz/MMdD0XH3WitGGD7D//hP+Dee+/FCSecgKWlJVxwwQV4xCMege3bt+P973//kRjjZuvYNK0BKpbc9FWcGs74SkX5dSYEd+Sfefaxzef/7833t/1G6casMSx4BKbR4hiMok0u3kjItWcANm+Rg36vBRFEp4bcp6jyJIuw84353T/6mOjvDYONpT30ehXe+aPtIvmPhPlGx0k3RElvTYqsDITPaF+qvSc5FdQJOG33In7xBec0f9eMZmqs2+kMlUiBbs7PwJag2WVpkPBovBntrSqcurNlV97xYBuVlcAOgEYT9ei1ptNC39N+Bew9drGJaN18b2xc8yg7gIZx9uDhQXNdkjOpFRpIAbaW3XDng4QVx9aFhZl0i+FRPyBOj+XXHgv91+c/58RWWy0w2CTm4Pb5mWaO3ifQ7+tz69pEYoroFllHklcQA4DHrFUxBeTKcZShFDmVKzFDaS4C2FIQlKeIAojSsqmDzJ0VjQ0gRYWBNtJ+aIWkqDKWTgOwJSB5OjfPO7N1vmj/yBA2KuHFjKsenv+oE6K/S4zEcDu15y6BHTsXZc2S3HvUMthSRxpoWaOHhLSgXuTUtN8J65hW5MCSK6iLDOgFarS0dQD4m2/eg3f8RZvuTNP1wrycTCTGggawxTq5kqPU6xFNKiVtPdFgO8QZbOOmH3U8eBBFKjQgMRZ4P68Gbb+HpOpnGI80j7YIzA5tHkmMhTjFqf5763TKTNBw3accI+s48ncjllXI309J/Jzfo62KUDa/R6GfVF2YzyVulz4srJ0zvSpi7t3N0uu1tEIxG4Sl1sUSCHrxAgB42t7dzWdf2/fA2rnbY/erOsAXgPK/vv5u/P2tD4jj3EK0h7n9kwTEhPS35phkqaEyCd/lGp/CO/yok9r9Oi42tHbutX5ve9Ejo7E1bB6W3WIx2HjqJdAy2A6uDJu/J7bKHFlfFduTsm+BPAP3+Y86Ef/1kvOazyRgVaqWfFjRYMux94YNgBLvQ4dWYw3ciTDnorVGYstSFruQThoHI+v/A4B1QPGhcgy2IdNR9ASg42DgWrGUFXrM+N3gLdqPIomOsB+keycHuI7TUkQjn0yGX8Iz5CDkv3nxo6J+VOpHKooU71thna3HG7SMH79WcAaIdcG5bR6up9YTlp9ln+zXlzz3rObv1921Hxu1FQNsO3bswJe+9CX8+Z//Of7dv/t3+Nf/+l/jM5/5DK666ips3bo1f4DN9k/e+Ma8oOS7A9yp0cUKExaXJTjPFvNnkeIFX/o2EbufpBuzhMLzY/KKNdSIiNkFbb/V0TirFRfaX11zFz725dvEildWRTQgNjaoMP6DvMgBu0c/ff5evPaZe5vPgsMgRVSefFob2fjew/JiLjkJ0fkFMO3T3/gu7iB0ft6XsgFyThoA/OgTTm4+W1KYKtThTYxBxgCxxGZ5+mNrCOvgLxWmB4Qo5iQ+PwWZvkNAJimCC7SslpXhmMwl3YDQoty9tXf4tN01wHfzvQdVJzVsuHt2pc6SWOQgStPUS8rv2alcuzBO3laYbgVQ33tqtFOGJ68eCzAG2xrAJkVlq6rCcWuUdRpJ5GLEkUNH9YYEQ1Q38tprDGlBUZGF764x7QR2FGBXEaWMJwm8kdI5T6EMlIeU+dlDwz7mEXGpoiMd55jsHxzUDcAqf98k4IoamstqkQN9L6JG+Gy/wi9f+Eg8fk9rOEoOuqTvlUsRjbT3DstAT8A7RIBNKFgBIAlSaEVfJH0kqWANILMbwhrRqxAXxzECYv1+/F4CwH//WptKQveCmFlpBeQqEQyixwNicHGbwEDhc8nFYOvH2oiJhqQA0kuMBc5WpQC4mSJaVTiXBAfo36W1RtI6Ggo2AABxDHEV0XjOc23ZcI/Cvkrv090RQN9+h4JcgB2UktKyRQ22Xi9Kl7OKj0S6UQbw3hcKQYgpor0qWjfv4vqVbE3UMieAVINtfqbfrHUqOLDW96zjW1+qCa6ya+/3KuwlLLZX/OcvN1UrR2wea6msCchkMNjoOKnt8/GrvxPNeSmI8mgl0MTX459/3iMiOzHMOxVkEtY5ru8FyGnmkh0fvpMEYkkgwXzXhWs/54T2fZeKTLXahHlQuQYXZVuW9m00PhdkooBko0ZrTYbBJrHdpADBDsLOlmzU0E8F2FiAwFPkoB8Fr1pgNTxDzijmbUWdy2mK6EqzJjOAbTvNnJB9Mh5oac65ds383Xj6Gbvxmy9/fNOP+lzSMxKZdgz03z4/06xPdM+k+0a/V6kprwDRiiO+zgmE7S/N043SigC24XCImZkZXHfddXj+85+PX/7lX8bb3vY2/PAP//CRGt9mW4eW0OqNUs+TyKnRGWx8MbUAHF5dLzDYAOAfvvNQ87O0MccMNgqcsWsi9G5Nv4BHW62S0HRj+tb3DuDdf3k9PvG/7wSgOwu5iko0N/2hQzplO6Sc/Itnt1GAsKhJEf6di7PNpv+9h2WmCn3mXgYbAHz0726Lfp9MJlFkRQMXxXQXReNC23SsaOtMr+c3dAhz8RCJYErjjGj6vPLRKD7mqbspyER0RRTtKkmXKRLG7+uC4pLDf/bxNch0eHUUVauS7j11GgIgFjFGCdgR5pVkkDWMOMpge0hmsNUpJ4IBM0oNMgtg4wAKUM+TE3fUm/i+++t7rzEHg+DsA4dWRCOrT4T7AVmzC2ijsrvIOO+JAO2Uwfbok1rH4ptrkXuJsQDIDLYALlIweYdgZEqprCGNFwC+LaSnhnG2EXGLeUyMVsFB1grpWCnZwWCNqsIpwLu1F/FzH7dtHn/2xmc2n8UOev2/VKGSskq4hiMA7IxSg2WRcjFFdA2olvY3oAVGhuMJxuNJ3I8YrQtCuqD0rgPAirEXcUAoKXJgpK3zRh0LrUgJH2evqqJ36P5DcgqN5CDrqVMVdhOGIXUWJpMJATt6DHjmBUDan0NK40yvat59iX3LU+E15zyM8zGn7Ij+3qadtp9JBRbCnimx0sJ4uVxFvHbWfwuA2PJg3IC+9B6JDDYjRdTUYBPAZykVjgOb2l6Q2HO08iEvcKUA1aFpAFukPcdTRHkAScmcoH3pPJbSwTm7k493IOxZYf3au7td4wHC5k4CjPU9zxU5sDTY6DOiAbYP/T+34P2fvqHtJwAte3ZuaXT1biQMNimdM8hZAGjsGg68B5BpZagHyuMUUXvPDCmNLRApp71S3WHATnEPz9BbKVoN9rBjBpvKYu9J+pV0f6NTNQtySQCb0Fc6ZniPV4djMXgWAgRblMwRfu2qfRy9Q+04JJkjbR8OjcqTSFXcRUYzu0eUTHGfIk1C06ZpCyQKSaf3lU8/XfS5+P3UxhmOHfaCqqoaZr62zs70Yw3t7ylFs7T5sSToY26UVgSwzczMYO/evRiN0hd7s/3gtmSzNYxBrbw312AzUySSCC6ivjsWZhvKaRwZjYE4AJifpQCbEulmUdQlJf2QVp2qr0nXjpCcit/7wrfXzk2uhzioo/EE/+vmON+cbjrHWimigmMh6UfxiA5QL5InrIENFGCLNNgMjTx6/sW5fpSCdvfDuoFJ0zRXR+PIKZWE6bX0yyhFlGqwJQBovNnNGqAuF6c/fXerGUZFdlMWBLnnnAXBntFpBMCgLK7YwGy/L1XDsxhssSZTe5zgfNEKmbcSDRYJwNlD0llDNU2JoVRVlSiMa6WIUnAxV7kNkBlsM2t9w/tJtc2kOQ+0jlowNCWQCWjfo/GkBUY4A8VV5GDtmOec2LLnbvhumvYZrgcATtwx3xhE9x1IQXI6TonBNmSUfkBjsJHrWTvm44gj/w93tDT9VJ+wHt/h1aHKhIzGKWj6JKCdopEjsbMk4IiPk65J3InnlRKBmi0S7jtNhePR1l3kfX/wsKKnV9mOkjRHpGq89H5SwJSnnGggUwxExtovACKwQdZga8dosX+5A2IBbJSFITmx7bnj5x6l0BygIHX7HQouNlXCSaoTf4d3b5MBtuTcW9t38k6e3ibc+6pKpRD42hnAfgDR/gKkaXiP1QA2IYhC343DAlOEA0etnqIExq058kLBEC1wF5rEZgYQFY4CBCkRwZmVKjbzOUffS/osecq+xTjPOtJikYMqAnjuYaLeWpEDIE2DGxI9rNB2CGL7EpO8ooVABN2/4EdTh7r+ItK+xO61wN9eL2ac8/T+GGCLgb0//vK+5meu3xSO/ci1NNHvPLjUzCeqbRYaZU5+TwDYZnpV4xesjsZ43Hs/izf/t68DiAPAEcAmBTeF+dEApkrwnaa3A3aRg/AOz8202r5h34gC1URrMjRJLiD0peAib0nlWkXXVrJR1X04HJPMNYmkIb3rVE4j2HS00FF77XQNac89YD4h3Ys+9P/c0hIPlKB2VNHSeO60ScW9gHbPtjTYwp61e+tck0Vxv1JF9Pjt83jnRa28T2hNimgz5+K/8wJB0v2sx5naCzxtHWgDxnSd5cD7aQTIp/sbJ1yEZmEMG6kVp4i+853vxNvf/nY88MAD+c6b7Qei8Y1ZE7Os+7Y/bzc02LhRYosmp8BZKAH/vYeXG4NZiuRFKaKKBptlaKVVRI3KqKSv5FQEx5ov5nTBfc2HvxKXWiYb8y4SYefVWKK0i0AZn+s3BnNY/LgmQWgnrhmFDx4eiKmsURVRqeInGef/fOsFzef7maPEN/tw7ZMJE68VNjHtGVHmkZUiOohSPmyqPnd6KShyk6JTF9gvod1/kD+juO+pGsAmgB0AxHQWPud3LMgsEMnx20sq7H7nAS1Ns/7/FEG4OacJJaaIrvU7nWy4t91HAEv2bkhRVl7RqB5nzBJ68LAcRaRAE4/k8bTx0Gg08X7BIOv3jCIHzKEDgDOP29bM5WvvlIGr8A7XFT3rn8O7qwEoi0IV0YbBRtYYCbwZC9f+6JN3NOvyNXc8SK5p0vSrqqrRaju8OlIFeamRt4WsJY3Tr4B2q6Nx9Jwlp1dKfQQYs9XJpp4RjGsxRZQ4+3NsjeXXI6WIRtFeuheF4wo6UwNhfwNS7SwNGJCMVo2lLL13EwKGUSfxCzfew4DVeI+h8423sHf3e5VaIIWPk6+z9ykOSJwiKoFCMWN061wLqqrOQr/WLQ1OfCJiP5bnPGeGcfuHpoEFFlFo/H1/JEsRXSWOUmjh0udnes373KSIKqnGABI2fbx2Bg02Cgql7MqwXnkKDQTR93BeU0pEYMosS/eTsREj4NvIxkhtWf0+AQRgY+lllK2R2GlsftJUzs9/83vNz1SDls7jYFceXh01z0aqLgy0Dv1wnO5v4ZgXP+XUaHxNehmzf4IT/eDhVT39sOLpb9yOb3+mDPbQGj1OJTBDNUHD+ilpR8Up3EKKKM+YGY7xyWvuwkOHV8X5Bsh7prTOhrmpEQp63NfJFDkIjTMXIxuxl75vB1flIB8FFyWAzWSwKaCuZJ+Hdylmtrb3fEsE/Ass1LWu0p4pXbum/5ZjU//WX98YXXfoF9o2InkipQZTdnJocQV7ySdNA/v8vtM1LLKp2Pz4F88+E7/76idHAZqwLmgFQMJaOxilaye9din7K7Bh6f4fghlLg5G6x1B7fx+tAhz5Ou3PcRGMzRRRd/vd3/1d/O3f/i1OOeUUPPKRj8RTnvKU6N9m+8FrPC1nYU5Hl6mRt81gDfA0uFg0WQftwgIUNtHxBLh3zcCWNdjSfHcgjcB42FFca8nSCzlmMXUqAmNpzIxwXhXsf97QGlo0j35uphWLpEyz5JhV65y31Vvqe6SBInSBDmlrMcBGGWxx1I2ev9+rcML2+eY58WqnXIeMGt5v/L+vbn6WxkmdBSlCBsTGf8KupNEkVo0tSXPiDhBxam4iDhDvd6yhNcCdAHqftNTcimyOkQEzkDZ7XxnycEgtqtQag+35qUC7pkESWtBhO0hF7Fk0befiXMP2o+w5zlCSjMCw2UtgcUtXb6sVxTpC7TPnhsZEWGeAWA8jGDsc9JcAEUA2RPu9qile8J0HlxpxWG4M8p+D86MBKBSYCk5Qo8GmMNh4xSmgfZYLs/1G++bmew+1fZnhFlKNAeCWe+V3gzqJEvuJvxsLMzLYIxmDmgYbvfdUGzBlsMlrYlPBTKgOGi6nqlpDOGbKpM7CMUI0nvbVwNIWDEtTnQEOsI2SQjahxfcpTXeh64tVcKdXxef/q3+4K9qz+PyUovzNMcn+prEl6LmBei5pFVk1fUJxzjNHrd4vg1Mj696E+RECDg8vD6NAgsaC5YWMeEXHPTu3NM/nZgaw8Xfj7OO3RaLvo/Gk+Uf7hWMHltSS8MxnGb2BM+2iCsxrN/R4Am4GwXlpv14UmGaAzUpLq4ima4ikq8uBzd0Kg42vcyUMtjeRIkuAliJarxvhuPdyvSFmL/wfT97T/P5nVxNtQsGWBWQWrMaoCd8bMEZLODcAvPDRJ0YgX8tqacdM05InE5113SfVnwGbwXaqALC1AIp87bG9FqfW0f2FMgi/J2nKER0y2gajiQrQU7JA0IeU7qdWBI2yuKL0eku/UtizJdurKchEdeJotdMkK6DNmPnKLfez88f2wo4IWKTAavudYCNuEfxCCqDERQ6EYA9bE4HYj2pB1RRQpnb3125ryTsx8N9LALagB+rJChCLe/UqXHHJ+dExD0bswXTPnhN8UilFk/puEvgc9qyXPfEUvPhxre7gcFwX/gm3s8f231kWWJaCI4Cc/SWxEalcQwhm8HlMtR5vv1/PAAptUWA4bsRWDLD9+I//OH75l38Zb3/72/Ga17wGP/ZjPxb922w/eI1HFiTh3NDoC0OjPikY1f4cwKPQeARX0iY6WYhSiRpsSopoqgPiY7BJ2gHtOCnQMxMtPHR83CiZY0bu129/KBlnWPNPOqZedO85sKIyO+hGFhyRBw6vYnU4ToT+QztRMkqiZylr1IVGne6qqhomUY7BdjLTaZE2khnBWdCriOoaeVx402awtT/3ehXOJQy2qNIqnUf9mmUYbn+SIsrmZ48wn3Qh5vb7W4SoTnw/YwOcCoVLQA9NUZXSXiWdJ0BmYdC5FK5pMJokEToKYIQU1bsfXhZTfXrMAQmtZZzVv1dVyhIajCZy1TwyzmBojCdrTqriHB+3NXXmuVB3rCMkR/hpIPFxRET/+rseXrse2dhomQiCo8SMp5Am0jLYYs0MQDaaNf05Os6bm2IQ9e+tll9rPNGKtFo03gWwKaAZNVilNDiNwRZXEdUDI7PCPJariLb9gjP/IAF1JYNdE1gek7UzNMmwVzXYGBtDc85zGmyUISuniLbOLA8K/V9//o2kX31+20SkGkpWiihPcY8ZbDKAEjmokm6X0PeEtX3wvoOrLUNIACy1CruSfhSQMtj4etxbA84A4Lb7DzFQub32XlX3/e//6pnpc1fOvWUu3jOl62nGyQA2KX2aFpn6/I331GMU7Ir5mVb0PdqvRVZaqISbZ7BJzIr4ufdUgI3vrd6q3zO9Hn7+eWfjVy5sq1RKAFdYk4LdxRlskV1RVXjq3l2NHtnV+x5UHenQJP1MjYHSVtoNcy4+dxjvTzy1ZbEFMI7fd7oPXEsyDfj9tKqI0mMeS55PaHcKzPieYoOsGiwdeo+aIhgjfZyhDUZjUUoD4LIKKXORZo0A9Xserpenc5rFtRQbIACCEkAfllitSAwPBtJ94Gf+6O9jLa5g+/UDwObPiFicpe9SGgSNr4cEyxu2G9q+TUYCrbxdv8fSM3r+I09s7OM/u/o7YuBwhvl5QLveaaAutRdb/y0O7J531rH4v17UVuikARdZFzyWdNBSNANouDIct8CqAgBTu2XIWP+cwdYAbGvvhBqAFmx+XikaiIMZDx6S5Sz27NzS+EX7HiA2omJzSwzHjdiKAbb3vOc95r/N9oPX+GYvOfqh0U18qxOM4gb7b3zmxqg6l1RdTyqFLhklWoroiBkbW6Joq2IM9ipsIwYZB4+4o/YfX/OUKA2PR92AdPED5MqoDXNvx5bmXJ7UmABETiZr6bTKhhcDbIHt1val6ak8fQdAkpsvifECKUPpFU+LUxQkUKRPNg9JbFetImrMudm+XS6dlww/87itzbVdc8dDrSHMChdQHbb7kjTedH4GJ/6AAoZJjhKQ0upDNKukDDmNIt/xYAqwxQwM26mJtRtSZmDrnDd/whkkqnXb/Yei6wnX9GNP2oO/+PkfiiqDtQDfOLoeIJ6nIZqmGRD8+Utl4oFYf0UU1V5j6dBCGKFpwBWlzAcgVmUihBRRCYxi60eoJNaAMkKRAykVT0oL5n15lcpw7rM0BpviLFjzoz5/5QLNJA22ZRpEoXIFRhVRDryHFt7NVSKE3bK4UgNzMJo0OkqSA5ITXqePMnrXV1JghAJX8yxQIIGQACIhfYn5k2OwhUvqMycRsCqn1ef/4Uef2HxGwVMaEafv2f97Sywhwvet47fLcgkcaAlNrMoq7IWUyR2OK7EQqEg7rZStzfm2EEhYO5H0C5WNx5MWdK9/T4+5Y2EWzyQi16tDXXuPFwyRKomHxoHAgcBge/Y5xzXv8Be+WacHDwQ2cUUYYoeUlDWeEp0y2Nqfwzs3H60NAmBZxRpsDyoMNh5YtQT8AzDx2h86o/lMc+KBluW3f2kQg6UMGKmI/MTKcNyAgRpILe3vGvDeBGakNZb2I8eX00kRVVWOZA3Y+0bBLS6RwZ/7M5lIe5DJ0KogR/vGML4m6V0DiK3Azk3nUGg8OKEBmwcsBluGxdVnvk6iwaaw2MN3hmOdrSqBgEDKhqR24epojOvuap8nLeaiXXd9Tam9IF27Bv5WVWsvSX15kQNAZrCF9euYxVm87ImnAKh9iOvvrNdPrsFWVVVUQf7Ra0xgLehA97kwPmnt3qbIGwwF25MH9jWWnxRE0gDgmX48pzR/EGjfDymANKPZC4zRTNeMnaLNHd/PuZleE5Tad//hbCBBmksbsRUDbJvtn1/jC581+eMUwF6ziB5e0fv1e8AcM/T+/tbWwPYy2KTFXKsiyjf7rVFKDk0RRdTvtEg7qkXi+fn7vR5+6BHH4Y9f94zms+Eo3ez7vVQI986HltLUurXrDgw2et2AnJJU948rKkUpH8pifv+hNEWULqKcXUCvqXEA1jbmA8tx1U1uDP7IY0/CDz/6hOazxvlRdGIWhVQSzhwMzdRg6/UiEc9cFdP5mT6etncXgHqD+P/9471r15OOs6F2H1qFJvrOaf2arklPuHZ6bbxstlYliTPygNrxCukUdwgpohqDTYqixpFzAlwxA5caBTQ1JeiwSRvuk0/fFYE4fLOn4xRTChQDYpZF6DRgUyrAIo0zgLsRQK+mjAlpAhrAtmbMBP0Ly3jaSpggVP+EPpPtQoVKrXKtVC2Sv+s0RfRmArDpjl8KbHNwwAOwtRpshDWhMFujKqLMiddS5hYFsD687hLABgAPHBTAUsFZkIocaCkSoji9kiK6ylgYM8qzlKpE0nNa+jychcHPI+3D//bHH9d8Rt9Hur/RPeavr78bV+97sPmdzw+6X92rBJoiDTQhvYwzw4A40HTPgVRWITwjKhlAGefSMen5pfUj9HviqTubz971yetkJ0RZl1ZGI/XcjUC9MI9mGcOwEX83qoguzs3giafWgMvdDy9HbB2ApVkHRq0WtGQMtsOrcTVNiakj2XQx6wmRBtv9zhRRS/8tzOOtc/1mDogpmmvXE6cw6xpKQBwsDgWEtLVT2t9zgRl5jW2vM2a/TNJx9uoCA+EefItW8WR2J90LbuJaguzaL3v1k3DembubzyQGmwZ2rLJrkgBloN07+LNcUBhsmu2VKzrTVLOcTfcZPj+k6whN24e5Zpxkq6ggD7smqnUMsJRKbk+S634oU5hntt/KASyJ2QPxPd/CslGkisFS5W1J1xYATiY6wU0gQwgQ/H9f8cTmM27T1Oduj0nnVQtUp/7oDhVgE3xSllWlBcTiInV2MQbqy1lMTCBNEY0DLjKDje9bEYNNANgk/cpANjmwPGzXrkxACgCWBqktslFaMcDW6/XQ7/fVf5vtB69Zzo+lc9WvWm0inlbI+3GDnkYTpfTHSMhU3JjrqamJrnINNo3BxvvR6Ac3IKLFYm1Ro45Q4yAzI+8epqdG+/A8eom5Jx0ztFOOiVNZtAi/FMmlfXctypGs9vzxudV0KMF4otpEBwXR5CiywaJeQHzfrSIHFoNtxWSw1f1e/+wzm8/+fE0vRTKIwsa4OhxHlcHiSGJ97wMguDRoq9tJVHlALi7Spl4GI6fXMEf1SoXt8QOT6r6Dq0kqWrThzaabrZrKIYm4CmCYxGDTnAVJSzFcE3XudwkA28BxTG6UxOld/aifNs6g/6el+1I7R2LWehlsGoACEGd6MIrWVGo4xWkfKeOKXruUzsJ1yE7cMd+cdx/R1yhJER2yvgsCSwWQnd65PhFyV/Ta4iIUupi5OudGsROgpUiE6s6SIbxltt+sORKDLUoRpY6axDwynC+dwWYDxXR9MTXYemmKKH2m4VnS1O2TjlnAk0/f2fx9MplEQu79XoXHnXJMBIRevY8G2dpzcYDtPoXBRudxv5eOTwoQnECAkSCVIOmLPf2MXc1nf08c1EnGYQgpQRLY8epnnN4EHa6/6+GG0cNlCELjwH+ueuzhQQ26R4xNhcE2HNfPJ64iSu2F9jmtDMfqMRcF+y9X1EPTV5UA9Sbllj2jY7bMNutTXN03Pl5cOIgB7wKrparaQkKyk1iPTSt0IF3PHgIMBJBJY/5Ea3emqmF4luKepbJf5L7zM/3GpguFLaR+lOn/j98z7ONehRO2L+AtLzy3+ewu4dq1vchy+EUGGzsmXQtpX03DMargrshZAHJxGg4SU+DikLPgDtfZlGyV2X5bbfSAUvFzplfh5wgLEwC+elsbyOAabJQJ+pBSJTucX9R7VIKbQOtzBRBUWjulgKkmgSBVZ5V8wiecurO5Tw1jU7nv9OfQV8qu2aZUkZf2Dg5caeeWCvlo7M6ZaP/VmZgAMDsTA+8SSxmQs1aCDUL70cDhg4dSDbYZgfUdAgma3AllOC6zwMdGasUA21/8xV/gE5/4RPPvT//0T/Fv/s2/wcknn4wPfehDR2KMm61jSxhs1PkxihdUBLhKNhLmgDz7nOOivz94WKY4c40LACKtPqw3Es2Vj7OuICanFvJ+Zx+/rXHmOMAmLbyR4yGliPYqfI8x2OixqLA0EEfY7yZptJpxHTHY9i8xTRUa9Uu1M+j17IxSRFMGWwN2rB1TY2tIwFkuZY1G2dtNuTWG6P2kRQ64PiBPCYpTDhjAJhgQzyFz9AFpI2EMNgC4X9EHCpcUFQJZSYFNujdK+n/hmqQot5oiqjC+GoNQMlr76XvkAVB4al2ki0SuXWRxUcaXANqFe09BBJoiGoTkw7OtgRgd6NHeoQiIVaoAAu2zPLgybO7NZJK/HlHTTjDy2iIHMoACxAAzFYrXGGwB0I4YjuSQUrSdP8uqqhpG8V37U/YtH6dkCNPKpL0e02AbysGWYDBXVVsUgb7ztFgHvS9X/eO9EWMzBhF0AIMfMzSJwTaJ7md7n0Iwgb6boa+WIrrEmBAh1UUbpwbA0lRSKc07ShEVKkW360I8n/jYR8xJC42u4zyNJazHv/OKJzWfabpdvarC1vmZxg6Jihwo7zAdS7gOKUBwAmWwBS1SYX6cfMwWnLa7dhiuueMhJW2+vXZaLXswmoggwpa5Pp56egvchbmsrbM8NZgHA0MLc2kyWWNMKCx2Ok6gngNaBWa+xmtr11Yi6dCuCymg7dGwbFJEheBEvC7Uz3OXUHyEzzmryIEGvIf1MwjJc30vIC4EEQFsgi17SuR4hmCxfO5ckQPKHmwZbLEtSc8NMAbbWO/bgKUr+no8N9PDGWtMlZvvPRiNbSysibQgQatvqoBMjPnMtc1CkxhsSSVNsciBDkxI6amiDABlXB2WpR+2Lcw09vH/uvl+nPFvPo1v35MWC7EYbNo4g00VAmf8mP1ehTc850z8+JNOaT67gaSjc8CSspPoe6QGEpoKpbYGGyAw2IR3XdJg0+yfOTFwJwelWn1CwVaJAjPpuyEFZiSGY3L+oE3JfFLNNj8uKpgmFw/gxw7XpNleQBpEkdJYAYE1OW4LJ1BAL5ZlkbJG6r4nEbKHpPOdyJ3MxWDtRmzFABsvavATP/ETeP/734/f+q3fwl/91V8diTFuto6NbyRb5ih900r9bCusPbQ0iKLi3Gh81Ek78Os/9tjmM1plTaquF7MLJAaIwGBThIOpVghglZSv02ODOPy3v3cg2mgkQ1hyJvkxL3xsq08TWmPosA0vSo1VKk/ShYqn0mrGi1T9qYTBFhbpcG6XFtjaM4qqH4XoIDVaaUQ8o3FhabANWTReAm1Ck4ynnNB/6HesIIrP+3IGG9BGhrU0AbmyYApchXv/sHLfqQEhpXZJ6ZwS2KAVD5ANnTBO4gAIxovmBEhM1PC+aVXWHmSaHVxvKHo3hxOVbSamlwnpDCdsr9+10XiC+5o06/Y4PRVgszXt0iIH7TE1owQA9h+mAFuP/Jw+c53BFjs19Dt0zgUncXkwFqvB5VJE+Zwr0WCr+/ea8/O+Abyh5/31T90gHpOCQBwE1SpziQw2IdgDtIGHaE2UUrJnes31tQUr0n6hb2icwRYBMjkGW8RKSo3aFlysksI8Dx4etMCVMs5YMFp2LOJiFPZzD3pp31WK49Dzi46S0FdKEeU6PqE9bW+d3rY6HOPme9YYuOr6FYOX6rshsX+FwAyQgmHauTnzWQKp22PGzp/H+RqMxmp18pYpkha8qfvW44z0ejNVmCU2s2RXBPbNg1p138ouWqUVjqLFTyYTDhTX5z5OYbBJNqIEsGnp4FJmAE+PDa3dN+yAGH1eYhA4sLMa+QG7INO5a+nTiSuX3AABAABJREFUq8NxXJ1cGCddk+S9VQG5RrF2lSZnweUkQl+5yMEkW6QkGqewt9NAtMS46q3p9P78886Ozv3Z6+sqzDyg35x/RgdlogruC0GaRQ+unrprEZe+6skNEEoB7UaDbe16d2+TATYtkDA/0wbAeT+LbU/BUnpNkgabZv/Q/d2S8qj7xuzOWNpIDiQEP5TOpSY9V2GwScE7Pj91gE0qrqXYadE7PIHGxOTXVAdR5LWb2z/aPrhNKIAnXRMF0xtZJ0PuZIEBsBuxFQNsWjvvvPPwN3/zN+t1uM22jo2nZ1CdgYOMmTZmfU9dA6MmE0SFCyS219PO2N189tAhmcHWgB0C+0hazGd6VbMBUAYbj8BIVdvq60k3vHPW0kQPrY4iHTTJ0JkxHNQwvl99yaNx/lnttQPtYt44dGvnPkFLPVAWqpjBthyly9EoxIKQfkivh1LFHxYZbPG5jxG0EwAOBNb/R5uTIECtlfeWtBskECo0fky60SQFK4SUypl+r/nZ2sCP255qJ9TnT+eHBC56KusssWuP0kjW7v3KcEzo9+21xZGv1HBsdKYU41Z0/BQwjjOUqF9Ox9EAPYpBZrEWqJMYi/LG0TRu4MXXJKddAIr+nOBQnkJTfYJgs+ZwS4LzQgoxQFJEBQFqDmIsKkVY6PHod/jzAaxnyVNECcAWVQMOTmI7rnwV0XhsCzMywKZFcLmQe33MeJznEt2sv73pvjbtQSlywEFdLYghVSzUHaDYOad9kwh/op0lM8Pm+r6IOO8HxPeTghw8RVRji4Q2Gk+adV5KeQUEIWbhHaIBkjitMH2Pgi7j4dUR7hYi4nogQWehSimiGgBL97gwlzQQw6r4GTl+wrvp0WDjDDbab2HWAs1kdkO4Ji+7U0sFo8/zcMOQbs8XntGi9tyFa5L2AgmYCMHdQ6ujVouLrZ1bDXtBe0bhHR6MJsL7Vv9Pq2Ter2oE1seMUqfW1k7JiQc8VUTpvtGydGilQn49nP1SjxNJ3/As6RySmDJURoXqFEvPcqan2wr13/V9Q3svaAr7srC39hQGWx2cUNZOg81M+9JAdEhNloD8n/uhMyNbdllIqbTSXjU9vZBCfGh1JD4ja8+MGEoE+A5rQlyNtz2nJEOwkrkeev7ArJUYuLkiB3HKfMrAjti6EXBW/ywJ/esMNt3P3C6kbqd910gfLPWyKEVUee5J8MqwEblNJxXxAdJ1VruXUkab5L+dfEyafWUFi3kK8UZs6wKwLS0t4YMf/CBOPfXUfOfN9k/eOM2XvihBMyI0+mJXVVypMGiKALIhKqV3AfIGYbFkgHbRr6p2M6UabBxAicu1y0y3cG5a6OB7hEUmOd08spBcT1WDkP/t//PMqNLagC3mYdFXy88rxsaJOxYaNk7NYJOBq4VoMU2dhZ1ZDbbYqdIYbFL0XBJnVTXYhFTeOEWUGsyxk8gj0tQQ/PjX7hCB1aqCmI5lAmyRALf8jCQGWwAXo8gsBdgkcFES+peMcAW0ExlsgoPc71VN32Z+OLQw0hTR1AEA2mejpkgYVUypobFduJ+tbkS8XcXj5LpINsjEU5IAYM/Odl0IGhN6pFeIsitMhHDPJEeJgx3U8KEO49xM+3lVtWLELYONnk9xakLlNoFxRQWGv/uQHZ0UWb0s1VlKWaf9+PklbUYugP3Rn3t687elwQhfvfVBALoRnrKOml+j65HS4VWGkqAFxoMooW0lwu+0vwUUr7D0IWp45xhsVpEDPj8OrKR7AI+yJ9ov1FlhrKdGp05jMgmBmbNJkZTAINPuu8Rgk5wQKYCl6YtJqXUSCwNIgSvaT0tbl4si6cC/RzB6ZRgz2Dirl88RTwXmVeak0WPGRQSG6vVoFeclvTZpL5DWzl1bU7CDA0JaYJUfk14Tl7SQ1mO6B0c6rAK4SG20O4V9Q2No54oczLH56ZpzAtut1cmjIKheJZKOMdYjbc8fjum14/k4k6JEzBPlVXs5aBcE12lLQLue/K5b1Rej6rWHheezdt/nZnr449e3BdBEoFixQTgoI6UvA+291/rONwDbOCqIRPtVVdX4HFTLUAsCN75WRvYCSHWfpXVhy2y/eTfC+uFhsMlauXT9am0qfj0RSO3cN6S9FWjX8KqSfVcebKH3MgpOGGm0QBq80gKm/PyD0YRl9sj7xupQZz5LRQ8b+ZaqfYcjeaNG3zSfQhwYjhuxFQNsu3btwu7du5t/u3btwvbt2/GRj3wE//7f//sjMcbN1rHxBY0CTFTLpu7LwaMWYLuTAGzSIhWJJQoi0LSvqA2kiUAzXQB+zF6vavQlgHzkfHe0ibabDhfqBtLIgnZMPuYkXa+5R3PNhhNTtpsfEwe5WahWR+piuiWKpqWGDtVCkDTY+Dg1gE2KwEgCshFrgIork2jJ4UHal4rMcn1Afu17j92Kix5/MoBa4+CLN95Lxrk2RrY5BQNCYnGFvscJ1X8ALoobxmtfOzUcIwbbgDvdMrNCMsI1gI3PTy3ylStywN9NGhml/pw031W9IaOSZ1S1LhKzj9ONuTPJNV14cEC8HoHBFu5nxGB7qF4XNeaglCIqAbBADEyMxhMV2KzPIQNTM8wDCWPhqeiAce2MbaYXUwnRSQ2A1Q3hfIpoOzappPyKlCIa2Ek7FvC7r35y8/e/u/k+ADLoDzCnZjBSC4XMZ9jUsaA4BZnie88NYV4xuZ3H8bPk7FItGj8nPEt67QsmwBZfzzPO2B0BDUBbbICnGYU2wx1+YX5sVbS4YsZ7fVypeq2qUWMEEmhfGmjLpTmJ4vCK088dMFW/MpsiKjvdtaPWnk9yekM/K0WU67ppFXbdDDYhcCkFHSINtpU00JVLAZTWzt1bU51ebstqxa34OOl94ulg0vyQmGZ8nDQbo9GjEgT0NYZ2toooTxvT2C9O1uTW6F7JFTIBDgzI6aQ9wT7mDGk+Ns6M164baPePFcGW7VUVLnrCyVEgFJCYYbpNA8h2fJwiqhe8AeRUZ8mHAPygjKRnrKU6L/DAjNIvgIYPHFrNVjZugU0JtIvXmiiYMpCDDhWRI2gLF8h+npTVNFCuKWGwCQHT+md93+hV7ThjIkU7vjDmSHoiqSIq+2RidV81cEf7ZoocsLkU6XJr9g9nPgvBTaAlNbRZI+0xuFwRwNjMHGBbmx+jcVxsZyO1mXyXuP3O7/xOFD3p9Xo4/vjjcd5552HXrl3rOrjNtj6NbxC7Fmexda6PQ6ujFGBjL/aeiMHW9pU2iIXZPuZnelgZjiP9oBzA1jArFJCJLvqhUceXl2uPihwIG8muiP4vR3VCpJsu6qtKCXT+HUBIx+q1/XctzuGBQ6tMQF+PBLTONNdKIZstWfR5hcqgYRSejclgEwC2hwgQGFPG63PSUuBNiqhCLZdYXPS+L8z20e9VGI0nQopoaoRf+LiT8OlrvwsgTmHWnF6TwdYPAJuswUYZNWENlBlssvEUz9FU+Dw0ej9lRk17PdzpBdI5F9r8TA+HV0eKU0OdRB240lIVJfBZr6LF2J1knBEbcs0JCO8SZ7BxYEIrSCCmxwoGDA0m3CWxuBSnN8dg488oAlDYu07vGZ3/CXuvV2EVRHOnQC+NM8OAmMF21/60+qLOYAvHjPtpDDYt4hn6r66xEPq9Kjkm0Kb3A7TilZYiET/3nJ4LvR41iEL7jsfYgr4KaG8hGjUABZQ56M/AG+Udkpg/9B2mwQueIsoB2K3zM/jMm56Dt3/iWnzp2zVQeR9Lj0012OJxSqk4NNB1OLMPn31CCrBpwFWfnFtikoeh5tiqGvA9zOztNtus+VE+prIuRYwevn4Za6fmKPG+vMhBrLMZszvjQILMbjjEJBCog7pVe+6kb2ghBXB1OG7T6wUHeTdhsDWp2+weUcbiXTwbQ9nfuKC5tC5EANuyHGCk1zS3treuCutxjsGmAQ4zjGWogSL59av+XwLOJP05Vc9YOH+28qOhg6btrUC7JkpFDvq9Wh7kyv/zWXjmB74QH1M7tyGVQPvKKaJI+tVj1AtHVZXF4NeBQGnexWtSe5wFJlMRs+bbY4Z058FogoMrQ2xfmDWqo/tAOwCR1NDS6shcO1eGY6wKmRNWYBfQ/SKuweZhhjVFpgTwSLKj6XEjf7Qf77MakM8rg/JxqlIvY7vIwSyby3EQRZmfTCJDI2dw35H227k426zbjfxCtLdFw0wkcXjl8o3QigG25z//+TjttNMikC2022+/Haeffvq6DGyzrV/jG0m1xmK78e4DuPOhpcahAWJKf1W1GmwASxFVNohdi3O4++FlNUU0LNI8RaHuRxZTg7bMj9mvqgiU0KpOhbVv96LCYBulG25VVZjtV2tU3JgBAnChyjRaQoWlQzt2aw2wWdWxaAv3bDSeqM7CFqHIwZBtDju2zOLeAytRRJaPV6ryeq9a5a3+f1ukQybpisgg07IQEe9XdZXbgyvDFGAbpYbocRQsPZSCpRxkCkaeVU3yWKWKaCP+rUQcGw02ZX5IBR74MwJYiqhgZMWsScGAEJhhgJ/BNs8NYQ9wJBjXmkg4TwuaUdgFhxqAre5npYgOhiwFUHFAVhswP33fqFh1SJ1XUymowSwyZYgjz1JpNbCUjgWImV9ca4mniPKAQ2iS/pxkNJ5MGWwPpQy2XJXZphBFA7C1z/vKf7gLP/m0UzHb76nrAk9xX5ybEcfJ9ajo9fBjRkyZge7QxYa9DbRYoAxfa8L7PhhNokizqSU4lFMv+fXIhUp6mOv3sDoaJwCbtF+ftnsRP/qEkxuAjbNaUq04Yx4HLa5ZxTkX5jxlsN1y71qRASXIJrJlhYBHv1drto4nSioYeY+yDpD2vhsMFFmfMA+cDZJjNj9mUkSNoANPEaVrEgmirA7HoE+arjUScCa9lxqDTQt0za85alJBpqbIgVABkd/37Quz2Lk4i4cODyL7FNDZkJG9wlJE26Ah0WRasjMigPbdaN5LpcjT1rk2gNju7e2YNVCXs1pi0D8DFEvBwFDxXKigqsmtSCmdVsEbPk4+57Q1FiAMNqXIAVDvWb/+Y4/Fu/7y+vaYmecT+qXjrP+XKir6UrfjYyZBFIPBptmTYd5pgCWv1E3HIzHYgPo94gCbtb9qemlAvCYuM4Z4wupdoezK9hi6Rl8MhgGcHRaz4jTwSMrwkAKM0roNtPIkmlRDku5LblFOj1MrRjUcjVVQF0iZ7HEQRWawrY7GjA0o+45Lg1iWhd6jUG1+3/2H2yIHBhDIM3aOwSw2WiuGFM8880zce++9yef3338/zjzzzHUZ1GZb3yZFBwNwNhhNIh0yHkWlAq43fPfhZlPUDOGQJvrg4YFIR+4R4CoxSgQ2EUAYbII+T32sOjoXgAmqKycz2CgYZxdjANrFKEfzpdELvqBKotpLgxGJGDR/TozRcNya/SJHpMXS5sxRCpv3XfuXY2aWsEHQfHs6PySAL0oRZbpZ9fhJtERwwCJgpFc115JUERUcixgME9hmSmQ0RNMkxhUVONYYbKFtm0/Ze9o8WpA02ESALRW618ABSZuoFbFH1Jr0WIHBZgEoGnAk6VtoRrNVRZT22ypUcxoqwASPeGpAoFRtVnJ6T9i+0JyjKXLgdHqTY2ppvEaUnY4FiNc7nh4b5r9YvZUaeWIRjHR+7I6KoEjzWD4mr4za6CwRwOzLt9yPj3zp1qh/fUwajU8Zb5JzTu97WOcGkTPb/j1K6xuNMVHT8OPnU5+77RtHxNO+2lrD9Sabd507KkwrRQUMRRZoHHQIfW747sP4L1/Z1/yNrrEao5gXx9ECPUCqwdYwvvu9ZgwS0ALEeqThkAFs0Jxzem8bvUch4AG083OFgb/8miRxeHqfIu1OVmDCU0WUF50B9LlsVRHlYL6WzlmPk7Pd2r4U4DAd/gxwJr2XOQYbn0tcV3ckOOeRlEdIERXWpFAV/rv7lyJnU5Mc2c5Y0tI6t3VuJpmbQL4IhsSMp+euqqoB7yQGm5aOznWZtCqiA4FJ3qZPU33EdI1vtNoE1iIgB5uqqtV2bQA2ZX56ixwAtKq0zGDTj9keQ0vdlooxhL6RzE2Tlux4L0PQcKQAyoxdrAGBOxi7EmDP0rD5tb1192JKPvCsSRw84mxZ+vt4ErOuYpmKeH7Q+W6lzAN60DK8G6Nx/V5owJVkH0v7W7y3tccKx43S6002s8Jgy2YaxIFyu8hBDFRT+4c+k34v1l32+I4Jg42dO6RQH1gerhVO0t9hSdtto7VigE0Tqzt48CAWFhbEv22272+TNtHTFR02HkXdOj/TiMnfePcB/Pev3SH0o+BAvZivDsdiBaCY2REvvGoFwtnYYAbkhSqAgXfvXxZ1WkQNNqV0tWSI88IFAAcm2p/bKHt8bgA4lmp8HZKqy3CHod1MtDHSjbHJo2dRCJoa8Yr//OXmXZZAs+OjamykipbgrIgabJqRRcbJI0pAPee2zMXGVdNfOOZuJd03myJqCPIuzPYbsf37DqYafVo0/IBQRZSeftG5kR1DRdcLSptzUW1Ng01KadSeEaegR04veZfb942MU2Gw8XtPr2eRiOKGKHuIvFlsjQHTqFFZJQZzsd+rmvXrwEpIzc1fj8iG7Mv3acCMp2lTRCmrtR6ncu2REx+DcTrYYKddRKwFzopr5ALi8X7gf9xY9xMYEwBPHY/fI9pPYrBpKXOcNelhsPE02vr89D5RZzbeYxINNqY3Geb7LGeWMlBESznJpyVX0T7wjr+4TnRUKHAk6UJq1U6TKqIC4xtoHXQtvUyqZpkD/WMtnfgZaSxlaR7T+SEVMPKIlFuAlKiH5Tymrl+ps0pyRQ5WqVOl6PPwNZ4+Z6l4gQSaLSrae1KAsb4mfS9qMg0o80YQnA9r52m7t6yNK04T1Rhs21lAUHrfer2qsZco41+qzglI7HAZ1AVaG3k/uyaeVmgBUnG/FByQ+krBKwkIXBTE2XlfCRwYCvNdZZEZgDLQzvkQVPYEHdIgm3yPJNsvvEfb5mea48tFDtIxAiRoqDDY0jW+/Rt9N3YIGmyaLR1X6tbvEdUyfFDUlSPXxNJOLQ02en+H44mqV8vTOUuKHAwyc67uw2UV5CAw9wljckR6boAEccjfe72qGatWhRiQ0049GqPJPFYCSGGscVXp+BnNk3VJO3eQEAIEDTZ2vC0Gk1tjoQIpWWKjNHeK6Fvf+lYAtXH27ne/G4uLLUAzGo3wla98BU960pPWfYCbrXuTDLczj2uf3/++/SGcd9axAGSn6l0/+hi89iN/DwD4wo334FXPOF1Nc9rF0i+3zG1RtYnmZno4tDpShCpTAzNstjP9npgOtmfXFtzw3YcxHNesvFN2bhH70RTRBw7LABtdK7jBbi1UoXFHTWOLPHBoFafuWlQXaXrcwSgWi6QbSVVVWJjtYXkwbpgvfCO5k2jo3XLvITy8NMQxi7Msmlb/P9vv4bhtc7jv4CruIQy26Pz9ANylOmSawS5W9WH3c3E2rr4X2khwLHYtzqKq6hS5+4Qy5NxwoyDTZDJRjZfjts/jwMpQZPrFDDZBg02LNJMULq7LpKWI7l/SI83191I2kQouMsaop0rk6kgWM+c/t1X45GuPBed1ILDXq7B1bgYHV4Y4uBbBDQYET5PkkUQtKitpsGkR5DCvJEeFAhM8ZYz31YoCDMdj9X4C8b2g2mUawCYFJ1QwjAEOWippVpDX0PwJ/ahxRZtmsEtpSZJzLjHYtPXYAkV0gE0CLNvxcxZX3XetH3uWXMso9NeAb2mcMXOw/Z4257jOyX0HV+p9UHES4/ser91aoKfuw7UZY7DlwcODSCBdu/dz/XrPkoXH23NLzkobnBCAd5KSJOmGpsfMpIgazA5trZGBajJOkwnhO3cyl5g+kFZhl7OUK2WOL86nwJn0XkbFEGj1WOXd4IWr5CIH1E5aSfqF88dFu5aw99it0TjpMQGeIjqI1nX6vu3YMoP9S4OG0cvPL4FHK8Iz52t8G8QZ1uwbBZTh66wH9BeZMkEnT6oIK8xjrTKrKo3Sr7A0IHurI3DH92uNwQakQvK6/AO/R+3xZnu597I+ZlVV2Lk4h/sOrpQVOWBAsTbfAWB1NBJtboDLraS2NL32BZaiORy336UBPsrKe2gNNJxM5GNaa03ComfglRbASjOVZPBZqkhLbX66fnF7Rde/Te0aKahNpYCoj6PKOvR7GIxGyRobVToV5pwna8QqaML7DkZj5pOle+GhNd3laC9ge+biXH+NFBNsKvm6ua6alSIaS+Kkut8bobkZbF//+tfx9a9/HZPJBNdee23z+9e//nXceOONeOITn4jLL7/8CA51s03bJMPtuece33z22evvbn6WohBPPPWY5jOxMpaiIXBAABwkbSKr8hGQT/EK7/WejIZSuB5aKUhisFFNFyB1ulV9HrK48WgJvUc0onS/oi1CW8tWGatpD0Dr1IZFkhtuwfAM7XsH0jx6ej0nbK8ZqfccWGmuWVqkeVUufkwVlFF0CRaIODgtliFFs2b6vQbUlVJE2S1qNubJpDZcNOMppIkeWB4mjnwUDV9IU2g01hPQGkVtOla6kUlCyLpQdno/1bQcIiQ/HuvAGdcG0gw8iVWiGU9WSiU33MJ8OrRSC+eG06cOSAweWQLUtB89Nz9uWJ/CmjRRDB2pgpj2DnMjT2ME8rFQBmcCxBFWK6DPuchoHcbOl5oikRHklTTLOFCsAWya+LekvdcylDJOjRLB5X1V50sUV1aepSADoKeIxsaoVp3TYmH0WRBlnjFl+DPiANu9a5VBNfAmHmN8TA5c8WvXBKhDuqCm32QxfzRQJF5r+N4aDTNhTGhV3njRBkAH+DgIqmkezkhOlaAVlxyTpbfpTq/NbkgKIozld8OqXEvvkQScSaCZWsVdAWu5rq6U3h8Faw/pelinEZ3gO0gQUZMc2T5P0/BkBhvQpus9vCTLnUg26qqj+mIQsp9MapBNSyucZaByHCyW+3FWbX3+NYAtWmPT1MuGwRYBce07PFH2V+t904I4vMiBNj+AtbXbE0Qx0k4p62iV7YP8mLsamZs0RTQX7JGCsICgB6rcI14xmI8zLmzGUkQFjWI+TlEXUr2mWN+LX1MU3B3xNM22H/fzXJVeDe09IGXc6+nTul2T2l69qB/tmzKF2/VLez5WxXHreoZjmxlmr/HKOjvQC94ALXAmFcijbYEx3s0U0dnUtthozc1g++IXvwgAeN3rXofLLrsMO3bsOGKD2mzr26SXde+xW/Gok7bjxrsP4Jo7HsI9Dy/jhB0LYhSiJIWGpygAMv2fHleMxivV4FYGYyzOtZt9VbXMEloF8M4Hl/D0M+SNZG6mh+3zMziwMhQZbKn2DAMCFUetLyzmkjNLNb4eOChpi/CNbA3gGzMGG1ska8r4oGVHMXrzz/3QGbh634NN/7v3L+PcE7erGgIn7JjHDd+tz/vA4VUct20+0lYL55/p9xr2XMtgkzfmqBqcxHrqVTh5xwL+Ye33J/7a5/Delz4GP/esM+NUH3KcUDRCShEtYYtEDDai7fbAoVWcsnOLCJZSY/SgEBXmxWAW52bw8HJdwIGCR3Szj3TdVoQiB+SQ0pxTr50BCbqYehX1UyuYimBp+3e1KEBgDypMu+CgH1oZQmNCAjz9Udc1kZg/2rU3YLqgZaM5C1zgGGCRe8b004xBIH7/LAbbbGMMpoZbrH+iG9ca+5aDZvzvVANkqByTp4g2/ZVjUg2n4PxJ45zp9zDTqzAcT4oZbFoarRQ591Rl5e8be5QJg629nrgfd6o05ydc08pwLOr+zfR6kUMC1MERfj16iqifwcbTCqV0wcNrleV6vUq9poRVO3asNWHOK4GEoDW2KgCwM8o6F47pY3YYVUQFXTctTTIF7TSbiqUGk0ds7m+jcVPUBZBTc8Mx6ToRM9h01lP0/ioMNm2N54CUND84058ejx6T233NuRV2OmcJUacxTter9+HhuK5ovjg34wJgByMu5RFdelwpcqmtYmqnZPsYuA2DTdiHtwpBDAnA2Mq0I0PTADGeIqoBDomkgxFoStlZyhofBZDs4NXsGusoJ4EQns/yYJwUl+B7UX9tbeN2RVLkYFa3VbTr4cWg+DXRdWHZSAGMAgmC1mTMiovXGouJyRlsYf3qVfEeE9ZjsehMJnCnVoA2bFm6zkkabNr7FpiYkQZbQ1JgQTGyb3nSPhvgm953IbALpOuHnSI6Ue8nQPZCI80aIAAbs6m43bmFgboWECjJfmy05mawhfbRj3503cC1Sy+9FE984hOxc+dOzM/P49RTT8VP/uRP4hvf+EbT58CBA3jzm9+MU089FXNzczj77LPxnve8B4NBXAnxa1/7Gi688ELs2LEDi4uLeNaznoX/+T//57qM8597016C89fSQgHg9jUdNikKIYkBq85XVP5ddgKavjN65CunPdMY12TxkRhsmkEUKuuIDDYlktiAZipTJQUcQld6jyINuMMeBluv6aPdS6Bd0JYH8f0M1/PSJ56CN//wOU3/ptRypKXTHu/E7WmhgzjlJH1G2U00AmXkaNq/vOCsyFn9q3+4Kzo2IN/PpcGoWcjDY9cMe8Ausb17m27ca5UKw/VorCegfUaHV0cqIEMNUUtTBUip5bXw6Fo/y6Ezon6JxkMBq2SsGDocRKAGHt/sA5vp4Oow1hsyAMOUwVYAoAgRz5FgiFKjkbKJvKAdANNg531DhT1AryIqzTk9PVafH7TojPZetmMR7idjE1F9GKB9plKaNyBrOGnrcVJhLgLe5TmXMH/oO0QAw1zlR3mNl4GeLSz9UtqzgBTssNJyeKESbtzzCtGBwaalYy0KRQ60qH0ixKwCbHq1ZN6X2wDaPijrPU6SvwHE+clIOsQVmO3nbu0b3hRRTSsOkJhpbT8L3OPsvTgVfxSzGxQHNQVL27/JGn0paLYopB8Cso5i7prCc1mc6zfX84BY5KA+fxQMO5xqptK+gK/IAVCniIYWKjrmihwAqcPP5+cid1I1zVTmSKspolKgS+gbAWyro6RfWBO3KEUOcuunZPtZDKV4f0HUEgabQ8eQ2wBaym2OSZVoxRmgXWsDxAy2VJ4j1jbzrB9t0EG2gTgIqQEokk6vlqJqVSzWAv9ALBmgAUIhuKhq9Alr51BZE3mKqA4+ExuVgXZpAGltflAGm6DBBsQp7tqeQQuAjATf0dJStggXNDA0GOpVRIHYd4y1O+N+CxxgU657ge3tms1djzNevzZiczPYaPvqV7+Kj3/847j99tuxuroa/e0Tn/iE+zhXXXUV7r33Xpx55plYWVnBt771LfzZn/0ZvvCFL+D222/HwsICXvKSl+BLX/oSZmdncdZZZ+Gmm27Cr/3ar+Hb3/42/st/+S8AgGuuuQbPfe5zsbS0hOOOOw47duzA//pf/wsvfvGL8alPfQovetGLprnMo6Zpiw81isJiLjHDvPoFgFbpTDFKDDFivQJQHKGj5z7pmBQQ0qjlu7bO4fYHDuOhtQhiv1dltTAGDNzjx7T0xTTWQK5KEkBZNRORQRZa2ByXub4X6feok1pwvAHYlHOfuKM1XO85sILHQmcDNPR70VEh0fFInDQFMXq9Ck8+fRfeddFj8GufukE9Jp2Tx0WVRFexuHtGjZzbKQVtP5FWL6XWSRoPxqZDqdg6Q4i8QxlGDY/QWVEqLsqrGU+JrokGHAn6b2p6iEFr50ZrYBhMJm2aOR8jPyYH7bihE/Q1tNS60LiRZVHgOZuIV+1tj++PTsYabLSKaE/sNxTeIUsvTetXn6PC6igvVk2fO480h7/xFNGQ9qw5X3KKaHpuoH43D67I1Vs1IfcVQ/MnLoIR1u22by4FUGOMxtX4Rg3oX8QsVQIE4t7aq5pCK6Hdc8Be47cwlh1lE1ng72CsR8Q5WLp1fiYrq5BL25LEqtt0rGiYScqaxnyWA4ftcSwdR+16YtCOAYHc8WR7jMfxXBmM0CPPzAwgjXgV0Z7cbxhLT8xGwDexVYzCPFsVYfyx4nRbTJlwC6uqwrFb5/Dd/csNcCatH3rRKtlWKU0RBepKoicds+AK4vD7aelsjsj7ljrHsdPtSdmXUkRD123zKXAmyUTMz7TMrMNRiii5Brp+GhkeVqEBq8iBBR7pcgU2GMbXGi0InBYfaY8hFes4vKZxBaSyLOIxLQabYPtp1x4XORixNG+yD2YCjFqKKgcCcww2Xkk8tKQgAbmfWrCaa7DN9mXZntBXK3IgaxSP1/6m+FnkPmqMRMpgs1hcM/1qTTtcAr5pv3icXhkAbi9ogdjxmDHdeIroXBu4o2BcIkPE5lxUrIPtw1J2zUZrvXyXuP23//bf8KxnPQs33HAD/uIv/gKDwQA33HADvvCFL+CYY44pOtYVV1yBu+66C1//+tdxww034Fd/9VcBAA888ABuvPFGfPKTn8SXvvQlADVwd+ONN+LSSy8FAPzX//pfcfXVVwMA3vWud2FpaQlnnHEGbrnlFtx2220477zzMBqN8Cu/8ivq+VdWVvDwww9H/47GVrSYC1H2Xq8ijIlM9CdTapmCPUkqh7qJxospPT+NvlBnoRFSV0C7HcSJb6rWNZFmvkgGp1syXnTAQROWlkqGWzTfmebej9W0ByBmdsTiue35KGgWqoNqjDzJcKU6aHRTcOve0E1Z0KgJ7fXPPrMx7oPTO1Ccc1qVNRQl0CtpGulYqlHCHCWF0SIChoou0+pIr/AmVWmMgBFDY8KuzFVu5A2YZpimMdE4vVqakyWemwATrbP2ENHgy4lAa2mSQJqKFhnNwjVJeoucLUL1LQBd4DgRh3carRRgS1JE+21kEogNN3rtie6Nsh7Sc+cEeeckxhfTS9vCALachpGUvqQBE20gYRyNAYj3Fz7nPOCNCKxqbAD2vltgB02RmDZtnR4z5ySG1jLY5HVhC4tIW+e2GGz0mDTdd8lgygBpVWedwZbed6kKcXTMoTA/FOc8OABamiYHubwgApC+G83xybi5JqZVRdTaXzhwFu8xOiCk7a0ig03YWxdV1lN+nCvJvCMMuoaVnwYiwzGpVtsDh/IMNl7kQEvn5KmcgJ7ilb7DbT/+vtPvjYjjm2QuWOCRBjYwoLpXtcFdq6AJPWZVVc3z9BQqsQBtVQvMqJpb99UBWI35Y1XipeeXC6oYz9KhFcf9Dcv2WkmAiQL/id5PKrthgGG8+rP7mAmDjQX5mP2X0z0O54+Cq0IqKZDubxrbrD1mCtADqX0cxiodk0sBWX1bBlscLE7G2dPfjZ5ix1sFTQCpyIHsRwDtOzAc63Y8kK7zGot9yxwFvm1Am36XXs9GasUA22/8xm/gd37nd/CpT30Kc3NzuOyyy/DNb34Tr3jFK3D66acXHWthYQF/9Vd/hfPPPx+Pecxj8Bu/8RsAgOOPPx7nnnsu/vqv/xoAsGXLFrzkJS8BALz85S9vvv/Zz34Ww+EQn//85wEAP/IjP4Lt27djZmYGL3vZywAA1113He666y7x/B/4wAdwzDHHNP9OO+20spvxz6RFi3lOUFOJQnDnSz+mvUFIOfcBjNLSy2Z76QYhCUuLERDVEE4jzVq0okkRlQwIBTyyaL6z0qJvACNNFGISOwtpCWVmlAibk8Tyi9IzIp2W9njNPYoExSUjK44SATook1a9jC5HMNzkc9OiAKHIwkQAYAE7LSeXBidttrMRY8FOIQbie7EykDdmOZInAyhaFJFfD5Aab2oE10jl0J1e+12f6VXN882V96YO0H6S8sYNPG5kWXT1AGq3ADC590IqWl12nglLK0bzyjB+7iloZjDYuPNFxhJrsMlrQjtOZR4zMExLDQFIut5YWOM1xgSb8+FP80yDbTnD/t0qCGtrwEQTSGDpDED8PlqOEp0egeFIr0dbF7gukgXA9pmD3PYznK+MQ9dWQU6BK94XkDXYaDdeFcxKCbIYNSqDbSVmd/K+bYqoMI8VEHTEQNA+ezfC/BxPJFkFzalJgWp6+ZGtZKXXi2x7zaGL90IK3ujBCc4ojg6ZMOi0AiA8HUtjh1OmWWAztYHI9ryB9UT7AVbBnTyDDZCyHOi11sfcMtdv5vGDSlV4K4XZy2AD9IyINHCnM9iSPVtjPbF0dP3dSIFiyVaJi1HZmROLRMqiGauyd8wYa6derTkDXDkZbElGgglMxOP0pPvmiorwargSuzM5pgGWctuLHpOPM2ITDUcq0CMTFNqx0UtasOQKMvNYZeoyAFhL45XsCs6M165Jey9LNdjqfmPyHZnJNUd814FFjiDZR4CvQF4dvILYj/flwRG6/9DvjsYTE4jjemmDxnfUfcylVbvIQXTvN2iKaDHAdvPNN+Oiiy4CAMzPz+PQoUOoqgpvectb8KEPfah4APfccw++8pWv4Jvf/CbG4zHOPPNMfPGLX8T27dtxxx13AACOPfZY9NYe9Iknnth89/bbb8d9992HpaVab+uEE05o/sb7Se3tb3879u/f3/wL5zvamiv1QIh80ZYaOnlwIBeVjoCEsVGK29DI0TbwlcwmyiMG0TGVjUQy2DXni1eorLR+UmVSRYMNaJ8TvwZAF4alxztu23yzoUq6ampkNFSJjDaTlHUVIqge3RseTdO0G1aG6bljYzB16Fwpoon2izyXuKGjbuAiuzM6fXRPV4jGlg5gSMfUHP5JJtrKWGQO8Jk7X5qDKjGp6DFrzbKYhq6NkzoCDxGHyTRaWWW/BFzkYuoKcDbLrqnEuA7GmGVgUocK0NMUgFhgOq3oyI6pgHbxPNZ1s+g5cimiUnCiZbXUf1uY7eMCUqma63vxa5UYbFoKYHjuy5m1xgIm0me0tr8NpWsn/dj7burpkd9Xh/J+Sa+n7jdS91Z6Ta04vL4fAC3AZgUSwvxMGWxszrFUNE1zcFEQNx4a5w8traDqc5S0dx0QNCQF1jWQ17pMgg5q8Mx4NwwHZDTR32GLiZmynuI9u2HVVvoeUwdb5DlHHS9enZxeD2U9+aqIsr0oMz/kKq9tv8C2f+BQG5DR1oW+scbTc9NAT5AqyMmdALX2sAVU02c2Iu9RuhfEwJkW1LYKa2iSMIeNIgdAyyKnbMSJ4kzT4CoHyWeEICzg0TaTder4OHmVbGu/TqVe2r9p+4ZV5In25XqgNoNNP6ZFUOhV8XF5FdEckQHIg4sR8D2w2Vk8/VJLB+dgfuRvqGApW+MNkCnVCZbfDa7BpjFGByRgGg5rpb2ukEwD7ZicxMGvyZJfyKaI0iCKYk/SVHTAZrDRIjValhQgBSd0+4f220itGGDbvXs3Dhw4AADYs2cPrrvuOgDAQw89hMOHD1tfFdsb3vAGjMdj7Nu3D6985Stx66234pWvfCUOHDgQLeihTRhoIfWR+kltfn4eO3bsiP4djS1GzdvPLTpyAvIwJN4VUcpU10srL8nOgrRBTISFT9ycqCOtRZqzkQ3GWlC1iWLnS2MT0cW0pauTvslGRkEZfcPTFj9uWO9eS6m4L1PBVEpV1DTgGkNYELqljprJRFAiuFLaKX0mWwVtkVx6GZBS4PXNXn83ZgUQMmab6UaJ9iy5IcqPqTE7OKuEGwWptkjeKEmql+Wc3qhghgw05dLgKNjyEGWwJUwVY5xsyW/nZwxoWwBXYIc150+M61hsP5yejzMpcmCwDOl4rCIHfJxjbZ0zWAOacy4FUTQWamDzNPpi5JAf/bmnN/qIy8Na3yt26Og7HFf2A3RgIqxzAWTSWLXcqbHZDXEASSsakTq9+v2k57AAtlQPSz4G0L7D40ma9sHfdwC4r2GwQe1HdSEtYCARYlbeYYuNyM/Pr93jgCSOEh+n4YDobGohNdhktbTn00S1E71YY18fJQzcth93em0QIbZBwrzjbHeLUUPvi1nkgK/boXoscdB48ZPmmsj5l413k853Hkiga82urTXb7MHDq2I6umaDWEGpnC2rVRHNMX/oOcaG5iEPjsSVgNt+fE0Kx+XHpPMo2BUqg20+Fj0HfIFyqjfF+yXXY+yDC7P6/bQYbJ7UugGzAXjfZN9wAIGcxW5mDxhSDZwpC+ii/HFAXS+sIQUSdA02ckwGfCc2CA/yOcAobwXVNlA/Fs+dZC8oc1PSYGsYo8r1tBU/9Xc4DpTrQa4AeGWrk7PAjAXq8mCPFkAC2ntRM9j0fnSdP0hAdQtg48A334vo73SMG6kVA2zPec5zmuqcr3jFK/CLv/iLuOSSS/DqV78aL3jBC6YaRFVVOP300xsNtuuvvx5XXHFFk3J63333Ybz2ot1zzz3N90477TQcf/zx2LKlrh75ve99r/kb77eRm16dMwYbAKptxhcUzm5o/5YDuTQnIKkqpIBMEqOnrVjTfkeqQqOlRFGknxcvsMoicwFKDTgbjq0UUWHDMzbxqLLgQHe6kxLKykbCq/B50iQb3ZuRvOGGey+J3UdptEa0VROBFtP6IsZEqi0iAbB0nEAZyBSNk/SrqlafcMQ2cN4XiOfdqrIxc12R+pjtMXSHX3dAgJTR4ylIwA2iGeXarepl/HceTbMYbLQqollFdKgD3wBl/rACIBkw3TIgOJtIY7BFRQ7GehUtfo1xiihnsMnR43qcbb+k0qpx3+eYA6KBCImum/LMe70KZx2/FUD9PlqOJwXJD6/UYJz2DlvzmL4PaVpfewwOfPMAgQpos/VroryX9TFlI9xksI3i9DKb7ZZqcr7zokdH/TkzvR5n1CWubGxGpHXWAJ3jC0JlUjW1znCUpNRtIE23SRls8fqp64GmdoWmzcjtmolyPyV9VW1/4wEK3emO57s153hl1HDtnNkQ2UrDOD1VK8jEnyW/ngDKRAw2LUWU68oRIK6KbJD4WWrzM+iwjcYTPLws6YvF10f3bFWPSgh06Tp5nBFI+rG1O2bQtdISWspafS26PSmmOgvPiANHtB8/zuLsTHO8HOvbKzifpCUbtkIqpp4H7QY8eKXM+dVRvF/zvjwLx6PrNhpPovfNnO8MUNYLmuh2J+BnsOUC+rH/ZhXC0ucxtUE0uwKwNX1FWRZFg43POa3SvaTBltPuzFWU5uegPpnqN0vEFCVLiwfuNLJLPVaW+mmAoCtGwJYylUM6vHQ87mNa9qSk0bzRWjHA9nu/93t41ateBaBOsfzlX/5lfO9738PFF1+MP/qjP3If5/7778ef/MmfRFVIP/OZzzQ/Hzp0qKn+uby8jE996lMAgI9//ONNnxe96EWYmZlpgL3Pfe5zOHDgAAaDAf7yL/8SAPD4xz8ep5xySullHlXNaxQAumDzHHNAvOXKaV/LgBgwxyJmR6Vgh7SYSxFHtdqXEPVTxS85A0UzNHrxwqdp/kiRc3NBjZxumlYYv77zDgYbPb947uh60mep5fFT0fX6X56N2ApL179rka9cIQhTv4k5k2bFPmUuWVVE6VjadM72b/z8ffVZxsAVT8nWInQJg82h3wSEqpsKAGxEyDTQLKcxUf/egvTWMekzommS1vUMRrbjSbWeAKfTO9KZYUCaSqIZg7P8GZkV5mTDjRs6CftFdUD4Gps33IajFJTRAx42o2ZLknIi96WFLQ6uDs1xLhhpLJqo9sqAFzmIDpmwZVWGEguO2IByuh9J15NqHtJj2MAEf49e96wz8Sf/4hnNtefWeKANUCwNYh0fCzBMmD8qo8VO4/UG2ejxeTr6eqQPDdkaD1gsIR2UESuuq/tG23fMUuusoKUpQUDBlnHL7kwYbCylUUv/6/Wq5vyH2d7Kr6dhsK2OEhaZll4PxExynpY8x0DyXIoo0BZkonYnB9SppnD8LOm50/fXy3az1q8YmGiLVmSDPY53qF2769+5fRqGEiRUtPV4kQY8VmNdW3ucfG9v+3m1XQE+P3SGpXXfNR8mjFMNIJUUOWDjVDUHedCywH/SbBWbwaasx2sL7ESxj0uKUfFsFJrKSpvXXuj3Wp3ext/Q1gUrEEq68nTwiG2vXM94Uq8dllyCFjzT7lFOEzzytYa5ICwN2LJK0QYI6s1+OrhMCzL11H65FFEpKLbR2ky+S9uGwyGuvPJKXHjhhQCAXq+Ht73tbXjb295WfOIDBw7gZ3/2Z/Ev/+W/xNlnnx1poG3fvh0XX3wxTj31VDz72c/Gl770JfzET/wEzjrrLNx0000AgNe85jV4ylOeAgD4t//23+Lzn/889u3bh7POOgtzc3O466670O/38Vu/9VvFYzvamlYaWAbYMqCMsFDkjBItlYMLw0ZRPyNKBbSR5krplxMIFVlxChDII90e0C5JZ1AMe7m0eXR65nTrizndcA+RNA1NbyjHOqLVAiUNgdmIDRA78h79kyaqkzHcVpnRCMTPfZEwng6zFNFclTVXWvJwsqZ3pI9zhejYWEaem1rer7A6kjdm+r7xVEFrw5vrG++bAS7mdBZW0aYTalpLdNw0Lab+3GcUWKnbaZU1iH15BTHL6eWMwMQY5ULd6tppGPaG0boSsVV1A486afz8/TWnajKp02M9hptcaYyem1+P7PwAUnUq+XluY++wtxru8nCklp/3puUAlC0bQHJtjY/vu5U+FGmwkYcuRbl7Vb2+8TUpB8Zxtki/V+E55xyP03cv4qZ7DsraYgpgubQ6inUM2T7EHfmRct9LNH8sRnE2HV1ZjxN2lrLWcNDMGidPh6K3MGLlC3qxWjo6XfZMBlu0zowYCKivNcNRK4DN1w8bmIi6YstcHyvDcVvJM6S8cgbbWqBrNJ5gZTjGwmxftScXlCqRaVGi+H5qzyeqJHp4FWdgq8omAurnuQKJwdYOwArYVlV8763AXRJEId8bj4l2pxHYTYrjMGAirPHWu1HroPawPBg3e4tmo26NsgJG2LkYa4HR5gVQEmF6AyiO5gd35DWbf8SfJRunUfDHC5am9qQ8j7Xqz/UxR2rKvinbYwRblof63srZXtYxF2btAA5tfE1uAuXJ3kr2QQMsBVpbml97ysyKQcM4E4UG/mMfZjSR+9XnYMCV89ot4MqqSq/5hMNxTi82viZNtscaJw+4UH3GAwRg48xnXkXU1AMl36XXs5FaL9+lbTMzM3jjG9+IlZWVzifeuXMnXvWqV+Hkk0/GzTffjO9+97s47bTT8NM//dP4yle+gr1796Lf7+PTn/403vSmN+H444/HLbfcgtNPPx3vfve7cfnllzfHeuITn4irrroKL3zhC7G8vIwHHngAP/RDP4TPfOYzDQtuIzdVO0EocqBtopyl49FjyFXX4yXtfYyJ2AHiRnD4VdKY6CkLWq7IwRzbmDXGBB0zF6pUUy8zDgg/B6X5Ws4sTdPQIjViEQolqhLGGevZyMYoFzK1Njx6fj7nWtbR2KwwJzHYtM0+NZ7av1kFMzQAg/7ONR6kvlrBiqRCpsK44uNMKtEZRgFnDXjfNztKpV+7VuEucWoSg739IGZxcZApjvpZKaLhuYdza9pA3rQcQNdqSQHY2Dm33vWI4Ujmh1ZFtB6nzpatK2SuzaVhnCapGW6SlqDJijOMLF54JWJnkeMsRjqKo4w+j86KixlscT9rfjT7WyYww8HSmPkTHTJ6RhaDDaDVQfWURkBn/vDzzTBA2WJ3BuN6dTSOx2k4/Fz/TV0/hKIRKoPNAEHjdBPbSeTH1ABYsdCRMs6EdaQCcULgzgHmj0ZxmqZWYCFXzIWDMrkqeEAAauVzA0Sjjxc5YP2ojmJTcdSxD1MAJVf5WgPeKcAWGGwj5dqBOHVLm3NSRUfP9SQgeQKskrlsBe4YG7JEX0wLMKbFfuRj8qqC1jEtlnQsD9Jr9ltL2xXgVUR1Ftl8BKbzfhnWk/rcKWtSt5P4+ZcHI5E5CPgrk4pVRBupF51NtDwYRRpbfTXgEey0+ncO0CfMQSv9kNk1+vywAqHyfRowfyOZ7xS0SzJR2n6cRTVS+tXjjH0Tk73Xj/fh9nzyGt8yydu/qVIvHEw3zj1k+5tlJ9KArVXk4ABJEbUA2CVuzyXEkNhe2IitiMEGAOeddx6+/vWvY+/evZ1OvHPnTlxxxRXZfjt27MBll12Gyy67zOz39Kc/HZ/73Oc6jelobbr+ScxooX3VCjwSIKREYNrKOrI2kVntSwFl0iqi7fFCap0UAeHnn5bBxosXaI7naDxRGVe8GhsA9dqBeLOMGWxxP+pQRpVgFIHQFtxr/6ZrN9TjG7hYC7rzRTe8RrNMNQbr3ycTCZQhANt8qsGmOQGW3pFagMPQfgEIMCGBuhZYGqWIRt2S6mkTxcibYffTmyJh6WGZzB8FmGjStox5HH4dJc45Z7DJIKSpwTayo2kaKMSNVsvQSYxRJZ3CSqUYjrkTALWvXUU0Nhy1+QHU96ku5+4T+g/vm+ZYVFWFmV6FukS9retGHTWLwTY/08dsv8JgNMHBhMEWHTItVOIA/XkAR93fBLF7TbtzxBlsZmBEd7jbcY8FRo0NjERFRaK9vf5ZZpzrxjUNzFj6XgMuxKzpZmVSbm0Apf1OypZo91cTYBvqATFZ/Lv+nTOUEj0ZZWx8TQJaHSH+2KP0pYnOeE/S0CwnUdkPUgdVf5ZJmvdcy3AMx63PHfejLIhDK0Ps3jqn9p1lYK033VcDNnevFTkAgAfWALYcg63uozNV6H3PpetZrCdLF4muIUkAmmUQaO8QUK9Lq0jT+/n+Mj/bB5aHsv4uOT9PP4yPqT+jBBwQ1tmV4dhd1RkQgtUGQG9p0Cbp6LSvkXZK7RELYDu8qgMYtjwHHSPZMxqQSbaPo0IQA8OeMxjFVhGw5YFd9KbP/CLV5o4CLrqmL+3byMIo7wZPe/Uwj3lQyLSpRrpGHz/uipFV1PoGaYXd2I6P7VOvjvNgHGuwpVq9sg2SZD+RtTsqcqDodwP1fmAWzWLr3EZsxQDbz//8z+OXfumX8J3vfAdPfepTsXXr1ujvT3jCE9ZtcJttfZpawUswIHJGK0/r48cUafXhmH190+GpHJFTI20QRqRoZTjOinlyXTVAj9AlJZTVKLfhgChOmqR3lBrNBGAb6pu4VgwhYUet9RtPAtgh6+7Em1gMltbH0UHQUdRP30gAr5YOZyi1/Wg6Q0iN1Yp1WNXgIiOrRLuKaIsBMWBpVY6zGGxc81BNDzHTLmwjT9NfMYWlE8ZVfO1aJJF+d8QMDf88NtYPzjJMHCCW+qAYrXx+WswfTQ8reeYGIzCpvKS864nhxKoqaqB//d1g5OkpePyYVpp3GM9wPErW7TQ1Jo6yW8dcnJvB/qUBDjMNNi2lsT6mzvjq91ogsAZAEf2NNk2jj/dN0n0NVlz8rutCyLSvFUgAUrAlx2ALa7x1P7cwYETrxzXLVM0fSb9SSWPxahPxFE3zHnE2tXqP4n0d0IM9XF8VaH+Pq5P797c+uya1iihne5kpotSh1Fm1PNiiVZoHWgB2eWADGDyt0OqbVlzP2wBWkQOe2gbQ9DJ2QYhTtzwFOLiESprKGs9jd2od0fk0tZYye3t9jaM0BVB5N3IFrvjeBujsPatKpKSdteII9sRptHZ6bL9XYbQGNJiBUHclz/jdmJ+R3/W6b8r0k/pZwU3aN6TxUpJAU/XSYBOle2t7PilFtJnH7L20ihzYGmxtkC9lhunBd013mcsLcfvYkqSZUa6dB8SsTAMO6lopqsvG3s5lg1xZTeMYTE9ZyrFfFpEevHIr3Bcnvy8N9MDuFiZXYGsu071ogo3YigG2V77ylQCAN73pTc1nVVVhMpmgqiqMRiPtq5vt+9RU/ZN+bLgBVBxeXnxCilNJ4QSNwWZRh+NFMl6gAbpByBtZrsjBbC89plZ1MxG2jjZH2s+3mHOWTN3fFymKoiVmxRiakoS4n8H8Uce5Nj6t0IAlLK1FHNtrr38voZbTY3JB3qgCIbv2VGhXTt2yqklqVHkRfDbuvcnOYlR5DSjWGAv8eoDUcBwrBoQtICvPOc5GlM5PQQQ6j0wdsoxOXWg8Ksyz8BItHyXCn5ae1x3PeRZBVlPhGaDuZTdQcM9OEeVpmvE4afqQnZprsEWEe780SA1RC7zhorjceNs2XwNsB1dswy1lsBkO3UwPw9VRVksnLdKSB5+HIzvlVksHF1PWwrsxsQsnUNb5ylBnA6RAsT6PF6PotZHukqRYyRF+sRqcg/VtOUocjLLWJCtlLQoKCdW8NWCCM697lbJnSnaFB7Qz5lwChhmBhKQQhQawcbDBAO2CU7U6GptMzCjNe3VozmM+lzRHOh1n+zetIn0rZyFfO0CCYmP9fbMkVCwGm8UOB+JnO1DsKX5NXPs3XeOr6Hi5AOMKq6YN6NeeZrfI567Pr6frAWsg10o+0BS/7zD3zNl+DbBZKcSAUORACdjya6fPwbIBDhsFmWb6vQYItApMhfPXLL/6eBoTMwLYmAYbfSZito4yP6wiB/zdpM+Mrl+WHW+xUIE2QMGBYm7/cLBUC75zMNvOxmBr0kifn14Gm8Wg4xIEVbWmo5izubkMwEh+7vwcsfwDB+IUH5Odm1eVtv3WeM/eiK0YYLv11luPxDg22xFsrspHjDqc6CdxyrZ2TKZfAECvrpekcmjHjDdwQKerN6W4hQhdBIax66Ei9pZIJ3XOe1VsjHLEXku7EMtmG8aGqsFmiHTGugAygy2MU2N2SKk+cYpoe9y0QlPeUQrP21edSneQOYPNApmslCQNMFwdTaJULM2AaKui6ufXK8LKjtJAAoqVOZey/Oxr1xlsuiOtsc0kcFHbcDmAYelbmExMIyKd18iRHSWLocQdzzn2vg2V9YOnhHsdC+0YQGq4edIfrSp8tB8gGKOGVor1zBeMiDh3VrauOeiHWIqopcG2zKuIcs2ymR4Or47WtKv0c3MnMdK5UgCU5L6zY2rGLX8+tO+QrTUJuOjUYKPz3QJvgNhophXEzDRrc9/QA2LWOLnjSe8nT4XXZA34+UNqtHRuqZq3xlDi71u/J88lMR3LwWAbJ2B++zfKaklSRA1Qd0hYvVagaZBJ19uipA/x64kYbGwfttOHKINNHycvgqFp9HGhf1mDLbxveuBOBNgczPjUluXObPvz6ihvAzTjNANdsQ2iAauBoSRKqJC+HGgBfJkGVroeQFMAbZApds4zBWr6deEGiwFLz92cXyMeMLtiwZjHcYqo/m6E8y+NRwJwlR7zAPJFDhaYBqxWtEqqbNwGoPW9lTL9gRyDjVTDNfynpACIIl+zOhpnC4uFluql9cSfa4DLSPss0mCjPpkOXBUFLXs9rK4x0sxU5+ia+P3kdqLiE1p+iaEpx20vK0V0k8E2BcDWVXtts/3TN1Vjgi3QgM4MSwUg27/RvlHaKTNK0mh87NR4dBZ4OmfCVEmYP3mQa8CiwnYVUUvMnBsa7d8iAEOInJvGBl3Mp2CwWQ5IneqTZyLIKaLK/WS0ZQ20a4xBFSyNj6ndo4XZXhP9Obw6NAWbOYtLo6snqSlWSiNxjgGdrcHH7XlGsoNK+3FDlJzLcL7Ghh5Emrotj5+Oe5SkWKWAVLgXnIFi6lsUaLBpoAggGDphzgnR8NCS6pw5J1FjwHLWk3ntzMMUjlF/T3dqNHDRclD59eSZi2vzM0nt5855O860rHt8rcF4W2apB7kou5XGQq/dMgYtxqq6b2RYGFEgJTLCkTTKBLXSyywGribgn3PO9RTReIxJFVFV2yy9bl0fKNaB1WwAbqx7tASBFHiney9/loBu/1gMuqiSOdXNyoAdiTaj8W62aWMjBqZH3VjaKy1yYDPDoj3TcLoPGQAbZ7DlUxrbcTY2gBEY4QEP+h7R61ttbBX5vtPPzOqtBovLYtUmGmwJeCSzRXJ7VnQMZa3JMTFpMZWJwZaVwEWPBlsWQFl7P3iBKRNgM2wVIAakzAASr2apHJP7ReN569w0e0IHJoB4jTeDgSwLRwOKkzVRmXMlaxLXYNP2FyC2nWjF9TR7wBcop31TNrNuU1msyYT0YARmUk1fehwdOIvJDFG3tBCEEeSb6VdYHQl7QQYIpGtDwpZVgnzWMWMfMx4krwpvAYaRv7FBATbZms+0P/mTP8GznvUsnHLKKdi3bx8A4NJLL8Vf/uVfruvgNtv6NFdBgox2g+agJscUdCs8aQrJIkm6zkQbeN0nnF6LUuXE4TmLK9IhsyKJY53p5nUCpMi5rfHV/r5sRSE07SpDP2DVSHOKHe5J9D8/TqqVojh+Rnos35hN/RWmWxGi54dWbQckYUxojl8yN/X5EZ6tWOTAmEtW9aEkkqc4dJzBFoGlCSjT/pwKvsrPfcVIBaO/NynEhlMT5kFtYBqbfU+Zx5Zhn6QAxufm69JQWecSRqBiuNXXEzt/2jGtQhTW+WnjGmxWQRWVDZlhm80yp9ebymE5k4korhUVXvt9MmFBoRyDTWHVAq0DZOneADYDN9qLGHBlg6U+4xZo1wnOirOOyVOttWqnqxx8NkAMK3rN94MokKDYADzVh/fl7AbtGSUabAajmIMyarBHqJKtMlsZGOaqIjqMizFYeou18yX/DVgTp0eaImqzUNu9Xdqzwr2wiksAPIVYZzjGGmxD20mk106DlkZwwnLO5erkAVxM37fw7BOmbiSVQLMxWDDQWD+yGmzk15hdydgnnDHqWLtzGsXzHLBUg+9SAbT6dx44i56RMxU/xzinv4/GOkmAHjObfqgA7zwYyJ9ljm0WmlXkAGifxXhiB9SboBBbk/izDMWGQh9Vg42tSfUY2munzVspml8jBY9KMlF0aRQ7ndObdsoD0JYdz6/d0gnWAuWpVlz8vtns4zUbIKPtymUA4iqi/Pw+G8RfDIEFTI1Mg00G2xQA2+///u/jrW99K17ykpfgoYceajTXdu7ciUsvvXS9x7fZ1qGpbDNhE50oGzNfKOLFr+0npZ1qERjuIFMNo3jDi40sekxrA6f9AL7w8gWaXitfeOUNwqINc+dLcxZaTYT2OLl7Xx9PWHgVzR9Lp8VazKUIqpbv79Vg444KoFc0Slkl7d+0CmaHV2zDPprzoxE0BluaTtAeQ5vH4VgWwOeNXnOHXzcgYvDG0oTiOkIaSyhU4wWCwawfM8zNcM81MJ1+dzSJnXMv/V4ycsJHPD02cQKUdFLLQeUabLnKpA3obxhjOWF8HiVuPreOyVL2NaA6cVCtQAJ73yynxgIMuU6MabALwRmpX5ommdfp49XLrAiuJQPAmTcRsGkAq6tkwkspopQJat2jBJTRgmdGCg1/Nem+Qe976kiTY44NBptY5ECeI0kKoPKMOFvCYhSnjAkt2JM6ABowkTLY5L9xWQUL+NbTJNP5Ea6J6+7lijG0Tm9yyLj4ieEobfEy2CIm5MgsvMLvvcq4cjIcufB3OK40TvqZFfCIg3FrxZMUwDKVIMgHpQA/Q7tmjLZ/U51zvg8bKY08VTH2DVJb0hN8T4EJxpxUU0SjbtH8GE8m5r4VsZSNtZOnRXsC/zntzkiDzQCf6XnqOUc+NxjnQGsnS6CdxsTUGMW5Yi42GBY/pIQdpmY/xQCfR6ZiNJ5E70YKHMnBTT6uPl8PrQAf92FoYEbRXQZa/XIg42sZ0kp137V3wwjg1OOO92FLIoM+C2qDWKxas7BYv9fYlysDO9OA728bsRUDbB/84Afx4Q9/GO94xzvQJ5vf0572NFx77bXrOrjNtj7NkwqWaEywtZyn62mbjiSOqlXX06jluagsvSZtsw1lkfUqonyB9lL12w3CAsISAIN0raqqWXgTkEnYRCWnW6qMFRluZuno2PnygDdSlchIg41FRl1ls5ngqs1QIlWKBAxi67zGYLONJ43BxnX3PJGv0XgS6UZI1+ROf5zhhk77Nz11yt7AE+fLMDao82W9G42Bx1KsuFEAtPdtMuGRe/09spiYtG9979NxhaZp+ZhMlUyUXROx1xhkzTENXRMvg02r4CWfX4kKJ06v8Q4r9zOn+5cy2PJgGBDfz+SYMwaDzTRa288TkElhQyb30pgfHJCKHWmb3UAdpbHTqeEpJ1r1tFxEXI/Gx2Pkx/QUsuGi2vX522NaqXV6FVE/UMz1sKzCPPWx5eeeaO8ZwQm6t3vZqrGDiqQFR547NekzigFgDRQBYra/5SjRdzjSYOMMtvmYwWamsioOspnWZ8mIRAGHGGSS0u6b/c0AtMUUUeUZ8WC1XUVU3jdM7c6kKr3cl9tUOYmMyAag7D3j2q3gBGfvJdVWFTDMYrANRzabiDJ/rAqVSbqxAjJZupCWXXGYVl8UbJUIYDPWYw6whX3LTjvV5xxdkxKGYwagtxls7bWPSXDXCkRynTzLBlgyUm41+ZgkIMbWbZMVVwLGqXum/g6ngS75PcqBkHwfXiX2z2zCoIv3QvWYyvVwaZKqqpqASyr5EXVNfJON2IoBtltvvRVPfvKTk8/n5+dx6NChdRnUZlvf5tOYiKsK2eK5RuRc0m5QGF8aKGM5fqvMkU+BwBi0U8u/M0dprAAYct+8oZHqhcj3M6eZIX23/r7wGU0RtVJ9DINIi/CHjVnL9091ptrz9YwND4C6MWsafdL9aBhsq0Mzcq6lCvK+scZChsGWCJ+3f+NOd8zO8hWi4NHennrfSypz6dcOxFqGHuZP2EA1Rwlgm70JsMlGgQVMjFkabeoAySC5ZRANMqCdmpKdOaanKitvCcDm1HsE0iqE2jhTXZO8ZgcHf62qU1zz0HY8aVQ46uYW+qfjzIFMEVtkrDtfvLKyl4VhGbdAuy6Ox9yp4f3IO8zB/EiDTd4HATvKbjGfbRa7vCZJTHJNWsBiKVtMhDR9mQXuFFkDKdij2RX03ubSvKk+oV/IXZ9zAAHD2N6aS9cLTZpzczNK2ilnsGkpouyYnMHmDfaMxmPdRnQyHKdlsNXp6PI6Z2VjmMWTskGU9mdLPynRxDTWBQoYAnrFTw4EenyDsBaHe29JefCCGUkhrma/toNs9PfxhFUd11j0ExuIiwP6IxUwTFNEybgs3yRXyCYw+Mc8eBX3C88o7ENhflrzuO5rzaV2TQL0oDYH/S2QSQsQWIzAVC9Nf0ZLAz0oleqBymA6/ZqltwjwvT1j/zirbs6yd9jaD2ixNG+qc820I4DYDHtGig1iPUursBjQrg0rQ7Zfm/7GBBuxFQNsZ555Jq655prk8//xP/4HHvOYx6zHmDbbOje1HLXgeDUpogYwYFcRTY+pVddLwQ6ZCs0dP6CNwFiaCFa1QK43FC2mmUiipsORGo3t37QoRC5yzo9rf6Ys+n39vvMou1pNcq2Plu+f6Fsoc86q3ObVbpCMl6D/MhhNTHDREsCOIrgWw9FKd8lU0Yr1xfRnxMepsQH6Cbjnc85zGhNNqrVTjHg8CVFMfR5HdHVn1C+32UfMH6eIvcVQMsXh2SW5teIUgB5I54c0t4F0fiQC6VaK6Iw8TuseWYVsaN/hOBbZTdkv8bP0RpAtQIrvMXTfSFlk7ThLjFYPW8MqzMN/XzWAK9o3jbJzhyE2WjX2nlWsI92LZCfRBG8MLR2eihXG2lyTxngn6ZyJA8Cu2wJvLFFt+vzi1G07dUpLvQRSlk7M/vUDbNqco5+Nx1yCwHCUMqzJEMBK9bDifnGKqJ4OlTDYHGwNgGUFGMCVlY7OdYmAjE3Vl20lFWDjDDYDRLAE9AFjH+R22oy8JgFC4I4AhpYeFg+Aa0EHM0U0E5ywAgQ8cNn2s993D1Bdr53t57YNoLM752cZCOkMiFnXQz/jQGDOL9J8HaCdx6kGm7x2BwA2MN75VkR13fIgk7wm82F6q7cC8bxbijTtOFAbky5ayY/0esK186ByYlMZBYxsBpuPzJBl0GmZBpaNmtgA8Q2g99dky0b7Ri6o3c45u8hBvGduxFZcRfRXfuVX8Au/8AtYXl7GZDLB3//93+OKK67ABz7wAfzhH/7hkRjjZuvYtJeg16sXn8Fo4qj4aSySinHNjRKtolBzzADuWRs4A6QsnRga8UwFysm5MwZR4qwoOhxRhD9x+OPz8yqR2n3XPpNSRDUGm6l/kqQe0DHG9wiIo730ODwtSJsfUuU2LZ2BMxEsB4RWMDuwrFfC41V9NPHvuJKmv6T8YGxri2gsncQYtMSItZRbtoHndIQ8kcTaeHEaWYRFZrHNABtw0FLWrGOmKdnMqeHjdLBQc6DdjOos6Gyz0XgSGbXW+WnjDDYePY5SRI01cTlyJuNzxOuXL9oK2KwnPk4P26zkmBRkku5dBNoZjImkwpwWmOHVWx1Obzimdm469hw7ijM7PMGRbGqK01lINNiUd4NrMoWxNn1pkC8JiIU+9jwy05fZMTWNvuB80UIIHmZH4lgo79sgk8qqFT+xANikoqIxPylwJAH3YY8ZjsZmivmiUmXW7LdqM9hSPT/FRkwYjvL95MebGGs84JvzNWBfg1YlINPKcBzZTlaat8Uq4Q6qGbhjdq8WKLc02Oj5JH1mbX4m+pXGWhPvRbr9Y+4bSt8cEKcFCBJgM8lesOw5Mo8MTV0+Tms9puvX4dX2fTOlBZjYvfYeuQL6/aoBbrTgBP8u1aC1WGlcL81ipi0Z8iCaZJGUDt7vVU0xADvAF681lH9kBaW8KaK5gFyb6mzrTfNjDsj+llabV9Yao99KJtWZFtawtFA3GWxTAGyve93rMBwO8ba3vQ2HDx/Ga17zGuzZsweXXXYZXvWqVx2JMW62js0y2Of6PQxGo2yELtF0UY4pgXZadT0qYGulAHIGWexMxteqVYOzqj4Nx5kUUWWRtAyNUU7viCymgE7p5+fn39c+s2jLPH1IY0xwoxVoQTEg3pAsdoNWZS1oR4XHOe2zBPyVzuJF36oyy2jYjsgTkLIb/E53fD0cqNYci6SwhmmEG06i8r7XTjzUfqnjuTbGTKqzFbmnc8lihgHxZh+zdOR+dV8C5ucAFNNZoE4aBYTic8eG6CSaExbYoZ2r/p28RxkAhfaNDHY26axqcGZaofGM6PfGbM5ZUWkL6IlAJuJ8Sca1BtpZgRkr2MMZuHZREfncUrpeeGY5ELLH1i8NPOIyAF5ma5zmxPrxCL/i0PHASD3W/DobSTqwe1lVddXL4Jx61+NErFrYCwejtlDGSFm/6HiGY84oVpzZIQdFom5J+lIzj3P6TWO6v7Bj9urCL+OJ/Q4B1Abh6fVx33lFg43P46iKKCs2lANMPXYa14rTAnc5/aS6v+wgcwB2rt/DynCcBZk4qFtV7e8ms5WC/laweGQHgaXAttTP0jzUixzU8yic3koRTTUP9T3GZLCxNT4896rS51ISnGDr3DxnQyqZKCVFDnjaaXNuCyTPAIH0/EsGCAnE9o9WRZSOs02Ft47ZAzBO184MsKqNc9Zgd5opokZVVi1FVDKfwvXkUkS5Hd+rLCDQZ6Naum6avZCt4M61UEet32z5GyvGM9JY7Baom1Zb1/1M+sw3UisG2ADgkksuwSWXXIL77rsP4/EYJ5xwwnqPa7OtY7NQ8/nZPg6tjrAyHEdgR2Jc9+TNCZAZZ4PRqDGYGwDFWKTistm+flJfjaqfE5D16A21fRUgkDrSPMKvbBCNIG8pgy1rNOqpdfQepYu+cj1NkQMPg03XDOuTqHBORD5lkaXHk87vLUc9Go8xif4mA4a5Uu08rVBjxQHM8TUo21qFSn5+rmlnRQd5OqlVfbGNjLKKaMYmSo+Zm8d2RSNivGQ2+zAXuNFqAaurQ/0eJQCKCdr53jfOgO1TzbIkkpiCRPxcdb/4mFbEMwbDSLTTvHZevCAeT8TEtPT0GKjrZbBZKaKcjRiCFCKDTWXaxf2Sqr1KugtPRfPobPLryQVHIl0mPj8YYBmeO3c8k0I2Tiamdd9j8JkHHZRgCwuy1X3bv2v7tbZ+hDlk7hsWY0IAlZcGrePZFNJh850CVyNy38PfomOusStyRWcoaEh1psQCRhTgM/SowvdXh+NsyhqtuG6m1qmAUHw8yiI/tDoywed4jkzUvT0Ga/UUQG9Vwba/DPRINggF2LRxzjNQWQO7+XgsW6UkZT8KJBhAD08RjWQi+vJ7GfYMT3YLr/CbZo7IDLYUbGh/zjHjtbUzJxOhZaLwZ+nNXrAYQvV46v/HY/tZ0nufCzA2dto4o8HGJGmsgH7Epnamx1oZCUnw3dAn9MpuJCmixr6hXU+aaRCPM/ZbdPvLXeQgY6eF746TcbLrYVVEwzPNZY2sGJp2+n3Xg5ZUO5OfC0BS+XsjtqkANgC455578K1vfQtVVaOmxx9//HqOa7OtY/NEvizBU8BfJRJoQbucFgWPbLQpgPH4uabL2FikYk2XtuKWxUQYZIscyM6KtegHdlYzTsUg4imv04BpUr8VY7O3KiXS8wc9BqqzRBlsGsCWm0uzvR5WR+PEQbWAgVyRA83QMatTjScRwEb3EvN6DEN4wJ0/gy1ibcx2FFU+XqIZZoKLtjB+q8PhTxMYEScgN49tcDF+j6RzpeO0wVoN3LPuUVIh03Bqlp2M0cFoAvJop2aw8dRgK8WLGkmRcHACNshMXemY3vRH/r5ZzBLVaDXYRDGDzT/n7CCKpdEXg0xeUNdy4nlf691IHE+HbmkukOEtcsANZi1VkctJAFDthXmFoSQ6fr0KqwgMVINdYFUmVdbukGajsVrq8/SaokCWYxHshaQ6p/LcQ5qzpkELxOvUwAgG1uev71NOdJ3qKE4MUESdm+zcEYNtdWjafv1ebKeFNm2Rg1RzUN+z+Hkspt/8TA8HIKSImoHdUTRui9VrgTKpNIkPzI9SgxMWF6t2qjCUon7MRrX19OwiB96COz2+xo/kcwPxPPQCllYmSgwuxkV0bC0u+31rCptlGGx0TTxsVNKk50/0xZT3KNjvbQBJH2fOz+szuya0pHKsM80bYEAxuZ+8OiZNER0Spp0ICCk2ov2+TTBrPXcHA5b/nqvM3jAcDekHPk4aTJAynVS2rNP24nYn7ZuC6Ya/sUE12ORwudEefvhh/MzP/AxOOeUUXHDBBXjuc5+LU045BT/90z+N/fv3H4kxbraOzcMS4tWprJeF54i7QbsMcKXq3rAImUfbDIirY5lRtwIGG12kzX4s4qjn269teIrxIn2Xfl/7bMWglpdUNeTU8qhiDXl+aRSzPYZF6bej3HEkUTPw+HepwW5t4DxNcka5nizYwFKDbafbx7SzwI4ocs+dXgcFPfS19RNaY9CqNqo5NtKc1cSdLaCFNjt1CnbFT80IN94NHqGzgQlLuypeO70RcTp2i/qfarrE36cMlGVDX8PSSrGAaos1QN+p8SSj+9eTjVbrHlFjVE4RlVmGpnbnaKyux3GxH55CHJ9bqqYpXQ8/rvVuaEUOrPueY2FoTDsrfdpiI/J5BOhBvlktbcsIoiTz3XjfakAsz+zg1bwllrSaiqaliGYYjvS79JjiOhe9b/qcq79fnz+nX0mZHZbGlVr5mvXjxRCsVFZNziK1T+N1RpWeMCQdZJafdv64XwCaGpBJkVDpJ+uxAVQ7QZmIWZrMJXY9Tkd6jqV+apkGEoNN03Uz942EwSbvRWYgY6wHteu+yrVbqYoG6ymtImqxnmRg02TbMwAlIRQoQv+WbzAcxyn7aiCBzWOZ2RqOaft5XnDR0me2siyWDQ02nlGlkTPouLlOnbVn5mRhVF8r6xPq62wYz2RiB5YD8xlYK0RhMPinCTDmmM+RLEuBv7ERWzHA9oY3vAFf+cpX8OlPfxoPPfQQ9u/fj0996lP42te+hksuueRIjHGzdWxmtCSU3B2M3MDVKotSaSyyXGodd5Q8+m85Z2GeMe3UqFsUWRir0Xh+DrpImqK0GUaNGjl3gmmyk+aLqsxRJ5GBoCq1fByn+vQqlpLEC1Y4ACmrGi0gbMzGJho7qPRZxv24IawZg71eW03JKjIAsI05A8rwuaz101LW+DXMKCB1uIZ4nPTac+XSySbqBIRqh38tRTTH0qGGMGdSKWmSVhVRzmrhr4cGCFmGU33f5fHz8SwbkWZe5MCjzRh/X7iXij4hYM85ymDj95kHUSxDWDPcEkCInMKbxgLYBnsMMhGNT8NZ4OM01xojVVHTfpH6akCxDB7JQKB1zPFE34u4TounojU/t1c3i/+N2wpAnJJEwc2kkvgovw/mtJY4491mYsbMjlYPVD9/Lg0uShE11tjomiZtoYWcluDAYJEB7bNfNhy/up9sL3DwWQ2MsHWp16saLdRDK0N34RWLbU91elP9JnI8tm5baWj1Z+kc7QuBjMaWHQaQqZ3H8fHid8NbPdaSSkgCM1bAg9wLK+Axz4AzjfUkabB51sQcg0177qkMQPvzaKLLsvDPvNWnLZaylT1gM9js9y2cfpwExPRntJTVoK37cluWs9OTFNG1rny+0/MkGrTGPLZsKv7MvQFbqwqyVgRMXDsV5mBuzzRtFQVcNLMXEtkgPs74fW/7GXvRyN43NHanN0XUWjv5Pmgxdem93EitOEX005/+ND772c/i2c9+dvPZhRdeiA9/+MN40YtetK6D22zr0ywD0wuGpYuPbjxRo8QS3kyjfvmIEjeYcxpsGiiTarD5gB6a82450kNejIEb4YwZpokr8+OanymLvjnODBDYUsvjFFErvSyXIhoL0xtArZPSz6/Ry6ihY+R/C9c0HI/SyLmZcmuDMt7UFK0aLr+mhJHnBMMo2y3HFrEjeTzSLPfjn3lT0eJzGcYg2+wTxpdTlD8BUKJjxueeVa7HSslOGaPy9Whjko7JwUULCFzyMthyTqIGhlmAkAHK8GuKn1HUTQeZxAgujYjrcy5h4CrrMX/X7RQJGSiWGbjtz95UDmvPtCt+xueWwIZ6TPq1pyBX+zee2l+PweHMjmwGLGXVxk5vfJ/nOCvOZJuF9cNOgwPaOZ+L3FPQzjo3P2bDRBCuPU619qWiWWsswMFnp95RJg1ubqaHw6ujJBXMTkkyqmkb6YdRoMlYt3NBy8A8kvrRbAxAl/LQ3st6bHFfPaVRt6ly9zOaHwaTieuLaQDw/Gy6JmjsTq65aLEhVXF4I6hNixxkGWym7EbcTwtO8EIQXrA09771VaBHX7+sSqv0/FTGRbomyqqdTOj9TA4ZpY57g4GrBkDPWah0Dlj3My5ywN+N+Jjt3EyvR2XqZvyi4bin9pUqZQOZDI9Mym20LhjFJcL5V4ZrhSjW9gMpnVNjd6Z2mnw9su/Z3k9LS3BTg20KBtuxxx6LY445Jvn8mGOOwa5du9ZlUJttfZv1EoTNJJcSlIo16k4iNUpsOjBzVhQAJU0R1a+HMxZUnQUDZLIcP7rpcMc3ifB7NNjGk7WS8jrN18tq0+j3WV0AK32IpdAEJyARSGd6DB6h23TDifvNMoPIirqpTkAGZPIYgwn4nNEgsUAZLdpqzfmBIUIdgzdxP4tpR42NIqPVMIQth59/5o2m5T4Pn9FiKtI46T2jhROssuaWzhQQr4nm+8b1sEa6cT0NwMbXRLviJwUCDaN1GIMd7mq4FiCVACP6/bSNwfbniDVZsiYa+isDA+jh6fWTaC+Kz60z2KTPYmaJdgyeItqIfyeMBXovM4CQwvLjw+/1qmY9s55lVVXN/Rxw59xKzR3alaIjBpu1typVsnuVxN5jgS6FRU/Pnyte4GVNAu11DgmjOLd25lNEvTaEzCay1viBAd7Q7yY6QsY9soKBvCKtniLK1kPDluX9A8AnzTkagJ5MSDGGzN5qMlsVRqCV9snZ1F6N0TT43TICVwZ65kaklTYYMzZiPE67wJXed8W4ds1Oy2VzmHPJyWCb6fea96qecz7Ge3RuMc27/dmbxrtkBJrqsbZrIgXYuM3A9cWa/c1i6iYao+x61DkX90uqzE5R5ID6AkDMvrcqwtJxJgW7jHOvZioRa3t7ElwtAP5jGYBMEIX4j5busSZJ47W5c8F3W3qi/Z3220itGGB75zvfibe+9a347ne/23x2991341d+5Vfwrne9a10Ht9nWp3lLQlu6XbMFBjs1SgZGtJW/gI3xYjioPIrJ33+aUkA3+9wxvRpbQ6OKKNejMlNEOSDlcCy0MbX9fPR7M8KvAGecicAdOh6lMstM91rny5NG2xzToc9DxyqdmwNC0bvB01MUJqYWHQTyOmhatVO7WIceuad6DInjyTdwxQnJMQItw5GnWrt18oxrVwE2Yc73GgfVX1wiBsMyhqjhJGpFDhKdFgN8thwLaezSuTmjmN96en4aFU6riLIIrpGu53USE7Fq5zq7YrDNEpDJmMd0nV22CjwoaUElxQM86b5AOj94X7f+3HiiPqNknM5iMta+QceZS49tGBNr6fra2q1V7LM00NL01LgfvR5vIIEXY7C0fEbE/ulVmZTKjPZe+GxMUp0lQN2reah+XwTu5fctXT+U+SGcu0eux9JX9WpX8RRibR5ztnvMwrAdz9BVel/DPlwDGD4mU45hqeulxf04UG2m69H5YbzDPPVTY7vNz8ZFDrwSBMPxhAEo+l5o+RtJIRsjDc5r+/HUdaviuZ6Fo89jK9DEv2ulWlMf5rBTg23E7jsPHKa2dP2zGKxu5GvsDBN31giXyDCLHMiMcy5nkaSIOqQFKBgl9aU2Ny2cIPWV2GL0XNLvdF2Q9g31fkrAamBDklRWeX9pf7b1Hn3Xwz+zbD9OoNmIrThF9Pd///fx7W9/G3v37sXpp58OALj99tsxPz+Pe++9F//5P//npu///t//e/1GutmmbnY6Z7uYW/n+lsFuLVTLq7rxFBslZMPLgBJuwHCoR6l4JRYPyATYTBW+oJii64k4fP2z5VjEY7KdbrskM91I7GufIwzH+n+ZjlySzkDTYjwFFoDYyMsyrozNievkVWh/18WqmVA2Z4v04nfDa5RYEdyEAp8BZYID4NWNGBGgJ6dRY4EdCYPNCYJaleO01Dq7ZLhdXII+h8hwm+HPMjayTLYsXRcsvRD+rlvOinCNcnUozurVDTdNg82uImoDV2r02nCoqIGZY8V5QSZaOEGcc9q182fEWE8aKy5ZO413PTC+ePBWsmXpOL0FQChLyGR9Z9kvCuivPPcwN/KyCqNsiqimaWexEVOGUDznetEab7NqaToUgAyzo+3bMmpyDr9ue9XfbwEU7/4WO18+20CaczGbyND9U3RDTQbbmAcSrHddBxF4MFALXiWp2xkGm+QgS/eSAndLzpTG3Lvh1UWqP+thMBrlBdKdc47bx5otzRls3lT41KaLr4cykUoK2QyNDA8te8HyDaIginDMuX4Py4NxURbOimED8L7WOqsyijPvOrVBuM2gAoHGMXN6ser1JHtrbP/MjOX3lv9uyVkkgV23tIDFYLP8ovh+SrYoYJMErAJ5AH+Hfen9uX2jz97N0Pj91Bl59v5mgnaGHM9GacUA24//+I8fgWFstiPZLP0ozYDg7xs32C36/5zXcGNGSVj7TCOcbeCaKC3AQBnTAfEzEZajFCvdSUsYNex+cg04m8EmMR6mZ0HElfB81x4cTi2SqFUKqgSHP9yn2mBuP7fSeAfDmDXAm2a0WqkU9bl94GIUlbVo4CxKZrE2rXFajkUK9FRYRa3FFZ3bBLRJNC0H1hqGI49eT5Mias3P6HPDgBhNbBBBc+hSFlfsqNjvMDEGS4ocFFYRlZzB2Wjt9DvnUdpFJk2ycWqy88NgsJHfRxPCuCpJ83Yy2KR5o1ZQNZ47dZDNNNoxT52S7/2ARW/LAgRsfiiMQDvdhTNg43PPqu9lMkzM9npYxjhbsCLsB7zIgbkXOXU2ueC7lVoXzY8cQD+emMwOiS1SwqaW1tnwGX2HpPc9BrQzcy4DyEv9rII78Z5li64394iniE4JpidFMBTgKrrnYzt1qeQzVQ8rYeq2P+dS4b3ABFDPhaVBXiCdfnVggAjzSgAaiOfSbL8NDqwMR6b8Ap1unPWd2IlKsFoKToRG2YNysElZOy17ckRTstNj1sSDYSLKbwPF9rNUGWzG/MgBLbSv5ZvMKfu1ZEtrmmUWsGqlJSdBWGeAMbZVLH+D2j9SgFK+HssGGIztrBXdRuXApmxPZnVYh/b6FaeIWjaVPE5LPib3fS+gzdfEjdiKAbb3vOc9R2Icm+0INi94NBj6DKKkkqcRgVk29GQSQ1iJQvR7FXpVTeUfjMbmZk83kli3K+qmAlxACkJGtOWhnl5GGQtppTHmgFCwg0RgcmCH/VkM9DTXYxittGKeOE4ijlofV44kahT0rH6Au4qoHaVSHVQj9WA4HkeOlJ7mlNlso2eZ07TzbU7eIgf0u1zTzmSwjfU0OP6ZV9POqiTFv2tduxZNkxkT9f+TCau8ZBh5liEaM64YgGLcT0vXjUdbvQZ7O0bbqYhTD+zvLxnpsTyCG4Yp6sk4gWJ6TFrkIFdSvqSSpuUoaSkntlaKrvkTUrKDo2AB2mGsHGBbL+drNG6rc1nrcY6JqVWfzgn9W9ce9uFGg01hhiXSE2HfEN912VHqogvJmYvSMUKjqUYWoyZK58wAluGYK4ZdATBW3ijjIIvzK+03q6yJSeEVLbVfmB/ho3ECcvExynMu2QdZKthECYiFdMo6GGYHDYE8UBNaVNHRCKJUVV11PABMQwPk0gAh6blRFr2XTWSmiM6yqqwkENpj93N+pmZxcSAuLcwTB5BiLWf5egBb94/7BlYBED0rQF9ral259Fxt3/Cu++VjcmxEb+p4rMWVAVrU7Bp9b6cZCSK70wmg6ECxPsakwEOyDyt2mnDusA/Hgd3kcqLAiC1rENvxXgYubQljM7Gp1icwQ0kKFoNf+q7Ut8jmdvpa3FbaiK0YYKPt4MGDGLPyqzt27Og0oM22/s1btc56WbjBbuWnx8aTbpRoqRxaSfmV4TipUJkUWFD0xazFNGe8aNpAmpMYjDxvmfq4omNyyCwA0hxTWSRzrCMLlGmoyGvvuRZJLKv42VK2LV0R7VlaWhRAJqpCQNDReAKSIaoagytc08WKUo1tYVg1cp9xPKmPrhmOSdEGYxPNvW9eJ8ArlM2/axmYkvMjnZuf39KtiIxwI00yYeSZhUqo0UrXOW7cMsPN0KiR0grFIgfMGAz95aqCvvWLs7NMBpuyxvO+9PIoMCFHZacx7PW1qz4mNdgtB4Q+9zwjsE3J1udHe57YRhLXRPKZlTIXMTsmOnikVTmT+mpsRGsu1ffIYLAxaQGdnR4DR9acawIJSWBGdyazGmwaEzPHYDOCE9raaR3TqkJcf7f9ma5zsoaSPabQtBRRt4C+5czmGGwKQ9pksI3G0X4q2Z0hnXIqBptwLzXBec0GCXuwyWBTAEvrGQ1HsYj9HJM26GmgDDvkHAO4LHF4miZpFxWJ106zOI6ms8n3DcZSHiiMYv7dgTE/6VpjyeHQcebSfb26x3Vf+blbVWZzeotx4NBgp8/43nU+Hi8Iao2TBui4VpydLaTbaaHvaDyJ5mfO7rTmHJcHGY30Z6Qzvix7MpMiWinz2HhGVBolF7SkzQsY5iqTrmTeIwqCbsQmzxKj3XrrrbjooouwdevWpnLorl27sHPnzs0qoj+gzVsaeOh0ennlSauSp5fBNjSMAqA1DHgExEqto8wfu8hAbEBYzB9La6n+rD5uEuE3DA1vFZz4M18EVurLRddNGvjafQ+AlBZJTApRNIy8dDxNdDBhQsr9gJg1mWWwZXVNWkdtTBylJN2YsDCGxmab6h3l2Wbhmpp+FgA8zAgc99r7GWlMZDQRvGnJUcTTGcXMGRCWILAyjR1RP58TQN/hOWa4JVFM8g4nLFgFLDVTPjKsTen7spETAygmu1NxLEwdxWELBIpi5k4nUUtptFgDgA30qIaoGHRQIvyGBgmd75aBmaxfUnDECXaoQZzM/dRYqDPK2gn406et922UqTpO2b8AVGA1YT6P5ePRaxqNJ2aKKAd1bV03xfE0wKO4AIjANlPADiuQQQF1KxWeHzM356UxNedR2DdmleyhbkvSzxJNTAvUNWzEpMiBw6bi6V3yPfK9l6UAG1CzSr2BLotxBZBrGo2jZ2RVsLfYL/Oz8Xy3Up0D221lqBdZ4r+Pxq0tr4F2oS07Qd3xpLU7cw6/V3aDshEtO57KndDPpXGuGBp9SV/LXiC/WoAh/27M0Nbtmtyc08aZpCX32qrSXtsrB37T3y1bBWjn0irJaspfjyXlEdtptsaobKSmx4zXba+ESs6uoUUOhoYd72WmeX1H3je7fpE1cSO2YgbbT/3UTwEAPvKRj+DEE08UI2ib7Qer2aWB258tY9DS7UqNe4XBZoENBYbG2DCyaAUeCrBZiyln/lhaA8urdipHJFrsFPAfUAaKsZjG37edBWlMoRVV/GTAmRZJjFMafQLp4wlcTlo4t1fMM1suvdcKdQe9VY01CdTOT0xXtxhKthOgbsys37zC3pP6UgabV8g0xybSjBILfPaK59bH1AFLmu4Tf9/e7C3NDvocrNSDpMgBuZ+WDsiyEcmz0pc0BsxgZPfh6b6WPqEqHJyLtlpFMNi6EJq1dtIKc3nDjd5PvV8WTFdTTnQHZDkDMs2sCfjngj3amLLvm2FcJ5p2CquXA8W0mIuVxhs7qMkwW8M+k+rDNdjCJVnOF62wa63xJft1rMEmrPFO5xyIAb5wTFkvrf05r6EkvQfSZ/IxxWc0FYPNSq+PWWRNPymIQgBDs4qok/k8y2wVeh0aWJtUJ8/YC9rxgHgfttZ4+lmuWmAcnLCBHirRQZ+7tb+ZlTTZu2EFLQOAsTLMpJjzvcgIrnqBVZ4mGc4vpl46bRC1YIUVSMgy2PxggxaUMoOwBWCYWWhJYZxL7ntsy2fYbmu2ipdxXhez66l9I1tlVbfngDVW3oo9j/h3LWDT0uW2gqbW51wKyAowRvPYACzrsVZr/TLzQ8FnvAw2a00CfEWRgI1b5KCYwfaNb3wDH/3oR/HKV74Sz3ve83DBBRdE/0rab//2b+N5z3seTj75ZMzPz2Pv3r147Wtfi1tuuaXpc+211+LlL3859uzZg4WFBTzhCU/ARz/60eg4k8kEl19+OZ72tKdhx44d2LlzJ172spfhhhtuKL28o7JZgvNxZFQ33NL8dDTHTA1c2anhYIcadTM0MwaZKqIaEJiPnFuAoeJ8GdpoSZSddVVZA24Gm8+ZAzJOLwMCc/dJiyQmKaKGppym8WCliFI9vWwaXOZ+Upbh2NjwtOi1BSgPxhNTt0urPmTR1VMNNvm7uRRRrmsSQByeblJfk2w4elN9cmmnsaHjc3Zyn9FnxJlpatEGgwmQOPLGtVvzo/6snXMWOADoAKo6zgwwoeq0GGkPUbS1QIMtZUi3P48nNjDh1QLT0ilzxrVVlawf3SN7bkoVvKRxamPKPaNwPyXnXGWwZTUxfdH4HIASrTUGk4prsGmOfACfQ1+z8Aqb8825DQc1lyJa5sxSgM8XnMgzEXTnyXNMOUXUt57OKmBHqqHke9fpZ2k1yfQZha+7U0QNUX46zlqLNB1T1NeZThWBMqt5sAFYY+oqxaD4uXMOMmX7DwjbLAHetRRRAxjIFdcKbLeV4chc57Q9M1cRe9kIovSi+aEzs+rzKOuXsY/m92t5jc8F6rV+vO+qYf9obNUcC3XZAKSi6q0ZQEqV8jBT3A3N1Cq+Rxb4retd6+P0At/1OH3M+NGYP089uKqdC4ivJ5YCsu2+QS5Y7VzjtWIMXgZbkQSC8Yw2ATZne/rTn4477rhjXU7+wQ9+EFdddRXm5uawZ88e3H777fjYxz6GZz3rWXj44Ydxww034Pzzz8cnPvEJLC0t4ZxzzsG1116L17/+9bj00kub47zvfe/D6173Olx99dU46aSTsLi4iCuvvBLPetazcNttt63LWP85Nzv9sP3ZWkxTNtFYPaaWR28y2LKGxhrAxgw3fnoOBGqgDGeQ2RFxej02YyIsxEkarbWRZCMwPmPQW32xjAodO72ha9KPbOBDwqjJLfpuHbIMs4LeXyvFin5/RB0lA9QFgKXVoTj+uh/dmLnTHR/TDYLSY0586TbcGEz1sFqjdThuI+IlaRcWMGFFB/m4s9ozGcdEOk/EYJth164w2Kw0SZ7OYEWFPXohQLx2SscE7HewPUdstGqp8PX3lXvEdRTpO0zFc7OAtlfXxAYmtIqfCVtD2bNyTD/LqVKrjRrpuR6tJ1Gw3gnE5YDnuDAQZ9XG+9vYWpPI/bUKCNXHbR1+q9BReGbjiYNFFthu0V6QdGP2gpHqw++Rqfvnc87pcSeTdqzy/iKvcxbji7Yc+yWfImo7b6GpmQaG85ULooTPRhMeYNTXeGv9oEBckurMXg/K9ipNw9euR9eFTLpGAKzFDPOm19fjTBlsJaxJ066gAWjhmPMz/WaM3oIVNGgpmToqqGuAtVHV75JgT2KjymCpXBynBQbsAleyC51bFyKWcmJTtT9nGUrUBiGBGWsftlJzAWbzG/Ig9LgW477XqyKb28x+ovt1jsG29lkOYPNmTnAmZgysxsf0Mtg409+bzlmSGmyNSQfO4oOGIi1JvwLfIKe3vRFbMcD2h3/4h/jN3/xN/PEf/zGuvvpqfOMb34j+lbRLLrkE+/btw759+3DLLbfgzW9+MwDg7rvvxuc//3lcfvnlOHz4MObm5nDTTTfh2muvxTve8Q4AwHvf+14sLS0BAP7Tf/pPAICXv/zl+Md//Efs27cPZ555Jh566CH8xm/8RuklHnVtPUrKp+yG9PtNX61SkHHMHL2aRrmt4gFROoPTcOOpYBZ12BLKpuPMlaOODQ1/BKY5t+jE+6IqvIqopa+hAhhGRCcnOhoZ7Eap9hL6vRp1E40nagiv9csYblYUlUeFo3QKZ6TIq5cm95WNQfHam75jM8quptwa6SHZFCsnaAfkn0dznghA0VNovOXfrVLtyRqiAMWWocIjuJ532wJ5gODU1D/n0qEs7RleMGLk3DfsoiLtzzSlMWcgLhnFGPQy8fq7Dthrd5RqkwHo22fJ0sE7GL3y3E4+SgoDaZXwePEAi02kgv6ZNEmr8IuW3m8x07Kpuc45FzNqCoSloyrqSVdxP8iLrtsgUy4FR+q3bimi5DMrBVBnHkvnWTtess6l4wzHjUBddsyqqhpbY8irvStznhfgcDNAMrZKHuyo/y8pgjE2rh1oQaHBuNVgk+aHJoxvBbUj7U5JL22mBUBNBltfPqZ0j3UGm763r2QYxV79XT1FNDlkG0QhAL00Ts2e61IpWqtCnLOpwv4m3fe5KNXZn3Ya3ncvoKR91tjcmcJAmu8orWnhfV/O2AA6oK3bANRWkfpqUi8WYBjpHgvf19K8cyCoNP7mMyVFNLe/tZ/Z57GqxwKbDLZiDbZ7770XN998M173utc1n1VVhclkgqqqMCKRxVwLYFloz3nOcxpm2vz8fFOhtKpaAfLw//79+/HVr34Vz33uc6N+vP3N3/yNev6VlRWsrKw0vz/88MPusf9zalOVBmZduW6XFRXWGBMWdbgkRdTUuNIMIuWYq8NxymAzjJLlDLU89KXVlPgx6u/6wcWcUUG/W1WxwSr15bRler0mrX5VZ3ZE5agzDn9cIVOP1GiU+pIqopazMRpPMIETCLS0GxhLx1sAhLZUQLb9uTZa6d/4/Kw7p2XIhfNUFYA6hSXc+1kpRTS6dh0E1R0Q7dzpMbvMeS8ArL7D1jwecTF1fa2xnMT6PLKBOS2Dja/bZsGKKMXdACEZs7XVYLOdUcvxpN8dj9vCCVnna1V/lhGDLePw6+w9fU2MU1P0cabFfpKuWSZDaG4GW/QOGWwNQwLBErGPxmkY3AlQnNzPeH5Y8zM4f8s5Rosz4JKw/AywIw7MlDMhxPc3cujKg2e5QELOVpLerdw+HPXtogkVUkQndopoPc4KGLDva/djlA9axmusfcyptBFzYL7wbogyIgpYYWkE1jqw9VyaF/Zr/3ocvxtadV9+HqtCZnTMUZsem5ubdM/UwKNV5BlsGjPeKhy15NRS5se0Ahna90OL3yMfYzQP6qb7W66Ah6WpC8h2twbU5NZU+tkqyhhseTJDa/eGJj0OtWJxJkXUyjSYRuplmLOpIuaiP93YGpM2Z0RpgV6FFeEz69ze+blRGWzFANvrX/96PPnJT8YVV1yxrkUOhsMhfu/3fg8AcNZZZ+EFL3gBdu/ejUsvvRQrKys455xzsGfPHlx33XXNd+68804AwKte9Sr8x//4H/Fnf/ZneOQjH4mDBw/irrvuivpI7QMf+ADe9773rcv4f5CbKTivRHCthSKna6KBR8kipQAoMminODUGeBSzo5JDYnZt0ecaNaYGm8GsoOOk7CggvffeinmAf4ENY+fi8JZBNBiNI0NbiwoDXMOIARhR6kGuQqXy3DukEGtsNyvqV4+xUo8ZObOmBlv7+5BTyw2GpXau+hzx+zYxHHkaOY8BNtlwXEF83/MGmf4OR/e9IDJaktrnPaaVIqpdTwLEsXk8NKLXalERaV1Y+y5NE5COCfiM+Bn+vhlBlFnWVxsnjfBHKaLSfdfSvFlf+musz2Nfk6mXpoFMWe0qH1M3YhQbDjJnPnv1M73zXfLDVbDDAM0GbC+yihzE50o/o2untc5xlrSpySmk+hSlpnC7gmn+aIUg6u9SNqQO3kjn0cbZc845PtbQxDQ4ek05AWznebT1i39dZ8/p1x6qjpvnd4+zAgaeoGW7xua0Ed3VfZ1AC/3+mOwb3lTU+vt20OFwAFByARdjHnMGm5Wyr+nP5VhxbUA/OWSjzWiNn58np4np1QyjxYZyRQ5UDVoDDKPNSnnlx0zBG/l9y83PMOXF4FWBnSYVRFC2iGLWEy2eJH3fW/G8/swLKGmMd/2+1wxc/bgaSG7twyMSYMzt7dkgijcAndlLtPOb33faILTvRmWwKa+N3vbt24ff/M3fxHnnnYczzjgDe/fujf5N0w4dOoSLL74YX/ziF3HSSSfhyiuvxPz8PM4//3xceeWVOP/887G6uor7778fP/uzP9t8b3Z2FkBdLOGd73wnzjrrLNxxxx04+eST8fznPz/qI7W3v/3t2L9/f/NvvbTlftBamNs5DZABcSbTYgh0E7U1tmLwyKeVkgNFYvq/pSfjPyZNFbQEm7UKPJaRNWJMlVQrTj6md5HTtR/yC+8cq1A5NCI1dLM+HLFK9GeZFV13Gi8lLL+SCB2NqvgraRopa0zPjzoB/LmrG7Ox2edSYxoG28TPjloy0iTrz+RN1Js+lK0SmRPadc55+l1LsyMG4vRnSef1gFWEtYxB7Vxt35Rl2Ktk1rUV3JA+q6sQ18eUbCcN1E2riMbHtFLrvCB5VbX6K+OJ/b5pemnWs8wBtZKWn3RMbU2Sjda1YM84z9LpwloSmUgKU8UqcpCmiIL1LXASo7XTSteT55LlBOQDTcp+wJkIPTLnKIMtB9pNUZBAXOecbCJtTLn5MTTsn/qYPsdTrWhtOZ4Zpm5JVoJbqNsJ6sbBTZvJ3Z3Bpo9zSBxpL6iqjpM8o8MrOsBWRXPOYOrSwB1h+uUAZQvo4dpVVpEDr4wJQFJEhzbwXlLlVgTzxWdJA/VWgNEfZFMBFON9mwb0l3XqCEM7d+3k+42ESgmDzVhnuUYft380DTaZ8e58h8lHFkhOT1Hb0hZzUXoH7WdJg6s5bdYcsCoyOaWAh3POAPI9zr4bGY3RjZ4iWgywPf/5z8c//MM/rNsA7r77blxwwQW48sorce655+Lv/u7v8JjHPKb5+4tf/GJ8+ctfxoEDB3DnnXfiwgsvbP72yEc+EkCdTvrrv/7ruPnmm3H48GF87Wtfw8zMTNRHavPz89ixY0f072hslqMUpzP4IuI5jQlVxJ711RYUMzrII6NO0M5mxfGois5qifUL9AVpkIu2Foi9ehkP/LjquRPwpv2blSJqpvv24vnRbKKicStHlKxqgdOmiFpG8yijz6OzuOKL4qW4vc9dO1d9jthoNTVQ1n6dTBwRTydbRC1eYAjDlomU+6PS0velz5aHXoDN0mBjlP6xviaq4I21LhB2hVcgOReppdU55Yi0POdS5ytej+13Q3mHDYNsSFLxcxqSVjpnSbEM//umOSC6YV+/6+SYTqZMrkKmNkZ+PCvNiANcFtOuhIXhZZHNsiCOpcEmFjnI3KO8YU/S9ZRCEEC8t+f0jqz9nraSdE75On3Ak/a51/HUUkRTp1dhumWv3Qafc8zp9rM2e8GSSqD6gPE+6AN6cvZxLnDXFHgY25U0dTZQ+oeoiqpV5EDVmdLfdbq/lYDPfBonDDbL9isA89s9s33oOX3CnFRDCC5nmaU9+bl77bkiGRP+jFSgJT1PDgCRxplPdRbmtgYKuwME7X23qzrLdud6MdhsaYE4a8TU33UC57PsmBbxIGah+uz46LMjsJfkvr9qpNzSvhsVYCtOEX3pS1+Kt7zlLbj22mvx+Mc/PmGIvexlL3Mf6/rrr8dFF12Effv24TnPeQ4++clPYvfu3VGfq666ChdccAEA4I477sB73/teAMBjH/tYPO5xjwMA3Hrrrej1eg2D7k//9E/xuc99DkCdPrrRW8uYEF6AvraYW86XXW5Yc1bS1JQCR4kJcOvH9IE3QFw4IdZaYv2cjh8QG3mmfpNaCCI5pLzIFWg/mALU4wlmzXE6DbcoLccucqDpeyXHdM5N/llOHJWyMPzH1I3r1MCU/6adJ9ePVxG1wAEv048yhOYym7WZxqswMUU2j9MJAEoMiPYzCn7za9LmXKrFJc85IH3nigyVfjvnLOBK+jxX5TWbkq2mssafzymaO3ntKjtNoNcDMKrXBU2UH+CBDKMggTKPLLZZ+rn+3LNFDtY+G09qkC20XDAhNKvaVq6fJthspW5zCQRrL9LOJX03ZpzF/VQWuzDlJUBavEfKXqSCk6NQFEnvp81jLwgqn7v9Oecgu1NElbVC1tJxMsOmYM9Fn2fS4IbRuiB83w0EpjaVHEjwMRyBgmsvkDFpGWxjjMb1WLxrAv1+bpwysND+7NUMiwKMJUFLA6DPgYuSrcGPEVqXQIQ0TkAB6MR7rO0H+l6UG5OXDektWFF/13c9mp3k3TO1tOZSrdyYwe+b74D/ueUAQ68Pk2rFcR+qfO3M2X4xO30KGYAOn5UcsyTQ1Sdr4kZsxQDbv/pX/woA8Gu/9mvJ30qLHFx88cXYt28fAODAgQN4yUte0vztDW94A97whjfgoosuwuLiIk488UTcdNNNWFlZweLiIj784Q83xsXVV1+NV77ylTj77LMxGAxw2223AQDOO+88vOlNbyq9xKOuWZoIcbRET23T0P2cgbgcVfZLN5Kqisveh8+TcWqGsFPbzIrgUmaFdEy+SFrHpGWrabTVokLnykxLhqjGnpE3R/Zdro9DHGuT2WE8o5CWExiGZtU4Z/qhtjHmNAmy6YfBQR5PMDT6RQZRlFaoA5Y0PRaQUkR9zixnjFoaSpHouzPNKacl6I7gKs8oZwiXADjN9zPjjITx+VqjrHNJmiRzFuit9mijAZqBm641XoAtx4Ki88PrlAB2mnduTepp80O99nF+PWZpr833DWAzVzFYZe8Zz305p8FGWSUFVd6aftI+LH7WZR9kaxKxb629KDcmSTB6ppeKJlNHOqehxPUSgfw89rKUc0CLDiIkXZW5IBxTWWu8DLZcJbz2s3SM2jFlJ006j+949ed232yaU4EoN8Ac1IxzPlXQMhsMdGZZjGGCTHplP3utCW1OKHLQU9YFq+L5MLNv6MWobPuYpgDypgU8cmCt9X2VgSucSgL4SoKr/JjU7o3GmQNQjIwINXOjAwAbV+fM7W++dUr73PsOF2XmZOZncx7h6+q7kfgw7c9pFVF9zltjjPSZs1kB/rWzS3BEfZZTzAWvBMJGZbApZGW9jcdj9V8JuAYgquB5zTXX4Ctf+Urz7zvf+Q6AmjE3MzODb33rW9i6dSsuvvhifPnLX8Yzn/nM5rtnnXUWnvGMZ+Cee+7BnXfeibPPPhu/+qu/is9//vOYn58vvcSjrnmjVFa0ZIZvogG0yzggkWC0YWys5qKdKthinHuos+fqvu25oyIHiZ6N5kjb0RLzfipV67xOmrZIehhspii/ASLkBC1pWk5rZGXmh2EI6wt5cki9rxH1o+PMCS5b4AC/n7QggbdinwVcpaXNwfrKDr933uTSLqx0ipLNlke6rb5yoQDbOA7vUVX5QCrp87iS1MQUFK+qym3ANGzZTFpy/bkO4Dbj7sVzbmwxRp3rV7Qm5USg6fwY6vMdaOfrihFsscbJr9/L4qqPqTh0ho5iXARDf5a8r3cuyAwjp+OnXbuxZ+WK+KgOaiaQEc6fc86XMsWG3Cw/JV3PAq5K0k7zqc76XkJb1xTmadgR+e8L/SRgs0CzxypyADAWhtdJNOwfaqvI6Yey3ek9txjIoHPOKQ8yzKzxWoqoNL8kQEgGFrRxcruCB8rH6rk1m9tKIaZpcFZ6PW9y0MH3bqgBAmEuSeCknFKp2VS+7+feI0tHUc3c6KDBVsJgk4F3/z2WwbD6s9HYLnijBaClOS+9GyWBGUsvjVY8B6T9tdu5c+9b7rl7MzxK9g3v3NYqAVt79mYV0Sna8vIyFhYWpv5+YJpZ7Yorrsj2ecpTnoIvf/nLU4/jaG9WyXDNWbEcVCpkmltgc5Vg+r0Kw/GkiMHmrgaXiWKGjWQ48jnSHIXPRSwsnavISctseFJZ9i4abJwpYgkHq3R17RmNYkZNSVQ4ST0o0GArYzfU/+cqjWksHUs4mN9Pi5UXj4lv9rHRGhzkXpUauD11znuNH3sTtcZZwjJU0wycVP8cWBHWhdl+zyzSQpuVSppjsIXPfOtCfR6qk+eN1ua0RuqS8vUYJDtYNajYfddYRyVMKhlEqI8bMyEL1jQL1J1Sg83NYMsYnVE1OncqWjoebzQ/ZqvquqFRwYqxXQ23qirMrO3D0bmca3duTcmBtdOwSrLAqgCw5ZigFiNQG1OuYmduz/Sz2tLPpPRQQF67vZXovAE+dZzko2nS2yzbbzTKgDdRsKWcIZ2f7znd0vqzcWaNV4X+neBRTuB8hdx33jdlm6Xfl869atjSdIg0uyUHvGvjsj7zzlnt+17wekaZS9KrMNOvsDpKP7OOSc+d2CpaqqBzHudSxHNF1Syb2dPXThX0FbzxfF5yj0Pzat9xDTYrq8k6d0lBAE2TXFoupH3HHRQqeF9KWIYWSD6Z1KCl5gMcra2YwTYajfDrv/7r2LNnD7Zt24ZbbrkFAPCud70Lf/RHf7TuA9xs3ZtfD0s3RqONOVNhrsS4biLNOcReWSSTaFqBZkaI4PLy724B3MyCaulclSy8W+dTHFzVFnI4rjRyzQs88K9PA3JRYelclMoCVmk1OKvqEhAbp96qU5SJmdusrSIHHHyO0jkNcIA2C4jLaTfE74Yt0N45KswBNpWN2M1R6+IUiQ670xmNgKtMmgCgscsyTLs18MqbdpEzkkaUwVbg1CQgk6qBlnk3cumkgaU8tV4aZ7C1P9Pn443GS+OMn48dFKKf0UpnEjvCm+5X6qgAfq2lYaYaLuALzPDPwnO39lYgBmvFVEWBSZUbY04vLXw/W0lcAxE6MMk1JoIXvHKLdytrmuR8eYGaopSi3LVn7BrvvhNVBzXSDyNdW0P7F5DXGvF6FCaTN+hQwmAT5VaENSXHnonHaQeQRob9owYyhAA01dhqdfKSQ+oAWxd2lgg4ygB0jg3efpbOJSkVXhunN8BYsn6UsuW1z3KpzrkiGrR5Qa5wP0cFtqz0/Xic5X6aBS7S5zPOVBF17wUF9z3W7sxleBwJBps9/tz3rawmAJGfuVFaMcD2/ve/H5dffjl+67d+C3Nzc83nj3/84/GHf/iH6zq4zbY+zdLD8m/M7e9Zh586IBlHjSLc/DOpH2ALB6vAlfHyD0bckU66ZlOFmmMqzldarVBZ9BWjgLPYSrQKrDSB4YhRobkehOospOcOi/GQFI2QjSx507Ecz6yWzhSpHEC7kZXo89hphYjAWn6fpnH4KSNQMvCi6PUU2jMluiZeBluJQ+gBhauqRIOkwKjo8/NUDQtsPLZLymvnFzUTI8Zqa7CLYzJATOkco4ldKdrLdo2j9pnUfsGZzJ1/Gt09IH2eVVWZ6090TC0izgEpRWsyF0Q5vDpsfvY6b10A5TjgYWkjUmbnOK6G6wQipddVArlyrLQ8WNuNwWaBYbnKj312n0KTnWFp7bRtqny1wunBNOV1ca/nIlAjPXPlRLIunGKndWDqteyXsVmFz1u9HpjuvfRqsAGwi7mo+6D0XtrvVnvM9mf6bmi6x0CsCZUTnKfP0gKZhlSf2fm+hHEln2XWH37u3GeAH5SRnrsu9O9c05wAu5pV5Py+/P5rpAefPaixZUvXtOHYXyCPNsmm8zKf9awm3f6pSQL6cSmobJ17Njp3hmyi3GNvMYhpANzc5yV2Wu5cG1GHrRhg+9jHPoYPfehD+Kmf+in0+/3m8yc84Qm48cYb13Vwm219WrOglYAIxuIRA2wSVV9ONfKi7l2E8dXqZRmALAfKeDeSKD3WEF2nm0POGASAbYzF5tVVko4ZRTEnE5vBVuAsSAy23Jzz0tWzop/aJroOhj0/phXNGo3tin3UwI3OZTLYxuY7rINcvnksVhHVtOIMqvw091373AJ/ct/1GtGAXcGQMthKon7eVAFvyuxcJqJMWZPeVDBpnNRojFNE0+9q64IFkkdssyIwrNyQDk1OpxKYpcr+kktjOZxlsNkOVPOZc03SUhqt9aNmDdjH9Uaq+8I8zrGwljIMRxnosedxDswP98m7Z9V9c8GJckfaK1eQO08upSj6vtP58lYLnJbBFqe3pd/3aj1FdoUzc2IqgC0XuMvYKl0yH7TPpXcjt795dQdXs+CvstYYx4xB1aSbXkXUaS94q1Zq74aswWav8W3BCr/N7dWUy9k+U4H+OV9nmgJTXe0fEnw35YWcOqxaX7mKuW8e88JREYPNsT9mU3MzshuaPegNiHUJ5mmfe9e0qsoHoDeiDlsxwHbnnXfiEY94RPL5eDzGYDBYl0FttvVtZtTPufio5b0lA1FJNXIDGxm9DksrRVvQxNQUpdCAl9oupzgQdgNNNeIMNAXc0xZZnia6dU6WT/RsePQcNKIE2ACKVydvOJo0EdycYe+tDprrN40xqH1f+mxloKdeRlGaia3Bpp3fAjZpKkcJs8OrcVFiUFlg7TTaHuo4jXscfd4hDaTua8/jXEGCadJww/zUxrQw249+z4HmMcAljFF55lYKzbIx38P3peaZ24DmGMjmyJxbjN2XoukN9Gh9I/DIYClrx+3yDqrgjcBUCa1mOOaYEOWMi4kB6pak63lF+buu8SVpcN403hwY5i24kzumF3QD7KBB3M9ne6mM0QywkU2P9eoqEf3KoJWb1UvLpogK156ZHyUMtrafzAby3k9x/clUEY30Yo39qQQwzIED0jFltrw8Z73gUU5/zhojoLGepgcr1L5d1g+VBeo7dw6ALSlgZPXTPrc+G09gavR52faAdp32s1wxKlrTZzaexLrcHvA7V8Anu35oLEEvg60DmUD7fBpmvXZMmim1UVoxwPbYxz4Wf/u3f5t8/vGPfxxPfvKT12VQm219myVkGqeX6ekUEYNtRB1+24HJ6dm4ozpOQ1grLZ7T4cjTpp1jp+AiZTcYGmzLmRRRIAXYdmxRALZCEVda1UfqGzvyPidtWj09y6miwY8cqKudix8z9xmdM5Foci5FdCz/rR2Th2XY9slpz6gsMud1ijovIrsgjVKVRM5LInQpS1CJfGfArNy5LfBqTMDSMg0SH3ikGTqedPCS1NySip3h87xD5X8eOUHytp/2Dk/PYPOmXZUwJGnfw8Yar32/C6tWk3Sw1rlxJt0FkOeIGJH23uMoyJabn+ub6qN9lgVlptBLy7EoSpjX7TF9zDJlyroZbNK6rxZOcIJ2UfBuCv0ob/AsB0blWTpOQFnV9HWyVRUPy703OyUQorTC7JxLg5bZ7JYoRTTp2tz7OAib9isrcuD7vpfJVH/f+Q4X7Nc5FprVryRgOg0DrvmsAOiRi6QkHyXHNY8pXFMJkCfZo/K+kX5XD8zo/ahWXD3WMpu9+awgo0qzUb3FQjqzEdkxNVmWvnN/4uenhZY2SnNXEX3961+Pyy67DO95z3vwMz/zM7jzzjsxHo/xiU98At/61rfwsY99DJ/61KeO5Fg325RtGvaLtXgMRuMmei35aVE1p6weli9NwLtIalHMnK5aNE4nKJJz3g4b7AY9PVVeqLbNx6yWHQuzYr8SQGm4ljoUVRHlAFuB4RY+yzHdVLFqp1NT5PCvE6i7YugIpUUOMowih9MdaWyNJxisbU65NDRvdT3aRCaD+x51S8tRx5mAmOJX3RHcIgZbSBEdt0xM1fDzGvxOIA4A5mfidz33zHNMkVwaf/R5cJSmAAa08+dA4eaYGdAv+r4TpJpGCDk6d2acMUvZd/5c4ZdmTAWSDhqQN8IkSXfp4hB65zads+uVIqoFErxBjNxekr2fbke8/Tmf4uUDUGQNNp+jBJQ4X+Ih63GOhM+ScbY/RymIHZjG0j6cY0JSZ9Z733NsovVisLXH5dWnfSCCVFVeY7Za73VJBWYvGBfbH/59J5ee247Jx1pS2Z1ufUL/njfN+mV+FgH0mSqi7gCf4hd11LCdxk4Mc6SkyqxXa1d819WUfcZAowy2MRwFrvI2qs6AXX+7RHqWJexOfkztXS1hsMXkg00Gm9r++I//GEtLS3jpS1+KP/3TP8VnPvMZVFWFd7/73fjmN7+JK6+8Ei984QuP5Fg32xRtQlgYuSIHdAFI6K/kqyULBTWu5dLC6ZhzKTS0OpXJqMk4iVoayzRRofa7smORaEpF0VY7nQGQGGwawFa2cNN0X6mv5oBYaRc5Y4wu3N7UA9rETaOEXu0E6LRUn7SqId1EYDICAWUjNIDN4WiCwTDogGQAtqkcug6MzQKnV5vbHsdknqVNNsfsAKpI5wHa5zOegFRZ8xsbXhBTcwJSBpvMNAlfn44lozkL0zsG+vl980utdtpBK8p7Hkm0uP6+HRRayhQ5WG8GmybpYKXm8nQXv9ZK8pH7ekoqiXvnnMba9K9VtuM51XuUea/Dug2UPHffs9BTRKdf91XQzrl+9ZT7OY3GYHNuISsht87kAqZ+4Jvub+uXWudNpfeuXzqzVZ/zJQGxaQrZyKxJxRF3rjVe4Eu7714NtiOx53kD9/SjfIp5+pkkqVBWzdK/LnhtRymoXsRgc2oR5oAnq6AcZ1vFDLb8WPPAZmY9LPBrRKDZmwrvnMddQVV+/o2oweZmsE2I03jhhRfiwgsvPCID2mzr2+iczkcH9U00OCDD8YRtouk5S4zraRhsliGsjjOz+EyTcpKLqiwZ6UOzyn3XHF8OsB2jAWxuILDux6nQlqZdropomEtephuQBxenodVLY8p+X/i6FklMN9b29/FkEr1z3jQrS/tuNJ409OocmyfPYJMMoumBgTjK7asYHI9H1gLj17kw6we4pNQn3eDWr7MuLlF/VsIWkdcKP6su1WDTDZ3xaJIFvmUjWLuf0zsg2uddq1uVzCXeLA2i5Pv9KjECc+AkDaKIxUI6jD0XXMixGygTM2LVOs8vr11eBkg3BlsOeFqdYt+Qna+UWQHIaXBu6QiV9Z0eM5dea51bmcZKipfvvqtBEC+LNAoM5UAu5x7TS+d8DnzJ2p1TsGKnAXVVpq9zb5bWlFxqnDetMN+PZK0YQW2gnTdxcDXppjL6uhQ5KAnmuStPZgIr8efSnpf28zMp2y9Htrkb9LeZgysGiwsoY7B51ypvoLxE6sUNMinvcE63dJhhfXM7rcTX8Qcsko8AdAOavXZWScaJthf1lbm8UZqbwQbo+gyb7Qe3ReykjEG0komIN/o8BUKmFisO0BaA5CMWTfOJehOfImvYZ6PsU+gqRew9rsFWyGDbzhls65AiCqTOl6W9l4vwe6n6kuC71rfrxuwH6HzOE5BubvR4Q5KOVaIpxa+dR9OCYSAaiAU6D+sdFS5hz3UBahZmZAabGMEtMBCtZzEeo3k3itJbOxqtnMGmVl5b+34WaBHXsxKDefrnBkznBER9O6R5ljDlpmHa5YocrDfgWMaIWVvjSTVcra/XWZlmTYnu0RQgldRvKg22TNBgmup6ubTCXPq2fy4kHxXpTHnfDVUzTBy70E8Aw9Tzd9C6tew+ID8/ROA9w7yZZs51ZYF4JRC0VFZrby+RAVge2pkoTZXIKBvCtw9q53cXxnC+L/X5fUEQL2hWn8s5t902kXwer/xD7h1aNuRO6s+6Mdi8WSNeMgBQYufZY88RTsJ5xox4IJ1/iwNgo8z47Poh3GKVweb0tUpYcfze6ZIdJQHb9hgbEWBzM9gA4Nxzz82CbA888ECnAW229W1x5Dr9u0Yt1zeNcV5jq2CR9C4AcfQ6w9jo9bCMWFAxp9mxnKP/Ow0/uuHEGmwV66cZbskhAaQMtm0L8qvrjR6FhW84nphaA5rB7AZQREOYgItZ7Tuf4eWhKLd9fcaPni4Tf5/ei/Garh3/PDdW/lmvV6GqapB4RJ5RzhnNpW/7NcvK5hEwXZEDVdeEnX/LnB9g8xp9gH0/c9Vb1e93MLgBYH7WaeisrccrGdaALOwsLzTTCM5HfZ0gQue01S5GfIHWW84pstZ4z/dD895j5bab6z5nKXtBdr8mps28ofdIusfu4hDKWtMFDItABCMgpo/JdnSmSzv1ObiaLe4FK7zVRrVj5t71aQIu/iqz9n3LFn4xmMvaeOIKhM4xFTBy5HFK75Y9Tq+WYDb4Hr0bukSGeh5hi6EZJu1n8lz2rlMl+qbic3eCVCqDzSm2n0upbj5T30Hh3E7wWPc3fHNWLxLle27TZESENtfvmRXP4/MIY1TGrknNtLql9vvBbVILTOcZVd7gVcl990s/+NYkTde6xFfi5ION1ooAtve973045phjjtRYNtsRaDnDOqaW24Zw+H4u0qtFqdxpMJlFf3U0RQl28ZiUwTaFOHxBpIgbSpH+W2bhBVKArYyyrX82JhUqJUNHc2q6sBs01pNb86fjJtrFwZU+51GaLIOtADAYjGpwLWgo5TbMXPq2G5CagvqfNSAKgFF+fo3B5gUM9fdF7zscTxppBPX7HdhqugYbSxFVhbLr//PM0gLHr2NRADmVzNlPfd+mBzuKUkSdx5zRgihiarIPLPGuSUF7j9uq1p7lAdjk+Zl8NBXL5nBGp86tsaekXq6XtMASsQG8TBcZ/G1/noZd6reTko/Wvu8cuwA2lGiw5ZzmrKSEm43ke4fUIgcdUp3jIj6ZSvPOsetjEq7JWfgg2odHuXlcHkSJwefpnfswpuFY18Kyx+QDhbV3Y66f2hFdgiBaX69OcMl53KnwnRlsvj0c8MsieBlXJYE3b7XlMtY3gFFcQb5XycdddAJsM70KK2C+uBPELPPzvHa8z3ZTg6hOn4wfY5PBlmmvetWrcMIJJxypsWy2I9BGUUVD+6XM5eY3VNeMML1KF+1QYluNXnfQAJiLALYcaOc0Spz6PFHqAT23sqjxKqJa82o9tTpThKWTMQqmiUjLkSf5WXoN4bJNdHrAQI4upp/TcQ+JM6vTu/3O7GBUHy/c+5y+WFbg2Mno8aYuUAN+upLy8lqxyOj3nNUVmrfIQQkw0YDPxMjqymArqUrG9eYknbj63HU/6sh6I716FdFuzpNXyNnrOGpjEgXBnca5WsnO+dy09FpRL0lkTEz/Wfh8PJpk+4Z1yZPu4gUivU7NrFJFVGZTltsAeRuk3BnNgQhTBZAyQQd/6pTvHgHTMb5CU1nXUziEg4wGm3cu+eUK/HvRkWBNekE3z7lCEysTCzZAEYNtis9yoExJJc+ZfgUM8v267KPqu+Fej7s9yy5apta67zlmLoiRZ7AVBKWcjMIugQTtvktMzhKQW2c+jjEcT9Af60FtwJciCoT7GZdg9s7ZkhRRr4yAHiyOPy9i3yrjpO821bTbKE3BHdO2qb/2z7ONc5FrZWO2Fj+rEov2Xe38Xl0SLRXNm1IgTV8tQteFfqsh9okGG/nu8hQMNq25N/F+CyIMDeHgzgy2IlC3yzELDFn32NPj5QA7WuRA2sDVYxjABL3vov6Jcu3Sx7l0rrafb76r86OjMbnI5jsXlG3HJDhPGiAlgToGYDki7E7beMqfp8Ro9TPY6u9nHVmnEw9o7AjJeRK/rsgQpJ9pc4EPf6YnF8HoIordFYwvSa8V360OrGugnLE1muTTXcS0IO9cyjjCcYro9Aw2qRId4LcrcnvjSiZF1K/VJI8z17ft52NslRReyWmhhlbk0GXGNJ2kxPo44lk9Pa+NV5JaV7C/+d+tcgZb/pjl9zOXIuo9D5COv6wCvO/aNdBOZFyJOpv+980bAOqsS+ve8+x+UXVMZwCpqIqod510pq2rmqnOIi1FchZrH9GglPY8tszFNqo340UbpzeFGOhWXEL3lbiP6vepVDBdmXcbpU1VRXSz/fNpeZ2F9ud86mfdmb4nEohQwkSYJqqTFWd1iyZTBpu/4qj5mWgcp+OM0hkcDDbtnqb9nPeTMNjGRhqcFpGWhulm8xwBUOZIRNj6TmOMGy8hUlOkZ2N8lgN/NcPNW8HUPY8zrCGqsdAlHQoAtjL6PY8Wtsf0G2T9XsUDiSZzZ0y079SIuPM6S4BRXuQgF0nMiYkXsYzF70v9ujHYLGOUXo927TkAxvpMlTBw7k+y86UxLnzvkWwc+5l2lhE/GsdMdjczrUPqJXVk4yIHvvtZ4iSuFztiaWADgfJ+YANPgylY3959VIt5i2uSk9mqHdO/Z7U/5/XnfClN07ARY6kE73tpO8K5QiHeYB4fqz1O6d3SgYH0PE5AKmsfl7M7venGRcywDgxYoERb0Xeeuq8vyOaWQHGwgawxyUGMgrGvk8RGfpzyO1BVcYG6kmCgN4ihjZMGpRrdY+X7PMuiK/OwM4NN8skK7M5Ug63g3Erfk45ZwKNO2o5+r0oCxxuhuQG28Qak9x0NLVfmWaOWu8UrnWCU+n3vMTVQxhkFkZ0A2SDrQvn2UrbjKqL2uYGYiWg1aRGzIl+jkZ3SSMczzOrJeJkI9Npbw80rdOtNJdW+32Vzy83hmvW0Nk5n9EkT+Q3jtKrR0n65cWqfy/PT6RA5N2utr5/Bpj3f9DMTYGPNMs6Hjiimd34VMdh4imjB9UhzThKW1quI+oCeEuMrtwbw7w9GFJDxA3ldnoXat0OhEO1zP4NVmXOF6xLXk/EC79LpvWunXuxnekZO2f3wrpMECIwkHZxzKfMODrIBpOmdxBJWrRgcKdHncTLotAIPbq3cDsz4IhuxQAdVam5bVrOFvRpsHRif2jGn+YwWAfOnP4pDSvqWpYhOHwgAgDmJsd7BhwC09zXt591H1fvhXOe81TWB7naad8/06igC9b2Pmb9+wkbJvmFd+2g8Qa9as/2Ud9hb5MCvcVyyxktrjbwu9KqYFKMWJGDHLLGjNSDw55/3CPz88x4h/m0jNB8tZrP9s200cp2nwJeLuIpGgSFuypt3g+maVpiL0K1MIfzpLVcsavNQ4CrDMgTi52g1zn7pVXYayoikNOaM+JUpKqLloirTVBEtoj17DXY3e8U20CiDzWuc55huyxnx7RID0+ts+B3uAgCkwIHhmoNaimgxg81x/vAejCatPmFRFLWj8ZSkiJYAbPIhkzGtZyXN6PwZlmPu+wm7oSBYIx0zgIu579bf9zJqhDVecNwAf/pQCQOkNNWIFjlQK+F1WGdlliAF2IakrxMwcDqTgH/tzt233Do7TbAmSpMU18TkI3cKnp4i6lt7JTvNUw3Oe57BcL1Yhj5AKbYRaVZA0tW9LpQ4uGXrpO9cbkC6ZC5MAeDGKaLetcL3vmr32M34LAFvujDYuoJMHcDjkjF51w/tmLLETrf7WfJu8O9r7Dt3cZyCa6e6pblMlARgK8lYcaeIiocsWgMWeSqrU1utZO3TQOGN3jYBtqO8lTDYKMrtNX68tGXt+/Lik35X09fwprvkDMTloZ2m2cWgknSeSpxmAHj6Gbubny9+8h6xD5CyX3LGyzADCMUG8/qUmY5A3amqiE6/WWt9vRueJ3UpXJKeIsFA0IzhFkePp3dUANkZ9RtJ/qiu19BRGWxz02uw6ekQqeEmsybr/ykwUeLMyro5vn5AytYrisA651wJ46oI0HYCAV7jTVsnSwAYHnQoSRH1VonVWIZeQ9i7vwD+dTZ8RPVkVIM9I5xujUnqR3UQYwab732V05KV+9GBzUjv23JGK0583zLvS17OwnmeAg02ac5qTpGXTeTV6KPXOE2Rgy77taqX5ly7y9a5buukd8/eKhS3yhU6yp3HnY1B7eMci975DkvnV0HdDnNGZbB5pV4KNNj8TEzhu86gDlAgu+G8nvr8TntQ/vq6yf5E33cyqbpkc/QqO2NmNJlgZGhTAwVFDjqsaSWF0tRU1oRp5/M9i9i7mrbABm9FVUQ32z+/RjN7O4vDuyMoBYbfFIvxalZfw3dM6hRFuj/rBNpZ4/GCAKGde+J2/LuLH48b7z6AX3zBOWIfIGW/5Bb9cSalkW7201QRzWkyZauITmHYZ7/vnnPC8XIA26TVtPOyhNTI11o/Sl4UHeGCzdZvcK//ebygHQBsdQJscpETrwGh9Vtjd2Y0d7RjdAUn+TussaNKRHET4Erp16V6ot7Xd576cwaGdQTOAWB+to9DqzY7W/u+91keCcCyJHXKZLBFejIKCOllAzidGi1F1OvQlazx/iIa9thzKaLTgHbR94Vr4uAv4N+zNLC0BByYm+lhSJ6PMnT/nKWSI5G9IIzTuw9P8SxWMnInQD3vlnPVaDvvb8qcdc5vHmgCNA22bvtT7n2JGGzud8u3D3tTSQEF0Clg1HglELwV2LXvd0kRLSv6INyjAlvDy2DTvt+J6et8t1RJhw6+QW5ujsaThn7kBa5KsgLkuZB+V7fn/M946/wMcGCl7aes8e77XrDnbfS2CbAd5S0nblyCunspuapuTgdqeVRBLBOd9EbZS4wf92bvvG+aQ2YtVK96xunq30JL2S/2eSKdqUwEJY5Ip8fsklKkf19yvnzfVc8/hYHZfFd0BtufR+MJhqOyIgf6OyjMG/f1+BmSUtVNL1BSFm31jQcAFpMUUf9mrwJs7Hmo81D4uKSak3et0AG2I89g0wRnu2hNauf3arIA6bNTGWwFe1nCYCswWt2FE5TKtaV6i7nPAC1QpoNUtBqutr14mXbuoh6qU+RbU4tYyh3uJz1PLGKfjkmsQFjwDkpTXgLP3ZUS1bQt/7sxN9OLANASxkQuYDuVBlsHEJPOo1zgDkjnaPdAQrd9WHruPNAEaIC0eBq3/ZWzeaepsOstclAk6u9MB9XWCvl96/Ys3SmiHUBmwB9I8DKx6/P7fJOSisVdQPL6cx/j3MvUldcP8ZAxwBY+c2qw6en1TjCtgMFWssZ7GWz8WZb4JRpIvtHb5m05yluUIlpCQe2SW19AR3Y78qTfaiat0L25dRS79gIwXsMc0J+Ht5Uy2AC0WgOZ5zPIMAen0b2Zpm/XqJ9bANtpuFVVFW3MlqaddIwS47irILh3bnvLgHcFAbS1YhsvcqAAQpLxI0X46/PHn3fVagPS8VdV3vmzzgOk77AKxotpzWLXZPw8ldw6V+cU0YL7yeddCQiqMthmfIaj97mXBEy4Q9eV0VIyztBvTBlsznECJcww3z0C5L3QyxYrM/g7zkOnrENJapw0JpHB5rz2EtaSymBjgy3RYMvNj1x1Y5Fp4wXoC95/nX3D1hrn3qj37WbrSF15oAlQhPrVa3TaC5l3cClXydwJoErnL2F8ulMSO2qGec+jfS5Nm1xREKsf4H835ArI/nfDe4+AjsVgnOCR1/bSjukFaoH2Ho/GedY3TxEtY7t2s7NKMiI4SK/tTzx4VnLfN1NE5bYJsB3lbRwx2NK/lzDYvIukGr1ep4hUthiDc+HVdHP84qrTOxu68yR+7G5uZ5Lcj1BoIJuamxNs7mAwa8d0f9ar3CL8XYBe3eGnG7Nd5MAbKToSGiTeogAyiCkdzz+PS1LUedRNLXJQsv4k2h7dwY5E26yIsSAfk7P1vNcD+HViJMe+Ppfv2qX3qoidpaZTTH8/uwKWXp086Xq8GmxFOj6qc55+Zt0PTzVcEWDrwDrS7keuIIJ1TG3OiOmHHbSB6jF5r90PZklrlciocTowWmCmZC7x8+eYHbnP6LXnGGxuxrt7v/av5/Vx8+9m2f3w23kJi6sn64FKDDavfIN2/mkyPHLsziIGm9P+6RKoKhGH7wxou/cN37mLtK9E4Fr6zL8el6Tc+okYBcFZDvR09CfLWIL15+MJshpsaYpowT12BoDWg6XMQfqu2QPe4NVm2wTYjvoWUV0LXowuxk+JXpFfD6v9bpQi6mSmlUTYvA6hW29NSB+qqkquMNeVwTabNxoBDpw5GWzTVBEtcJS6VBGt+/oid13SO3IpH+MJ0bTzpkgUvINdNbL8qc5eA1G7Hz5GjLZWcMdiy5zfyJLYJ0A6v1R2QoHx4n2WZSmiPm2PLs9dLRrhHGfJsywBLBMNNiX1smQ952tiiZaON2Di1WArcZ7K2KH6Z5MJshXRRFZMB/av9tzcKaLOc9ef+/ZRr+MHKM/YmbJfAhhIqdpddLO073tT5orSnDJC7jl7wb2XOe2kkuIlgMAude6D6jgLAtj83mn9FmZ74JcqFT4oE0OX5pfw3QLAQLazxK+7U0S7BLV1QNnX1wvEad+XunoDI5pP5i2+VhbQTz+XgiNd51eJbhcfvx6s8c3jIu1xkcEm993CbNQTts/L43Ree8k4izTYnAw2L9u+hDG60dsmwHaUtxzAVpRK1tW57xBVpv1y+hpddWK6sNC8DCHAb0iXNG6wq8CEULxAOnVfue/iZtDREBYNkIJo2npHv0vE2SO2SKbIQZIiURAZ7Zoi2mVuawaiNHx/6rY8zkSDTUsR7fBeFzHYnNH4kuCCCrBxBlsmnYE2L2tAZ7B5o+x+5k5J6lWaHlLi4Mp9vaxeMfLv3PP0og3x5/MKsCk94xJHS2actp8NMtF4yYlxVxEteAe999jrgADrv+7XY5L2cd/3vdIAgAxsetmEEuMJKGOg8OdeEpjJMS6iFFEv412aH27A0b9OAuk1dU3TLmKwOQsdVVWVOMg7FmanPg+ggWF+QMkPfPnW7hJ7rqv+21y/A6CtBuTTd0isUFmgFZdbz61+Xp057fMSjT8xMOOcc95r14o8eZ97ybofPh85WN88RfTkYxbMY9LmZk2uA8iVMO2cQaWStW+TwSa3TYDtKG8RwFbgkHmjvVK/qkrLv2t9p4k+xwy26ReqkkqeXsNPdiC6M2W8jaeXLc7KdUzoPQ5ZxLLWCTWYM9VbnSBViSFcspF455JfsNlvMIePx2RjPhIMNn9J+ALj2K2j0c3QkVlPGijiTBGVDEzne11Cgfcy0zQjvEuRA40N5J3vQPqMtCIH3iprJffIG3mXzl+yRusabCxFtGPaqRf4BlIAQwM2S5wid2Ef8lnQz9SZHT7GaVcWu5f9Nw3rIO7rDEQUvK9uDTblHfTKVEgFXeR0cPE0bm0zIJ2PJfZgzp6M9H9FhlQHG7FgznnT244ES9CrC6n1A1IHeceWFGDTCCTulLkOLGOtrxfYLHlfugb5uwRMvCCVHozzrVPaMbxrr1aMThq+d03UgZ7p3wOvjeqtOA4otuwU4F5dedveM/l7edIxW9zjdPu92hpfoLO3lekZq2mn3O50AsqAPuc3evu+Amy//du/jec973k4+eSTMT8/j7179+K1r30tbrnllqbPtddei5e//OXYs2cPFhYW8IQnPAEf/ehHk2P9wR/8AZ761Kdi165d2LJlC84880y88Y1vxP333/9PeUk/cI1WES2pvNY1l93NvpliI1nNph74zpMTuoz6uiOBPiNaHWdHgC1lsGnVAn2bKB3PcJzT85ueBcHPZX8mfr0bk8HpKOlaFvXnublJ+4ZWwvzxR/P9jrRYhKMzc7Cb08ybJsrfjcHmBwz1dPLpGWy6Bpsv4ljybvBjakCP/L54+/nnsQ7AVKyfPM4StknCYCtIJfMCQlqUnRutJQBbEdiRcXBXRrYupJgW5HQ8tSCbd13pqsHm7VumweZjsJUwU6XPpXVNAr+LdCG7aLCpQE25vZD7XJxLXturxK5Q2UwMGOl4PSXfT4pRaZ40Ugd5+0IaNO06F0pACHdArmORA281zBKHXy5eIt0j/zETe07Zg+V3WOkrfO7Vu5bSYAHNBpFIAgX30w14Ts/unNMqnnuLHBQQS8JcpMXKVAYbB9h2+BlsXdePkvc11YpT1qQk4NA9AL3Rm0xv+SdqH/zgB7Fv3z6cfvrp2LNnD2699VZ87GMfw+c+9zl861vfwne+8x2cf/75OHz4MHbt2oVzzjkH1157LV7/+tdj//79ePOb3wwAuPzyy/HGN74RAHDaaadhz549uP766/EHf/AHuP322/HpT3/6+3iV3982zjDYum7MqoHa62EZ4+gzMYLiXCTpeXKpB97KXtJmW1UaO8u3EXl12bTPu1cRjcck6XUAmnGc9tMZW777XpI+5K5M6gSktGfpjeB6o+50TDl2pXT+MqekG8AmAa4iM6MoZaQH8HfdyVazIve0cTq+dcwjkSLqTeNVwbCC6DUHJkpYXJqz4i0a4WWw9Xp1ajCJ33R2RqXzF+lkas5sknLrd0C6sAakzzXm4IxwP0s07XJjD+xjNVXQCfCVOEqz/QqrI/6Zbw3wgje9Sk6VnAaEzI/TOfYCYFR617sw/YGy4Ah/7l3f4ZKKkG6WYUc2ojfQVQLaTSNtQhtfkyy7j67di3N9dwBZO3+X1Lr6+849ws3gF7sV2JjCdzsGEsrAeGZXrIOsgWRTieuHGDDVASm+Hmvv8EyvYgH1knVyepu7Pld8TJWg0EEneD2qk3Ob9CQlRdSfzZV+V2WbFYCgfgYbt2X9a8pmiqjcvq8MtksuuQT79u3Dvn37cMsttzSA2d13343Pf/7zuPzyy3H48GHMzc3hpptuwrXXXot3vOMdAID3vve9WFpaAgB86UtfAgBs374d3/72t3HdddfhR37kRwAA+/bt+6e/sB+gltNgOxKpZFLf2b6sS9BZGN9pkLm12oro3b5z61VwZMe1S0sYbEqKaNc0AbfWQedUn4Lv93wbhNd5K2Mn1P9Hws5OR6uI9eSeh/IxJS0zt7ZQx/Qhia3hjXxpgJBkn6pFDpz3veR+uoscOIWlgXR+qlpLBevXItPx0RiBJakxiVB3QaqPF5AqAeO9bJGyqmS+sXuDKBrTTWJ8lTBGc05mKwPgA1oAP/tY1XRxpr16CyyUOL1d9xKxWJEzbbRkz+TXrgGw0vVo64LsePoAB+2YbhDC0BJLxzn9XuYFmbVjAkJ6fwdbQ/1MWWu8upBALFLOAyWhaeuhDD779iKvTmbd1wcYSOfX7SRhTF4WqcZadK5J3lRD6fxlvoq2VkjfTz+Trmc9ZBX4NXgLEmjnKQHjOZNK1WBzgq1H4r0G0nfx2K1zYr8ugZn1YCmnwVWf7aXafSIxROy64dv3FWB7xzvegdNPP735/TnPeU7z8/z8PMZrOdBV1W4U4f/9+/fjq1/9avS9AwcO4BGPeAQe97jH4XOf+xz27t2LD37wg+r5V1ZW8PDDD0f/jraWTREtSkPxA0LuUtxO2rQW6XEzlMRNtCQaP32kRk8R9T8Pb0s02BSDrCtF2W0Iiw5qyVwo2HTY5yWpl96IUq5gBWWweXWmykR+u92jBWE+dJnbal9hnPMzvRTkcu7MekqjFMH1jVMDWkTxbuc6pxrhBQw2bysBQfk6oN7PDhXISlJ9vO9wmQ6Zz5kteUZe3a2uGmziOAsCBLKTKXxXTZeTALa0X8mcE4FI0SHs4KR1BIS8a3TZOMVDin1TrUkFJCpwaiS9JfW5c6Cno75pkXxDh+deBLY6bTrp3eyaouXVhTQ12EgWQomsSUnwvCyFz/vcfIGMEtZjV4mMLkWivHNhPbRdve+btG6rcgUd/J2uxIOSwB0P/qn2XAc94rKCOfL95Nkg6jzuYLOvB8DGi6ScomjF8bmkVl8+AtJGR2v7vqaI0jYcDvF7v/d7AICzzjoLL3jBC7B7925ceumlWFlZwTnnnIM9e/bguuuua75z5513AgBe+9rX4sCBA3jLW96CO+64o/n7ox71KJx99tnqOT/wgQ/gfe973xG6oh+MNiYs47JNWDAwCwwI3rerQHqRo9Vh0ddZEKnzI4t3+yNKJc6st3HDrTPAVsBK6cpg86YVqlH2JF1P20R9gFJRkYO1rlSDzev8laR3dKnyCAALguaO5Fj0enWqUo4Bq32uVb1bnOvjwPKQfNcHMk2Uz+X3WgHO2JjU8u8l65yDBSH1s47pbSVR4RRg82szWvNzJfNdoGw9T4V2C5wVTVuEp83PyWZPl5Q1PcrOnHgFQKmP0QdA3w1tzxM+cweVfECL+v2SY0p7YQdt17K09W7ruVtAuwT0W2cGm3YeoJ53HrkCrm+kLcfeZ1Ry7W7bz5nympNv4I0/Yyn4VBaAnt6etDIX6DhLAtVFWrdCVxV89gJSyiXxddqbKtirugXUAb+OYpGuW5Ii2u0dAPxzSbLdSvZM79qtTU9/0MFPzuBroAoYdsjwWA8GG71H5564TewDdFs7i1JENduPyQTt2aUUY3Cyar0Vxzfb95nBFtqhQ4dw8cUX44tf/CJOOukkXHnllZifn8f555+PK6+8Eueffz5WV1dx//3342d/9meb783O1tV0Pv/5z+Ptb387duzYgeuuuw733nsvnv3sZ+Ozn/0sfuzHfkw979vf/nbs37+/+UfBuaOlTVvkwIu66zogXWjT07MoAHnRF1MUOkR0SjaxEjH1zimiCYNNcyZ9z7Irg62EBdYV9EtS1gqcLy+7U6Xfr/WN9AGd5y8qHuDc3DRHiUfdtsz2VcCSb6RlEXG5Lwc3LJDpaXt3NT+fsH1e7OO9R/Xnlfl7c8wOgQgdiFt/ML3k3eDrgMaUEYEWr1h1R8YoIARmNKe5AASdZ+nFXJOkObcTQJH6eVnKGoBS/837vvmAphKDnT/3quqmbQZoKZXCvRPBvfR4JYCyNGdLAhFelmIJk0A6FX/mGgBbojMFpO+RLvTPHWkf2FH3lfr5r71L9eqSlEbvviXpfGrVF91aTyqw6ds3gLzMSz1OaYzd1mM9fdC3R2jpsX77J39e7fs6oDw9A87WS8uPsyQoVBK05O+wDkiVrN0+ANgPWJbs177r8RY5KAkKlQDVVVXhz9/4Q/iXF5yFP/zZp4t96u9PH1TS3/d0XdLWv4TBtlMG2Hhqrlpgqle5pVE2evu+A2x33303LrjgAlx55ZU499xz8Xd/93d4zGMe0/z9xS9+Mb785S/jwIEDuPPOO3HhhRc2f3vkIx8JAHj3u9+NgwcP4tnPfjYe+9jH4rjjjsPFF18MALjmmmtw3333ieeen5/Hjh07on9HWxsRClsR7dm5KHlz+EsiNSXGghvo6cB0AySAzb/haJpQJWK13sYNdpXB1vF+eNN4Sxxhv+6O+PVkrCUGmQy6SefoBg7W4+Kbk9hNqaLlfS8VBhtzIrYoACxQIIDtNHSAtOiGtTH/7qufjNc96wz80Wufhu0Ls2IfLwAijckyIHhzp4eoujVlANsvvuAcVBVwyXPOVPt4tXSAEgZbAUvIKwNQEHRwBzKEU2lzjq+J25TCL94Iv8xSVgDLghRR/r6V6A52Sa0D/EBLyZ7lr8Q5vaPUOYhSEKX3gj9dihxIGpmAxmATu9bjShxkuV9aRdR3P3uVH4DVPvcCpt5AQomNCKR2WUkhHfl6/OdOqogaD5OKzRfZwdra6ZQrKAGfy0TsK1c/Phc0Zph0/pJUeHemgNPmLyETeIPF2veB9B3Wgj1y0MH3jHUW+/TAu3ZMvkd6bQXts64pota7+dS9u/D2Fz8apx+7qPbporeWYylHfZ2238lKMQa+Hlqgf7JvbAJsYvu+pohef/31uOiii7Bv3z485znPwSc/+Uns3r076nPVVVfhggsuAADccccdeO973wsAeOxjH4vHPe5xAGo9tnC85eVlLCws4OqrrwYA9Ho9LCzIE2ojtBFNES14gbtS4DmFtSRFtEgY3xkV8jKpvKlgWulojxHdnMsp0lnSUgClW4lr7b67C1YUpYh223T4HCtjXPkMTJX+X7SJ96bqB8hztuS5cSdiy5w+4ZIoZoGRpRmZnD1kbeKn7NyC97z0serfgcL3jRvsTq02wAIR+LrgZ4ZZ1/6WF56LNzznTBVY1L6vsRH5OqBrsBW8rwlgWfK++UA7FSwtiYgnlZU1Btv0a4C/iqgBsHGwRdPjWmewAvBrcZXoVHkdICkA1ZXN7C/QUDD2DuPUxhSYCAFD0RhsJUAeIKStdRTb55970/Ctz7tofxZlY6g2avy5Ziv1egBY9cWuKcj8OWv2MRAHydVrLAAcvUFLjV3lrWCoy8dMZ6dpgCFQz6XhuH1IWlcRgOmYVpjsWVrgruAeFa/dRKtBC+iXZAZ5sxfmhMqT/mJ2viCwymATjundn0reo86ZBk4md4mmJVCvX6v0mBqDbZ5nL/gqyGvvf9uXvG+bKaJi+74CbBdffHFT5fPAgQN4yUte0vztDW94A97whjfgoosuwuLiIk488UTcdNNNWFlZweLiIj784Q83L/LLX/5yXH/99bj55puxd+9e7NixA9/+9rebv23bpudHH+2N0svLSnFLi6S0eDkjIB03EpVt4hRC7dIPkKJEJU6Fv2/XhYpvjEesyEGH9KGqSsuAdz2m9HlZlErq5/suoLxbTgBHFYcXo9K+d0Mz3JIiGEqVWcAvul6WquiP3HtaFw2SsgqV2jF9AMo0wrAWuAaUredbOcCmpYgWrEmdUp1Vw54BliqDzfduAClbRAPY+Di3zvXdzBBe4r79nO0bBQw2jWXYBTzyAmyavy8Z52UpoumBZVaJD7TvmrYu70/y55K9UCSM71jrNAZbaYoovX+9yliXnAw2fk3qe9lxDfCySGX5Bv9aIfW3GWzj6DPv9XhBf+tZDh2yE0WZAk473pudon3fm76t7xu+YAtQ2zVLAwqw+W1uLwveuw+uR6GjksByyvgq8el890m3UacD6OvPxK7J9ZSsNV0K5gBlwKa3yam53cYJhL10OlBZavw+a0Ax4M9u2ejt+wqwray0sPs111wT/e1FL3oRAOClL30prrrqKnzrW9/C9u3bcdFFF+E973kPnvCEJzR93/Oe9+CEE07ARz7yEdxyyy2466678OhHPxqvfvWr8Uu/9Ev/JNfyg9rGE7o5p3/XXmp/FEI+r5eJcCSik+4iB4JT5I3oaFEi76Jff+53Er2N3ztV0Ftyzp2fAf77rmv0pQCbmzbtNPy6MthkweUC5o9x7Z5+XnaWN2UMSB1kSdg5ND4/S4BArW+JBpuncX0twA+wlWmwyefnxtN6Mdg8rYRpxzXYNPCmJDXGnepT9B4xkElxesV3Q7n3HEzcpjHY2DGP2aKkJR8hDbY0RbQbg60ozcjJVi0D2AQg0unkddFKAiDqP3m/r2qmCs9dLBBTsJ4DcQGXkmdupw+1f9s6P+PW2dSWJC+IUFbkwLnndnRG1cINHGArCEb6AVyNOeivIkqD5EXaUQXavyXBRG/gT/UNkn1D7seDLRbLr16XBs3veoq797n55xdfL9TU3IKgUJcU0fl+t6C6NC4VpHYGYb2FSoD03dCCA1VVYbZfRbrHXfeNEhDS20QwzelrlbCUtbXmeKJf/Lg9ugwWZyNaoJnXXtjo7fsKsN12223ZPldccUW2T6/Xwy/8wi/gF37hF9ZhVEdXm4bBphutfgMiEdktiaYVbERdUgpKKNNebSAJ9deLHPiN82mbbjQ6N6ICg65sI0ujwl7tve6RROecE59ld4PIzfxxGs0l85g7yIsKgAH4hZhLtBmTFFFndE1rcpl6a861TYvQlThKCSBUorfYMR9cmjfaXOLrgObIS597WcpFTEznOsur3lrn0kAubxVRzhjcoQBsciVM335QlCJaoMcl7iUF67E3RVSaHyVpllrl7KoCSCxQvE8l+6UbABG+X1JdWAJMNVacBnLF1+1nLVp+Hx2rBigDfiYCf9dLChUB9fXnjgn4n5us6+hb90PjAI7GYOsCwHgZbJYz+6NPOBlf2/cgAODHn7RHHmNHTboSVqy/+IlvjnjXJCv4zO0afR7WRQFotfeuBSuSd0MFegt8LfEZiV2F4H/Beuxcu9UiBx38PG+WhcXAmun1MBiNzL4lxW1Kshe8zUv4KAmUAwJ7UNlfdm+dw2//5BPxdzffh7f88Lnq8RKg2Dh3un6pXTd0+74CbJvtyLeYweYzMLtqNwAlBpn0mX8jksu1+wAUbzQLEFJ9CoRE1ao+BeeftukpotJnfjDLa0x62Wbq+Ut0TZzCwX4jPv1uGQXeZ2yo99jJcCw5t1ejDygoclDg+PIiB12jg7P91Dn3pn6WVTb2zeOyd13s6m6yeK7cl993zZEXGUpeQLtgjdZTVCvWzwcyzfV7KoDBr1UDHHZvnYt+1xhs0jPWtAz5tWvXLf1Nu3YZWE37leztUhVRqRUx2CSQTHgPqqrCbC92er3yCV3fYa6BZh1TkjYQGRMFTHDeNOC7JNAExDaQZgMA0nNX5gdjxZTYcz0FXJTWRC9wVqTtqtwmbidq2kQSIOQFmTRAnb/rlt33U+fvxb4HDgMAXvtDZ4h9vFVaAT/g4M1S0I7plhZwpvBaQEuScpth/qyuYTJbZmUZALFStDN4pt0j71oB+EFl6bglKZV+RrPYzc3ek0BHPeXVp8FWn6+ixEWxb0kgsmTP9DY/47N0jWfrkgFAv/ypp+LlTz3VGqYAaBvBwM0UUVfbBNiO8pYr8V0GIvjZDYlgYkfnvKTypFfvqKSynzdFVBbA1gyNI89g46lhoXk1M/Tn5jum18jS+pboCHHnpOjcTqOzJHLvFcYvAQK9c1uNDvLKaWaKqJPdUPCM+HzsujFXVYX5mR6WB7ZzXn9esd/9z1KP4PqMWzl1oRvCVmIwb5nlKaJ+Bps2TL9OS/r5Dq0qrJMRyK/TMsLTIgfynD92WwywaQy2fq/Cwmw856xqvPFYDLDDW+SgA4PNW13PYnL3e1XWrqiP6Vu/6uO2Ti+gvC8FafiiXWCIf+fAPfo3KqYuO3Tp97xV1rT5IbPiDOeL9DcZbMlzl/txVox2L0t0Ifn6V8S4cu7XGrgHTL+/Fe3XGsDGnrMFgs72e1MV+ymreJ72kwu8dAdvkgCjEziygA4vgw1Ys93XFpvtC/K7MSOsc97gmbZ+SIxkHRT2r3VeNqRkd2rvhruKqNOWFYMtaqCc2VTG3u4pIlTCoC/J4vG2TlVErXlcwDjztJLjebU7N3rbJPYd5S2XIlpEhe4QpepaYa5EX0OKRMoaFf7r4WlnWpGDrpou/1QMtq4VP70afWr0uAPAp1dEczLYnKkpJeBzSZEDfoyu4vAlFZoS3RkrRdQNkvsNGC6239UoANLn7p0faoXKDuk2qhFesM56mzfVB0jXAc2Rlz7XmB2pES52S+b3XL/nTqVVWVycwWYBbAyo0oocHLt1PvpdY7ABKVBspVpHYykocuBl1Oifpd/1siusfYivGUUpok4HzKtZWMKQ9jI7tBQvftyZXuV/Fh0ZbFVVJaxCiwE7IIChNt+B9L57AVhVKqFgTfIX+5mezWgCLU7HmR9DZzOn49TX2bivBvR4W8me5bUXRDuphMHmPL8avHKyo4D0vbHSSelc3mbcdz7nLYA+/l0HuPhj0hjNRWwzJwvVm5oLFKSIchtRObdkZ6qZKEUponlws2RNKnmPvM2bHlvKfPYyQb3NG3Ao7buR2ybAdpS3SCDVCYAUCbk7jQ3tmDKoIhxPi5wJi4osPJx+Vyw37txIdNDMz3oqYdBN2zSAzVt1qoQhUBKB8YKbXvo+4Dey3OCelNbS8Xrq8/uACZla7mM9eo2CkvShksi9WuRgnjPYum9B3hSJpCpqx7R1IJ2LKrOjV7mZEN5W4tQkKaKqBls6H+zqevrv2ji3L+ii62lRAN8zsoArr2gyZ7DZAJufgUJbSRVRDWDrsnZ7ARSLHcXXWa/zBVhrSP4dLgHypb66g8ycNCdjQp2bBYEq3qz5wY9rOVSUkWfNzXmnWHVaUbr7tU/LkqmP2e3cgL+6nheYkMBRncEWf26xDD3NG0AGoBQAEfoVFE4o0dhK7qca1PaBukC6Vmo6m3xc2437zvdIVZuRF2NQ+gW2PW161eCCtdtgRdNWwlDyAijeftIapNl+/J54GWx9LeDhTE8Hymwqb+si62JWil5nBpu3Gi2wWeTA2zYBtqO8jYg4kfSyVlWVgE9d2WaAPw1OYoKVpBlIhp7kPGqLl9d4Sjd7n7EOlIkmr/dCpbJPnIt5r5dG3QC/s1OSpul97n4Gmz866NclUQCUDqkxJenT0lwqqdDEWxGDrUAvRK1mmRQ56D7fE8NAEfnl74IGlpbo/nEjh2sVRX9bZ90KLygMpCmMJSmi2hxJq8yK3bCTAVUWWyMpcuAEmUpSRDXwyKvBBqQOg1WNNx6LAXYkzpcGYgifOdcArwabFTn3VkBMg1J6ShK3A7x6RSVFDrQ5wu+dlzFRpJHnfNWt/Z+vFxYIukLSl7VxAv5Un8T+KSg+otsAPgexxFbhH5doGGnNy2CTwBJtneX3c9u8vtZ4WpFuqNP2ku6nGmAsCa56be4CAIHfewtUXiVVJ3lhG+v8Xg22EiBQC3SV+Fqaf5H7vg2w+UDQPvMPtHdKYtFqw060SK31mJyvhFXr1ekF/OxjrXUp3GI92tT+6jbOFCz1BwM3GWxy2wTYjvI2plopTkOnxOHXo1S+TUfSCCupiiitAZIToy0+3InxOgvezRYwqvo4S0p3aSUi0CVsNW9ZeC8wAShCvR0YbJqdIz0j2cAUxlNyP53gc4mTKIJpHRhsJUUONGehiME2x0HQIwCwORlsqgZbAVWfX7slYr/etHrpvmu2IE9h1JxzkcGmppn7rocDV5ZTw+e3lyVkORkWqEUbv/YdBhB4RFJE3aLrPvBJXLedAJs1NRMGm1NWwQSuHFo6IoBSYKvMK+C3V84CiK9BTTntwGCD0S0NBup9V4YEYCsSq5b7JfZPSYqoNwi7DrYKn0eW0+kFJlJASNlfihhs8VzsniKafqayDJ3BROlzjZ0lBrU1e9Jp/5SIrvM1SdMeBoCVYauhaDEHE6DHaf9YwISXwSbb3MoxDZuDtmSdy2hNRud2romqBqxgQ6xLkQNyPu19rqqUSKHb8cJnHYPAXcgIZemx6zvOEg22TYBNbpsA21HePGLEfD9YFwabc9ORNriu1RuljdDL7FAdkMTA1AA2/yIpRQO7RksA4F9dcDYA4MzjtuLE7QtinxIxTy941CWKWXIeVUQ20QYqMDBFXTYBLF0HarmXNelNj+1Ca7cYbPw+a0BLCfDODV+LJeRtXkZNMj/WJUXUty5IfbtS+ktYk4uKsD9vEqijOhZOR+nYbbG22Xow2Lzad4DfAeHtmMWSFFFnkQNjLF5A21t9upTVQh+f5VDxdUBzVspSknyAqRfUle6dymArmEt0nNqzLCkWlHy3gMFmpohSgM2ac85UHy+DX7pM7/6mM2ULAnfOvRXwZwvwfuvBYOPPpCvAJmaiFNgqGibkBSa8Kd3S+b2grgUg8DXJYrBR8Nm6716gJxmnMecSuQJ1DWG/V3pQzALQafOunYCkraYfl16vavcJ77Y2lzhYmis6E5qVKusNyB2JKqLe9Uv6zLKPqf1aVbYtP00zdQw3ixy42mYV0aO8ETa0uzRxicPv1dfQNh1pI5ScKm2Rk15s6fuWNtF9B/Pn8W72VVVhbqYXGbheQAjoHi0BgLe+8Fw848xdePyenWUAV0kKoBOEKNFV8eqIeBlKXgaZ1lcGejXHouDd4I5SwTPybtZHgsFWkm6sXTsH1J9x5u7cELONjrMGCnxOt55SUMLELAB6CiLynnYk0kiSKrOzfXcVPm3OHcsYbFoF0fqY8TE0B7WkyMG0BrKl48MBNes9os1OEfUBwN79UQZ69Cj/bL/dtyzniwMJ3kriXkdpplfZhV9G7HdpjMI9UgE2Npe8TDtvhVtrnLxZveZnejhAfrecGsrSMSvXckfJuX7oAJu0r8vnTgI4HYt6AAJ4Y9wjGny2mrdSYsmcW28NtjCu8SgfUC+y0zhLRnnX5SrZ2jG5naYcM9lfrL21IEV06CsAkgbVfcV+LGCCg0feAJK1flh7H208Y6Yk4GEy2EhVVqu4FveL1oXBRsapsWrrccX7hvaMSvZMb5NAXNHfEO6HBbDRZ3TMlllTMmCaZs05DuquR7Gyo7FtMtiO8uZJEeWLiraReYEJIHUOdIArXXwkY6Mrg01bzLlR1zWCC6SLj+bcigvvOiySczM9PP9RJ+L47fNqnzLNsPRzbxVR7TZ504C91a2AVGuma3psiThqmdHKo4PKMcUqXk6AbUpdDtrcVQ2dYCmQ3r+zjtuaG2K20ffdcplShqP2LKXPfA6IlQLIr71rxLHkvnuNr5l+L7omCzjyskW4kVjCYPOm5VgAoteR5m080b/HHTgvwFZS5MB7bqAgDcU4Bd23LPCGv0fa+pVWAbQcOspE8IOl2rkTuYCeLIANpO+R5SxEKUklRQ6c75/VzVusAwDolC+pXOsXnPeDi9pc4n21/UXMSOhodwLAYDxW/xYfwzePpXF6qzVbafPextd4bU306rgCwrvhrEIM+INSuk4dB779a5KXUazNOUAocuCtIlogV6CD9H6GkHff2DbPAyO+9Th3fupjWs+I71uan8nvib0ftH+zitOk6Y8+u0L7rKSddfy27Hi0zyyAjT6T9cgE4c0CtEtSiDdy2wTYjvJGixzoYIfPUSphdnDGmmaQcTBttp9W2pHG2JxfWPi9RQ4AYdFX012Y8VJgtGrXLhlV61BU0dW8DDKgAJAqiP6IYK0TtPNWidQYKNLz6FLpR/tcZWE4I+Iig805Jq9RUBmcCX6f1RSegvOfuKNNWT77+K3rEnWjwOrEAEXSYgh+FoaaWufUZgT8jA1vKxF9B4CXPvEUAMBPnXe6eVzqdJSkEGvn5u+B5UweiSIHpx+72Kw3r37GaWo/ADiPMCofcUJqGIeWpIg6n6VZmcvpKPFn0ldYm/I81s9BK08exyqq0iaBV1LjjAKbwVa5+nnXTj5vLAA2qWDqdNQ08ES6xV4HpMSR9s6XElvl5J2ypETKYFPe9Q5Mbg2kloo0eG0VC0QYjZwMNucxe73KfZ+4jbqtY4ooIKTBaYVsCvSwvLpdJSmiXmCVM8astSvRYHNKIpRoYuopomyds5g/3qAlO4TJJnKuA9weLkoRNfo+vDxsfj73xO1qP75HaktyydpN770VxPDKAHRJ79faWcenQWQ5EJF+1wLODq0MXf2mbSUpoutBDDka22aK6FHeaPTea5Ssh86UN5LIN8Jt8zOisyCzqOQFUTJ8tTWaR7p05o2fweYtL36kGGyeVlTW3fk8RB2zjmLI3mIKgBDFVIws6dzSJh50TSgbQEuRKNU7ok1/L9NzScax91lIzZpufB5vmfNFWwHdoTzjuK140wvOwTV3PIT3//jjXGPMNWpgWmSltIpoAQvDGUiwjEHv/fQ2b+p2aJe98kl40/MfYQJHQO2sHFypfzYZbAWpMbTZDLb4GN40PMvJmJ/p48r/89m4et+DeNkayKi1337FE/GBz9yIJ522E484wXAWpkwRtdZ3bxovP1dJar+dVtgCbGcdp88RDnjsVLTqSvZMriej9uPPXdEw4mmsXtBMOgdt0V7Qcb+UmtXLqwPLWwmI8NhTjpH7HQEGG7fztLQ+qZquqoFbALANnMxW/jyt+TE/22uA6vmZnluuYL1SRGnT5ryoh+UscqCBR9K5vPaPqjU5499fUgbb9JqjzbicQA+3R+1iDF4GG5vHJnjkBNjYHLODZ/7z0/bMs45V/5bsW+vMYCvZN0oIG10ZbDsWZnHctjncd3AVQH3fj92aZhdJ/oYFnO1fGrj6TdvKihys++mPirYJsB3ljQJsat65U4NNZPk4Nba8DDYtkhcqwYwcKa9FKaIJbVmLxvsXfW/1I0mLqGu0xNu8pdoBP+AgbZgaiJGyX8RuRVVEvUarNCZd8N6pa1IUuWfRVsUYlK5TMo5Lqw/RZs02fn6vBltuDr/1hee6xuZt3ghuqoHmDyQcCQabZdx7WimA0utVOMeIMIdGAxSWEc7n8bSi4bR571GSIpqZA486aQceddKO7NhO3bWI//hTT8n24++sdw6aVQ3dKaI+JkIX4F2KuofG5wSvEhtaieYP3V+tEfJrOm3XotiPM1rWSxtxMllfjaukHQEGm637Fx/jkcr60AVg89o06rve7yW2nwascoaj9V6O3CmifH+zAZQDa4we00Zk98+qWOxt/DZr1y6lT3YuclBgc/P7pzPY/AA9B2Et/czoHOvBYHPeI8DPYOP3zto3vEvLVoHMoLVpUwCfebYOsHGAT3ucSWquGZhpx2VlQ/DxH4n1y2org3atedyeHWbBHepvaMErANi/1DLYdhwBgK1EPmYzRVRum7jjUd6mYbBp0SypSpKeIhofQzOIahHt9vdt8/pCwc+lvdTSpqVdO3eULPo/bVaqTxKBKdBg+6daqGSATO7rdRhEYEKtFOS775LOlAbaeXU4xGM6mXZFjDwn+KwxergjO9fvyRpsBdqIvNkGZnx+rwbbelczyjW3o8nWIM2RLkkTKClywNeBrgBbl+qx5nHJNZVEub2g7mCkO7Z87/E6iV42z3o1zo71pjpbj2daDbaSAkBeEPRMQxuRg1cqwFbA7PA6SnzfOX23DLB52SdAOset99JjT1VVlTi91r7+3pc+pvn54ifvUfsdiRRRfq81JmZSLXnGP+e8a5K11niBiXT90I859KaITlnIxjo3v+/rkiLqZFNLz1gHN31rfJFOnpvB5gfo+fj9RWeMZznr24v4uqbZp0AHBts67Osc4CrRQrW215946qkA6oJVp+zcovbz6l2XFDmgiiDWLUqKdaxDintJO5tkDTztjN1qP35+Czh7+Agz2MwsrXWWOzla2ybAdpS38RQR15IqSW7HU3lZq6qKNqTtRlTFK3Bcstl72QC8aRWFACHaqxijkhbRP1WKaNcqopINIS3I2kbG55JXA6Tf0yvMpQw2f9VLNaKVpIf4I1+6iL7PuOYRRs1oLKW1X/aqJwGoqzu++HEnq/2SlEYnm4hHSo90sxwZ2lJtD+X5FGhXJYGEgop9nTXYpNTcdVg/qNEqpSSH5l3jebMANu64S/pLQPrOeMGG9WpezTXerOfjTUVJghMq6D/9OSRh5ub8bI7vVIz7VINNPzddf60h8ms9TQPYZnzOMZDeTyklMTRqT5UAgda+/prz9uI//OT/v717j4+qOvcG/tszmUzu95CEkBAuIVzDHQKC4F1ACkKxRatYRKvWVqrVt6hV5NT69lgqp/Ke+vYm1bdVe6rWcnrx1gqoSC09toAVVDQGKIqcI4kEEkLm/SNmsmftvdesPbNn75nJ7/v58OnUTGb2TGbWXvtZz3qe8fjF1dNRJwls2smin11fFr49ttp82ycAVBT0bVWSbe+Kb4uo5cNGkG3rUw1MqG4hBoAm3ev9/FTr2ozid1ZsYmV1nKpZrYAzW0RVOyubzSOsMr5Ut0+bl2VRm/+oZrDZ2XqpmsEm3SKqGNAWxzUnMtgMyQSy7CzF75dxt5CkFmqG+vPfu2QcfrFqOn68Yor0+Y1Z3xZbwgNqYw0gjMeS3GdjGaT45/F23HJBA3xaT23TVbOGWN5PfH5Z4ExfMzURATY79UAT8fzpgFtE05zKlkrVLB2zmkFWA5VqNzgACOl6/8lW8tRP9iYXnpYBNvXOOnpWQTNAPbW9IFu9W6rT7DQkUM3OMruAss6GFFfIrAJs4nupvopplcFmK8Cm+N0wrR+nmN1pFVQWVxytLkDsTgoWTajGyMoCVBZkSVd6Vbteis9v1hk4kWLeImrj8y5O+qzuK98iqnZhocrsI+t0BqxVEBIw+W5KxsRbLmjAfc/sBQAsaLQO6oqPaRXsEL8zrgfYFC/gAOCbF43Gv/znG6gpyUbjoCLL+0n6cwjPHUcGm+TzUZQTwMftPaviVplhgEk3XsU5gFkGfN999cel/pmzzGDL8EHT+t5T2edD/G7LxkTVjAmfT4sophNta3BvFoiMIYNNcuH5naWNWLf5DYweWIDJg4st75efFcCPrpiCHfuP4po5Q62fWwx2WI2dcWSA2Al2qAYmZOeGuQ3luPGcenzQehJr5o+yvJ+d7ej6z5KdAJtqQEhGtfGL2eKA1aKYOFexbHKQgAw2Y81B2dxP/HxYv/fTh5Rgx7v/DQAYXWVdNkB1J4qdWpOq2x+N2YjWr10WWNITP2PSDDYb5R8Cfh9mDi+z/HmvHOGcrQ/u66k2CgHEBQ/r5zbO49Xnfqo17mTOGF6G7WvOQX5WhnTu0PPZOQ2g5zOsuniciACXtD6zYYs7A2xmGGBLc/ouopZdDRVrsJl92a0mo6onUSCyqKMTdQHManZYBRfFixXVDBA7xcytt4h6V4PNToF01S2iqt05AZMsDKtsRHE1S3KyM3QRtdHkQHXrp50GIPFmsInHb5nBZvp65JOChkqVWlxqF56GDDYHLhbskGUp6BkDA2p/H8B6tdXQXVja8UotqKzKtKuzExls0Ed6ZBNr8bVbTwav+nTVtrIgSxpkUt1WaMhgkzx3Iqh2qQOAlWfUYcrgYgwpz5X+zbsVI2ziOUv1Ig2QB95/dMUU3P/cPlw8sdpWQMqKYZFN8nv6bDA7F0o1JeZbkjStpxv5yU9r30i39dnZIhqKPqcw+5kTO5jtbBEdWJSNBy+frPS4542uwHmjK6T3MXZgtlpoMvlvimOSLLBpyDJU3NIYbZvm1xTqgdp53/XPZ2d8d2JhxNBF1GJMNHufLRcjFbNQTbuIKi7oW40L4nsim9OI32FZdul3l43Ht377BibUFGP0QFmATW2romoBfbPHVL0ms+p4bodhi6j0WkvtmtAOMbBbWWjesVj8O8v+lpELHnYy2NTnfk5ksAFARYH569UbXVWA7fuPAkD43GXl4onVeOq/DgIAZkpq38VKNh8xZLBJasX1Zwywpbnu7uhbRMVB3ipTxWxSY7ltzMZ2Bn3hYFkGm51BPyvDh+Odp8P/3youo9rkwHgssgBb5GOqNngAvN0iqnqyt7qv2d9YtQ6IZT098b20sdXHKpNK0zRk+DR06b4bqhepVqtZdrJFxEmrVd1B5Qw2xWxCu1QzUMS/u9tbRFW/s4aLRBuBCauggjj5s9P8JF7mGWzxP65+XiUPdqhnsGUF/PjyWcOjPrfq51YcO93OYJNlY4k0TcP4mqKo91NMYDOMnVZ1WuwWbJ5aV4JfXN0U9flVV/TFsVq6Gq+YGaafK5TkZpouUoWf3+fDSXwaYJMWSI9ti6gsKGKnC6Aq8TNuJ0MqXoYabA50ERXJtl0bM9isgh3qmUyqjOcNtUyqaN/nFTMG42fbm3GxpO6eHarZ1MEMX0S3wqyAT1LqRVwUUs9gy7Loki3Of1THUtnWSzvlFmpKcvB/L5dvZwTUA6uq2VGA+mKgalF+QL3JgXjOlGawCa9VJTgUjTh/tZMFbkV1rmKsweZ8Bq4TZtWXhQNs0dw2fxSCGT6MrMyXLlrGSrbeJ34XmMFmjgG2NHdKV8jValARB5/SPPOixWaTFasTmyG7QTGDzU4GiGziFgz4IwJslhlsYi0w1RpsNoqZy1ZL8oMZaOvo6wbjWpMDG3W7VC/UzDPYzN8n8SLG6mWLnzk7hW5lmVQZ/sgAm+prt2pTb6emnXhfq4mOePw5AfP7+XxaxHYowJm0dvEzbjVhLsqOHC/czmBTvYATPx9W46HZ46mm6ssuep0uxO9GDTYZcVyT1SZSpdoowesAWyIm3SHFN14851p1GktUweYTp05HvxOM25pkwQ591qRsy9M7R46Hb8s61gGRF1x2MvKs6v4BgL7xpHSLqPAzJ9538fvl5mdeuQZbPE0OJBls4t/Eajw27pyIf7HHmMkkqUupG5OjfZ/XfmYMvnjGEAwutd6ObYd4OrD6fGiahmzd/Fi2a8QQmLD4W5o9l2WTKcUGaCI7zQOcYCwpYf7axUU2eQM0xWCijaw41ZHFVhdR4b0ePsC6Jqeq7ATMCyMWPGTXg8L7bllWwcbulkSIdk7TK88P4n8vbUzYsUgz2MQtoibljohNDtKevqC01cAvRp/L8sz3xpsF06yLzdpYvdaR7vs21O2yvq94XJZNDoSTjBMZbIZtjZKJsD644uZKidlJQ7XLLGBRCN60Bpv5Y4oTZtXGGtL33ZBJJZs49t1X0yQFeRW3T9tJLRe/G1YTHfH4ZRcgql2S7FDd6iymh7tdg021g6Nhwmxju6/qRYC8Bpuzp9tEdRENRRQOlj2/8xf8qpNZMSjtZjYPAPWrGhtUPx/ihasY4O6VqO0uJzq7ot8JJhmwDgSu9BZPkGf+6C+WZJ9NO11EVZpGmf3Mie+lcTx2L1NYNcBmpxapyF4NNrXsKCfGBdW6WUDk/DVauFzTNNSV5Sqfv6JRbXIARAY7ZJlEhkCP5JwpvgzLxXfhMVWDY7JzgxOZiiLx76z6d7KqTwioH6etjsGKx2XMYFNvcuBEjS9Zc6NYRRSzkLwN4vtumY1o8hhuXpdNGFSExkE9TWn+14UjXXteM902MtjY5MAcA2xpTj+oWU0Mqooi039LLQJsxjoYPuVtcKoXX7LVa9VCu4B6B6CYmxzIVqkUt1MAkSc5t7aHAhb1m2wEj8zeerPXaTURV+0iagywqWewybqS6T+fAb/PcvIkdq2zysizc2EhPqZlBltQ/fWI758TkwLxb2f1HoldBN0OsKm+VMNnyWq7r2kNNsWJsY3ajPEy+87Y2bpoRXXSaqzP40DWpOJjiJ8xp7MDo3HifRbNH1cVXtx68AuTLO8nBtqtJremW/sdOMfoM8NlATtjgE0xg01yjIsnDATQ041tzohy6XHqX6t0i6jJvMaKchdR4X1x4n23ddHtMNUFHNMMNsWXbqeLqNX3z7Cwm4AtorL3PeKlqu75doj43ssyivXvtex9V62JqWlaxHcsM8N626mdRhSyY1H9Waxi/ezIu4iqnTdUG6UBNrr0GrqIWs/TPjmptohiR9vJU+Hb0QKNv/zSDCyaMBCPXyMvWaA6Hhvq71o1aTHbheNigM3n0/DLL83A8zfNwXVzh7n2vL30Qdgyi51sgPHzaGeLdn/CvL40p7JFtKowslBwueUWUaHouuRLZaf4t56dDDbZLjj9iSwn02+5ShdrgM3OhbTs5Kg/GZ9W3ZvlADtbOdS7iJptETV/TPGzY53Bpv5exprBZrXtATC+T9ZZaerZIuLzWWWwiZ8x2fctw6ehI+L/OxDsUJz4FuWIW0TdPdmqdtEyBOhtXCQqbxGVTBydXgk1+3w5sZIfUdfETpMDBy74VS+UDDWhXM5gmzakBMMH5OHtDz/Bv31+giOPmRXw48Vb5uJIWweGlOVa3k88Z1ltEbXTzMWOz0+twS92vA8AuGvhaMv7GTuJq3XnlLn7M2Mxpa4EM4eVRv2b61+pvHanEAiUHOfpiEw76/cyEQsedgI9TjNug1NfnFDeIpqQLqLxn4vE55IFhPTvk2rTEqeodhEFIsdu6TxJXESR/C0zM3zo6Or5gkjnKjF205YFOlS319sR62dHvkVU8fxmo+7fF5oG499ffAedXd3YeOlEy/uJ5XBkTQ7+p/2U5c9i1XqiL2gny54Des6v04aURH1M1a7OqnUUE7UoZUdWwO/IltxYPHp1E77+H3/DtCElGDOw0PJ+4vvpVBZuumGALc116reIWgzuAxUz2Pw+DQG/Fg7ayS/4Y1tJlA2Shi580hWLvvtabXkFgGyhrpVqFplsQDFuZbW+74D8IPZ8erum2LwjWiLYKYBtvipt/vv64rmAdZaQeFFjmcGm2DCi5zHFJgdqWyplF1/GArbmx2mnyYFqF1HxMybbIpopNPVwZIuoYrBDvMBP1gw21cLBdpociGTvWSiiXojSw0mJmZCAM7VoIrOJrO8njvFOZBGYvSYVXtRg+91XZ+OjTzowsMi5cTsvmCGtjQMY32erDl7xFJyXaRxUhI2XTsT/tJ/C8qk1lvfLFLYZyTPD+m7LDrEwJ4AvNA1WOs6IzqSS+xkWDiXjbCiii6j1YzrdMRhQ37LvBqvvutl5R7lGpqwGm2KDB0NdSCe2iMaYweZyApuxi6issZjutjTTXxjjpQX8M/xoQ1fUxzTUYFP8G8meu6YkB5kZPnR2dePS6bVKjxdNrOcU2eKm6nfWTgZbWV4Qv79xNj5oPYkZQ61reInzH1mQa8mkamx4fh+6Q8BDV05VOuZoLhpfhT/sOQwAWPVpV/F4hVRrsCmWmjH7z27WYPPauEGFeOZrZ0a9n9vzrVTFAFuaO9UVvQabmMEmC0hlBfw4dbrnJCqbEImrTbITy8ozhuCnL78LAJjbMMDyfuLxy2p76CfXViv8gFkGm3vbnADgjOFl+NPeIyjMDuCB5dbbgpymWlcNsLf9MeDvW8UErE9O4kWNrMNtpt8XDhTbWR2M1uQgfNtG8VzL1HJbTQ7UMzv07GzlSMQFnRVxi2i0AIHTYm0MYqdVu/LWDsl7dlqxfpMqswsTRwJsisGORGSwxRo08CLYkJnhczS4FiurGmymBZsdyqK8qHFg1PuodiHuoRbUtUP/UmXBDvHiSxYIPK18Qae2gGSHWHPNy4scq7HT7HuoOtbJtjQaSkooLl45MR6KY79sDqKfd7qcwGb43kjHxIgxXj1LWb79se/5omXbR/6e2t8oWvOA//zKLOxs/h8sHB99bFIRa3A2EfVvoy1eDSvPw7Bye1lPsi2ig4pz8IfVZ6L1xClMHlxs63GtzB9bha+dexwdXaex0qEAW7diBpt47rGzUO7ENWG6cXPbbCpjgC3NKdVgKxQz2Kz3XmcF/Gj7dH++bMIsrjbJJoNfO68eIYRQVZiFM4aXWd5P7N4kyzb7pEOfjmz9MReznNSv0yQdVmycmK+aNQRT6kowtDzX1VbH5nXV1LY/yibMmcoBNvECxPIhEfBr6E3OktaiEB5EdZIndrvTE4NaltsK7WQExjgBk3VhsjshU6EatCgQAmw5kszBRIj14tVqRdzs76b6nZYG2LqdDbCZbXt3YovogsYqPPTyewCAmcOsx2PDGO/AZy4r4MdXz6nHr//rIO7+zBjl35NloaY7WzXYXJwYG7aIKmawObUlxxcR7LA+XxuaHEjmNd3d+kCgJINenKskYMHD9cYeOlbjXIbfZ8hiV/17yrOjFLOcYsyOkjE2ObD+fEQ2OXA3wmZn23y3Yja1sYu6JDtLH2CTZrCpZ7bKfk80oiIfIyrylR5LRSIy2JSf25DB5vy4LbsuAuDoewn0nHtuPLfe0cdU7T5taDxnMdbYadTWn+lLT5E1T2el69evx9y5c1FVVYVgMIjBgwdjxYoV2L9/f/g+u3btwtKlS1FdXY2srCw0NjbioYceinicuro6aJpm+m/u3Lkuv6rkolKDTVyFl+3N1w/80q6GhlR96/vmZwVw18IxuOZMeVFHMRAiO+HqC2rmB60DV2LQIlptABV2TsyapmFCTZGrwTXAXs0wQ0c0yYTZWLPDaouo2oq0+DM76dqyx9RP5mUTe/HzYfV67ATYYj1hyyai4mfOiUmB6nWu+Ld0O4Mt1utxq3oy4gVhwK85UptRH2BzYhJultHoRMbGTeeNwGfGD8TyabVYPs16u40hS9mhC/6bzhuBrbeehbNGWmczi7plLa/SnHUNNuN/czPTz04XUdXOtXboP57dkgZ24rgqZrTp6eN0srdStQSCHV42ORBJt8EZauWqvXY7DYwsj8vjLaKqn7lEEM+78gBb323ZZ9PY5ECWvdd3W77tNLYMNrczAmOtwRbrAqpeIhZMRW7P0xJB/x2TdhFVzEI1e5/d7CKaKk6cOh39TuRtBtsDDzyA5uZm1NbWorq6Gu+++y4efvhhPPvss9i7dy8OHDiApqYmtLe3o7i4GPX19di1axdWrlyJY8eOYfXq1QCAiRMnorKyMvy43d3deO211wAAVVVVXry0pBFRg81ikC4WJuiylVn9RFja5MDn/GTQTm0zfRcc2UpNeV4QZXlBfPRJBxoq8nGZA/UbnCism2h2snQMHdEkf0r9Z8zv0ywn14YtorKgnb5emkMTjcjHtH5usWC/1eTJ7PjtNESIl2oBfztOxxi0sGookiiluX0Zt+JYJmMVWLWzOCCSjZ1d3WpZA6rMGoU48f3Izwrg+8snRr2fIWPCw5pQnV0uX80mEasMNtVGNIkifh5kmWGRnWudGR9VC86LxyVbyPiXxWOx+vHXAQBXzrTe5mQsgSA7UjXJVYNNnsV+8lTf91H1VGSngZEVMWggC5aqEsd/eQ027y7GxXmuagab7IiN3WMlj6k7v8kCorF2EXV7CSXWOZQsy09VogJs180dhh+8+A6m1hU7shjnNf1nQhYoVm2WZjamMoPNaFpdSfj2l89yv9tpqvA0g+3qq69Gc3MzmpubsX///nDA7PDhw3jhhRewadMmtLe3IzMzE2+99RZ27dqF22+/HQCwdu1anDhxAgDw1FNP4dVXXw3/u/XWW8PP8ZWvfMX115VMTp2OXoNN0zRcMaOncPBXzx6u/NiyiWgiVhLt1JnSF3yXZaVlZvjw2DVNWL9sPJ68fqZlgwcjyQQzBbYrmb13loU/hROX6oqn7MRkZwuN/mfRLip6A6SXRymErf98yiYvYpamVdaTnS23fp+GMQMLAAArZqgV7AbkK7ji98uJDKlYu6DJmkskwuKJ1RhZmY+8YAZ+YqMgr9V4KH6+o21h+ffLJqGmJBu3zR8pvV+3w1tExWYSWS6PO4ZsVQ/HvY7T/TfAZpWJEM9WZycEhCYHsi2iqnX/7NAPgbK1AvFCU3bhuXD8QGy8dCJ+vmo6Rn86hqs8piM1Fz3unKsn+64bSnlIXnu9rluerJ6hajCgWOho7XqTA/0WUZdTrsR5rrzhTt9tWUBbXISSzen0C0iy912cm6hmOLr9fsb6jXVicVOckzq1RfTWCxrwn1+Zhf+3arojj+e1iMxnyVskBsmt5sdmAXlmsBkV5gTw9JfPwHeWjsMNZzm77TedeJrB1hss6zV79mxs2LABABAMBtH9af5n73bP3tsAcOzYMbz22ms480xjx4v169cDAGbOnImZM2daPn9HRwc6OjrC/7+1tTX2F5OkTumKw8tOpOsWjcXN5zVYdiTrpT/FyS7iE9HNSTzpqG67kBXzBIDhA/KU2iJfMmUQfvmXAwCAibVFlvdL1QCbagabLNtM/xjyjp/qf0v980ebvHxr8Vhcf9ZwDBTqChofU79FVJbBJnSZtRFgs3qfNE3Dz1dNx3+1fIyZw6y7PolkE0w72Z2qxlUXhbM7v37+COXfU+3E65SA34fffXU2Ok9321qVVf1bRstgmz+uCvPHRc+UPh2xvcz5LaJur0iL47/bGTVZgb5MmTyXg7pe07/24lz1JgeJqOVjxVCDTTWDzaHnV63BJp6LomXfqDR4SPctorIsHXGuJ3vtP7xiCv7t+X2Y01COEovPsdljWhG3SzvS5EDcQiwZ5yJrsLnLTgabamDC2ORALYNNumAa4xjkftOIGDPYJK/vwnGVWLt5D9o7T+Nbi8da3i9RGWyapmFsdaEjj5UMzhxRjjcPtwGAdC4tjsdih+vwfzfNYEv+6zkvjK8pwviaIq8PI6klzSbsrq4ubNy4EQAwdOhQnHPOOSgpKcGGDRvQ0dGB+vp6VFdXY/fu3eHfOXjwoOFxtm3bhldffRUA8PWvf136nPfeey/uvvtuB19F8jnV1XNWUhmgowXXAPWTnOHiKwFbRGWraaOrCvDGP3sCpiMq7HXXsXL7gtEYXJqLMQMLUFFgHcCRTcCShWmATXHLnGzFUT+5kAWuxMww6YRMN9GJtgVD0zRUK3T20x+aLNhhbHJgfl+z90T2mopyMnGWpGOuGVkWhnHF05nv21PXz8Q//tkq7e6bDHw+DVm+6BdTn5tSg8f/0oLqomzLLe5igNCpYuKndQVDnBgighk+aFrfmOx2gM3YRdTdwOojV03H5T/ZgUHFOVgwzpnOcaniF1c34d7f/QMXjq2y1eTA1Qw2Qw026+eeP7YSW/cdAQAsnTzIkefXv3rZtEX83shKX6gydK1LQJMDL7cuyWIPdhZ7hpTlYsPno29HlwV29IoSksEmZLFLxrklEwfhd7sOA+hpYOWmAjHAJguGKXZfNDQ5kMzpuhRrjMb6uY01oz5WsX+7rH+zICuA39wwC+99dBxzG8ot72dscpD81xReuPGcerT8dzsCfh+uPnOo5f3EMd7q82l2fmR8jWKVFAG248ePY/ny5fjTn/6EyspKbN68GcFgEE1NTdi8eTPWrVuH3bt34+jRo7jiiivws5/9DAAQCBgnlt/97ncBAPX19Vi0aJH0edesWYObbrop/P9bW1tRU1Pj4CvzXl8GmzOjRETXFskZSAyuOBJgEzPYJCfq731uPK55eCdGVORh/lhn6vAVZgfw5bOib6FNhQw2s8mXal0C2YRZf+KSTbLECxDVJgenEzDJkk2kxECgnbpqTmSRza4vw7a3PgIAjKy07upkuPhyKFOlpiQHNSU5Ue9375JxWPPkLtSUZDvW1j0R7lw4GjOHl2JKXYnlCrX4d3Pq+zx/XFX44uuKGXVxP56macgJ+MPb4Z3oIGqHsYuouwG+qXUl2HnHecgK+PvdNo5JtcX4j2uts/MBe4soiWCowSYJXC2bUoOW/2lHZ1e3Y4EJ9Qw29RpsqsStRk50bxXfT6dq1cXCTrkCJ1676vZAsQanE/VwDdkvknHunFEDsHbhaBzvPO3IGG+HYYuo5Ly1oLEKP3npXQDArOHWnaINTQ4kc7qIzqTSOWJqZLAlisqOGfE75GbmcSrJDWbgB1+YHPV+hvfT4rthFpBnBhvFyvMA2+HDh3HRRRdh586dGDFiBH7/+99j6NC+SPS8efMwb9688P9/9NFHwwG2hoaGiMfau3cvNm/eDAC4+eab4YvyxQgGgwgGVWtupaZOhwNsevLUcvXtIaoMK6OSAxhZWYAtt8z1ZBKaCqtNZicSq5O4oSuYrAZbxBZRSQ024QJkQL7191A/IYu18L4osqi29f3ELaJWgSuzz6ITF/3/+tlG3Pqrv6OmJAfnja6wvJ+hyYHLAYfl02oxqbYYg4qzlbMNvJAbzMCiCdXS+4ifW6cywxaMq0LzBe043tGFVbOdCSJkZ2boAmwuZ7CJ2Q0uZ7ABxjp01MdsnHY3g039e+T3abjlAnkNQ7v0L19eg00IBCYgKOPEdzOZFu5k2UR25gtOM2SwOREstdPkQNNw5RnuZq71srNFdPW59TjS1oHcoN9Wp2jZwl1kl2y1RVg73M5gaxzUt5Vy+TR3Ey8SsSOhPxPHX6taymbXRf1t8Y6c4+nsdM+ePViwYAGam5sxe/Zs/PrXv0ZJSUnEfbZs2YI5c+YAAFpaWrB27VoAwJgxYzB2bOQe9vXr1yMUCqG8vBwrVqxw5TUku94MtkyXV0DEE6wTk0Nxwh5t4PNqhTcVzoVmfw+rv5Fxy4fkcXV/I9m7L57IBkuypHyJCLDpi/xK7mdscqBWp87qv9lVVZiNR66KXpDWmMHm/oewQZJhl0rERidObRHVNE0pA9YO/bG5XoMtibqIkpHZxbCbF2qxdgt0yp0Lx2DFT/8MALjxXOtCzOL3xomMK3GbqVUjCjuSKcAmOwsbMt5dnIYZM9icCLAlT+07GTsZbKqdosUxXnWLqLSmbopkYxXlZOKXX5qBvx/4GJdMdTfAlqgabP2VuOBhNT82SwRx+7xF6cPTANuSJUvQ3NwMAGhra8P8+fPDP1u1ahVWrVqFBQsWICcnBxUVFXjrrbfQ0dGBnJwc/OhHP4oIoHz44Yd45JFHAAA33HADsrLkRc77i1OfVtZ2qsOb6iKSeEJw4uLL0OQgaVcWkvW4+pidSKz+RuKWCNUuojLi36621DrAlvgMNuvXI3bEtPrMmU1m3Sz2n0z1eVKd4SItidvZ6+O97m8RTcxWWnKG1xls4rjqdgD4zPoy/GTFFGRm+DCp1nrbeiKOS3xMMRM6Fsl0oSc7vxgy2Fw8F4ldRB1pciBmsCVpsENs5uXInFvMYJNtEVXMYLPzaVg+rQaP/rkFANA0VL0hlFOmDSnBtCEl0e/osGRqaJIODHUUFXfrAO6ftyh9eBpg03fwfP311yN+duGFFwIAFi5ciC1btmDv3r3Iz8/HggULcNddd6GxsTHi/hs3bsTJkyeRnZ2N66+/PuHHnipOdfVmsDlVg62PrOC8ePHlRA2BVAkieFgaRZnZicSyBpudLaK6x7ATCpPV+dI/n3MZbLpagpL7ZQfUhkizk7CbqeXixVeyfjdSgaZpyMzwofPTsTOZLmxF+u+G26vcYjZnsl549lde12ATuR0A1jQN54yy3lbfKysB32/xtYoLNbHw+iL7X5c24tYn/o5BxdmYLgk62Cnl4bSC7ARksBk6ECbnOGfYIurAd13MNlPOYJPMP7IDfuRnZaDtZBfmj6uUPv835o1CYXYmhpblJnX3y1nDy/DS2z21cuski8WqDN1bOZ+Li/gdVr3WAdw/b1H68DTA9t5770W9z6OPPqr0WOvWrcO6deviPKL0k8gabLLIhLjS5cR2TUOTgySNZCXnUUXy+zRk+LSISZH6FlHFAJuNWJhsi6g+WOtUk4OILaKSP5jYRdSK2UnYzQCboRgxgx1xKcwO4EhbzwKQmxeIdkUWcnf3uZnBlty87iIqcqIOayIkYqwUF1zE4EcsvA70XzK1BhNqi1BdJK+zaacpkir9Aly9pEC8cVuyExlsqbGQIHYRdSJzUFxEkWWw6Rc/ZW+Rz6fhNzfMwqv7j0ZtQFaYHcA35jlbmzERvnfJePxw635MG1JiKDERC2OTg+T8zKUKQw02yy2izGAj57BCcJoLdxF1aHKWn5URvvDMkQw8ieh6Y6cWmJe87O5lRzDDh65PC6QD6icdeYBNd8FvI4etujjb8mf+RGSw6bvhSkKiqpkHZhN5NwNsXjc5SDf6AFtbxymPj8aa/s/sdhFocYznRUByMbsW9vJv1J8yAcRGCU4043C7S6+ZERXR62wmYovo+aMrMH9cJd764BP84AuTlH/PmRps6k0OvCTWYHOCuIgibXIQ0m8Rlb9HQ8pyMaQsN76DSyIDCrJwx0WjHXs88bvu1PVbfyWOx1Zzc7NkAs5rKFb85KSx092hcPcsp5ocrF82HkDPxdVN54+wvF8iVoXFgS5Zu7uIBY6TlVhbyroGm5g5aP2YdrIKl00eBACYXV8mXWlOdJMDWcqh+hZR43vnZpDL2OQgOb8bqaJQt9Xo4/ZkDrB5mMEmbhHlRUBSMd0i6uHfyInunIny0JVTMX9cJZ64boYjjyduSXIiwJYqxeETsUVU0zT8+2WT8dxNczB8gHozHSc+76lSD8uJLEmRscmB9Wv/zpK+sj2XTbfuTErRiR253W5Sl25Uuwln+LSIHS2pci1HyYkZbGmsN3sNcG7lemJtMbbcMhfZAT8GFFg3kkhEcMHQ5CBJM8VmDCvF0PJc7D9yXKlTk1fEwJl4Ug/fT5hQSrdd6B4i2gX/t5eMw2cnD8K4QfLaGglpcqDYRVR9i6jxfqq/6wRjfcLkvAhIFUW6ANuxE6kRYHM7g82Q3ZCkCx79lVlgIxGZ5aqStykRcNbIAThr5ADHHk88HzjRRTRV2Ml4T4Q180bi3t+/iZnDSp0JbArHn6wBtkQEA4xNDqz/lksmVSMzw4fy/CDqFTIdyZpxR0JyfuZSheo2T03TEMzw4eSp7k9/j+87xa7/nPX7oY4u5wNsADC4NHpqdyLSalOlyYHfp+EPN56JI590oLrIeuuj1wzFexULf8pOOvq/SLTL/YDfh+kKnaES0uRAd1tag015i6hJ7QYPA2zJmt2ZKgpTJMCm2QhoO00c41Nla3x/YRbQcrt+VHbAjxOnTke/Y5pJRICtLK+vQ+a5Cs0bvCJ+xtweFr40Zxjmj6vCwATNvZK1Blsixl9xHiHbmZLh92HxxGrHj6E/Eudz3CIaHzuNbDL9fQG2ZK0bSqmB39o0logMNlWJuL4X06STeUU8M8OX1ME1IDIopGmSugR+McCmdtJx6oJfX6tjsAMdmgCxi6j15ygnM/Yuom6mlyfrpD9VzWkoD99eNGGgh0cip7+ocqoBiKpkXeCgHoYMZb/mehD0yetn4tLptfiPa53ZepkqxAs6JwJswQw/Nt8wC7fNH4l//Wxj9F/wiJddRHvVlOQkbJEpWTPYAOCbF41GWV4Q3754nCOPJ143eJkB25+I7zu3iMZHLIejel9msFE8mMGWxvQBtkyL7X+Jop/Ij60ucOQxk2Hilk7072fA77O8+DJmsFmfrBJxAfe/LhyJbW99hNPdIdy1cIzjjy87ZNUgmVhfKMPl4qhed5hLN58ZPxB/P3AMh4+dxE3nNXh9OJZ8ERlsbm8R5WcumYlBHS+C8KOqChy72E8l4jnSia2KADBuUGHUkgpeS/ds6mRezLpq1hCsPKPOsXmYsQxA8r72dGJcHOH7Hg+7GWzh32MNNooDA2xp7FRX3wWXFwP0H1bPxgv/+BBLJjmTNp4qTQ5ShT79WRastLNFNJIzF/zFuZnYeutZCIVCjl3UR9Rgk3yMVD9j4nZbt4ujcgLmLE3T8E0Hu4IlSmQNNnefm9kMyU3c3s5tRu7JzhQDbP3nQk3sgJjMOw1ikcwZbICzi5xiQI1jvjvE7wwXs+Jj5/3TB5UZYKN48Fubxjo93CIKACMrC/Dls4ajqtCZrZIMsDlLdSXWEGCT1CVI1F/E79McnWSEoLZFFACuOXMoAn4Nd0oCLmIGmZv114Dkn/RTYnxpztDw7VWzhrj63MxmSG7BDH/EBXEyZ96kG/Ec2Z9q+aT7ToP+NO8UA2oM9HiDgU336BffuUWU4sEMtjTmZQ22RBAnbsU5mRb3JBX6rCtZB8Kg8NmRtbz2sui6HaoZbABw2/xRuPn8EdKLpN7uQ72NRdzOYGOArX9aMK4KrRd3AQAuHFvp6nNz0p/8coMZ+Li9p0lHOswBUkV/vjATF5vSIYPtmjOH4odb92OurjZnf2BocpAGf8tUxMWR+K0+tx4/2rof35g/Sno//eK7LJmAKBoG2NJYRA22NLgYEk8yFYVZHh1JetBPhGWxMDF4Iw006W4ncXzN9rGpZCB4GmDjBKxf0jQNl06v9ey5KbnlZvYF2Fin0T12imqnm3TMYFszbyQunliN4QPyvD4UVxmbHHAM8QLf9/itPncEvnJ2fdQM1O6+y+Z+la1KzuO3No2lewZbRX7QoyNJD5n6oJEk4hRrk7kQ3xEAABRUSURBVAO3i67bEdFF1KELgIjuQ9wiSv3A2SMHAACunTPM4yMhM/raX+kwB0gV/TmDzdjkwKMDcZCmaRhVVdDvvkNixprY9IDcwffdGXYDZr40WBwg7zCDLY116pscpMEFuDi5qWQGW1z0GQ2yLaKxNjlI3vBa5LE5dQrVP062yxdYDLCRF354+WS8+9HxfpfZkSpyMvumeFyNd48+o3hUlTNd1FOFmCnJTNfUJdZcC7Dupie4Q8E93RGL7x4eCKU8BtjSWLplsIk1fyoKGGCLh3KAza+ewZYqCrIC4dt5Wc4Mg/oujtwiSv1Bht+H+op8rw+DLOjHodNut5ntxzRNw5PXz8Tzb3yA5dO82cLtFfFcxK3JqUucc/uZSeWJdLh+SxX6ayFmsFE8+K1NY2lXg02YqJXmsslBPPQnbTs12LIkE+ZU+ZR9Z2kjMnwaMjN8uD1K0VN1fe9iNreIEpHH9OOCfj5AiTepthi3XjgSNSU5Xh+Kq8RzUW0/e/3phE0OkkM67EBKFaFEbG+hfokZbGks3TLYxJVRtgyPj2rHTzs12KD4mF5rqMzHK984Gxl+H0ocCtTqE0Tc/r4xwEZEIv041MkAG7lAPBcNKcv16EgoXmxykBwY13SPfh7PDDaKBwNsaazztK4GWxqcGNPhNSQTTXF5JuiPDKhJmxwgNZocAMAAh7cYR9RucPSRo+N3g4hEmRl9I1FnFwNslHjiQmhtKTPYUpWYscY6jt5I8ql0WglFbBH18EAo5fGqLI2d0k2o0yHFOCfTj4m1RQCA1efWe3swaUB1ccZOk4P54yrDt1fOGhLTcaUq/STI7cLOfq60EZFAH3jnFlFygzhfCGakfs3W/ooLd945c0R5+HZpHsvhuIU7RMkpzGBLY+lWg03TNDx2TRP2HzmOkZUsrB0v1dUZw4RZksF29sgB+OZFo/FxeyeunTMsnsNLOSEPuw8xlZ2IRJEBNqZBUOId7zjt9SGQQzLS4LohVX3vkvF47M/vY+bwMgapXcQmB+QUBtjSWLrVYAN6VkP7W9v7RFE9eYjbArIkJ3tN03BVP8tc6xWRweby2ldWZnp8v4nIOazBRm4bV12IYIYPHV3duObMoV4fDsWBW0K9U5YXxA1nc6eO29jkgJzCAFsa+8yEaswYVoZTp7tRVehsvSlKAzGePGRbRPuziPOyyyfmAflZWDRhIJ7ZcxjfXTbe3ScnoqSkz1znFlFyQ2FOAD9fNR3/+GcrPju5xuvDoTgEfJzrUf/SNLQEz+z5AAAwmskcFAcG2NJYYXYAhdkBrw+DklSsWVbSLqL9mNfFUf/t8xPR0XWa2wmICEBkBhsLZZNbptSVYEpdideHQXHiFlHqb9YtGovDx06iMCcTV8yo8/pwKIUxwEbUT8WaZcUAm7nIzHJvJqYMrhFRr3RobkRE3kiX0jJEqioKsvD0DbO8PgxKAxw9ifqpWENA3CJqblBxdvg2uz4Rkdcunlgdvn3b/JEeHgkRpZoM1mAjIooJr5SJ+qlqXUCofkCe8u/Jmhz0Z/d/bgKyAj6U5QXxpX7WQZWIks+Iinz89Mop+JdFY7BiZp3Xh0NEKYRNDoiIYsMtokT91CVTavDEzgM49PFJ/J/LJin/HreImhszsBB/vv1cBDN83KpJREnh7JEVXh8CEaUgze1uTUREacLTDLb169dj7ty5qKqqQjAYxODBg7FixQrs378/fJ9du3Zh6dKlqK6uRlZWFhobG/HQQw8ZHqurqwv33Xcfxo0bh6ysLBQWFmLy5Mn47W9/6+ZLIkoZAb8PT15/Bl75xtkYUZGv/HtB1vWxVJAVYHCNiIiIUt55o3sC9NfPZVY+EZEqLRTyrrdUXV0dmpubUVtbC7/fj3fffRcAUFlZib179+LAgQOYOnUq2tvbUVxcjOrqauzevRsAcP/992P16tUAerr3LV68GL/5zW8AAMOGDUNeXh7ef/993HTTTbjjjjuUjqe1tRWFhYU4duwYCgrYnpeo1893NGPtb/Zg2ZQafPvicV4fDhERERElUHd3CM3/3Y660hxmtBFRv6caK/I0wHbPPffg8ssvR21tLQDga1/7GjZs2AAAePLJJ7F9+3bcd999yMzMxKFDh1BaWoo77rgD99xzDwoLC/HPf/4T2dnZeOyxx7B8+XLk5ubi2WefxcyZMwH0BN6OHz+OvDy1+lIMsBFZO3nqNLeHEhERERERUb+iGivydK/X7bffHg6uAcDs2bPDt4PBILq7uwH01AHoXTnp/d9jx47htddeAwA8/vjjAIChQ4fi9ttvR35+PoYNG4a1a9ciM9O6m19HRwdaW1sj/hGROQbXiIiIiIiIiMwlTZODrq4ubNy4EUBPoOycc85BSUkJNmzYgI6ODtTX10dsEQWAgwcPAgD27t0LoKdeW0FBAaqrq7F3716sW7cOR48eDT+u6N5778Xdd9+d4FdGRERERERERETpLCmqlR8/fhxLlizBn/70J1RWVmLz5s0IBoNoamrC5s2b0dTUhM7OThw9ehRXXHFF+PcCgQCAnuAcAPj9fvztb3/Dm2++iZUrVwIAfvjDH6Kzs9P0edesWYNjx46F/7W0tCT4lRIRERERERERUbrxPMB2+PBhzJkzB5s3b8aIESPw8ssvY/To0eGfz5s3D9u3b0dbWxsOHjyICy64IPyzhoYGAEB1dTUAoLy8HHV1dQCAadOmAQBOnTqFQ4cOmT53MBhEQUFBxD8iIiIiIiIiIiI7PA2w7dmzB01NTdi5cydmz56N7du3Y+jQoRH32bJlS/h2S0sL1q5dCwAYM2YMxo4dCwA499xzAQBHjhxBc3MzAOAvf/kLACA3NxdVVVWJfilERERERERERNRPedpFtKGhAfv27QMATJgwAcFgMPyzVatWYdWqVcjLy0NOTg4qKirw1ltvoaOjAzk5OXj++ecxY8YMAMDHH3+MCRMmoLm5GYWFhaiqqsKbb74JAFi3bh2++c1vKh0Pu4gSEREREREREVGvlOgi2tHREb79+uuvY8eOHeF/Bw4cAAAsXLgQGRkZ2Lt3L3Jzc7FkyRJs3749HFwDgKKiImzbtg3Lly+H3+9HS0sLJk2ahEceeUQ5uEZERERERERERBQLTzPYkg0z2IiIiIiIiIiIqFdKZLARERERERERERGlOgbYiIiIiIiIiIiI4sAAGxERERERERERURwyvD6AZNJbjq61tdXjIyEiIiIiIiIiIq/1xoiitTBggE2nra0NAFBTU+PxkRARERERERERUbJoa2tDYWGh5c/ZRVSnu7sbhw4dQn5+PjRN8/pwiCgJtLa2oqamBi0tLewuTERpieMcEaU7jnNEFI9QKIS2tjYMHDgQPp91pTVmsOn4fD4MGjTI68MgoiRUUFDACRkRpTWOc0SU7jjOEVGsZJlrvdjkgIiIiIiIiIiIKA4MsBEREREREREREcWBATYiIolgMIi77roLwWDQ60MhIkoIjnNElO44zhGRG9jkgIiIiIiIiIiIKA7MYCMiIiIiIiIiIooDA2xERERERERERERxYICNiIiIiIiIiIgoDgywERERERERERERxYEBNiJKW1u3bsX8+fNRXl4OTdOgaRoefPDBiPvs2rULS5cuRXV1NbKystDY2IiHHnoo4j6bN2/G4sWLUVdXh+zsbFRUVOD888/Hli1bDM/5/e9/H6NHj0YwGMSAAQPwxS9+EYcPH07o6ySi/s2pse7FF18M/7747/nnn4+4L8c6InKTU+McADz44IOYPHkyiouLkZ2djSFDhuC6667D0aNHI+7HcY6I7Mrw+gCIiBLlr3/9K5577jkMHToUH330keHnb7zxBpqamtDe3o7i4mLU19dj165dWLlyJY4dO4bVq1cDAJ544gk8/fTTKC0txbBhw/DGG2/gueeewx//+Eds27YNM2bMAADcdtttuPfeewEA9fX1OHDgADZt2oRXXnkFf/3rX5Gbm+vaayei/sOpsa5XZmYmJk6cGPHfCgsLw7c51hGR25wa5zZt2oTrrrsOAFBTU4Pq6mrs2bMHDz74IN5//3389re/BcBxjohiwww2Ikpbl19+OVpbW/HMM8+Y/nzTpk1ob29HZmYm3nrrLezatQu33347AGDt2rU4ceIEAGD27NnYsWMHPvroI+zevRtPPfUUAOD06dN47LHHAACHDx/GfffdBwC4+eabsW/fPrz66qvQNA379u0zrLISETnFqbGuV1VVFV599dWIf1OnTgXAsY6IvOHUOPfSSy8BAPLz8/H2229j9+7dOP/88wEAzc3NADjOEVHsGGAjorRVWlqK7Oxsy593d3cDQHirQe9tADh27Bhee+01AMBVV12FadOmhX9v9uzZ4dvBYBAA8MILL6CrqwsAsHTpUgBAY2Mjhg8fDgCWE0Iiong5Ndb1OnToEIqKilBUVITp06fjV7/6VfhnHOuIyAtOjXO9c7i2tjYMHz4cY8eOxbPPPovBgwfjgQceAMBxjohixwAbEfVbn/3sZ+H3+9HR0YH6+no0NjbinnvuCf/84MGDpr93//33A+gJrl1xxRUAgJaWlvDPBwwYEL5dUVEBAHj//fcdP34iIhV2x7qqqioMHjwYJ0+exJ///GcsW7YMP/jBDwBwrCOi5KQ6zq1YsQIPPPAAMjIy0NLSgj179gAARo4ciWHDhgHgOEdEsWOAjYj6raamJmzevBlNTU3o7OzE0aNHwwEzAAgEAobfWbduHb71rW8hEAjg4YcfxtixYwEAoVDI9Dl6/3vvKioRkdtUx7oxY8Zg//79aG5uxt/+9jfs27cvfEG5fv16ABzriCg5qY5zL7zwAtasWYOCggLs3r0bR44cwaxZs/DMM89g0aJFADjOEVHsGGAjon5t3rx52L59O9ra2nDw4EFccMEF4Z81NDSEb586dQpf/OIXcddddyEvLw9PP/00LrnkkvDPa2trw7c/+OCD8O0PP/wQQE8hXSIir6iMdeXl5RgyZEj4v9fW1mLWrFkA+jI2ONYRUbJSGefuvPNOfPLJJ5g1axbGjBmDsrIyLFmyBADw+uuv46OPPuI4R0QxY4CNiPq1LVu2hG+3tLRg7dq1AHoyOXqz044dO4Z58+Zh06ZNqK6uxrZt2zBv3ryIxznnnHOQkdHTmLm3XtHrr7+Ot99+GwBw4YUXJvqlEBFZUhnrHn74YezYsSN8vwMHDoQLgtfV1QHgWEdEyUt1TgcAe/bswcmTJwEAO3fuBAD4fD5kZWVxnCOi2IWIiNLUE088ERo2bFho8ODBIQAhAKHy8vLQsGHDQpdeemkoFAqFcnNzQ+Xl5aGxY8eGgsFgCEAoJycn9Morr4Qf55prrgn//tChQ0PTp08P/7vuuuvC91uzZk34fvX19aHs7Ozw7U8++cT1109E/YNTY92KFStCAEJlZWWhxsbGUFZWVvjxNm3aFL4fxzoicptT49ydd94Z/v0BAwaEhg8fHv7/y5YtC9+P4xwRxYIZbESUtlpbW/HOO++E264DwJEjR/DOO++Ei90uXLgQGRkZ2Lt3L3Jzc7FkyRJs374dM2bMCP9OR0dH+Pb+/fuxY8eO8L833ngj/LN77rkHGzZswMiRI/Hee+8hNzcXK1aswNatW5Gbm+vCKyai/sipse7yyy/HsmXLkJeXh3379qGwsBDnnnsunnvuOaxYsSJ8P451ROQ2p8a5u+66Cxs3bsSkSZPQ2dmJQ4cOYdSoUVi3bh02bdoUvh/HOSKKhRYKWVRxJCIiIiIiIiIioqiYwUZERERERERERBQHBtiIiIiIiIiIiIjiwAAbERERERERERFRHBhgIyIiIiIiIiIiigMDbERERERERERERHFggI2IiIiIiIiIiCgODLARERERERERERHFgQE2IiIiIiIiIiKiODDARkRERNQPrV27FhMmTPD6MIiIiIjSghYKhUJeHwQREREROUfTNOnPV6xYgY0bN6KjowOlpaUuHRURERFR+mKAjYiIiCjNHD58OHz78ccfx5133om9e/eG/1t2djYKCwu9ODQiIiKitMQtokRERERpprKyMvyvsLAQmqYZ/pu4RfTKK6/E4sWL8e1vfxsVFRUoKirC3Xffja6uLtxyyy0oKSnBoEGD8NOf/jTiuQ4ePIjPfe5zKC4uRmlpKRYtWoT33nvP3RdMRERE5DEG2IiIiIgIAPDHP/4Rhw4dwtatW/G9730Pa9euxUUXXYTi4mLs2LED1157La699lq0tLQAANrb23HWWWchLy8PW7duxUsvvYS8vDxceOGF6Ozs9PjVEBEREbmHATYiIiIiAgCUlJTg+9//PhoaGrBy5Uo0NDSgvb0dt912G+rr67FmzRpkZmbi5ZdfBgA89thj8Pl8+PGPf4xx48Zh1KhReOihh/D+++/jxRdf9PbFEBEREbkow+sDICIiIqLkMGbMGPh8feuvFRUVGDt2bPj/+/1+lJaW4sMPPwQA7Ny5E2+//Tby8/MjHufkyZN455133DloIiIioiTAABsRERERAQACgUDE/9c0zfS/dXd3AwC6u7sxefJk/PznPzc8Vnl5eeIOlIiIiCjJMMBGRERERDGZNGkSHn/8cQwYMAAFBQVeHw4RERGRZ1iDjYiIiIhictlll6GsrAyLFi3Ctm3b8O6772LLli248cYbceDAAa8Pj4iIiMg1DLARERERUUxycnKwdetW1NbWYsmSJRg1ahRWrlyJEydOMKONiIiI+hUtFAqFvD4IIiIiIiIiIiKiVMUMNiIiIiIiIiIiojgwwEZERERERERERBQHBtiIiIiIiIiIiIjiwAAbERERERERERFRHBhgIyIiIiIiIiIiigMDbERERERERERERHFggI2IiIiIiIiIiCgODLARERERERERERHFgQE2IiIiIiIiIiKiODDARkREREREREREFAcG2IiIiIiIiIiIiOLw/wFzuAuWeU9/GgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "for key, regm in regn_mean.items():\n", - " source_id = key.split('.')[2]\n", - " regm.plot(label=source_id)\n", - " plt.title(f\"Mean Surface Air Temperature for {source_id}\")\n", - " plt.xlabel('Time')\n", - " plt.ylabel('Temperature (K)')\n", - " plt.legend()\n", - " plt.show()" - ] - }, - { - "cell_type": "markdown", - "id": "a077b99d-07ac-477d-a5b5-ba202fb2e145", - "metadata": {}, - "source": [ - "### Calculating annual mean for each dataset and visualizing time series" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "id": "8d2e9e2f-aaf6-485c-83c8-953b0bfc0887", - "metadata": {}, - "outputs": [], - "source": [ - "annual_mean = {}\n", - "for key, regm in regn_mean.items():\n", - " annual_mean[key] = regm.resample(time='Y').mean()\n" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "id": "11791668-8b95-4cfd-92f3-0c9242e746aa", - "metadata": { - "tags": [] - }, - "outputs": [ - { - "data": { - "text/plain": [ - "{'CMIP.CMCC.CMCC-ESM2.historical.Amon.gn': Size: 404B\n", - " dask.array\n", - " Coordinates:\n", - " height float64 8B ...\n", - " member_id Size: 404B\n", - " dask.array\n", - " Coordinates:\n", - " height float64 8B ...\n", - " member_id Size: 404B\n", - " dask.array\n", - " Coordinates:\n", - " member_id Size: 404B\n", - " dask.array\n", - " Coordinates:\n", - " member_id " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABOcAAAGHCAYAAAD7rjZMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3zTdf4H8FdGm3Ske+8BZZYCgiDIUmQpuFA8ThH3nXqIA08QRFHhHOeB6/QU9Hec4kBwAAKCiCKyW0ahpXTvPdKZ9f39kXy//X7btE3SzOb9fDx4kKbffPNJmqb5vr/vIWIYhgEhhBBCCCGEEEIIIcTuxI5eACGEEEIIIYQQQggh7oqCc4QQQgghhBBCCCGEOAgF5wghhBBCCCGEEEIIcRAKzhFCCCGEEEIIIYQQ4iAUnCOEEEIIIYQQQgghxEEoOEcIIYQQQgghhBBCiINQcI4QQgghhBBCCCGEEAeh4BwhhBBCCCGEEEIIIQ5CwTlCCCGEEEIIIYQQQhyEgnOEEELc3qeffgqRSASRSIRffvml2/cZhsGgQYMgEokwffp0u6/PUmPHjoVIJMKbb77p6KX0y9KlS5GQkNDndgzD4IsvvsCUKVMQFhYGuVyOmJgYzJ49Gx9//LFN1rZ69WrExcVBKpUiICDAJvdhDWq1GhERERCJRNi+fbvRbV588UWIRCKL9v/LL79wv0N9/XNn77//Pj799FNHL6NHjng9//bbb7jzzjsRHR0NT09P+Pv7Y9KkSfj3v/+NlpYWm91vQUFBr6/TF198kdvWnPcW9vZLly41er/r1q3jtikoKOCuZ3//uv6Ty+U2ePSEEEKcjdTRCyCEEEKchUKhwObNm7sF4A4fPozc3FwoFArHLMwCGRkZSE9PBwBs3rwZzzzzjINXZHsrV67Ea6+9hoceeggrVqyAQqFAYWEhfv75Z3z33Xd48MEHrXp/3333HV599VU8//zzmDt3LmQymVX3b027du1CZWUlAP3rYeHChd22efDBBzFnzhyL9j927Fj88ccfgutuvfVWJCcnu3xw2Jref/99hISE9Bi4cSRHvJ7Xrl2LdevWYdKkSXj55ZeRnJyM1tZWHD16FC+++CIuX76Mf/3rXzZdw9/+9jcsXry42/UxMTHcZXPfWxQKBb7++mu88847gr8bDMPg008/hZ+fH5qamoyuZ+/evfD39+e+Fospl4IQQtwBBecIIYQQg0WLFuGzzz7De++9Bz8/P+76zZs345prrunxYMoZsdkcN954I3bv3o2jR49i0qRJDl6V7bS1tWHjxo1YsmQJ/vOf/wi+t3TpUuh0OqvdV2trK7y9vXHhwgUAwLJlyxAWFma1/dvC5s2b4enpiWnTpmH//v0oKSkRBB8AfTCi63XGtLW1wcvLS3Cdn58fJk6cKLhOJpMhICCg2/UDBcMwaG9v7/ZcOAL7muwPW7yee1vX119/jXXr1uGBBx7ARx99JMiqnDt3Lp599tluAV9biIuL6/U1asl7y80334xvvvkGX3zxBR566CHu+p9//hn5+fl46KGH8NFHHxm9v6uuugohISEWPhpCCCGuik7FEEIIIQZ/+tOfAADbtm3jrmtsbMQ333yD+++/3+htVCoVXnnlFQwdOhQymQyhoaG47777UF1dLdjuyy+/xKxZsxAZGQkvLy8MGzYMzz33XLeyraVLl8LX1xdXrlzBvHnz4Ovri9jYWDz99NPo6Ogw6XG0t7fj888/x1VXXcVlnWzZsqXbdmwZVWZmJv70pz/B398f4eHhuP/++9HY2CjYViQS4fHHH8fWrVsxbNgweHt7Iy0tDbt27eq2fmMlqMZKJt977z1MnToVYWFh8PHxQWpqKl5//XWo1WqTHidfS0sLOjo6EBkZafT7/OwTtgSzawkzW+bGLztkfx7nz5/HrFmzoFAocP311yMhIQGrV68GAISHhwvK4Ez9WQPA8ePHMX/+fAQHB0MulyM5ORnLly8XbJOTk4PFixcjLCwMMpkMw4YNw3vvvWfyc1NWVoa9e/di/vz5WLFiBXQ6ndHSSmM/o4SEBNx0003YsWMHxowZA7lcjpdeesnk++6qoqICjzzyCGJiYuDp6YnExES89NJL0Gg03Dbsz+GNN97Aa6+9hoSEBHh5eWH69Om4fPky1Go1nnvuOURFRcHf3x+33norqqqqjK57586dGDVqFORyOZKSkvD22293W1NTUxOeeeYZJCYmwtPTE9HR0Vi+fHm3nxf7O/DBBx9g2LBhkMlk+L//+z8AwEsvvYQJEyYgKCgIfn5+GDt2LDZv3gyGYQRryszMxOHDh7mSRfZ3hS2t55c5AsZfq9OnT8fIkSPx66+/YtKkSfD29uben0x9LF319nrW6XR4/fXXufe4sLAwLFmyBCUlJYJ99LYuY9atW4fAwEC8/fbbRsudFQoFZs2axX1t6vsFu46TJ09iypQp8Pb2RlJSEv7xj39YFKQ3572Fxb4uu77vbtmyBZMnT0ZKSorZ6yCEEDKwUeYcIYQQYuDn54eFCxdiy5YteOSRRwDoA3VisRiLFi3Cxo0bBdvrdDrcfPPN+O233/Dss89i0qRJKCwsxNq1azF9+nScOnWKy6rJycnBvHnzsHz5cvj4+CArKwuvvfYaTpw4gZ9//lmwX7VajQULFuCBBx7A008/jV9//RUvv/wy/P398cILL/T5OHbs2IH6+nrcf//9GDx4MK699lp8+eWX2LhxI3x9fbttf/vtt2PRokV44IEHcP78eaxcuRJA94De7t27cfLkSaxbtw6+vr54/fXXceuttyI7OxtJSUkmP8+s3NxcLF68mAsknD17Fq+++iqysrKMBhN7ExISgkGDBuH9999HWFgY5s2bhyFDhlilx5lKpcKCBQvwyCOP4LnnnoNGo0FoaCjee+89bN68mStDY7POTP1Z79u3D/Pnz8ewYcPw1ltvIS4uDgUFBdi/fz+3zcWLFzFp0iTExcXhn//8JyIiIrBv3z4sW7YMNTU1WLt2bZ/r//TTT6HVanH//fdj5syZiI+Px5YtW/D888+b9PycOXMGly5dwurVq5GYmAgfHx8LnkV9YO7qq6+GWCzGCy+8gOTkZPzxxx945ZVXUFBQgE8++USw/XvvvYdRo0bhvffeQ0NDA55++mnMnz8fEyZMgIeHB7Zs2YLCwkI888wzePDBB/H9998Lbp+RkYHly5fjxRdfREREBD777DM88cQTUKlUXJl3a2srpk2bhpKSEqxatQqjRo1CZmYmXnjhBZw/fx4HDhwQPEfffvstfvvtN7zwwguIiIjgMswKCgrwyCOPIC4uDgBw7Ngx/O1vf0NpaSn3O7tz504sXLgQ/v7+eP/99wHA4tLR8vJy3H333Xj22Wexfv16iMVisx8L386dO3t8Pf/1r3/Ff/7zHzz++OO46aabUFBQgDVr1uCXX37BmTNnBFlextbV0/ovXLiARYsWmZzxZ877RUVFBf785z/j6aefxtq1a7Fz506sXLkSUVFRWLJkiWBbnU4nCA6zpFL9YZKl7y0PPPAArr/+ely6dAnDhg1DQ0MDduzYgffffx+1tbU93i41NRVVVVUICQnB7Nmz8corr3CvK0IIIQMYQwghhLi5Tz75hAHAnDx5kjl06BADgLlw4QLDMAwzfvx4ZunSpQzDMMyIESOYadOmcbfbtm0bA4D55ptvBPs7efIkA4B5//33jd6fTqdj1Go1c/jwYQYAc/bsWe579957LwOA+eqrrwS3mTdvHjNkyBCTHs91113HyOVypr6+XvD4Nm/eLNhu7dq1DADm9ddfF1z/6KOPMnK5nNHpdNx1AJjw8HCmqamJu66iooIRi8XMhg0bBOuPj4/vtib2vnqi1WoZtVrN/Pe//2UkEglTV1fX5z67OnHiBBMXF8cAYAAwCoWCuemmm5j//ve/gsfC/owPHTokuH1+fj4DgPnkk08E9w2A2bJlS4+Pqbq6usc19fazTk5OZpKTk5m2trYebz979mwmJiaGaWxsFFz/+OOPM3K5XPA89XT/gwYNYqKjoxmNRiNY98GDB40+Hr74+HhGIpEw2dnZvd6PMfHx8cyNN97Iff3II48wvr6+TGFhoWC7N998kwHAZGZmMgzT+XNIS0tjtFott93GjRsZAMyCBQsEt1++fDkDQPAcxcfHMyKRiMnIyBBse8MNNzB+fn5MS0sLwzAMs2HDBkYsFjMnT54UbLd9+3YGALNnzx7uOgCMv79/n885+1pet24dExwcLHjtdX0PYbG/o/n5+YLrjb1Wp02bZvTnZ85jMcbY6/nSpUsMAObRRx8VbHv8+HEGALNq1ao+12XMsWPHGADMc8891+e2xvT2fsGu4/jx44LbDB8+nJk9ezb3Nfs66+nfb7/9xm1r6nsLw+hfJ4899hij0+mYxMRE5plnnmEYhmHee+89xtfXl1Eqlcwbb7zR7ef93//+l3n11VeZPXv2MD///DPzj3/8gwkKCmLCw8OZkpISi54nQgghroPKWgkhhBCeadOmITk5GVu2bMH58+dx8uTJHkuzdu3ahYCAAMyfPx8ajYb7N3r0aERERAhK0fLy8rB48WJERERAIpHAw8MD06ZNAwBcunRJsF+RSIT58+cLrhs1ahQKCwv7XH9+fj4OHTqE2267jZu2eMcdd0ChUPSYjbZgwYJu99Xe3t6tVHDGjBmC5ubh4eEICwszaV3GpKenY8GCBQgODuaekyVLlkCr1eLy5ctm72/8+PG4cuUK9u7di1WrVuGaa67BwYMHsWTJEixYsEBQYmiu22+/3eRtTflZX758Gbm5uXjggQd6nMbY3t6OgwcP4tZbb4W3t7fgNTZv3jy0t7fj2LFjva7l8OHDuHLlCu69915IJBIAwH333QeRSGRyduKoUaOsUoa3a9cuzJgxA1FRUYLHMnfuXG6tfPPmzRNkXg0bNgyAvo8iH3t9UVGR4PoRI0YgLS1NcN3ixYvR1NSEM2fOcGsaOXIkRo8eLVjT7NmzjZY+X3fddQgMDOz22H7++WfMnDkT/v7+3M/8hRdeQG1tbbffI2sIDAzEddddJ7jO3MdiikOHDgFAtwEWV199NYYNG4aDBw/2uS5rMef9IiIiAldffbXgup7eQ5944gmcPHmy27/Ro0dz21jy3sJObN26dSs0Gg02b96MO++802j2MgDcc889WLVqFebOnYsZM2bg73//O3788UdUV1fj9ddft+AZI4QQ4kqorJUQQgjhEYlEuO+++/D222+jvb0dKSkpmDJlitFtKysr0dDQAE9PT6Pfr6mpAQA0NzdjypQpkMvleOWVV5CSkgJvb28UFxfjtttuQ1tbm+B23t7e3QI2MpkM7e3tfa5/y5YtYBgGCxcuRENDA3f9ggUL8NlnnyErKwtDhw4V3CY4OLjbfQHotq6u27Hbdt3OFEVFRZgyZQqGDBmCTZs2ISEhAXK5HCdOnMBjjz1m0T4BwMPDA7Nnz8bs2bMBALW1tVi4cCF27dqFH3/8EfPmzTN7n97e3oIBIb0x9WfN9iTsbQBDbW0tNBoN3nnnHbzzzjtGt2FfYz3ZvHkzAP3kVPb14O/vj2uvvRbffPMN3n33XS6I25Oeem2Zq7KyEj/88AM8PDyMfr/rYwkKChJ8zf6e9XR919+PiIiIbvfBXseWFVZWVuLKlSsmr8nYc3HixAnMmjUL06dPx0cffcT10/v222/x6quvWvxa7o2xdZj7WEzBPk/G7i8qKqpbsMvU1wpbppmfn2/S9ua+X5jzXhUTE4Nx48b1uQZL3lvuu+8+vPTSS1i/fj3OnDnT4+9xT66++mqkpKT0GYQnhBDi+ig4RwghhHSxdOlSvPDCC/jggw/w6quv9rhdSEgIgoODsXfvXqPfZ7PMfv75Z5SVleGXX37hMqgACIJn1sBv9H/bbbcZ3WbLli02zcKQy+VGB1d0DQx8++23aGlpwY4dOxAfH89dn5GRYdX1BAcHY/ny5fjll19w4cIFzJs3jwt8dl1nT8ELc/rWmfqzDg0NBYBuTfX5AgMDIZFIcM899+Cxxx4zuk1iYmKPt2eHmQD6zB9jPv/8czz66KM97gMw7/H3JiQkBKNGjerxdyoqKsoq98OqqKjo8To2eBMSEgIvL68eswi7Ts009lx88cUX8PDwwK5duwRB9W+//dbktVrjNWnuYzEF+zyVl5d3CySXlZWZ9PwYExkZidTUVOzfv9+kSbP2er8wh7H3lq5iY2Mxc+ZMvPTSSxgyZIhFE7MZhumxdx8hhJCBg4JzhBBCSBfR0dFYsWIFsrKycO+99/a43U033YQvvvgCWq0WEyZM6HE79oC1a/P3Dz/80DoLNti3bx9KSkrw2GOPYeHChd2+//jjj+O///0v1q9fzzU7t7aEhARUVVWhsrIS4eHhAPQDFfbt2yfYzthzwjAMPvroI4vuV61Wo6mpyWjGDFtKygZ/2AmZ586d47JgAHQbKGAJU3/WKSkpXPn0U089ZXQwgLe3N2bMmIH09HSMGjWqxwzNnnz++edoa2vDyy+/jGuvvbbb9++44w5s2bKlz+Cctdx0003Ys2cPkpOTjZaGWltmZibOnj0rKG39/PPPoVAoMHbsWG5N69evR3BwcK+Bzt6IRCJIpVKubBjQZ51u3bq127Y9ZW/xX5NDhgzhrjfnNWmNx9IVW6L6v//9TxDgPXnyJC5duoTnn3/e4n2vWbMGd955J5YtW4aPPvqoW2CvubkZR48exaxZs6z+fmEOc95bjHn66afh5eWFO+64w+z7PnbsGHJycrBs2TKzb0sIIcS1UHCOEEIIMeIf//hHn9vcdddd+OyzzzBv3jw88cQTuPrqq+Hh4YGSkhIcOnQIN998M2699VZMmjQJgYGB+Mtf/oK1a9fCw8MDn332Gc6ePWvVNW/evBlSqRSrVq0yerD4yCOPYNmyZdi9ezduvvlmq943a9GiRXjhhRdw1113YcWKFWhvb8fbb78NrVYr2O6GG26Ap6cn/vSnP+HZZ59Fe3s7/v3vf6O+vt6i+21sbERCQgLuuOMOzJw5E7GxsWhubsYvv/yCTZs2YdiwYVw2YUREBGbOnIkNGzYgMDAQ8fHxOHjwIHbs2NHvx2/Oz/q9997D/PnzMXHiRDz55JOIi4tDUVER9u3bh88++wwAsGnTJlx77bWYMmUK/vrXvyIhIQFKpRJXrlzBDz/80G3SL9/mzZsRGBiIZ555xmhfuyVLluCtt97qFsCylXXr1uGnn37CpEmTsGzZMgwZMgTt7e0oKCjAnj178MEHH/Ra5muuqKgoLFiwAC+++CIiIyPxv//9Dz/99BNee+01LlNr+fLl+OabbzB16lQ8+eSTGDVqFHQ6HYqKirB//348/fTTvQbeAX0PvLfeeguLFy/Gww8/jNraWrz55ptGA66pqan44osv8OWXXyIpKQlyuRypqakYP348hgwZgmeeeQYajQaBgYHYuXMnjhw5YvLjtcZj6WrIkCF4+OGH8c4770AsFmPu3LnctNbY2Fg8+eSTZu2P74477sCaNWvw8ssvIysrCw888ACSk5PR2tqK48eP48MPP8SiRYswa9Ysq79f8BUVFRktGw0NDUVycrJZ7y3GzJo1C7NmzepzHWlpabj77rsxbNgwrmT3jTfeQEREBJ599tl+PUZCCCEuwJHTKAghhBBnwJ/W2htjkxbVajXz5ptvMmlpaYxcLmd8fX2ZoUOHMo888giTk5PDbXf06FHmmmuuYby9vZnQ0FDmwQcfZM6cOWN0OqiPj0+3++5r2ml1dTXj6enJ3HLLLT1uU19fz3h5eTHz588X7LPrtFFjkyNhmEDYVXx8PHPvvfcKrtuzZw8zevRoxsvLi0lKSmLeffddo+v/4YcfuOctOjqaWbFiBfPjjz92m05pyrTWjo4O5s0332Tmzp3LxMXFMTKZjJHL5cywYcOYZ599lqmtrRVsX15ezixcuJAJCgpi/P39mbvvvps5deqUyT8Phun5+TP1Z80wDPPHH38wc+fOZfz9/RmZTMYkJyczTz75pGCb/Px85v7772eio6MZDw8PJjQ0lJk0aRLzyiuv9Ph8nD17lgHALF++vMdtsrKyGADM3/72N8Hj4es6cdUcxm5bXV3NLFu2jElMTGQ8PDyYoKAg5qqrrmKef/55prm5mXu8AJg33nhDcFt2cunXX38tuN7Y7y9739u3b2dGjBjBeHp6MgkJCcxbb73VbZ3Nzc3M6tWrmSFDhjCenp6Mv78/k5qayjz55JNMRUUFt11PvwMMwzBbtmxhhgwZwshkMiYpKYnZsGEDs3nz5m6/RwUFBcysWbMYhULBABC8ri9fvszMmjWL8fPzY0JDQ5m//e1vzO7du41Oax0xYoTRdZj6WIzp6fWs1WqZ1157jUlJSWE8PDyYkJAQ5u6772aKi4sF2/W2rt4cPnyYWbhwIRMZGcl4eHgwfn5+zDXXXMO88cYbgunQpr5f9LSOru8jfU1r/fOf/8wwjPnvLb29TljGprXeddddzKBBgxgfHx/Gw8ODiY+PZ/7yl78wZWVlZjybhBBCXJWIYfoxuowQQgghhBAnk5CQgJEjR2LXrl2OXgohhBBCSJ+ouyghhBBCCCGEEEIIIQ5CwTlCCCGEEEIIIYQQQhyEyloJIYQQQgghhBBCCHEQypwjhBBCCCGEEEIIIcRBKDhHCCGEEEIIIYQQQoiDUHCOEEIIIYQQQgghhBAHkTp6AQOFTqdDWVkZFAoFRCKRo5dDCCGEEEIIIYQQQhyIYRgolUpERUVBLO45P46Cc1ZSVlaG2NhYRy+DEEIIIYQQQgghhDiR4uJixMTE9Ph9Cs5ZiUKhAKB/wv38/By8GkIIIYQQQgghhBDiSE1NTYiNjeViRj2h4JyVsKWsfn5+FJwjhBBCCCGEEEIIIQDQZ/szGghBCCGEEEIIIYQQQoiDUHCOEEIIIYQQQgghhBAHoeAcIYQQQgghhBBCCCEO4tCecxs3bsQnn3yCwsJCtLW1ITQ0FNdccw3WrFmDUaNGAQCUSiXWrFmD7du3o6qqCrGxsbj77ruxevVqeHh4AADKy8uxfPlynDhxAgUFBQCARYsW4YsvvuhzDZ9++im++OILXLhwATU1NQgODsaECROwdu1apKWlWfXxMgwDjUYDrVZr1f0S5+Dh4QGJROLoZRBCCCGEEEIIIcSFiBiGYRx157feeiuOHz+O8PBwdHR0IDs7GzqdDkFBQSgqKoJcLsf06dNx5MgReHh4ICkpCTk5OdDpdFi8eDE+++wzAEBGRgbGjBmDxMRElJeXo7293eTg3PTp03H48GFERETA398f2dnZAAAfHx+cP38eiYmJJj2WpqYm+Pv7o7Gx0ehACJVKhfLycrS2tprxDBFXIhKJEBMTA19fX0cvhRBCCCGEEEIIIQ7WV6yI5dDMuW3btkEul3Nfr1mzBq+88grq6uqQlZWFgoICHDlyBACwY8cO3HTTTXjnnXewbNkyfP7553jqqadw1VVXYciQIVzWW0JCAgoLC01ewy233IJ///vfGDZsGABg06ZNWL58OVpaWvDtt9/iySefNHq7jo4OdHR0cF83NTX1eB86nQ75+fmQSCSIioqCp6dnn5M6iGthGAbV1dUoKSnB4MGDKYOOEEIIIYQQQgghJnFocE4ul+P777/H+vXr0dTUxGWthYaGIiUlBR988AEAwMvLC/PmzQMA3H777Vi2bBkAYN++fbjqqqvg5eUFLy8vi9awfPlywddTpkzhLstksh5vt2HDBrz00ksm3YdKpYJOp0NsbCy8vb0tWidxfqGhoSgoKIBarabgHCGEEEIIIYQQQkzi8IEQVVVVOH78OC5dugSdTofExEQcOnQICoUCxcXFAIDg4GCIxfqlhoeHc7ctKiqy+no2btwIAAgKCsLtt9/e43YrV65EY2Mj949da2/Yx0AGJsqGJIQQQgghhBBCiLkcHi168MEHodPpUFhYiEWLFiE/Px+LFi2CUqmEsXZ4/OusGQzRaDR4+OGHsXXrVvj6+mLnzp2CQGBXMpkMfn5+gn+EEEIIIYQQQgghxDw6HQOtzmEjERzO4cE5QB9ki4uLw6pVqwAAmZmZ2LZtG+Li4gAANTU10Ol0APSZdqzY2Fir3L9SqcT8+fPx0UcfITw8HIcOHcLUqVOtsm9CCCGEEEIIIYQQ0rND2VWY9sYhfPxbHpTtakcvx+4cFpyrra3F1q1boVKpuOv27NnDXW5pacGcOXMAAO3t7di1axcA4Ouvv+a2Yb9vqiVLlmDo0KFYsmQJd11paSmmTJmCvXv3Yvjw4Th+/DjGjRtn0WMihBBCCCGEEEIIIebZfCQfJfVteGX3JRzPq3P0cuzOYcE5pVKJJUuWICAgAKmpqYiLi8PKlSsBAAqFArfddhtuueUWXHvttQCAhQsXYujQoXjqqacAAIsXL8bYsWMB6ANsgwYNwqBBg1BaWgoA2L17N3cdq6ioCNnZ2YJedffffz/Onj0LQF8yu2jRIkycOBETJ07Eyy+/bPsnwgW0t7fjrbfewoQJE+Dn5wdvb2+kpKTgL3/5C/Ly8qx6XwUFBRCJREb/BQQECLb997//jdGjR8PPzw++vr5ITEzEjTfeiJ9//pnbZunSpdztw8LCBBN2NRoNoqOjue/fddddRm/H/xcTE2PVx0sIIYQQQgghhLizS+VNOJpbCwBICPbGdUPDHLwi+3PYtNaAgADcddddOHHiBHJzc6FWqxEbG4tp06Zh1apViI+PB6APsq1Zswbbt29HXl4e4uLisGTJEqxevZrbl1qtRm5urmD/zc3NaG5u7nMd/GDNpUuXBN8bOnRofx7igFBfX4/rr78e6enpAPSB0+TkZBQVFeHDDz/ExIkTkZSUZJP7jo6OFgTDFAoFd/lf//oXF6iNj49HQEAAioqKsGfPHsyYMQPXXXddt/1VV1fjyy+/5DInv/nmG5SVlZm1hrAw93uTIIQQQgghhBBCbOWT3/O5y/dNToRY7H7DFh0anNu2bVuf2/n5+WHTpk3YtGlTj9skJCQYHR7R1S+//GLSdaTT448/zgXmVqxYgfXr10Mq1b9s9u7dCz8/P+zduxevvvoqsrOz0dDQALlcjtGjR2PVqlVc6XFBQQESExMBAJ988gm2b9+On3/+GeHh4Vi9ejUeeOCBbvf94IMP4sUXXzS6ri+//BKAvlT5//7v/7jr2bV2JZVKodFo8M4773DBuXfeeQcA4OHhAbXaeE17b2sghBBCCCGEEEKI5WqaO/Bthj5pRiGXYuFV7lmt5rDgHAHmv3ME1cqOvje0olCFDD/87VqTtm1sbMRXX30FAEhLS8Nrr70mmJDLBt7efPNNHD9+HLGxsYiJiUFOTg5+++03zJ8/H6dOnUJaWppgvw8//DCio6Ph4eGBgoICPPzww5g8ebJZmYrsgJDjx4/jq6++wjXXXIPY2FiMGTPG6PbBwcEYNmwYfvnlFxw7dgwymQy///47rrnmGpSVlaGwsNDo7TZu3IgNGzYgLCwMkydPxquvvork5GST10kIIYQQQgghhBDjPjtWBJVGf3z/p6vj4CNzzzCVU0xrdVfVyg5UNLXb9Z85wcDLly9Do9EAAKZMmSIIzPEtXLgQVVVVyM3NxZkzZ1BUVASFQgGNRoPt27d3237BggXIy8vDb7/9BkAfaDOWwfjSSy8J+r3dcsst3PceffRRAEB2djYWLVqEuLg4JCQk4JlnnkFDQ4PRdf7tb38DoM+YY7Pm2OuMkcvlXFlrSUkJvvzyS4wfP57ra0gIIYQQQgghhBDLdGi02HpMnygjEYtw76QExy7IgdwzJOkkQhUyp75PfqlwT4E5AFCpVFi6dCmOHj2K2tpaLqsNgNGebnfffTdEIhGGDx/OXVdZWdltu6793oYMGcJdXrp0KeLj4/Hhhx/iwIEDqK2tRWFhIf75z3/i1KlTRoN9N998M+Li4vD1119DIpEgIiICCxcu5AaR8K1YsQLvvfcefHx8AAAffvgh/vKXv6C+vh6ffPKJoOchIYQQQgghhBBCzPPD2XLUNOsTiOaMiEB0gJeDV+Q4FJxzIFPLSx1lyJAhXK+2I0eOgGEYo0G6m266CTk5OZBKpUhNTYVcLkd6ejpUKhW0Wm237dmpq2zvOgBGewb21e9txowZmDFjBgDg4sWLePzxx3Ho0CEcPnwYDQ0N3aa7SiQS/PWvf8XKlSuhVqvxl7/8BR4eHkb3PWLECMHXf/7zn/GXv/wFAATTfgkhhBBCCCGEEGIehmGw5UjnIIj7r01w3GKcAJW1kh75+/vjzjvvBKAftLBq1SquzBUADhw4gN9//x05OTkAgHXr1iEjIwNffPFFr5l21vDKK6/gwIEDXJbe8OHDuX5zHh4e8Pb2Nnq7hx56CHK5HB4eHnjkkUd63P/atWtRU1PDff3FF19wlxMSEqzwCAghhBBCCCGEEPd0LK8OF8ubAABpsQEYGxfo4BU5FgXnSK/effddLuj1j3/8A8HBwUhLS0NQUBBuuOEGXL58mSs9Xbt2LVJTUzF27FhIJJJ+3/fHH3+MiRMnCv41NzcDAHbt2oUbbrgBPj4+GDlyJAYNGoS33noLAHD77bfD09PT6D6Dg4NRXl6OqqoqRERE9Hjf69atQ3h4OAYPHoxBgwbhoYceAgBERETgwQcf7PdjI4QQQgghhBBC3NWW33lZc5MTbJ7g4+woOEd6FRgYiKNHj+LNN9/E+PHjodPpkJ2djcDAQDzwwAOYOnUqvvnmG4wbNw4SiQRarRafffYZQkND+33fpaWlOH78uOAfm7m3YsUKLFq0CDExMSgsLERRURESExOxfPlyfPTRR73uNyAgoFvJa1evvvoqrrnmGjQ2NqKkpASDBg3CX/7yF5w6dQphYWH9fmyEEEIIIYQQQog7KqxtwYFL+r7zEX5yzEuNdPCKHE/EGGv2RczW1NQEf39/NDY2ws/PT/C99vZ25OfnIzExEXK53EErJLZGP2dCCCGEEEIIIaR3L36fiU+PFgAAnp0zBI9OH+TYBdlQb7EiPsqcI4QQQgghhBBCCCE219SuxtenigEAcg8xFl8d5+AVOQcKzhFCCCGEEEIIIYS4ufMljbhY1mTT+/jqZDFaVFoAwO1jYxDgbbxfvLuh4BwhhBBCCCGEEEKIGztVUIf57x7Bje/8hguljTa5D41Wh09+L+C+vm9yok3uxxVRcI4QQgghhBBCCCHEjf14oQIAwDDAwUtVNrmPA5cqUdrQBgCYPiQUg8J8bXI/roiCc3ZEszcGNvr5EkIIIYQQQghxRWeK6rnLmWW2yZzbfCSfu3w/Zc0JUHDODjw8PAAAra2tDl4JsSWVSgUAkEgkDl4JIYQQQgghhBBimg6NFpmlnb3mMm3Qd+5cSQNOFugDgIPDfDFlcIjV78OVSR29AHcgkUgQEBCAqip9aqi3tzdEIpGDV0WsSafTobq6Gt7e3pBK6deKEEIIIYQQQohruFDaBJVWx31d2tCG+hYVAn2sN6xhCz9r7tpEiol0QVEEO4mIiAAALkBHBh6xWIy4uDh6kyGEEEIIIYQQ4jLSeSWtrMyyJlxrpey2yqZ27DpXDgAI9PbArWOirbLfgYSCc3YiEokQGRmJsLAwqNVqRy+H2ICnpyfEYqoUJ4QQQgghhBDiOs4YDc41Wi04t/WPQmh0+h7tf54QD7kHtYLqioJzdiaRSKgnGSGEEEIIIYQQQpzCmcKGbtddsFLfuXa1Fp8dLwQASMUi3HNNvFX2O9BQmg8hhBBCCCGEEEKIGypraENFUzsA4OrEIHhK9WGizFLrTGzdmV6K+lZ99eBNoyIR7ie3yn4HGgrOEUIIIYQQQgghhLghfknr1QlBGBqhAADk17aguUPTr30zDCMYBPHAtUn92t9ARsE5QgghhBBCCCGEEDfEL2kdGx+AEVH+AACGAS6V96+09XRhPXKqmgEA4xMCkRrj36/9DWQUnCOEEEIIIYQQQghxQ/zMuTGxgRgR5cd93d/S1mN5tdzlO66K7de+BjoKzhFCCCGEEEIIIYS4mXa1Fpll+gBcUogPAn08MTK6M7utv0MhThbwSmYTg/q1r4GOgnOEEEIIIYQQQgghbiazrBFqLQMAGBMXCAAYGqGARCwyfN/y4JxWx+BMoT44F+IrQ3ywdz9XO7BRcI4QQgghhBBCCCHEzXTtNwcAcg8JBoX6AgByKpXo0Ggt2ndWRROUhoESVycGQiQS9WutAx0F5wghhBBCCCGEEELcDL/f3FhD5hwAru+cRsfgckWzRfs+xStpHRdPJa19oeAcIYQQQgghhBBCiBthGIYLzvnKpEgJV3DfGyHoO2fZUIgTBXXc5fEJFJzrCwXnCCGEEEIIIYQQQtxIWWM7Kps6AABpsf5cnzkAwomtFgTnGIbBKUNwzsdTgmGRij5uQSg4RwghhBBCCCGEEOJG2GENgLCkFQCG84JzF0rNHwpRUt/GBf7GxgdCKqHQU18c+gxt3LgRaWlpCAgIgEwmQ0xMDO644w6cO3eO20apVGL58uWIiYmBp6cnkpOTsXbtWqjVam6b8vJyLFq0CImJiRCJRBCJRLjrrrtMXsf+/fsxefJkeHt7w8/PD7Nnz8apU6es+lgJIYQQQgghhBBCnEFP/eYAwE/ugQTDdNVL5U3QaHVm7ftEPpW0msuhwbnDhw+juroaiYmJSE5ORnl5ObZv344ZM2agpaUFWq0W8+bNw6ZNm1BVVYWkpCQUFBRg3bp1WLp0KbefyspKfPXVVxCJRJDL5Wat4ccff8S8efNw9OhRBAUFQSaTYf/+/Zg6dSrOnj1r5UdMCCGEEEIIIYQQ4lhnihq4y2PiArp9f0SUvu9ch0aHvJoWs/Z9qrAzODcuIbCXLQnLocG5bdu2oaysDOnp6bh48SJWrVoFAKirq0NWVha+/fZbHDlyBACwY8cOZGVlYePGjQCAzz//HKdPnwYADBkyBDU1NcjLy0N4eLhZa3j22Weh1WoxceJEFBQUIC8vDwkJCWhra8Pq1aut92AJIYQQQgghhBBCHKxdrcVFQy+55FAfBHh7dttmRDS/tNW8vnNs5pxULMKYWArOmcKhwTm5XI7vv/8eEydOxPDhw7F+/XoAQGhoKFJSUrB3714AgJeXF+bNmwcAuP3227nb79u3j/t+cHCw2fdfWlqKCxcuAAAWLFgAqVQKhUKBG264AQBw8OBBaLVao7ft6OhAU1OT4B8hhBBCCCGEEEKIM7tQ2gi1lgHQvaSVxWbOAUBmmenxjtrmDuRW6zPtRkb7w8tT0o+Vug+Hd+WrqqrC8ePHcenSJeh0OiQmJuLQoUNQKBQoLi4GAAQHB0Ms1i+VnxlXVFTUr/tm9w8AYWFh3GX2Ptra2lBdXW30ths2bIC/vz/3LzY2tl9rIYQQQgghhBBCCLE1Qb+5+J6Cc5Zlzp3mDZoYTyWtJnN4cO7BBx+ETqdDYWEhFi1ahPz8fCxatAhKpRIMw3Tbnn+dSCTq9n1zGNu/qfexcuVKNDY2cv/4gT5CCCGEEEIIIYQQZ3SmsIG73FPmXIivDBF++p7+F8uaoNMZj590dbKA32+OhkGYyuHBOUAfAIuLi+N6zmVmZmLbtm2Ii4sDANTU1ECn008Hqaqq4m7X32w1dv+AfqgEi70PLy8vhISEGL2tTCaDn5+f4B8hhBBCCCGEEEKIs2IYhsucU8ikGBzm2+O2Iw1955QdGhTXt5q0/5MFnZlz43rIyiPdOSw4V1tbi61bt0KlUnHX7dmzh7vc0tKCOXPmAADa29uxa9cuAMDXX3/NbcN+31RLlizB0KFDsWTJEgBAdHQ0Ro4cCQD47rvvoNFo0NTUhP379wMAZs6cCYmE6qMJIYQQQgghhBDi+kob2lCl7AAAjI4LgFjcc0WiuX3n2lRargQ2OdQHwb6yfq7WfUgddcdKpRJLlizBI488guTkZEFpqEKhwG233YaYmBhce+21OHLkCBYuXIikpCTk5OQAABYvXoyxY8cC0A92mDZtGncZAHbv3o1BgwYBAK5cuQJA36MuOzsbERER3Dpef/113HTTTThx4gQSEhLQ0dGBmpoaeHl54eWXX7bPk0EIIYQQQgghhBBiY2eKGrjLY3ooaWV17Ts3LzWy1+3Ti+uhMZS/jqeSVrM4LHMuICAAd911FyIjI5Gbm4vy8nLExsbi7rvvxvHjxxEfHw+JRILdu3dj2bJlCA0NRV5eHuLi4vDCCy/g008/5falVquRm5uL3NxcaDQaAEBzczN3XW/mzp2LPXv2YNKkSaitrUV7eztuuOEGHD58GGlpabZ8CgghhBBCCCGEEELs5gxvYMPYuIBetx0Z3Zk5d8GEzLlTBfxhEBScM4eI6WkqAjFLU1MT/P390djYSP3nCCGEEEIIIYQQ4nRufvcIzpboS0/PvjAL/t4ePW7LMAzGvvwT6lvVCPbxxKnVM3sdzHnP5uP4LacGAPDrihmIC/a27uJdkKmxIqcYCEEIIYQQQgghhBBCbKddreV6xw0K8+01MAfoh3ey2XO1LSpUNnX0uK1Gq+Oy8sL9ZIgN8rLSqt0DBecIIYQQQgghhBBCBrjzpY1cT7i+SlpZw3l95zLLGnvcLqtCiRaVFgAwLiGo1ww70h0F5wghhBBCCCGEEEIGOGG/ud6HQbBG8ia2Xijtue/cyYI67vL4eNP2TTpRcI4QQgghhBBCCCFkgDtTxAvOmRhAG2Fi5pwgOJdIwyDMRcE5QgghhBBCCCEWaWxV45Gtp7Bq53nodDRrkBBnxTAMzhQ1AAAUcikGhfqadLuEYB/4eEoAgOtXZ2zfJw2TWn1lUgyNoCGZ5qLgHCGEEEIIIYQQi2w7WYR9mZX4/HgRDudUO3o5hJAelNS3oVqpH+gwOjYAYrFpPeHEYhFGGEpbSxvaUN+i6rZNYW0rt++x8YGQmLhv0omCc4QQQgghhBBCLJJdoTR6mRDiXAQlrSb2m2MJh0J0z57jl7RenUD95ixBwTlCCCGEEEIIIRbJq2npvFzd7MCVEEJ6k24oaQVM7zfHGhndORTCWN+5UwWdgb9xCdRvzhIUnCOEEEIIIYQQYjaGYQQBudzqll62JoQ4Ej9zbnRsgFm35Q+FuNBL5pyHRGT2vokeBecIIYQQMuCcLKjDN6dLoNLoHL0UQggZsGpbVFC2a7ivKXOOEOfUrtbioiGoNjjMF/5eHmbdflCYLzyl+vBRZqkwc66muYPLoE2N9ofcQ2KFFbsfqaMXQAghhBBiTVeqmrH4o2NQaxm0qjS455oERy+JEEIGpPwaYaZcfasadS0qBPl4OmhFhBBjzpU0QmOYpmxuvzkA8JCIMTRCgXMljcivbUFzhwa+Mn04iV/SOp5KWi1GmXOEEEIIGVC2ny6BWqv/AHq+tHtfFEIIIdZhLFOOsucIcT6CYRDxARbtg53YyjDApfLO0lb+MAgKzlmOgnOEEEIIGTB0OgbfZ5RyX1crOxy4GkIIGdjyarr3mMujvnOEOJ0zhZZPamWNjOZNbOWd/DzFC85dZeagCdKJgnOEEEIIGTBOFNShrLGd+7q6mYJzhBBiK8YCcbk1lDlHiDNhGAZnDJNa/eRSJIf6WrQfNnMO6BwK0arScJcHh/kikEraLUbBOUIIIYQMGN+mlwq+psw5Qgixna495wAgt4oy5whxJiX1bagxnKwcHRcIsVhk0X6GRiggMdw20xCQSy9qgNbQy258IpW09gcF5wghhBAyILSrtdh9vlxwXU2zCjrDh0ZCCCHWo9UxKKzVB+IGh/lC7qE/tMyjzDlCnIqg31xcgMX7kXtIMMiQdZdTqUSHRtul3xyVtPYHBecIIYQQMiD8kl0FZbtGcJ1Wx6C+VeWgFRFCyMBVUt/KDd9JDvVFYoj+oL2othVqrc6RSyOE8Fij3xxrhKHvnEbH4HJFs2BS67h4ypzrDwrOEUIIIWRA+Da9jLscHeDFXa5ppuAcIYRYG38YRFKoD5JCfQDoD9qL6lodtSxCSBdsvzmRCBjdj8w5QNh3LqOkgcvKi/SXIybQq6ebERNQcI4QQgghLq+xVY2fs6oAACG+Mtw0KpL7HvWdI4QQ6+MPg0gM8UFyiI/R7xFCHKeuRYWL5Z0DG/zkHv3a38iozomtX58qRqtKCwAYlxAEkciyXnZET+roBRBCCCGE9NePF8qhMpRRLUiLQoS/nPtedXN7TzcjZlC2qyH3kMBDQud2CSFAPq+3XFKoLzylne8NedXNAMIdsCpCCN9PFyu4gQ0zhob1e3/DecG5cyWN3GXqN9d/9OmKEEIIIS5vJ29K6y1johCqkHFfU+Zc/32bXorUF/fjzx8fp15ShBAAwkmtSSE+SDL0nAOA3GoaCkGIM/jxQgV3ee7IyF62NI1C7oGEYO9u149PoH5z/UXBOUIIIYS4tNKGNhzP108LSwr1QWq0P0J9KThnLQzD4M392QCAE/l1OHKlxsErIoQ4A7Z0NcDbA4E+nkgMpbJWQpxJY5savxv+Zkf5y5EW49/HLUwzIlq4H4VcipRwhVX27c4oOEcIIYQQl/Z9RucgiFtGR0MkElHmnBWdLqxHSX0b9/W3vCxFQoh7alVpUN6obxmQZOg15yuTIsJP31KAPyyCEOIYBy9VchOV54yMtFpPuBG80lYAGBcfCImY+s31FwXnCCGEEOLS+MGiW0ZHA4AwONdMwbn+2NklGLc/sxItHRoHrYYQ4gz4Ja2JvHJWdmJrXYsK9S00KZu4nj9ya3HP5uP44WxZ3xs7OUFJa2qE1fY7MkqYOTeOSlqtgoJzhBBCCHFZl8qbkF2pBACMjQtAnKEPiq9MCpmhOTllzllOpdFh9/lywXVtai32X6zo4RaEEHcg6DfHK2flX86rob5zxPW8+H0mfsupwaod56Fx4R6rLR0a/Hq5GoD+hOVVcdYb2NA1c476zVkHBecIIYQQ4rL4WXO3jonmLvNLWyk4Z7nDl6vR0KoGIDzo/jbd9TMKCCGWy68WDoNgJYfyh0JQaStxLfUtKu6En7JD49Kv4UPZVejQ6IOLs0eEQ2zFstNgXxmi/PUl7J4SMUZZqZedu6PgHCGEEEJckk7H4DtDvzmpWIQbR0UJvs8G5+pb1TRh1EL84OfqG4chOsALAHDkSg0FPQlxY/yecomCzDma2Epc15miesHX50sbHbSS/vvxvHWntHb1xMzBCPGVYfkNgyH3kFh9/+6IgnOEEEIIcUnH8mtR0aRvSD4tJRRBPp6C7/MnttY2U+8jczW1q/HTpUoAQLCPJ6YMDsXNo/UBUK2Owa5zlD1HiLtig3MiEZAQzAvOhdDEVmLcFyeK8Ohnp506aHuqUBicu+Ciwbl2tRaHsqsAAIHeHpiQaP2y00Xj43Bq9Uw8On2Q1fftrig4RwghhBCX9B2vtPIWXkkriya29s/e8xVQGUpi5qdFwUMiFjzP32ZQcI4Qd8QwDPIMAZYofy9B1kx0gBfX7zPPiYMwxL4aWlVY/e0F7DlfgTf2Zjt6OT06XTAwMucOX65Gq0oLAJg1PAJSCYV9XAH9lAghhBDictrVWuwxDCrw8ZRg5rDwbtsIJ7a2221tAwV/SisblEsJV2B4pL4R9NniBkFTeEKIe6htUUHZrp/YzO9FCQBisQiJhuy5wtpWailAAAAFta3Q6BgAwKnCOjAM4+AVdafS6HC2pEFw3cWyJmh1zrfWvuzlTWmdY8UprcS2HBqc27hxI9LS0hAQEACZTIaYmBjccccdOHfuHLeNUqnE8uXLERMTA09PTyQnJ2Pt2rVQq9WCfZ06dQqzZ8+Gn58fvL29MXnyZPz00099rkGr1WL9+vUYOXIk/Pz84OPjg5SUFPz9739HW1ub1R8zIYQQQvrv56wqKDv0B4dzRkbCy7N7vxPKnLNcWUMbjuXXAgASQ3yQxmv2fMuYzt5+/J50hBD3IJjUGuLT7fvsUAiNjkFxXavd1kWcV2l953F1TbMKJfXOd5ydWdbIDVBgtam1Tl2Ga4xKo8MBQ0sKhVyKyckhDl4RMZVDg3OHDx9GdXU1EhMTkZycjPLycmzfvh0zZsxAS0sLtFot5s2bh02bNqGqqgpJSUkoKCjAunXrsHTpUm4/GRkZmDp1Kvbv3w+ZTIagoCAcPXoUc+fOxd69e3tdw8svv4znn38emZmZCA8PR3R0NHJycvD666/jmWeesfEzQAghhBBLfCvI6ooyug2/5xwF58zz/dkysIkNt4yOhkjUOeVtQVo02C+/yyh1ygwIQojt8MtV+QMgWMmh1HeOCJU2CIO06cUNjllIL07z+s3FBXlzl8+XuFZp6++5NVxm68xh4fCUUrGkq3DoT2rbtm0oKytDeno6Ll68iFWrVgEA6urqkJWVhW+//RZHjhwBAOzYsQNZWVnYuHEjAODzzz/H6dOnAQBr1qxBW1sbEhISkJeXh4KCAkyYMAFarRYrVqzodQ3s/ocMGYKcnBxcvnwZQ4YMAQAUFhba4mETQgghpB8aWlVco+NQhQyTejgrHEKZcxbrLfgZ4S/HNUnBAPSlShlOeJBFrEel0SGjuAEdGq2jl0KchGBSq5HMOZrYSrrqmimX3mUqqjM4xes3t+SaeO6yq/Wd+9HQ8gMA5oykklZX4tDgnFwux/fff4+JEydi+PDhWL9+PQAgNDQUKSkpXNabl5cX5s2bBwC4/fbbudvv27cPGo0GBw8eBADMmjULCoUCUqkUCxYsAABcuHABZWU9NyyeMmUKACA7OxuDBw9GSkoKsrOzMWLECG49xnR0dKCpqUnwjxBCCCG2t+d8BdRafbbWgrQoSMQio9sJMueaKThnqkvlTciqUAIAxsYFID64+8H3LaM7B0N8R4MhBrQV28/ilvd+x2OfnXH0UoiT4GfDGQ/OUeYcESrtEpxztpM6DMNwk1oVMilu5Q0/cqWJrRqtDj9d1Je0entKMC0l1MErIuZweI5jVVUVjh8/jkuXLkGn0yExMRGHDh2CQqFAcXExACA4OBhisX6p4eGdDZ+LiopQU1PD9YYLCwvjvtd1u56sWbMGK1euBABcuXIFOTk5EIlESE1NRWxsbI+327BhA/z9/bl/vW1LCCGEEOvhZ3XdamRKK4t6zlnGlOd3TmoEVyrzw9kyavo+QLWrtfjxvL6x+M9ZVWg29Hkk7o3tOecpFSM6wKvb9/kBu7waypwjQGmDMDiXWdbkVNm4xXVtqDGcxBsTH4hgXxliAvWv7UwXGgpxPL8O9a363vwzhoYJJikT5+fw4NyDDz4InU6HwsJCLFq0CPn5+Vi0aBGUSqXRHib860QiUY99Trpu15PPP/8cb775JgYPHoyCggIUFhZi8ODB+OKLL3Dffff1eLuVK1eisbGR+8cGEgkhhBBiOyX1rThRUAdA39doRJRfj9vKPSRQyKUA9A2oSd90OobLhJOKRbhxlPF+fn5yD8wcpj8pWtuiwpErNXZbI7GfjOIGqAyBVx2jn9BL3JtWx6CwVh+cSwz2gdhI5rJC7oFwP/3JkVzKnLPIxbImvLEva0BMxGYYpltZq0qjw6VypYNW1N2pwjru8rj4QADAKMMgpDa1VtBn0Zn9eKGzpHUulbS6HIcH5wB98CwuLo7rOZeZmYlt27YhLi4OAFBTUwOdTv/BoKqqirtdbGwsQkND4eWlj2pXVlZy3+u6XU/+/ve/Q61WY+7cuYiPj0dcXBzmzJkDADhw4ECPt5PJZPDz8xP8I4QQQoht8Usobx0T3esJOKAze44y50xzLL8WFU3tAIDpQ0IR5OPZ47Y380tbaWrrgHQyv07wtTP2iSL2VVLfyrUV4JevdpUUou87V9eiQkMrnRwx19+2ncF7h3Lx1/+ddvmhO01tGqNZtxlO9H5yijcMgg3OjYzunFLuCn3ntDoG+zL18RCZVIwZQ8L6uAVxNg4LztXW1mLr1q1QqTrfrPfs2cNdbmlp4YJk7e3t2LVrFwDg66+/5raZM2cOpFIprr/+egDA/v37oVQqoVar8d133wEAUlNTERWlP+u7ZMkSDB06FEuWLOH20dio/0XLyMiAVquFTqdDRkYGAMDHp+c/OIQQQgixL4ZhBCWX/OBQT9i+c80dGrSqqCSvL8JBEL0/v9OHhMLfywMAsC+zEi1U8jjgsFmqrDNFDY5ZCHEafQ2DYPEDd5Q9Z55WlYZ7zrIqlDjnYtNCuyrhTWodFtmZ0OJME1tPG4ZBSMQipMUGAABSXSw4d7qwnjsROTUlFD4yqYNXRMzlsOCcUqnEkiVLEBAQgNTUVMTFxXG93xQKBW677TbccsstuPbaawEACxcuxNChQ/HUU08BABYvXoyxY8cCAF555RV4eXmhsLAQSUlJSEhIwIkTJyCRSPD6669z91lUVITs7GxBDzp2wMSvv/6KxMREJCYm4tdffwUA3HvvvbZ/IgghhBBikovlTcip0peWjIsPRGyQd5+34fedq1FS9kZv+P3FfGVSzBwW3uv2MqkE81IjAejLftgm1GRgUGt1OF0ozGxJL6p3+Swe0j99DYNgJdPEVosV1bUKvv7mTImDVmId/JLWmcPCIDP0K3WWoRCNbWpcrtKX2A6LVHBBrZFRncE5VxgKQSWtrs9hwbmAgADcddddiIyMRG5uLsrLyxEbG4u7774bx48fR3x8PCQSCXbv3o1ly5YhNDQUeXl5iIuLwwsvvIBPP/2U21daWhoOHz6MG264Ae3t7airq8OkSZOwZ88eLvuuJx9++CFeffVVjBgxAg0NDWhoaEBaWhrefvttbNiwwcbPAiGEEEJMxS9p7SuriyUYCtHcbvU1DSQHL1VBach+mzsywqRG0vyBETuptHVAySxrQqtK2LC9vlWNgtrWHm5B3EE+b8BDEi8A1xVNbLVcUZffse8yypxqeIK5+JNa44N9uIy0wtpW1DrBJHX9SQf95XHxQdz1gT6eLjMUgmEY7LugP7nmIRHh+j5OrhHn5LBcx4CAAGzbtq3P7fz8/LBp0yZs2rSp1+3Gjx+P/fv397rNL7/80u06uVyOVatWcf3uCCGEEOKcDl7SZ2ZJxSLcaMjY6gtNbDXdTjNKWlnj4gMRHeCF0oY2HLlSg5rmDoT4yvq+IXF6/H5z7M8YAM4U1veaMUUGNv6AgiQTM+dcpZm+s+iaOdfYpsbPl6ow18S/e86GP6k1JtALY+ICuB5vZ0sacN1QxwaS+BnCVxn6zbFSo/1RUt+GVpUW+TXNGBSmsPfyTHK2pBFljfoTkJMHhXAtJ4hrcYqBEIQQQgghvWloVXE9eEZE+yOwl0EFfPxAEQXnelbXosIv2fphWuF+MkxMCjbpdmKxCAtG63v7anUMdp0t6+MWxFUc5wXnHpqSyF1OL3aeJu7E/tgsuEBvj17fh6MCvLjyRSprNU9xXffsVFcubeVnzkUHeGF0bGcALN0J+lieKuANg0gQBuf4QyGcufcflbQODBScI4QQQojT43+AHxsXYPLtKHPONLvPl0NjKNm5eXQ0JOLep+DyCUpbMyg4NxDodAxOGoZBBHp74ParYsC+JM4UNjhuYcShWlUalBuyc/rKnpSIRdw2RXWt0Gh1Nl/fQFHIC875yfWFboeyq132bxg7EEIsAiL85RjD+xvu6L5zaq2OW0OUvxyR/l6C77vCUAiGYbh+sRKxCDcMp+CcqzI7ONfR0YHffvsNW7duxYcffogdO3YgPz/fFmsjhBBCCAEAnCnqPLM9Ni6wly2FQvmZc07Q28ZZCaa0mjAFly8lXMFN4Dtb3CAoeyOuKaeqGY1tagDAuIQgKOQeSAnXl3NlVTTRZF43lS+Y1NpzvzkW23dOrWVQzMueIr1jy1rlHmIsnhAPQJ+Z/F2Ga/b1ZDPnIv294CERI9JfjjDDibOM4gboHNjL7VJ5E9rU+n5+VyUEdfs+PzjnrEMhLpY3ca+ZCYlBCDKxsoA4H5ODc0ePHsWf/vQnBAQEYPr06Vi+fDlefvll3H333Rg0aBAGDx6MN954A0ql0pbrJYQQQogb4gfnuvaE6U2YIHOOprUaU1TbyvXcGRKuwLBI83vq3GIobQWEgT7imk7k13KXJyTqD1jHGILiOsa5y7uI7Qj6zYX23XdQMLG1ikpbTaHTMSip0wez4oK8sfCqGO5735xxvffWlg4N6lv1gf7oAH1WmkgkwujYAACAsl2DvBrHvTb4/ebGGflsEejjya3bWYdC7DUMggDgsn0JiZ5Jwbmbb74ZCxcuRHR0NPbt2welUona2lqUlJSgtbUVOTk5WL16NQ4ePIiUlBT89NNPtl43IYQQQtyEVscgw1DWGuEnR1SAV+834Any8YTIUI5HmXPG8bMxbhkTDZHI9JJW1oLRUdzz/F1GKRjG+Q5giOn4/eauNgTn+OXk/GA5cR/51aYNg+C24U9sdWAAxpVUKtuhMpQAxwX5YFCYL9IMgaxL5U3ILHOtwDh/GER0YOff7jFxztF37lQvwyBYbPYcOxTC2fxoCM6JRMDsETSl1ZWZFJybNWsWCgoK8Oabb2Lq1Knw9vYWfD8pKQn33nsv9u7diwMHDthkoYQQQghxT5crlWhR6ctOxsYHmHVbqUSMYEOJR42L9uuxJYZhsJMXnLuZlwFnjkh/L0xM1A+RKKhtdXgfIWI5hmFwwhCc8/GUYLihZHlsPP9gmoJz7ihPkDlnQllrCH9iK5W7m6KwtrPfXFyQ/phbkD132rWy5/jDIGJ4wTk2cw4A0h3094JhGJw2DIPw9pRgaITxrPHUGOftO3elSokrhqzUcfGBCFPIHbwi0h8mBecee+wxeHr2XbtcWlqKESNG4IYbbuj3wgghhBBCAMv7zbHYia3Vyg7K6OrifGkjd9A8MSnIrKzErviDIb6jwRAuq6iuFVWGQPbY+EBIJfrDhcRgH/h7eQDQZ7rQ75L7YYNzIhEQH+zdx9bCzDma2Gqaojp+cE7/fjx/VCQ8Db+H32WUQu1CwzVKGoSTWlmjYvy5ITMZDsqcK21oQ0WTfsDJmLgA7r2uK/7E1vMlTXZZm6nYQRAAMGcklbS6OpN7zj3xxBO9fr+0tBQzZszo94IIIYQQQvj40yHHWBCcYye2qrQ6NLVRI3u+nbz+cPzgmiXmpEbAU6r/aPnD2TKXOoAknfglrWy/OQAQi0XclMXaFpUgiEAGPoZhkGcIsEUHeEHuIenzNgq5B9f3kzLnTFPMD84ZAqAB3p6YOTwMgP5373B2tUPWZomS+s7Hwy9r9ZFJBUNmWlX2/9t8WlDS2n0YBMuZh0LsucAPztGUVldncnDuv//9L9atW2f0e2VlZZgxYwYiIugFQQghhBDrYkvoPCVijIz2M/v2ofyhEM3tVluXq9NodfjhrD7DzVMq7vdZdz+5B64f2nkAeeRKTb/XyOfIiX7u5ISg31yw4HtjYp2jTxSxv9oWFZTt+gBKogn95lhs9lxtiwoNrbYZylPR2I639mfjXEmDTfZvT8LMuc7nWTgYosSua+oPYVmrMNuSP2TmvAOGzPQ1DIIVJBgK0eg0f4sKa1twqVyfyZcW4y/ITCSuyeTg3Pfff4/XXnsN7733nuD68vJyzJgxA6Ghofjxxx+tvkBCCCGEuK/6FhVXSjUi2g8yad/ZGl2F+nYG56qo7xznTFEDapr1B8szh4VxJYv9cQsv+271zgu4UqXs9z6bOzRYti0daS/tx1enivu9P9K7kwX64JynVIxRvF5LgLDnIw2FcC+CSa1mBOcEE1ttlD23csc5vP3zFdz1n2OoanLtEzD8nnP8Hm1TB4dyLRoOXKpEfYtrTB/nD4SI9Bf2Qxvj4L5zpwz95kQicFnBPWFPDLaotILei460L5OmtA40JgfnpkyZgq+++gpPP/00tm3bBgCoqKjAjBkzEBQUhH379sHHx/Q3akIIIYSQvqQX96/fHNAlc46Ccxx+lsnUwaFW2ef0IaFcpkxpQxtue/8ojuXVWry/otpW3Pb+7/j+bBmUHRp88nuBVdZJjKtobOeCA6NjArqVLqbFBnBTeSk4517yeD3jTBkGYWzbPBv0nWvu0OC3HH2WbqtKi38dyLH6fdgTW9Ya4ScX/P5JJWLcYhjYo9Yy+OGca/T1LDFkzoUqZN3eT0bzAmL27jvX3KFBVoU+62xIuAIKee8np5yxtPVkQed7MJu1TlybycE5ALjxxhuxZcsW3H///fj0008xY8YM+Pn5Yd++ffD1Nf1NmhBCCCHEFPyyEwrOWRf/AIPf8Lo/ZFIJtj00ESOi9FkGTe0aLNl8At9lmD9h8GhuDRa8dwSXKzsP6KuVrp0V4+xOFPBLWrv3YPKTe2BwmP4z/6VyJdoMU5TJwMfPFrKkrLXrPqzlWG4tNLwywy9PFlklY9cRmjs0qDVkxLGTWvluF0xtdf7S1na1lvuby88CZA0K9YVCJgUAu0/4Ti+qB/uyGZfQ92cLwVAIJwjOMQzDtRbwk0sFGarEdZkVnAOAxYsX45///CceeOAB+Pr64qeffoKfn/n9XwghhBBC+sIfBsEvqTMHv6yVLeMkwIUyfdaAh0TENea2hnA/Ob585BpMS9Fn46m0OjzxRQbe/+WKyRM+tx4rxJLNJ9DQqhZcX9eigtZJ+v0MRCfyO7McjQXngM4guVbHDIgeX8Q0/IEO/IBbXwbxy1qrrJ8592uOcDiCjgH+8WO21e/HHowNg+AbFunHnfg4W9KInErnDkKWN3aeTDHWD00sFmFUrD7oVdHUjvLGtm7b2Iqw31zPwyBYqU4WnCttaENNsz7wmRYbADE7+pa4NJODc2PGjMHYsWMxduxYfPzxx/Dw8EBDQwNmzJjBXT927FhbrpUQQgghbkSj1eGs4eA/0l+OSH/Lmh1T5lx3rSoNcg0lZkMiFNyUVWvxlUmx+d5x+NPVsdx1r+/NxqqdF6DpZYqrWqvD8zvPY823F7hsmOlDQrlAkY7RB+iIbZzM1x+wikXA2B4apPMzWM/QUAi3wfac85SKEWXGe3FUgBf3/mKLzDm2pFUqFnGTYQ9cqhQMNnEV/H5zxjLnAOD2sZ3Zc9udfDAEfxhEtJHMOUA4ZMaepa3CSa19Z84F+8oQZeiZd7GsyeFDIfiZhvzefcS1SU3d8JZbbhF8ffPNN1t7LYQQQgghnOxKJVoNZXOWlrQCXae1UnAOAC6VN4FNYhsZZZ2S1q6kEjHW35qKmEBvvLFPn8my7UQRKhrb8O7isfCRCT+G1rWo8Ohnp3Esr/Og+uGpSfj7nKFYueMcd7Bd09wh+JkS66hvUSHbkIkzMtofvjLjhwn8xunp1HfOLWh1DApr9YG1xGAfs7J0JGIREoN9kF2pRGFtCzRaHaQS65wMKK5r5YKGV8UH4vaxMXj2m3MAgPV7LmHno5MgErlORpEgc66H4NzNo6Owfs8laHQMvk0vxbOzh0LipFlTJfX84RbGH8/oLkMh7DHYQKvrLAkNU8iMltwaMzLaH2WN7Wju0CC/tsWhpaT8QOboPoZZENdhcnBu7dq1tlwHIYQQQogAPyunr0lqvfH38oCHRAS1lqHMOYPzJZ1lOSOs1G/OGJFIhMdmDEJMoBee+fos1FoGh7Krseg/f2DLveMR5qfPRMiuUOLB/55EcZ0+08JTIsb621Kx0NBjKcRXmP04jAbTWd1Jfr+5hJ7LvJJDfaGQS6Fs1+BMUQMYhnGpAAgxX0l9K9RafTTfnJJWVnKYPjin1jIorm8zq2ddbw5f7ixpnZoSituvisHHR/JwubIZGcUN+PFCBea50BTLIl5wLraH4Fywrwwzhobhp4uVqGzqwJErNVwLAWfDn9QaY6SsFXDMUIisiiY0d2gA6PvNmfr+lRrtj/0XKwHoe7Y6NDjHy5xLiwlw2DqIdVm3hoEQQgghxErS+cMgTCg76YlIJOL6zlFwTo/tNwcIe+nYys2jo/Hf+yfAT64/L3yhtAm3vn8UOZVK/HSxEre9/zsXmAvxleGLRyZygTlAmP1YQ9mPNnGyj2EQLLFYxGW71DR3cNMYycBl6TAIVlKIbSa2/sbrNzd1cCgkYhFWzh3GXff63iyoND2X0TsbfnAu3kjPORa/tNWZB0OYUtYa4itDbJD+e+dKG6Dupe2BtZwRlLT23W+ONTKG13euxHF959RaHdf3Lj7YG8G+lEk+UJgUnJszZw6OHj3a53ZKpRKvvfYa3nvvvX4vjBBCCCHu7YyhZM5TIuaaYFsqxBDcqWvpoIEC6JzUKhGLMDTCesMgenNNcjC++eskrjF4aUMbbnnvdzy89RRaDOXLqdH++OFvk7uVMYf4UnDO1vg9usb3kjkHdO07R6WtA51wGIT52UKCia3V1uk7p9bqcPSKfoBJkI8n9zdi+pBQXJMUDAAoqG3FthNFVrk/e2CDc96eEgT7ePa43XVDwxDo7QEA2JdZgaZ2dY/bOhI/cG9sIASL7TvXrtYhu8L2Qy5OCYZBmH7iz1mGQmSVK9FhCDqPpn5zA4pJwbk77rgDd955J4YNG4a///3v+Prrr/H777/j9OnTOHDgAN5++23ceeediIyMRHp6OhYsWGDrdRNCCCFkAKtt7kCBoTn2yGg/yKSSfu2PzZzTMUBti3sHd9rVWuQYpiYODvOF3KN/z605BocrsPOxSRgZrT+QblFpud5389Oi8NUj1xgd/BFCE3dtqrlDw2VTpoT7IrCXwAAgzGRNp6EQA15+TWe2myWZc/zyv1wrZc5lFDdAaShNvHZQCNcHTyQSYeW8odx2mw7mQOmkwSs+rY7herTFBXn3WmrpKRVjQVoUAKBDo8Puc+V2WaO52LLWQG+Pbj1G+br2nbO1UwX64JzcQ4zhZpz4C+ENhch04FCIjOLO4CIF5wYWk4JzDzzwAPLy8rBmzRpkZWXhkUcewZQpUzB+/HjMnj0bH330EeLi4nD69Gl88cUXiI2N7XunhBBCCCE94B/wmzJJrS80sbVTdoWSyx4cYaNhEL0JU8jx5cPX4LqhYdx1z8xKwdt3jYaXp/FAYaiiM1hU4+Y/P1s4U1jPvSZ6K2lljeb1OKKhEANfPq+sNdmCnnO2yJz7rUu/Ob5RMQGYbwhe1bWo8OHhPKvcpy1VNLVzff166jfHt/CqzuNtZyxt1Wh1qGhqB9BzSSvLnn3nKhrbuaBhWkwAPMwcTjLSkD3X3KFBQa31pw+bgh/ApODcwGLyQAhPT08sXrwYixcvBgA0Njaira0NwcHB8PDwsNkCCSGEEOJ++KVy/ZnUyqLgXKcLZZ3lOGwGm735yKT4zz1X4ZfsakQGyPsMEgoGQlBZq9UJ+80F97m9v7cHBoX54kpVMzLLmtCu1to1A5PYFxtQC/T2QIB371mVxijkHghVyFCt7EBejXUy5w7n1HCXpwwO6fb9FbOGYO+Fcqi1DD4+kod7rolHuGEAjTMqquX1mzMhODcy2g8p4b64XNmMU4X1yK9psdqgDWsob2znAv69lbQCwIgoP3hKxFBpdUgvtm2w/1Rh53vduATzP1vwh0KcL220qMy7v9hhEJ4S8zL/iPOzeCCEv78/IiIiKDBHCCGEEKsTBOesnDnn7mWRF0r5wTn7Z86xpBIxZg4PNyl7j524C9DPzxaO55s2qZVvrCHbRaNjHNp/idhWq0qD8kZ9BlR/gj9sxl1NswqNrf0rM21oVeFcSQMAYGiEwmjQLS7YG/dMTACg72X2r58u9+s+ba2orjMLK66XYRAskUgkGAyx44xzZc8JJrUG9v54ZFIJhhmCTHnVLf1+ffTmtKDfnOnDIFj8oRAXHPC+19iq5oLlw6P63/KDOBea1koIIYQQp6LR6nC2WP+hNzrAyyrZDqG+lDnHulCq7y0mEgHDI13jrLtIJEKwj/5nSAMhrKtDo+UyMeKCvBHhb9rv25g4ft85Km0dqPglrf3JEuLfNref2XNHrtRwvSqNZc2x/nbdICgME6K/OlWMy5W2HzZgKf6kVlPKWgHg1jHRMLTaw44zpQ7rgWZMqYnDIFhjeOWZZw2BV1vgB+csycp39FCIDN5zQyWtAw8F5wghhBDiVLIqlGhT66d3juH1oukPKmvVU2k6p+Elhfj02qTb2YQY+s7Vtaic6iDU1Z0raYTKMPnPlH5zLMHE1sIGay+LOAl+cK4/mXNJIdbrO/drL/3m+AJ9PPHo9EEA9MOAXvsxq1/3a0tFdZ3BrDgTg3NhfnLu8Zc2tOH7s2U2WZslBJNa++g5Bwj/1ttqyEyrSoNMw+CbwWG+8Pc2vwIwxFeGSHYoRKn9h0Lwe/JZ6/MRcR4UnCOEEEKIU0m3cr85oEtwzo0zr3KqlFBp9YEYR5a0WoLtO6fVMahvpdJWazlhQUkrAAwK84WvIbh7pqgeDEMB04Eov7p/wyA6b2udia0Mw+A3Q785mVSM8X28Zu+bnMAFUw5mVeGP3FqL79uW2Mw5kQiIMSGYxVo0rnMwxDNfn8UBQz80Rytt6MwENOXxjInt/FufYaO+cxnFDVwfPEv6zbHYv53KDg0KeRmP9kCTWgc2Cs4RQgghxKmc4Z0Ztka/OaDLQAFlu1X26YoyDSWtADDSAZNa+4P/M6S+c9Yj6DdnRuacRCziDg6rlB0oa3Tf36uBLE+QOWd5WSs/OJfXj+DclapmrgfehKTgPgeRyD0keOqGFO7rf/x4ySkDyUWGyZ+RfnKz+ojNGRnB9Z7T6Bg8+tkZ/JJdZZM1mkPQcy6g70zA2CAvBPnos6Mzihts8jM6wytpvcqCfnMsR5W2MgzDtSAI8vE0OcOSuA6LgnMNDQ34+OOPsXLlStTV6f+gnzlzBqWlpVZdHCGEEELcD9sTRiYVW60nmo9MCm9P/QGPrctai+taMf+dI3j0s9PQGLLUnAX/QGKEgya1WkoYnHPf7Edr0mh1OG2Y1BqmkCHehEb0fGN5ZVX8A18ycLDBOZEIZr8++KIDveAp1R969qes9TC/pLWXfnN8t42NwdAIBQDgbEkjdp8vt/j+baGpXY16wxAEU/vNsUQiEV5fOAoL0qIAACqtDo9sPY3fr9T0cUvbYnvO+cqk8PPqu32CSNQZ7K9vVaOw1voZaacEwyAsP/HHD87ZcyhEUV0r9zpJi/GHSCSy230T+zA7OHfu3DmkpKTgtddew5tvvomGhgYAwM6dO7Fy5Uprr48QQgghbqSmuYMr70mN9ucO5qyBLW21dXDuy5PFOF/aiD3nK3Aou7rvG9jRhTJecM7lMuc8ucsUnLOOS+VKtKj0/R2vTgwy+2BPOBSiwZpLI06AYRguyy06wKvPLLXeSMQiJBiCewW1LRafuGBLWoHe+811ve/n5g7lvn59bzbXZ9EZFPNKIy3JhpKIRXjrzjTMHRkBAOjQ6PDg/53C8TzHlPDqdAzKGvTZjTGBXia/r/CHQqRbubRVp2O4EwjBPp79CjTzW0KcL7FfcC5d0G/OOlUFxLmY/Yn3qaeewtKlS5GTkwO5vHOa09y5c/Hrr79adXGEEEIIcS/87BtrlbSy2ImtTe0atBsGTthCSX3ngdapgrpetrQvjVaHS+X6stb4YG/4e5nfDNuRaKiH9R3P7zx4N6eklcVvSH6GJrYOOLUtKijbNQD6NwyCxZa2qrWMYGCAqdrVWu41G+Enx+Aw08tsp6WEYvKgYAD6DKTtp0vMvn9b4QfnLA0aSSVibLprDGYOCwcAtKm1uP/Tk4LppPZS3dzB9TY1ZVIrazTv/STDisF+rY7B92fL0GR4LV8VH9ivrLNQhQwRhinyF8oa7TYUgi1pBajf3EBldnDu5MmTeOSRR7pdHx0djYqKCqssihBCCCHuSdBvzsqTyPjBndoW2/Usq2jq7L11yolK/fJqWtCuNgyDcLGsOYB6ztnCCQv7zbECvD2RZBgSkFnWaNOgN7E//qRWfs84SyXxBkrk1Zjfd+5UQT33HjY1JcSsAItIJMKTMzt7z510ohMn/BJOc8ta+TylYrz35zGYPkSfUdii0mLplhM4ywvq2IO5k1pZabEBYH+k6VZYc5WyHe8duoKprx/C8i8zuOv7MwyCxQ2FaLffUAj+c5JGwbkByezgnFwuR1NTU7frs7OzERpqWmoxa+PGjUhLS0NAQABkMhliYmJwxx134Ny5c9w2SqUSy5cvR0xMDDw9PZGcnIy1a9dCrVYL9nXq1CnMnj0bfn5+8Pb2xuTJk/HTTz+ZtI6WlhasXr0aKSkpkMlkCAwMxKRJk3DixAmzHg8hhBBC+ueMDSa1suyVeVXBa4x/vsR5AhYXXLjfHEA956yNYRguQOHv5YGUMIVF+2GnLKq1DDLLuh8jOCOtjhE0rCfG8Qc3WCNzLok3UCK3yvy+c7/mdLYJmDLYvONOQFjKX2znKZu9KepnWSufTCrBB3dfhWsH6fvxKTs0uGfzcWSW2a/8kp89bs7kWT+5BxcEvlTeZNHfToZhcPRKDR777AwmbfgZb+zLFvyuJ4b44JbR0Wbvtyt7D4Xo0GhxyfD+mhTq43KZ78Q0Zgfnbr75Zqxbt44LjolEIhQVFeG5557D7bffbta+Dh8+jOrqaiQmJiI5ORnl5eXYvn07ZsyYgZaWFmi1WsybNw+bNm1CVVUVkpKSUFBQgHXr1mHp0qXcfjIyMjB16lTs378fMpkMQUFBOHr0KObOnYu9e/f2uob29nbMmDEDr776KnJzc5GYmIjY2FhcuHABly9fNvfpIYQQQoiF1FodzpU0ANCXwoT5yXu/gZlCfW0fnGMYRpA5p9Lq7DrNrTcXXHhSK0A956ztSlUz11x8fEIQxGLLyrzGxgdwl9NdoLSVYRgs/ugYJv/jZ7xzMMfRy3Fq/Emt/Kw3SyXzylAtyZz71TAMQiQCF3wyh5enhAvyF9cPzOAcoJ9Q+9GScVw2bFO7Bnd/fBzZFcp+79sU/GBYtAmTWvnYvnPmBvvrW1T4+Lc8XP/Pw1j88XHsPl8OjaHcVCQCpg8JxcdLxuGnJ6da5bNFakznCS57DIW4WNbElQpTSevAZXZw7s0330R1dTXCwsLQ1taGadOmYdCgQVAoFHj11VfN2te2bdtQVlaG9PR0XLx4EatWrQIA1NXVISsrC99++y2OHDkCANixYweysrKwceNGAMDnn3+O06dPAwDWrFmDtrY2JCQkIC8vDwUFBZgwYQK0Wi1WrFjR6xo2btyIkydPIjIyEhcvXkRWVhbOnTuH+vp63HbbbWY+O4QQQgixVFa5kitZsna/OcA+mXNNbRruMbBOFThHwEKQORfleplzgd6ekBgCSBSc67/jgpJWy3/f2Mw5wDWGQmSWNXGPfeuxQjCMffpFuSL+VFWrZM7xAnw5leYF56qa2pFlCC6NivZHoI9nH7cwLjZIn8lV2dThNFnNbBafr0yKIAsfV1denhJsWTqeaw9R36rGnz8+hitV5gdFzVVqYVkrIOw711ewv65FhX2ZFXjqqwxM2HAQr+y+JAgoh/h64tHpyfh1xQx8et/VmDk8HFKJdYZM2XsoBA2DcA9mvzr9/Pxw5MgRfPPNN/jHP/6Bxx9/HHv27MHhw4fh42Pem7ZcLsf333+PiRMnYvjw4Vi/fj0AIDQ0FCkpKVzWm5eXF+bNmwcAguy8ffv2QaPR4ODBgwCAWbNmQaFQQCqVYsGCBQCACxcuoKysrMc1fPnllwCApKQk3HPPPfDx8cGwYcPw/vvvCwZedNXR0YGmpibBP0IIcWX/O1aIiesPYuuxQkcvhbgpYUlrgNX3b4/gHD9rjuUMQyF0OoYra4rylyOYl0XoKsRiEXfgWqOknnP9Jew3F2zxfoZEKODjqZ/i6QpDIfZldvbIrlJ24GI5fYbvCdtzTiYVI8rfvCCLMX5yD25AwKnCehy8VGnybX+1YEqrMfzMNEuGUlibRqvj1hEb5N2vQQVd+cqk+PT+q5EWow8k1TSrsPijY4JegrbAf17NKWsFhFlhGV36zpXUt2JneglW7jiPmW8dxtiXf8IjW09jx5lSwfTda5KC8e7iMTj63PV4ds7QfvXx60mYQo5wP/3f0QtljTYP8vOfizGUOTdgSc3ZWKPRQC6XIyMjA9dddx2uu+66fi+gqqoKx48f575OTEzEDz/8AIVCgeLiYgBAcHAwxGJ9HDE8PJzbtqioCDU1NWhr078BhIWFcd/rul1UVJTR+8/OzgYA/P777wgJCUF4eDiysrKwbNkydHR04JlnnjF6uw0bNuCll16y5CETQohTeu/QFVQ0tePtgzm4Z2K8o5dD3JAt+80BXYJzzd2DaNZgLDh3uqgeOh1jcdmgNRTUtqBFpc8S4Z/xdzUhvjJUKztQ29IBhmGseiDrThiG4YJz3p6SfmVSSsQipMUG4GhuLcob21He2IZIKwRybIUfnAOAX7KrBb3IiJ5Wx6CwVh/ESQzxsdr711+nJ2P1txcAACu2n8PeJ6aYVGbIlrQClvWbY8UGdgZqiutbMciMia+2UN7YzpVfxgVZ//fGT+6B/94/AYs/PobMsiZUKTvwxBfp+P7xa61+Xyy2rFXuIUawmZmAQ8IV8PKQoE2txamCevzvWCFOFtThZH4dyhp7/rvt7+WBhVfF4E9Xx9ntZ5oa7Y/Kpir9UIjaViRYIbu0J2xwTiYVY0iEZf1BifMzK3NOKpUiPj4eWq31UoAffPBB6HQ6FBYWYtGiRcjPz8eiRYugVCqNRqD514lEoh6j1F2364lGox+pHBQUhCtXriA3NxczZ84EALz77rs93m7lypVobGzk/rGBREIIcUU6HYMqQyZRtdJ5Sj2Ie2GDczKpGMMirV92GWKHnnOVRg4eGlrVyK22fSlRby7weve4dnBOf6Cn1jJobFP3sTXpSUl9GxdIHhsXCI9+lnqNEZSiNfRrX7aUV92My13KKX/JrnLQapxbTXMH1Fr98VRMoPUyj/48IQ4zh+mTKOpaVHj667PQ6XrPOtLpGBy5os+c85VJBa83c8XyAmDOMBSi2Mr95ozx9/bA1gcmcFls50oa0arS2OS+GIbhylqjArzMPoEilYiRasj0q2hqx+pvL+C7jLJugTn2pMCD1ybiP/dcheOrrseam4bbNdg60k5DIWqbO7i+hKnR/v1+vybOy+yf7OrVq7Fy5UrU1VmvREMkEiEuLo7rOZeZmYlt27YhLi4OAFBTUwOdTp+qWlXV+Qc0NjYWoaGh8PIy9A6o7EyN7rpdT6Kj9dNaUlJS4O/vD5FIhHHjxgHQZ9yx99uVTCaDn5+f4B8hhLiqhjY1tLwPx+W9nJ0kxBaqlR0ortN/oE+LCYCn1PofPoN5AwVsFZzj/+6MT+jM/jtV6Nhyv0zegcNIF5zUyrLHUA93ICxpDer3/viZrmcc/Frvzb7M7mWUZ4oa0NhKgd6uKnlZwGz5njWIRCK8vnAUwgyZzL/l1GDL7/m93iazrAl1LfpS9knJwf0KTvBLHJ0hOCcYBhFsu8yrIB9Pwe9phY0+59W1qNBmOMFraVD36oTu70lyDzEmJQfjiesH47MHJ+D8i7Pw3WOTsfqm4Zg1IgJyD0m/1m0J/sRWW06qPmsYlAXQMIiBzux3trfffhu//fYboqKiMGTIEIwdO1bwz1S1tbXYunUrVKrOniF79uzhLre0tGDOnDkA9BNVd+3aBQD4+uuvuW3mzJkDqVSK66+/HgCwf/9+KJVKqNVqfPfddwCA1NRUrqR1yZIlGDp0KJYsWcLtg82Su3z5MpqamsAwDDdoIjk5mSunJYSQgaxrc/WyBsf3YSHuhV/SOoY3/dGaZFIJArw9AADVNhoowC9rvTE1krt80sF95y6U8YJzLlzCFyIoTabgnKUuV3ZObUyzwsEe/4DRmfvO8Utarx+qb4ej1TH47Up1TzdxW1VNnb9f4VaenB3k44m37hzNff3a3qxeJ17+msMrae1HvzmgS1lrneM/6xTaIXOOFenf+XO0VXBOOKnVsjLdh6cl4ZbRUZg1PByr5g3Fzkcn4fyLs/H5QxPx5A0pmDwoBN6eZnXnsomU8M7y0jwbZsdn8LKRR9ugHy9xHma/qm+55Rar3LFSqcSSJUvwyCOPIDk5WVAaqlAocNtttyEmJgbXXnstjhw5goULFyIpKQk5OfqR54sXL+aCga+88goOHjyIwsJCJCUlwdPTE2VlZZBIJHj99de5+ywqKkJ2djYiIiK461atWoXt27ejrq6Omzqbl5cHAHjhhRes8lgJIcTZ1XTJQCml4ByxM1v3m2OF+srQ0KpGjVJlk55l/GyTG0ZEYP2PWVBpdDjtwGwihmFwoVR/Vj9UITOpv5OzCuFlP9Y001AIS+XypnBaowws2FeGhGBvFNS24kJZEzo0Wsik9s9k6U1FYzvXt2lohAJLJyfgYJa+0uaX7GrcNMp4f2p3VansfC8LU1h/gMy1g0PwyNQkfPhrHtRaBk98kY4f/nat0aALv9/ctH70mwP0ASqJWAStjhFkrTlKkR2Dc/wgq7H+qNZQ2o9hECw/uQc23jXGWkuymegAL8ikYnRodDZtXZHOHwZBk1oHNLODc2vXrrXKHQcEBOCuu+7CiRMnkJubC7VajdjYWEybNg2rVq1CfLy+Gfnu3buxZs0abN++HXl5eYiLi8OSJUuwevVqbl9paWk4fPgwnn/+efzxxx9obm7GpEmTsHbtWsyaNavXdSQmJuLIkSN47rnn8Ouvv6KjowOTJk3CmjVruMw9QggZ6LpmoFDmHLG39MIG7rJNg3MKGXKqmtGm1qJFpYWvzLpn39lsBA+JCJF+coyK9sepwnoU1raiStmOMIX9A2Ml9W1cf7aR/Wj87wz4fQO7nlQgpmOzPOQeYkRaKVg7Ni4QBbWtUGl0uFjW5HQHkT9d7MyamzUiAlcnBnGN5w9frnb40BZnY8vMOdbTs4bg99waXChtQm51C17edQkbbksVbNPcoeFObsQHeyMuuH8BLKlEjOgALxTVtaK43vHBOba0ViyyPNPMVPzMOVu1L7FG5pyrEItFSAzxQVaFEkV1rdBodZBauR+cTsdwJxVCFTJE+bvuyTXSN4flgwYEBGDbtm19bufn54dNmzZh06ZNvW43fvx47N+/v9dtfvnlF6PXjxgxAj/88EOfayGEkIGqtksGCgXniD2ptTqup0pskJdgqqq1CSa2KjusHpxjM+fCFHKIxSKMSwji+s2dLqjHXF6pq73wy8VSXXgYBCD8+XUtxyemUWl0XCldUoiv1QJSY+ICsCO9FIB+sqCzBef28kpaZ48Ih0wqwaTkYBzMqkK1sgMXy5tceliKtVXxMuds9Z7sKRVj011jcNPbR9Cm1mLbiSJMSwnBnJGd75PHcmu5aaZT+5k1x4oN0gfnlO0aNLaq4W9od+AIbOZcpL+XTXqt8kXwAjuVNsqcK7FC5pwrSQ71RVaFEmotg+L6NiRaeWJrXk0LlO364R2jYwNoQvkAZ/Y7gFgshkQi6fEfIYQQ19O95xwNhCD2c7GsCR0a/QAmW2bNAbYdKNCh0aLW0LScbaA+Lt7xQyH4/eZGuHjwQZA5R8E5ixTVtXIDgJKtONmQ33+JX9rmDBpaVTiWp+/7GBPoheGGadDTh3QGe2hqq5A9MucAfXDjxQXDua///s15lDd2vn74/eam9rPfHIvfd86Rpa2NbWo0GIaR2LqkFRAG52yVOccPzkW7QXAuKbQzGJdbZf3S1gxeSSsNgxj4zD5dvHPnTsHXarUa6enp+L//+z+89NJLVlsYIYQQ++kWnGt0rgMr4np2ppfg06OFSI32w6zhEZiYFNxjVoC9+s0B3TPnrIl/MMseBF3FD845aCgE228OgMtnBgmDc9RzzhL83khJVszy4PcyrHKykuODl6q4gOScERFc9sn0IWEAMgHo+849ft1gRy3R6bA95yRiEYJ9PPvYun/uHBeLw5ersed8BRrb1Hjyywx89uBESMQirt+cVCzCxKT+TxYGukxsrW9Faoxj3heL7dhvDtCfnBKLAB1j+4EQUrHIIW0c7I0fnMuraQYQbtX9ZxTzhmVRcG7AMzs4d/PNN3e7buHChRgxYgS+/PJLPPDAA1ZZGCGEEPvpepBb1tBmk2b5xD0wDIN1P1xEfasaZ4sb8L9jRVDIpbhuaBhmDY/AtCGhgnLSM7xJZLYOzoUIMuese3DCb7DNZpoE+nhiUJgvrlQ1I7OsCa0qjV2nzOmHQegz5wK9PVy+X02Qjyd3cEmZc5bhB+esmTnHHxpQZeXfrf7iT2mdPbJzMFxskDeSQ32QW92CM0X1Di9xdCbsyYZQX5nNe/GJRCJsuHUUMooaUNbYjmN5dfjw11zclBqFglp9AGtsfCAUcuv8bATBOQdmzgmGQfSzl54ppBIxQhUyVDZ12GwgRImhj19UgBckbtDDMTm08z00jzdox1rSDZ+PRCJgFAXnBjyrFbZPmDABBw4csNbuCCGE2FFtl4PcdrUO9YZSC0LMVdui6vb6UbZr8F1GGR77/AzGvvwT7v/0JL44UYRqZQfOGMo95R5iDI1UGNul1Qgy56wc3OFnIvAbb7OlrRpeY2d7qWhq50ptR0b7u3zAXSIWIciQxUMDISyTW9V5AJkcar3MOR+ZFD6e+hY3zpQ516rS4LAh+yrE17PbCQB99pw+4Pvbleput3dHWh3DBb/D/GzXA5TP39sDby0aDfYt6q39l/HeoSvc96cODrHafcXyyi0dWdZqz0mtrAh//WOvae6AWquz6r6b2tVcf7SBPgyCxe8xZ+2JrW0qLbIqlACAlDCF1XvkEudjleBcW1sb3nnnHcTExFhjd4QQQuzMWHkYDYUglsqv6Tz4n5QcjFtGR0Eh7/xQqdLo8HNWFZ7bcR5Xrz/AlcGMigmAh5UnnXVly7LWSiOZcwAwLqGzFOt0gX37zvFLWkdEuXZJK4vNfqxpVoFhGAevxvXoS6/0kkKslzkHdJa2Vjc5T3Du18vVXE/LG4ZHdMvmmWEIzgHAoSwKzgH6E3aGKmC7liZOTArGY9MHAdCfzPjyVDH3PWv1mwOEgbBiB/ZHLKy1f3COnc7MMNYPope6Wb85AFDIPbges9bOnLtQ1siV41O/Ofdgdvg1MDBQcNaVYRgolUp4e3vjf//7n1UXRwghxPYYhjGaQVTa0Oby/amIY/CDczcMD8d9kxOh0uhwPL8W+zMrsf9iBSoNB+/82IqtS1oB2wbn+JlzEX7dM+cA+w+FGEiTWln64JwSKq0OTe0a+HtRGaKpGIbhmpZHB3jBy9O6w9xCFTLk17RA2aFBm0pr9f1bYl9mJXd59oju/aDGJwbC21OCVpUWhy9XQ6djbF7G6ez4QRt7Zc6xnpg5GEeu1AiyjAO9PTDSiicXgnw8uZ95iQMz5+zdcw4QDoWoaGyzaoabu01qZSWF+KKyqQO1LSo0tKoQ4G2dHo0ZvJYfo+MCrLJP4tzMDs7961//EgTnxGIxQkNDMWHCBAQGOtfIdEIIIX1Tdmig0nQvbaDMOWIpfnAuwVDy4SkVY8rgUEwZHIqXFozAudJG7M+swL7MCuRWt0AqFmFeakRPu7SaQG9PSMQiQ9mWdQcK8Hv48A+A4oO9EeIrQ02zvoRXq2Ps1osnkzepdWS0n13u09ZCfDsPfGqaOyg4Z4aaZhWaDGVnSVYsaWWFC4ZCtCM+2Pr3YQ6VRoeDl/TBOYVMiknJ3UsjZVIJJiUH48ClKtQ0d+BieZPbn5gSZAHbuam/h0SMt+8ag3lv/4bmDv1r9drBoVYNmIpEIsQGeiO7UomS+jaHBWTZslaFTIoAO/U6FAbnrJ051xlsdJeyVkD/XvpHXi0AILe6BVfFWyk4R5Na3Y7ZwbnrrrsOsbGxRnuWFBUVIS4uzioLI4QQYh/8vk3hfjIuo4mCc8RSBbzgnLFpkGKxCKNjAzA6NgDPzhmKotpWSCUiRNnhwzw7ebBK2WHTzDl+kEIkEmFcfCD2ZlZA2aHB5UolhkXaJ1DGlrUq5FK7ZWbYmmBiq7JD0JCb9C6PPwzCBs+bcChEh8ODc8fyarlg5IyhYT1OjJ42JAwHLlUBAA5lVbl9cM6RmXOAfjjCy7eMwJNfngUALEiLsvp9xAbpg3MqrQ6VynZE+ts3mKTR6riWDnHB3nbrB8rP6i5vtO7nvNIG9ytrBboOhWgWTGnvj3TDJHtvTwlSwm3bj5c4B7MbuyQmJqK6uns/htraWiQmJlplUYQQQuyHbRYP6Ht+scoanGvaHnEdbOacVCwy6ex5XLC3XQJzLLa0taa5Azqd9XqWsZlzAd4ekHsIy/nGJfBKWwvqrHafvalWdk7kGxHl5/LDIFghvACQtbMfB7rcatsMg2Dxg3OVNpoGaQ7+lNY5I3vOzJ3O62f2y2XqOyfsn2n/4BwA3DomBl88PBGf3DceNwzvXo7cX7FBnX9ziuvsfzKyrKGd6ydmzxMnwsw56/6O8staYwMHxskgU/CzkHOt1HeuqqkdZYafz6gYf7eYfEssCM711Hi3ubkZcrl9054JIYT0Hz9zbmSUPzcprZQy54gFdDoGBbX6D6dxwd6Q2njAgyXY4JxGx6ChzTpTiRmGQZUh65SfmcDiD4WwV9+5C/yS1gEyDALokjln5Ym7A12urTPneIGcKgcPhdDpGPx0UV/S6ikVY1ovAwVig7wxKEz/fKQX1aOh1b2DvoLMOTuXtfJNTAoWDOywJn7wyBETWx0xqRUQ/n2qsHIAnf3cKBYJg4ADXdfMOWtIF5S0Uuswd2FyWetTTz0FQF+a8cILL8Dbu/NNRKvV4vjx4xg9erTVF0gIIcS2+Ae3kQFyhPrKUKXsoLJWYpFKZTva1foehokOLmnrSaivcChEkE//+8PUtaig0uoft7GDkhFRfpB7iNGu1uGUnSa2ZvKHQcQMpOCcsOccMZ0gOBdmi7JWfs85x/5s0osbuDVMHRwCH1nvhz3TU0JxpaoZOgb4LacG821QSukqqnhBG0eUtdqDYGKrg4NzsQMkc46d1hruJ7f55HVnEhXgBZlUjA6NTvAe2x/Ub849mfxbk56ejvT0dDAMg/Pnz3Nfp6enIysrC2lpafj0009tuFRCSFcMwyCnUmm0mT8hpqrmlYWF+soQaSgvrG7uoNcWMVs+r6Qj0Ui/OWcQYoOJrYJhEEYy5zwkYu4DdmlDm12C32y/OQAYQZlzBECe4ffTVyYVlKBai7DnnGPLWvklrbNG9D1sZjovQ+tQdpVN1uQq2KCmWAQE+wzM4Bw/IFZc79jgXHyw/YJzcg8JAg3DJ6yZOdem0nJtUtxpUiug72XLft4pqmuFRtv/z878Sa1jaFKr2zA5c+7QoUMAgPvuuw+bNm2Cn9/AmPhFiCtb/e0FfHa8CNNSQvHpfeMHTD8hYl+1vIPbEF8ZogPkOFsMMIy+74w9z+gS15df231Sq7MRZM41W+fgRNijyXg5z7j4IBzL0/ebO1VYjwU27rPHlrV6e0qcNlBqiVBBcNW9yw/N0a7WckGIpFAfm3xm4GfOWXvgijkYhuGCcxKxCDOH9d2zbHxiILw9JWhVafHr5WqHTfB0Buz7WYivbMD2uuIHkByTOdf5t9Lew3rC/eSob1Wjsqndaq/z0gb3nNTKSg71RVaFEmotg+L6tn79zdXqGJwraQAARPrLe/xMQQYes/NNP/nkEwrMEeIEdDoG32eUAQAOX67GYWpgTCzEzzwJ9vVEFG9iGfWdI+biZ84Zm9TqDEJtkDlXzisP6qnXDn8oxGkbD4Wob1FxzbmHR/oNqANsfhkyZc6ZrqC2BWzraFtNuPXzknITUR3Zcy67UonCWn2w4OqEIJNK12VSCSYlhwDQDxrJLGvq4xYDk1bHcINWBnJQwEcm5UrkHTEQgs2cE4tg14FIgD7gAwBqLYM6K/VX5A+DcKdJrSzBUIiq/pW25lQp0aLSAqCsOXdjcuYc38mTJ/H111+jqKgIKpXwF3rHjh1WWRghpHd5Nc1Qdmi4r/91IAfTUkIpe46YjT/tMNjXU/AhkfrOEXMVuELmnA2Cc5WNvZe1AsDY+ECIRPqsVFsPheAHFkZGD5ySVkBfIhzo7YH6VjUF58yQZ+NJrYC+N3WYQoaS+jaHlrXuu1DJXZ49wvRJn9OHhOLAJf1tD2VXDahejaaqbengpojaovTZmcQEeqOmWWXolartNmXblooMweOoAC+792fr2neO3yrAUvyTuTFuNKmVxQ/O5dU0A7B8wjC/pJX6zbkXs98JvvjiC0yePBkXL17Ezp07oVarcfHiRfz888/w93e/P2CEOEpGcaPg67PFDfglm7Ln+qNdrcUdHxzF9DcOOaTEwVHYg1s/uRQyqYSCc6Rf8mr0AQC5h7jHIJWj8YNz/OB0fwh6zvWQOecn98CQcAUA4FJ5E5p5J1isjT+pdUTUwKt4YA8mq5UdYNh0MNIrfjZHko0y54DOgE59q9phfUv3mtlvjjV9SOdE11/ctO8cP+MxzEnfw62FbdvBMPatFGhsVaOpXf/+b89+c6wIv87PedYaCiHInHPTslYW/0SIJTJoUqvbMjs4t379evzrX//Crl274OnpiU2bNuHSpUu48847ERcXZ4s1EkKMyCjunnXxrwOX6SClH37OqsLJgnoU1Lbik98LHL0cu6k1BCfYJvn8D1WlDY5t6E1ci0ar4wLbCcE+TtuvyRaZcxW8A9regpJsaauOAdKLbJc9d2GATmplscG5Do3OpkHOgUQwqdWmwTle3zkHZDYW17XiUrk+czQtxt+sksGYQG8MNkyxzShuQIOVSv5cCT/jcaBnzsUFOabvXKED+80BQIR/58+13EpDIUrdvKyV32OuvxNb2eCcRCxC6gDLfCe9Mzs4l5ubixtvvBEAIJPJ0NLSApFIhCeffBL/+c9/rL5AQohxZw2ZcyIRMMjwQfJcSSN+znLPM73WkFWh5C7/kVfrwJXYT7tayx3YhhgmskUFdB5YUeYcMUdpQxvUWv0JAmceQKCQSSEz9MWydlmrp1SMAMMkPGPGxQdxl08W2C44x5a1yqRiDLJhIMZRQmyQ/TjQ5RqyOcQi22brhPnxJrZacRqkqcyd0toVmz2nY4Bfc2qsti5Xwc+cG8g95wAgNpA/sdV+n3f4k1odMXQrwp+fOWedx83PPHTHzDmF3IMLZvcnc665Q4PLlfrjkSHhCnh52q/Umjie2cG5oKAgKJX6F0x0dDQuXLgAAGhoaEBrq/uUgRHiSO1qLXdWeHCYL1bMHsJ9b+OBHMqes9BlXnDuUnkT6loG/gEfPzARotA3Rg7y8eQCFxScI+bIr3H+fnOAvi8Wmz1nrcwetqw1wk/ea+9PwVCIQtsMhVC2q7mfxdBIP0jt3M/IHthG7gANhTAFwzDIM2RzxAZ527S3Fj/bqsoBE1v5wbnZFgXnwrjLv7jhCc9KflnrAM+c4wfG7Jk5xw/OOSJzLlLQc846v6MlhknQIb4yu/bucyZsRnJti8rirNuzxQ0wtHykYRBuyOxPa1OmTMFPP/0EALjzzjvxxBNP4KGHHsKf/vQnXH/99VZfICGku8yyJmgM79xpMQGYNTyc6yl0vrQRBy6534dJa7hcpRR8fdwNsuf4B7VsmZhIJOLOepY1tFGwl5iMH5xz5sw5oLO0ta5FBbW2f32x2lRaNLapAfRe0groMwrYbdKLGqDp530bIxgGMQD7zQEQNDCvcUAAyNVUNnVw0/9sPUWZX9Zq7+BctbKDG7YyKMyXqywwx7iEQPgYslUOX66GTudefwP5Za0DPXMuzkHBOf59xQfZ/28l/+da0dT/k7AqjY77XXfHklaWYGKrhdlzp3nDovgn84h7MDs49+677+Kuu+4CAKxcuRLPPPMMKisrcdttt2Hz5s1WXyAhpDt+o9C02ACIRCIsn5nCXbeRes+ZrV2tRWGt8IPZ0dyBH5yr5ZWD8Q922R49LSotmtqonxMxTYELBef4r/fafpZF8odBhPcwDIIlEom4D9ytKi0ulSt73d4S/H5zA21SKyuUH5yjzLk+2avfHODYstafLlaC/fhjzpRWPplUgkmDQgDoM2D4w1XcgSBzzm9gZ85F+sshMfRGLa63Y8+5WsdmzvnJpfA2BKCtMRCivLGN+72LccOSVlaSYCiEZX3n+JPcr4oL6mVLMhCZFZzTaDT44YcfIBbrbyYWi/Hss8/i+++/x1tvvYXAQIruEmIPZwVTfAIAADOHhWFktD5DIrOsCT9drHTAylxXXnULtF3Ojh/NHfi9ZvgHtcG8MjF+yYM9J5gR15bHL2sNdu7gnDWHQvAPbiL7CM4BwLj4zs9LJwusX9oqzJwbmME5tgwfAKqp51yf+AeKyRZkk5lDkDnXZN/AaX9LWln8qa2Hsqr7tSZXU23InBOLgGAfzz62dm1SiZh7zy6qtX9Zq59cCv9eepTaikgk4jK4rRGc409qjXHjzLnkfmbO6XQM0g3BuVCFDLFB7vtcuiuzgnNSqRR//etf0dFBZygJcaSzJQ0A9I2+h0QoAOj/0C6/np89R73nzJFT1T17Jbe6xSHNrO3JWFkrAMF0u3IrNQsmA19Brf7DqEImFfQEc0b8zKvq5v79nlc2mVcGNi6h82w4v4TFGsoa2nDAcHLGQyJCSsTAGwYBdClrpcy5PvEPFG1e1srPnFPa729oU7uaO6kW5S/v15RDQd+5y+7VKoTNnAv2lQ3IfpVdsZlrTe0arj2BLam1Oq6fb5wNB7P0JcIQlGxRaaFs79/jdvdJrazkfmbOXa5SQmkY0nZVXGCv/WvJwGT2O+6ECROQnp5ui7UQQkxQ16Li0uFTo/3hwfvgdP2wMIyK0X8YvVjehH2ZlD1nqmzeMIihhoAnMPCnttb0UNbKn7RFQyGIKTo0Wu4DekKIj9N/qLRq5hwvONdXzzlA/x7D9rQ6VVhntRMpDMPguR3nuQ/3t42JgUw6MBtz839+1HOub7l2zJwL8vaE1FAqaM+ec4eyqrhp0bNGRPTrPSg6wAsp4frnKaO4AfVuMCAK0GfusENywgd4SStLMLHVDn3nyhrauIb/jug3x+L/repv9lyJm09qZUUFeHED1XItCM7xT9ZdFU8Vie7I7ODco48+iqeffhrvvvsu/vjjD5w7d07wjxBiW2zWHKDvN8en7z03mPt644HLbtfI2FKXKzv/iC6dlMBd/mOA953jZ5yE9pA5V9owsLMHiXUU17VyBxzO3m8O6BLc6W/POd6BTYR/3we0UokYY+L0H7wrmzoEJUH98fWpEvx6WV+CF+4nw6p5w6yyX2cU7EOZc+bIrdL/jfP38rB5qaJYLOJO9tgzOMf/ez3Lwn5zfGz2HMMAv+a4R2lrbYuKa/HBL08eyPilg/YIzvH7zcU6oN8cK4LXgqG8n8G5UkFZq+Mek6NJxCLu809RXavZA59OF/CCczQMwi2ZHZxbtGgR8vPzsWzZMkyePBmjR4/GmDFjuP8JIbaVUdTAXe4anAOAGUPCuOuzKpSC/iukZ5cr9Zlz3p4SLBgdBU9DRuJAHwrRU8+5qIDOD22UOUdMkccrm0twseBcfzPnzC1rBYRT2E4V9r/vXFlDG17edZH7esNtqQ7pZWQvnlIx/L30j6+/wdWBrlWlQZnh4Dsp1D5ZrWxpa21zR7d+rrZyparzJNuomIB+7296SmffuV+y3SM4J5zU6iaZc/yJrXYYClFU59hhECx+f9SKfrZwKeE9b+5c1gp0TmxVaxkUm3ni7XSRPjjnKRVjxACdtE56Z3ZwLj8/v9u/vLw87n9CiG3xM+fGGAnOdc+ey6HsuT60qbTcB7LBYb7w9pRidFwAAP2HqBI7TvCyN/ag1stDAh+ZlLs+ispaiZnYfnOA7XtaWYOg51w/g3P8rANTs03GxXf2nTtZ0L++cwzDYCWvnPX2sTG4bmj/M4ecHdvXkDLnescPnNt6UisrzBD81jH6AJ09sANpIvzk8OX9PbPUuIQgrvz818vVbvFZij/AI9RtMuc6A2RFdsicK3aS4Fy4Fcta2cFh/l4eVvndc2X899jcKtNLW6uVHVxWZVqM/4BtSUF6Z3ZwLj4+vtd/hBDbYRiGm9Qa5OPZ40Sk6Smh3BTX7EolfrxA2XO9uVLVzI2ATwnX95ublBzMfX8gl7ayB7X8yYcAIPeQcKVPFJwjpsiv6TzgcNfMuRBfGTylpn20Gh0XAImhL9fpfgbnvj5dgsO8ctYXbhrer/25CrZ0slWlRatK4+DV2I5Wx+DXy9UW9TACuvSbs1Nwjh/YsUdpa12LCnWGvnDJYdZ5//GUijF5UAgAfbnn+dJGq+zXmbll5pyg55ztP+/wA4DxDhwIEenfeQzRn8w5jVbHBffceVIrK4k3sTWvxvT3bH6/ubHUb85tWTSCZ+vWrZg8eTKioqJQWFgIANi4cSO+++47qy6OECJUVNeK+lb9RKXRsQE9lqaIRCI8eUPn5NZNB6n3XG+yKzuHQXQG50K46wbqUAi1VocGw+uJPwyCxWbPVTS1m903g7iffN6H0MRg5w/OyT0kUBjO8Ff3I7NHq2O44IMp/eZYvjIphkXq32+yK5VobLVsWl55Yxte/sF9yln5QgRDIQZmaWtVUzvu/vg4lmw5gQXvHBGUUJtKmDlnn9/NMN7Pxh4TW/mTEZNCrBeAnJDUeaLuihlZMK6qkpc55y4950J8PeHloc9SskdZK5sdJRGLBKWl9hbO+3vVn8y5SmUHNIZjDHceBsHiv//w33v7cqaoMzjHz6wn7sXs4Ny///1vPPXUU5g3bx4aGhqg1WoBAAEBAdi4caO110cI4ckwZM0BQFof/VSmDg7BWENp5uXKZuw+X267hbm4HF5wbrBhOltarD/kHvq3yD9ya602TdGZ1LUYn9TKYvvO6Rj9hy9CelNgyJwL8vF0meAQmz3Xn8w5fk8tUya18vE/gPM/mJuqaznrbWOj3aKclSUoTR6Apa2HL1dj7qbfuBNELSot9lqQCc/PnEuyV1krL+uKXyppK8LsQOsFIPm/0+5QPu2OmXMikYgbClFS12bTk9kMw3BlrdEBXpBKLMqTsYoQHxk3Vbk/wTn+MAh37zcHCDPnzMl2PlXQ2XuWPX4j7sfsd4R33nkHH330EZ5//nlIJJ210OPGjcP58+fN2tfGjRuRlpaGgIAAyGQyxMTE4I477hBMfVUqlVi+fDliYmLg6emJ5ORkrF27Fmq18AzzqVOnMHv2bPj5+cHb2xuTJ0/GTz/9ZNZ6VqxYAZFIBJFIhIkTJ5p1W0LsgR+cG93HG3f37LkcuzVldjX8zLkhEfpMFplUgvEJ+gPn8sZ2FNQOvL5z/IBEiG/36X3Ud46YqlWl4cpiXGFSK4vNvGru0FhcFllhwTAIVn+HQmw/XcI1qg9TyLD2phFm78OV8d+3BlLgRK3V4R8/ZuHeLSdQ2yLMCDxwqdLs/eUasjekYpHdyujC7FzWKsgODLNeAJL/Gutv+bsrcMfMOaCztFWl1dn09drQquZOpjiypBXQT1Vm/2b1p6y1tKHz87E7T2plKeQeXOawqZlz7WotLpQ2AdD37A02csKcuAeLBkIYm8oqk8nQ0mJ66iYAHD58GNXV1UhMTERycjLKy8uxfft2zJgxAy0tLdBqtZg3bx42bdqEqqoqJCUloaCgAOvWrcPSpUu5/WRkZGDq1KnYv38/ZDIZgoKCcPToUcydOxd79+41aS0///wz/vnPf5q1fkLs7awgc86/z+2vHRSCcYa+BVeqmrHrXJmtlubScir1Z7YUMqngLPnEpIHdd45/MGsscy6agnPERAX8fnMuUNLKCrVCWSQ/46A/mXNb/yjEthNFJmdtVDS2Yx1vOuv6W92nnJXFf98aKMG5kvpWLPrwD3xwOJe77rqhYYgylL8dy6uFst30EmidjuFKzuOCveFhp0wde5e12qqvnuA9YoC8xnrDBqZEIuMn7QYqe01sLeT1m4t14DAIVoThfaWuRYV2tdaifZTw+vRRWasemz1X26JCQ2vfny0ulDZCZWgfQ/3m3JvZf6ETExORkZHR7foff/wRw4eb14B427ZtKCsrQ3p6Oi5evIhVq1YBAOrq6pCVlYVvv/0WR44cAQDs2LEDWVlZXOns559/jtOnTwMA1qxZg7a2NiQkJCAvLw8FBQWYMGECtFotVqxY0ec66urqsGTJEiQlJWHs2LFmPQZC7EWl0eFCmf6sSkKwNwK8+/7Q1DV77m3KnutG2a7mpkylRCgEffz4QyGO5tbYfW22xk5qBYwH5/jNgssabH9wRVxXfg1vUqudelpZg7As0rLXuCBzzsz+QRH+ckxI1Afomto1WLnjPBZ+cBQXDe/1PdGXs56Dst1QzjomGjOHu085K0sQnHOinnNtKq1FB7p7L1Rg3qbfcKaoAQDgIRFh9Y3DsPnecbjB8PNVaxn8lmP636Oyxja0q/UHfdbsxdYXfllrpV3KWvXvQV4eErOD5L3h9zUciKXTXVUZ3s+CfWQOLbm0N8HEVitXSjAMgyplO45eqcH208Xc9Y6c1MqK4P3NsrT8vJR38pYGQugJJraakD3HHwZxFQXn3JrZs45XrFiBxx57DO3t7WAYBidOnMC2bduwYcMGfPzxx2btSy6X4/vvv8f69evR1NSE7OxsAEBoaChSUlLwwQcfAAC8vLwwb948AMDtt9+OZcuWAQD27duHtLQ0HDx4EAAwa9YsKBT6krQFCxbg+PHjuHDhAsrKyhAVFdXjOh5++GFUVlbiyJEj+Pvf/27S2js6OtDR0fkm1tTU+wdpQvoru0IJlUb/AZudxGqKScnBuDohCCcK6pBb3YL//JqHv05PttEqXU8Or8FzSrjwwCU12h++MimaOzQ4lqfvO9fTEA5XVNtH5hzbcw6gzDnSu4Lazg+frpo5V22FzDlLmnu//+exeHnXRXyboc9sPlPUgPnvHsHSSQl48oYU+Mq6f1T75kwpDvHLWee7VzkrK8QJs5q+yyjF8i8z4CERY3RsACYmBuHqxGCMjQ+At6fxj93tai027LmE//ujkLsuNsgL7/xpLPf3/vph4dz3D1yqxLzUSJPWkyso97Tf72aIrwwiEcAwti9rVWl03ATMpFAfiMXW+zutkEnhKRVDpdE5VQDYFnQ6hivddZd+c6xYXlDJ0sw5htE/f5crm5FTpUROVTNyKvX/NxgZ+OMUwTleILu8sQ1xFpTa8gelWHL7gYjf2zOvurnPgNupQv4wCArOuTOzg3P33XcfNBoNnn32WbS2tmLx4sWIjo7Gpk2bcNddd5m9gKqqKhw/fpz7OjExET/88AMUCgWKi/VnF4KDgyEW68/ehId3nhkuKipCTU0N2tr0B41hYWHc97pu11NwbvPmzfjmm2/wyiuvYMKECSave8OGDXjppZdM3p6Q/soo7nzjTjMjOMdmz/3po2MAgNf2ZsFHJsGSaxKsvELXlGNkUitLKhHj6sQg/JxVhZpmFXKqmrtt48r4B7PBRspXqKyVmIrfV8WVes6FWiErhp85Z0nGTrCvDBvvGoM7x8Vi9XcXkFfdAq2OweYj+dh9rhwvzB+OuSMjuBMDFY3teOmHTO727ljOynLGnnP/d7QADKMPGJ3Ir8OJ/DoAVyAVi5Aa448JicGYkBiEqxIC4Sf3QF51Mx7/PB0XyztP8t6YGokNt6fCT975c52QFAQfTwlaVFocyqqCVsdAYkIQKrfKNuWeffGQiBHs44maZhWq+9HPyhRFdS1cVYC1H6NIJEKorwylDW1O8xqzlbpWFTd1k1+W7A74QaXiOvM/7/zrp8v49GgBGttMKzmP9Jdj8qAQs+/H2vgnlCzpO8cwDLIr9J+jowO8BO9Z7ixZMBSi98w5hmFwxhCc85NL7fo+TZyPRfnKDz30EAoLC1FVVYWKigoUFxfjgQcesGgBDz74IHQ6HQoLC7Fo0SLk5+dj0aJFUCqVRqcj8q8TiUQ9TlDsup0xxcXFWL58OaZOnYqVK1eate6VK1eisbGR+8cGEknvVBodNIaaemKejOJG7rI5mXMAcE1yMJ7ilbe+8F0mtp0ostbSXFp2BT9zrnvgjV/aamnfOZVGh/oW5zvj3ldZa4ivDB4S/ftnKQXnSC8EmXMhrnPmXJg5Z9mBd2U/ylr5Jg0KwY9PTMGK2UMgk+o/nlU0tePRz85g6ScnUVjbAoZhsGrnebcvZ2Xx37ecoVk/wzC4bOhh2vWjp0bHIL2oAR8czsV9n57E6Jf246Z3fsP8d45wgTlPqRiv3joS7y4e0+0gVyaVYGpKKACgvlVt8nTfvBrHBOcAINQwUKC6ucOmE8+vVPGyA23wGNkMzbpW1YD+DMsvazR3uI2riw3kB+fMy5wrqm3FpoM5PQbmIvzkmDI4BPdPTsQ/bkvFN3+9BoeemQ5/L8cHsvg/Z0smtpY2tHEDLoZGDJyT1/2V3CVzrjeFta3c4J+r4gOtmvlLXI/ZmXOsqqoqZGdnc9NNQ0NDLV6ESCRCXFwcVq1ahS+//BKZmZnYtm0b4uLiAAA1NTXQ6XQQi8WoqqribhcbG4vQ0FB4eXmhra0NlZWdE6y6bmdMbm4umpubcfz4cfj5+QEAl4V38uRJ+Pr64o8//kBqamq328pkMshk7nVWqb8qGttx0ztHADD49rHJNNHHTGdLGgDoe9AMi/Qz+/bLrh8MlUaHdw9dAQCs2nkeHhIxFl4VY81lupycqs7MucHh3T/U84dCHM2twb2TEszaf0uHBre+/ztyq1vw3uKxmDMywuK1Whs/CyDUSHBOLBYh0t8LRXWtlDlHesX2nAv3k/VYuueMQq0Q3GEPaLw9JVAYKUE1h0wqwWMzBmFBWhRe+O4CV7p6+HI1bvjXr5g5LAw/Z+k/34QqZHhhvnm9fgcauYf+OVd2aJwiq6m0oQ3NhgPV64aE4eVbRuJkQR2O5dXhRH6tIINCx4CbzgfoMy3eXTy217/v1w8Lx48XKgDoS1vZieK9yRUEruyb1RqmkOFSub5PXn2rGkE+thkwwB8GYYuel+z7BMPoG+eHDdDAVSVvcIe7Zc75yKQI8vFEXYvK7LLW/RcruMsjo/0wITEYKeG+GBSmwOBwX6fOJutv5lxWeedn6KGRFJxjRQV4ceXweTW9Z86don5zhMfszLmmpibcc889iIqKwrRp0zB16lRERUXh7rvvRmNjY987MKitrcXWrVuhUnVmbuzZs4e73NLSgjlz5gAA2tvbsWvXLgDA119/zW0zZ84cSKVSXH/99QCA/fv3Q6lUQq1W47vvvgMApKamciWtS5YswdChQ7FkyRLBWjo6OtDS0oKWlhbodPozYjqdjpsYS6xj17ky1DR3oKZZha9OlTh6OS6lqV3NffgcFukHuYfEov08PSsFD09NAqD/kLli+1l8l1FqtXW6IjYdP9Dbw2iAanikH3d281hencmTFFmfHi3A5cpmaHUMdp8v7/+CrYjNnPOQiODnZTyowPada2rXmDUhkLiPxlY16gxnfV2ppBWwVuac/nYRfnKr9aSMDfLGlqXj8cHdV3EHTyqNDnvOdx4Err811aTBQAMdm9XEzwR2FPbvCQAMiVAgKsALN4+OxobbUnHw6ek4+fxMvP/nsVg6KQFDIxRcdt3tY2Pw/ePX9nnibcaQULBJFQcvVfW6LYv97BDs42n314u9Jrbyy+ptkTkXquh83mzdP8+RqnmZcwM1ANkbdihERVM7OjSmH//tz+xMDtm4aAzW3DQci8bH4ar4QKcOzAH9z5zLqug8wTA0wvzEgYFKIhYhyfB5qLC2pdeMW+EwiL5PuJCBzezg3IMPPojjx49j9+7daGhoQGNjI3bt2oVTp07hoYceMnk/SqUSS5YsQUBAAFJTUxEXF8eVlioUCtx222245ZZbcO211wIAFi5ciKFDh+Kpp54CACxevJibrPrKK6/Ay8sLhYWFSEpKQkJCAk6cOAGJRILXX3+du8+ioiJkZ2ejqEhfzjd9+nQwDCP4N23aNADAhAkTwDAMRo8ebe5TRHrAbxj66+VqB67E9ZwvaQRbEWJuSSufSCTCyrlDsdSQ/cUwwFNfncUeJwsa2Utjq5r7oD04XGH0wFosFmFikv6PZWObWtAXqM/9t6nx4eFc7usqG/fdMRebaRLsI+sxqBDF6ztXbsEHN1fSrtaa9YGc6OXXuma/OQAI8vHkAiSW9JxTtqu5TClrl4GJRCLMGRmBA09Nw8NTkwT9xW4dE81N73R3bN+55g6NRRNSrSmrS3Cuq1CFDPNSI/HighHYu3wq0tfcgN+enYF/3pkGHxOyLoN9ZRgbp8+suFLVjII+MjKU7Z1/4xzRx4g/sdXSSZCmYAOQIpFt3oMEU4GdIEPTVvgl+u6WOQd0DoVgGKC03rRqgZrmDpwqrAOgz0wdFOZa/cIEwTkLPqNe4r3nUVmrEJvFq9YyKO7l9XTa8PqRiEVIi/W3y9qI8zI7OLd7925s2bIFs2fPhp+fHxQKBWbPno2PPvoIu3fvNnk/AQEBuOuuuxAZGYnc3FyUl5cjNjYWd999N44fP474+HhIJBLs3r0by5YtQ2hoKPLy8hAXF4cXXngBn376KbevtLQ0/H979x3eVn3vD/ytYcl7jzjeM87eZLMTElZpAg0FmgClLR23pfTX9kLLKG3htr1tge6WWwJtGS2U0gCFQAgJISGQkD1sxztOvGNb3tb4/XF0jr/H8ZBkSUeS36/nyRPZ1ji25TM+38/YuXMnVq9ejb6+PrS1tWH58uV44403lOw70p44FfPImXa092i/yh0sDtW1K7fnZsZP6Ll0Oh0eum4Gbl0ilY3b7A58/fmD2Ha8YZxHhp4yoaR12hiDHpYXDDXtdafv3FPvV6LT2RsK8LzhvC/Y7Q4l2yk5ZvRsCnEoRCj3nTt6pgPzH3kbl/z0vYDsDxjIxABBsAXnwgx6JDqziVo8yIgRL2Y9mdTqiiizEfdfPR2vf30lrps7FevnZ+Dh6yfndNaRBFLfuVLVher4WSTxkSYlW8dVV0wfCsq+c7JxjHuqM8p8Ue45ntSYob8JX2WcORwOJTg3NS4CESbPKgvGkqKaChy6xwfxdzTZes4B6umpYwVTRNtPNkIuqFgzM3DalrjKZNQr+1BPMufkfZ7JoA+647+v5ScPBWrFwTyijt5BpU/pzKmxQdUWhHzD7XdAUlIS4uIujOrGxcUhIcH1Oun4+Hg8//zz494vNjYWTzzxBJ544okx77d48WJs27ZtzPu89957476eK/ch9zkcDlXmnN0BfHC6FdfMSddwq4KHGJyblx0/4efT6XT44admYdBmx9/3n4HV7sBXn/sEf/zcIlxWkjr+E4QI8UKqeIR+czLVUIjKVnzBWRo8ltaufvx5d5Xqc80+zBxw1/meAWW63UjDIGRTJ8nE1sffKUPvoA29gzZsO9GAjYuztd6koCH2U8lNCr6T85QYM1q7B9BskZrWu1Oa2tAhXMz6KDgnK5kSi199dr5PXyMYDc9qcjfY5U3yMSXMoPNZMOzK6an4yZunAEilrXetGv14JPZi0yRzzg9lrc1d/cqAlAIfZS0FUgDYl1SZc7GTMHMu0f2hEGJJ65ogzWaeEmdGS1c/miz9Lk+BBqRqA3nYQVFaNIwGj+ZMhqyC1KFjgDSY58L3hzjYR86KpsnN7b+i73//+7j33ntx7txQGVxDQwO+/e1v44EHHvDqxlHoaO7qv2CK0fvlLG11hcPhUIJzMeFG5Hnp4lev1+Gx9XPw6fkZAKS06y/99cCk+r2UN4rDIEbPnCtMjVZOzj+qanNpWtvvd1age0BdYmXpt6J3IDDKJlu7x57UKpsMwbm6th68WzrUv+mTmna/b0NrVz8ef6cMh4VA/EQdqmvHpT/bge+8dNinkxLFzDktsnMmSs6KGbDZR522NxqxDGjKJMw0CQTq4Jx2WU0DVrsSDCtIiUaYjy5UC1OjkZMkBRE+rm4b8z2rCs6lapA554eyVnW/Od98j+rMudANzsmZczrd2OcFocrdia3d/Va8f7oFgBSInmhli1amxErneTa7w6339+mmLiVrkP3mLiRmzon7KdEnHAZBw7h95vC73/0OH374IXJyclBYWIjCwkJkZ2djz549+MMf/oAFCxYo/4hkpxsvTOfdVdbs0wvGUHGuo09ZqZ2XFe/VEdsGvQ4/u3GOksE4YLXjrmf2u1W6GcxKG8XMudGDczqdDsuc2XNd/VYcrR97+E1jZx+e3VsDADAb9bhImKjny6bY7hBL+JKiRy9rnSpkA51rD4xt97a/flgDcVd0sO786Hf2Abvdgduf/hiPv1OOzz/zMQas4wd/XfGr7eWobu3B3/efUbUV8DZ5UqteB02zljyVmTAUgBZ7hrlCzDSZjGVggUAsy9cycFLZ0gWr80p1pH5z3qLT6XBFiZSBYbU7sHOMHr6+HpQwHrGs1VcZZ/7IDpwsmXNyX9ykKJPPgsuBTF3WOn5wbldZs3K8Xj0jzavn5/40JW7o/e1Ob+GT58RhEOw3N5y4WCnup0TiMIhFuQzOkQdlrTfccIMPNoNC3Wlhp6TTSc1Wz3b0oaK5O+iap/rbYS/2mxuJ0aDH4xvnwWqz463jjei32vH5Zz7GM3dehMW5oT01qNwZNE6ONiMxauwpdsvyk7D18FkAwJ6KVswfI/381++eRr/zhG3TshxY7Q58VC01fG229CMnAEr/xP53I02plaWHeM+53gEbXvi4TvW58qYudPYN+m3K2tYjZ5WAb0vXAA7VteOivIn97VltduyralM+PtVgGTMA7SmHw6FkzmUkRMBs9H6/J19bmJOI5z+S3gMfV7VhaX7SOI8YIvbomeLjslYamSpzTsPAyfBJrb505fRU/PkDqW3C9pONuH7u1BHvJ18Qmgx6ZCb4P3Ce4oey1oom32fuJkcHRgDYl+x2h3JekBIzOfdl6fHh0Ouk1jt1beOf72w7IZS0BmG/OVl63NB5XkNHH5Dl2uNUPTbTGZwbLiY8DKkxZjRZ+kfMnLPa7Epl1NS4cNXvgSYvt4NzDz30kC+2g0JcuZA5t3p6mnJA21XWzODcOFTDICYwqXUsYQY9fvXZBbj7rwfw7qkm9AzY8NW/fYLd370cJmNorp62dPUrpZ3Tpoz/HhT7zn1Y2YqvXlY44v3q2nrwwsfSROgokwF3X1KAv+8/o3zdV02x3SWWf41VvhJtNiIuIgwdvYM42xF6wbmth88qZWHywoHDARyp68DKouRxHj1x/VYb/ndbqepzeypaJhycO1rfoUwRBYDTje5lhLmqtXsAFufrBGO/OQCqzFY5iO4qMcuAZa3aCJRJmqpJrT4IhIsW5yUiJtwIS58VO041YdBmvyDTyWqzo7pFyv7JTY50uY+UN4WHGRAbbkRnnxWNPiprFTNSCn2UORdtNiI8TI++QXvIBufO9wxg0CZlfqZNwn5zgHQunB4Xgfr2XtSOU9Y6aLNju3MgS4zZiGVuLOoEGtXEVjfO8065OQBnMspPiUKTRbreaO8ZQHzkUKD/VIMFPc5WNwtDPBmCXDehq+6uri50dnaq/hGNpFyYinnHijzl9mTqb+YpdXDOdyO2TUY9fnvrAsx3DpxosvSjunXkHgmhoEzsN5c6/oVUTlKkUuL5cXUb+q0j9457cnu5coJ758o8JEWb1U2xPRhV7wutwgXGeL1l5L5zDR19yhCJUOBwOPDM3mrl483LcpXbYpNeX3puX+0FK/R7Tk+8rHzPsNL0shFaC3hDldhvLkgntWUlRiiBtQM1513qKSmTy1oNep0qS4j8JyVAes75M3MuzKDHJcUpAIDOPiv2V1+4vzpzvhcDzveyFiWtslTn31aTpc8nrUykRutSgMRXf4M6nU45ToZqWau4cJg6ifdlcmlrR+8gOvtG7+f4UVUbOp2DSC4tSQ3qhWxx0niDG0H0Uw3SdX9SlInHv1GI+96KYdlz+4XFwIVeGPZHocHtPUlVVRWuueYaREVFKRNaExISEB8f79a0Vppc5EmtydFmLM1PVA78H1aOHuQgqTmrXO6WER+h6t/iC+FhBlxaPDStdbQGpqFAzOZ0pdxPp9NhqTN7rm/QjkO17Rfcp7K5Cy9/ImXJxYYblSl64klLc4Csuour/2P1nAOAjHjpfTdoc69ZcKD7pLYdx89KJ5dzM+Nw+/Jc5WsH/RCcs/QN4lfvnlY+jo+UymgP1p1Hz4B1tIe5ZE9Fi+rjsibfZM6JwbncIA3O6XQ6JVOxZ8CmvCdcIQ+ESIk2a5KZROqec1ruX+XgXIzZiIx435cnrRYmQ8oZPCI5aAVoO6hFPt/rG7QrWbbe0jdow5nz0uJGfmq0W5OW3SUH5873DGLQjQB+sGD/TElW4tDf7lhDIbYdb1BuB+uUVpnYksHVzLlmS7+yGMKS1tHlp4hDIdSLpAeE64hFzJwjJ7eDc7feeivOnz+PP//5z9i+fTveffddvPvuu9ixYwfeffddX2wjBbnz3QPKDrzIefK0qkha8e0dtOHACCu+JClvGkp5nuejktbh8lKGj/4OTeIwCFfKWgFgecFQmePeyguzmx5/p1yZXPWlSwoQFyEFW/wxsc5drpa1AuqJraHUd+5ZIWvuc8tykZMUqfQePFjX7vOBNX/cVYk2Z2n19XOn4prZ0mCWQZsDH09gv9g3aLsgk6amtccnCyFicC4vSINzgFQmKPuoyrXS1kHbUIlbGvvNaSbSZESUSep1qNXigaVvUNk3Fk+J8WmQSHZpcaoSEH7nZOMF+yuxF5uWmXNioMfbx7+qlm5lmE+Bj/c/4iJbq4YZmr7CzDmJKxNbHQ6H0p7HZNDj0mkpftk2XxFbMjS4WN1RypJWl6iHQqgTHg44M+ciTQYO1CCF28G5I0eO4Omnn8bGjRtx6aWX4pJLLlH9IxpOHAYh95e7uHgoyLGTpa2jErOzfFnSKhJL06pCOnNu6MSi0IWyVgDKxFbgwrLBUw2d2HpEGhiRGGVSZWGJGY+B03NO2g69DuMOwxCDc2dDJDjXbOnHG0fPAQASIsNw7Zx06HQ6zHcGwdt7BlWBJ29r6uzDU+9LDd3DDDr8vzXTVMHfPadbRnvouA7WtisDSWQ2u8Mn3091iATnluS533eu2dKvBAamTNIeTYEi2RlM0GogRFmj/0paZXGRYViUI1WsVLf2XHDh548ppq5I9eFQCNU0Wh/3Lw6U3oa+IrbcSJ3EmXPZSWJwbuTznWP1nUq/0eWFSYjx0/AoX4kyGxETLrWhb3BxWqtc0gpwUutYCkfJnDvb3ouzzp/1vKx4GCfhdGQamdvvhMWLF6Ourm78OxI5ieWDRWnSTmpl4dBF6Ptlnl+EhrrDZ9qV2/Oy/FM2Ll5gV/owOKElh8OhrPqlx4UrGW7jyYiPQI7zxO1QbTt6B4YykX6xrUy5UP/KpQWIMg/N24mPCIPRmeEQMME553YkRpnGLccLxeDcCx/VKr0Bb74oG+FhUubNfKHvx8ERSpe95fHt5egdlN4/ty7JQXZSpCr4+0GF5/vFvcJjxYE7vug7Jwf8wgw6v5Ty+UphSrRSVvxxdRvsLvRWFDMMOAxCW3LgpLPPqkmrDHVjdP9dqF45ffTSVjFwpWVZq6qtg5ePf+oApP8y5wKlPYU3MXNOIk41rjs/cubcW6qS1uCd0iqSj2HnOlzrDXnyHDPnXDE1PkLpRyheU4l9jRfmsC0YDXE7OPfUU0/hJz/5CZ555hkcOHAAR44cUf0jGk7uNwcMXSgmRZsxK0PamZ841xmyDXYn6lCd1G9Or4Py8/K1KLNROUj7MnNIS02WfqWRb5GbU/XkiVwDNjsO1EgH18N17UqJQ1qsGbctzVE9Ri80iw+E97rD4UCLs5wyKWr8k3C55xwAnG0PjIEWEzFos+Nv+6SJunodcOuSbOVrC7KHTpIO1vmm5L6iuQsvfiwtckWbjfivy6XJv4lRJsxIl/7Oj5/tRHuPZ6VTYlbn5mVD78VyL09stdsdytCYrMTIoF751et1WOzs+dLeM4jypvEDmWKGActatZUs9M3UouSw1I+TWkVXqvrONam+JgeuUmPMmmb2pPqwrFUMzuX7ODswRXiPBcJx3NvYc04i9pwbbWLrthNScE6nA66ckTrifYKN3Heu32pXJtiPRc6c0+uGEi/oQga9DnnOSfY1rd3KwCmx9cgCBudI4PaZdHNzMyoqKnDHHXdg8eLFmDdvHubPn6/8TzScOKlVzOK4uGioR8Pu0yxtHa5nwIpS58GvOC0GkSbjOI/wHnmVvc05+jvUiBdSxW6WwojZTXsrpQyln79dpnzua5cXKVlYInklurW7361pkL5g6bdiwFn2KDZTH02o9Zx7+0SjkvV0xfQ01Ur5nKx4yO2iPqlp98nr/+zNUmXq7ZcuzkeSUC613Pn+cjiAD0foazie7n6rMuE5PzlK6e8JqEvvvKGhsw99g9L7SD75DGbulraKwbl0Buc0pXXJ4SmN+i/lJUcpx+v9NW0471x0Od89gFbnbS1LWgHflrXKwTm9DkpWu69o/R7zNTFzbrw+tKEsJdqM8DDp8niknnNVLd1KFvr8rHifD2rzFzH7+9w4pa1Wm11ZwMpLjhrxnJeGFKRK++hBmwN1zgE2YuacuChM5HZw7s4778T8+fOxd+9eVFZWoqqqSvU/0XBy5lxcRBhShAO+eNG4i6WtFzhW36kMF5jv5xHboV7aKgYpit0sQRred+6jqjbsKpOCy5kJEdi4KGvEx6U4T+AcDigXTVppcfMkPDUmXCl9DYWy1mf2VCu3Ny/LVX0t2mxUMl9ONXROeGrqcJ/UnsebzpKYlBgzPr8qT/X1FULJ//C+hq74uLoNVueOY1lBErISI2F2llS4kg3mjlDpNydbnOveUAhmmgQOLQMnYpuEKbHhiIv0b5aaXNpqdwDvlUnZc+IwJ/nCUCvq4Jz3fjcOh0Mp3c1OjITZ6NsAgS/LcwOBnNWYFGVSyvAmI51OpwyFOHO+94IWB2+fEEpaZ4ZGSSugXmAabyhEdWu3ssBbks6S1vHkJw8tkFQ0daFnwKpMhS9Oi3a5tQ5NDm7vfWtqavCTn/wES5YsQW5uLnJyclT/iESWvkFlBaZo2Jj7hTkJiHROWHu/vMWlHj+TySGhpG5uZrxfX1s9+jv0gnNiH8RiN0uQUmPClQzQI2c68OM3Tipf+8YVRaOe1AbSib07k1oBKS1f7EcSzEobLNjnDLzkp0RhRWHSBfeZ71zFtDuk37G3OBwO/M8bp5SP77my6IKM2MV5iUp/wg88GAqxVwjoLS9IhkGvU96v3p7YKgbuc0MgODdzaqxyTPqoqnXcvjvsORc4koX9a4vFv4sfjZ39ShmYu4s93nBFyVBZ3TsnpOCcOBxCvDDUgq/KWhs6+5Rp9v7IDlQHgEOrosDhcChZjSmTuN+cLCtRCs71W+0X9Bfcdnyot+Maoaw82E2JG6qQGG8ohKrfnB/L+IOVuEBS2dKFw3UdSvXEwpzE0R5Gk5TbwbnLL78chw8f9sW2UAgSTxALh5UPmox6pX9XS1c/TgqTfwg4XDcUFJjn58w5cWKrOF0oVJQKmXNFHkx4k0sPbXYHDsslhClR+PT8jFEf48vSHne1CiebSdHjl7UCwFRn37m27gHVIIxg8+zeauX2pqU5qgUDmZipKpYeTNS7p5qUcsn85Ch8ZoQsy2izEXOdE2MrmrtdnpwmE7PtluZLJ31yANpmd3g12C5mzuWHQHDOaNArjZkbO/tHndQnE383U1jWqilVPzA/Z85pPbVwYU6Cknmxs6wZA1a7elCCj6eYjifabFSC3t489lU0+XfgRYoqABxamXPnewaVAUnMApYyMWViaWuzpR8HnOcEhanRPu9z6E9T4obe3+Odd6j2ecycG5e4QFLZ3I0DNUOZ+RwGQcO5HZy77rrr8M1vfhMPP/wwXn75Zfz73/9W/SMSiQ3IhwfnAODi4qHS1vfLWdoqkvtGRZoMKEr17wm/eKIbakMhHA6H8r7MTIhQTVV1lRxUFn3zyuIxG+KnxgrBOS83xXaXWPblam8Z1cTWjuAsbe3oHcQ/P6kHAESZDNiwMHPE+y3wwcRWm92Bn7w5lDX37aumIWyU98uKEfoauqKjZxDHzkpB/ZIpMUovO/XEVu/1nasKscw5ALhIKG3dVzV2WbFc1hoTbvRrT1C6kJZlrVoNg5AZDXpc7sye6+q34qOqNlXgytdTTF0hL055s6xVPanV90GSKLMREc7eWqE2rVUMmk7mSa2yzISh8x1xYuv2k42QE6qvmhk6WXMAMCXW9cy5Uo2mUwcr8ZqqorlLGSYHAIsYnKNh3D6bvPvuuwEAjzzyyAVf0+l0sNmCN6OCvE+c1DrSVMxVRUP9lXaVNePuSwr8sl2BrsnSpzTen5URp/T78peM+AiEGXQYtHk30yYQ1Lf3otuZ+eXphdTSYcG5kikxuGZ2+piPEfstevMCxRPNQklOiifBufZezZuMe+LlA2fQOyj97tcvyBx1gmF+cjRiw43o7LPiYG07HA7HiBl2br32J2eUJtLzsuKxdtbovWqWFSTjyXdPAwA+ON2KT88fOYg43IdVrcqFw/KCoX2rWLotlnRPVJVzUmt4mD5kyjovEoZCfFzdhptG6SHpcDiUEu9Q+d6DmRic83fbAFVwTqML1Sump+KVg9LCwzsnG5Wec+FhekwVytW0khoTjurWHlj6rOgdsCHCNPH+cJUaZAcmx5hQ19YbcgMhGoUFQ2bODZW1AkBt69Bi5LYTYklr6PSbA9TZ3+fG6Tknl7VGm42qQCaNLCY8DKkxZjRZ+lHR3K2UtCZFmXw+yIaCj9uZc3a7fdR/DMzRcKrg3AgnT3nJUcqOfX/1ea83Xw9WR4SS1vnOEjd/Mhr0yHFOX6xq7Q6pfoBicGKkgLErEqJMmCGk8t+7uhj6cQKoYt8d7XvOTTBzLgiHQtjtDvz1wxrl403LRu+RqtfrMM/Zd66lqx9nzk/s++0btOGXwkTf+9aVjBnsW5ATr0yL23O6ZdzeZzJ1v7mhAHJx2tC+V5yePRFWmx21rVJGQW5S1Ljv/2AxNyseJmdG41hDITp6B9HvbIjNklbtqXrO+b2sVfqbEvs7+tvFxSlKr8q3TzQqf5t5ydEB8beZEuv9tg7qvnr+yQ6UF7PaewaVhvihoEkIxohZ/pOVqqzVmTnX1W/Fbmcf2Cmx4ZidEafJtvlKQmSY0jO5cYzMuc6+QSV5YNqUmAkvXE4WcvZcW/eA0qN0YU4Cf350gQmN4+nrC+7G4OR78nTAKJNBNQlIptPplKmtAzY79lWOPyFvMpBLWgEo/af8TZ6+OGC1KwfiUCD2mxODFu765upiJESG4TOLMrHahabAgdpzLjnGtZ5zGfFDf7/17cG37999ukUZYLAsP2ncwKwYFJ9o37kte6qVLKsrSlKxZISyaJHZaFAmh57t6ENNa8+Y95ftqZAuHPQ64KL8oQywzIRIJdjnrcy5+vZeZSpsKExqlYWHGTA3S7roqm7tUV20ijgMIrBEmQzKe9yfzfqtNjtOOzO4cpMiER7m24mho4kND8MS59+8+LcZCCWtgG8mtsplrfGRYUiMcu04NlHiYlZrd+hkz4m/k9QY7s+yRug5t7O0WQnIrp6RFhBBb2/S6XTKddq5MVqXlLGk1SMj9SdkvzkaidvBOZvNhh/+8IfIyMhAdHQ0KisrAQAPPPAA/u///s/rG0jBq3fApqw4FQ6b1Cq6pFgobS1v9su2BbrDZ9qV2/M0Cs6Fat+5MlVwzvMTi9Uz0nDwwTX46Y1zXVr5Sg6gslbx4tXVi5pgz5wTB0FsXj7+ZPEFwknTRPrOtfcM4Lc7pBJVvQ74ztoSlx63TMh8+6Bi/L5zzZZ+pWx2TmY8YoWSXYNep5QhV7d2o29w4lnuoTapVSSWtsoDPIbjMIjAotPplH2sPzPnqlt7lAv2kinaNka/cvqFi0SB0n5ADPh4o+dqd79VWfAoSBn9/NLbUjScCuxLzJxTizYbkRApHUPl4Ny2Ew3K19eEWL85mVzS3NlnHbWS6aQYnOMwCJeNtC9mcI5G4nZw7sc//jG2bNmCn/70pzCZhi7qZs+ejaeeesqrG0fBraK5S+l/VDjGQINlBclKT7VdZQzO2e0OJXMuJcY8YsahP4TqxFY5c0ivG3lIia+YjHrlZC9Qylpjw40wG13L9Ajm4FxdWw+2n2oCAKTHhY94ETvcvMx45fbBCWTO/e69CnT2SSe5GxZkutyTaoXQM06cwDqavZUjl7TK5EC03QGv9JEUJ7WGUuYcACVrERi9tLVRuJhlj6bAkCyUHA7a/FNyGAj95mQj7df8McXUFd7OHBcXDP2ZHajqbdgVfBnko2HPuQvJpa3nOvvQM2DFu85ziJhwI5bkjZ39HqzE643RhkKcOqftdOpgNXxfbDLoMSvESqPJO9wOzj377LP44x//iFtvvRUGw9BF3Zw5c3Dq1KkxHkmTjThJa6wgSFxEmJIdVtHcHVIllJ6oau2GxXkxPy8rXrN+BGIKdqhkztntDqXnVk5SlN9LkOTsgSZLv8t9xHyhxRkcTHZjKltseBhinJNtgy0499d9NcpCwW1Lc8acqiuLiwxTLvqOn+30KNvsXEcvnt5TDUAKzn5zdbHLj52VEYeYcOnnvbeiddy+j3uF7DpxGISsyMt956pCODi3MCcBcsXSaMG5ho6hi1mWtQYGVcmhn0pbSxuGLlS1Ds5lJUZe0KohUDLnxICPNzLHxfPLkcrFfCU5VDPnhICpq0OiQl2mMzjncAAvf1KvnJdfXpKq9GYLNeKxrGGUlg6nAmhBIpgUJKv3U7MyYjVrg0CBze29S319PQoLCy/4vN1ux+DgoFc2ikKDqvH+OBlK4tTW9yd59pxYQqdVSSugvuCuDJHgXN35HvQNShkV470nfUEuFxmw2tHZq83wk94BmzKt1tVhELJ0Z9+5sx19mgYX3dE3aMOLH9cBkFYqNy4eefrmSOY7h0JY7Q4cP9sxzr0v9NcPa5SStzuW56qyD8dj0OuUqcBt3QOqE+KRyNl1JoN+xFKJ4lTvTmwN5eBcTHgYZkyVynVKGy1o77nwIryhcyhAzbLWwJAi9M/0V2nrqQDrv3TFsOy5gMmcEwdCeKGstUIYNubPAGSKKnMudHrOyZlziVGmkA08uSsrYajv3NO7q5TboTalVTRlnMw5h8OhZAtnxEeo2mfQ2DISIlR/W4uEDH0ikdt74JkzZ+L999+/4PP/+Mc/MH/+fK9sFIUGMTujaJzG+xcXpyi33y8fv79SKNsnlKfNz47XbDuSokyIdWbueKMMLhCIJUgT6TfnqZRo7YdCqCe1utdEWw4uDVjtaO0OjqyBfx8+i/YeaeHomjnpbgUkF2R73nduwGrHix+fAQAY9Tp8fmWeW48HgBVCeeqeMfrOnTnfowyNmJ8djwjThaux4vtd7LvoqepWaZ8QYzYiyU/N2P3polzpZ+9wSJPEh2PPucCTrEHgRB4wFBFmUF3Ma+XK6anK7alx4Yg0GTXcmiHeLmut0KisVQwAa92ewlscDofyvaS6kU0f6sSJrfICtcmoxyXTUkZ7SNAbL3PuzPledPVLC8vT07VfjAgmBr0OeUlD+yrx/JJI5HJw7s4774TFYsFDDz2Er33ta/jJT34Cu92Of/7zn/jCF76ARx99FA8++KAvt5WCzGnnyqbJqEfmOCetczLilEDQ7tMtsI1TwhXKPqxyZsAY9ZruvHU6nVIucraj1ytN5LVWLqy2F2uQ5ZAiZA9odWKvDs65dyIebH3nrDY7nv6gWvl407LxB0GIxOC4uxNb3z7RqPys18xMQ6oHpY/LC13rO7e3Quw3d2FJKwBkJkQMTWxtmljmXL/Vhvrz0u8/LyVKs9J7XxpvKESDM9MkzKBDYmToBSeDkbg/a/HD/rVnwIpaZ7P44rTogJjeOC8rQekXK+4/tBYXEaZkjXjj2CdnzoUZdKrJmr6WEj20H/dXdub2k4248Xd78Gche8ub2nsGMeDs0ejJcSpUZSVemOm+sjAZ0ebACHj7wniZcyxpnRi5x5zJoMeiXAbnaGQuB+eeeeYZ9Pb24rrrrsOLL76IN954AzqdDg8++CBOnjyJrVu3YvXq1b7cVgoiA1Y7qp2ZHAUp0crAh9EYDXqsdJa2dvQO4ogwrXQyOXO+B3Vt0kXvgux4zfsRyCf5DsdQpkwwU2fOaVDWGuPdvjueECe1uhucywiy4Nz//OcUTjqbF8/OiHO7TLw4LQZRziw0dzPn/ravRrl92xL3goKyotRo5Xe0r7J11Cb3quBc4ciNqvV6ndL7s2aCE1vr2nogr5/kJgVG2Zy3LRZOnEfqOycPhEiNCQ+IoAwNC875oedcWePQ0KtAuVA16HX42xeW4Ne3zMcPrp+p9eYodDqdkjk+0WOfze5QyuqzEyMR5kIPUW9J9nPm3PMf1eILz+7H/przeOS1Ez7p/yv+Ppg5N2SkTNg1M0JzSqssPW7oHO/cSME51TAITmp1171rinHb0mw8fvM8t8+/afJw+Ygm9he66qqrsHPnTnR1daGnpwe7d+/GmjVrfLKBFJyqW7uV7DdXe3utKhpKFd9VNjlLWz+sHLoIlPtNaUnsVxMKpa1yOZ9Rr0N+sv+DcyleLu3xxMQy54aCi/XtgT2p7uUDZ/CUM9PAqNfhwetmuJ3hZdDrMNcZ0DvX0YdzHa4FJCuau5RMt/zkKCwbYXqqK3Q6nTJ5tXvAhiNnLux753A48IGz5DUizIC5wpTZ4eS+cxOd2Co+NtT6zcmSos1KMPNYfQe6+4d6RPZbbWhzlnWzpDVwiGX6/shqUg+DCJwL1fS4CFw7ZyqiAizDR+4719Y9oPTi9MTZ9l70Ox/v74EXkSYjIp0LNr58jzkcDvxmx2nc98+jEAtJnnEOGPIm9eRpBgxkU+MjIK676HQX9nQMNcnRJuV7bhyhrPWU0BKDZa3uy4iPwI9umI2rZ6drvSkUwNxabgrF0hXyDXeGQchUQyHKJ+dQCDEDZlkABOfykkNnYqvVZleCCrnJUZo0PRZXpbUqa20VLiiS3O05FxccmXOH69px3ytHlY8fvn4mFnvYfFcsbXU1e+65fbXK7VuWZE/o2LlCyITbc/rCRYvKlm6lmffivMQx39dFQt+5iUxsFbNoQzU4B0B5z1jtDtXvXmxoz0mtgUM1SdMPwblAGwYR6FK99PsRJ7UWaDDYSV5k89Ux3G534IevncTP3ipVPicfQl46cAaWPu8O31NnznF/JjMZ9apMsoXZCaoF1lBkNOiV98BYmXMmoz5ks+aJtObW1WlxcTESExPH/EcEDPWbA6BkH4wnMyFSydQ6WNeOTi+fgASDD53DIMxGPeZpOAxCJmbOiSfEwai6tUfpq6JFSSswvCl28JW1BkPPuabOPnzxL/uVzIxblmTjtqWelZUCwPwscSjE+H3n+gZteOmANAjCZNRjw4JMj18bUPeQ+2CEoRB7VP3mxg7oiwslExkKIQbqc0M4OLdklL5z4kVLGoNzAUNd1uqPzDn2X3KHGPgZKSvHVRVC5m6+Bvsf+X3W2WdFv9W7vXgHbXZ86x+H8ecPhvrL/fe6EmxcJE0Z7+q34mXn8cVbxN8Fy1rVMhOGznnWzAztrDlZmjMbvKWrX9VKo2/Qphz7i1KjYfRjOTnRZOJWzvsPfvADxMXF+WpbKIS4M6lVdHFRCiqbpZLYPadbsXZW6I4sH66urQf1zoDHwpwEmI3a9psD1P2kgr2stbxR20mtgLrZsph940/iFMMUN4NzU+LCodNJPQgDMTjXb7Xh7r8eGMoky03Aw9dNrO+Su5lzrx85h45eaWHh2tnpSJjgJNOsxEhkJUagrq0Xn9S0o2/QpupFuVcI2I0XnFNPbPU82C4G5/JCePVcNRSiaigIKk6xS2dZa8CIDTfCZNBjwGZHi8X3Pefk4FxytIn9g1zgrcUpzTPnhN91a9eAatFqInoHbPjK3w5gR6lUOaLXAf+zfg4+szgLpxo68cLHdQCAZ/bWYNOyXK/1uhQzADkQQm3G1Fjsq2qDXgdcNXNyXI+kx4bjMKTzvCZLv9JruLyxSymxZr85It9xKzh38803IzU1dfw70qQnZ84Z9TrkuHHxdnFxMrY4e2rsKm+eVMG5vZVDF3+B0G8OACJMBmTER6C+vReVzV1wOBxBW95eGgDBuSiTARFhBvQO2rTrOSeciIvNrV0RZtAjLSYcDZ19AddzzuFw4MF/HccnzgBaelw4fnvrwgmXLydFm5GTFIma1h4cqe/AgNU+5nOKgyBuXZo9odeWrShIxgttdRiw2bG/+rwyPMdudyil8DHhRsycOvbiWWZChPL+Oz2Bia1ycC4xyoS4yDCPnyfQTY2PUPZ/B2vbld99o5g5x+BcwNDpdEiJMaO+vdfnmXPNln60OvsOMmvONamxXgrOCfuuAg16xw4fCuGN4Fx7zwA+/8x+HKiRsrNNRj1+9dn5SkCoZEosluUnYW9lK6paurGzvBmXTfPO9Rgz50b3lUsLYdDpMD87wa1rmWA2fGKrHJw7JfTYZL85It9x+arFFxfkjz/+OObOnYv4+HiYzWZkZmbipptuwpEjR5T7WCwW3HPPPcjMzITJZEJBQQEeeughDA6qSx7379+Pq666CrGxsYiMjMSKFSvw9ttvj7sNW7Zswdq1a5GZmYnw8HBkZGRg/fr1OHz4sNe/38nCarOjsmWot5c7k7SW5ichzCC913aVNasGkYS6D8V+cx42kPcFuadUZ59VaYIejMQ+iFoF53Q6nXKBolnPOefvMCLMgEiT+w3D5aEQLV39E5r46W1/+bAGL+6XMgvMRj3++LlFXusPM985FGLAalemv47kxNlOJThYMiUGC7ITRr2vO5YXDpW27hEy5U41WHC+RzoWLs1PGncqtjcmtnb3W5XMxFDuNyeTS1v7rXYcrW8HoM6cY8+5wCIPhWjrGYB1lOnG3iCWhU9LYxaJK8Sy1uYJlLXK55fJ0WZNFge8XT7d0NGHz/xhrxKYizEb8eydF12QqXX7ilzltjcHQ6h6znEghEpKjBnfv3YGrpkzeRr4Dw/OyU6xjJ/ILzya1uotO3fuRHNzM/Ly8lBQUIBz587hpZdewmWXXYbu7m7YbDZcffXVeOKJJ9DU1IT8/HxUV1fjkUcewe233648z6FDh3DxxRdj27ZtMJvNSExMxJ49e7Bu3Tq8+eabY27Dli1b8NZbb8FmsyE3Nxdnz57FK6+8ghUrVqCqqmrMx9LI6s73Kv2eXB0GIYs0GbEoR7oYOnO+F9WtPV7fvkDkcDiUfnPhYXrMyQyc8nGx71wwD4WQM+dMBj1ykyI12w55Zbqzz6pJcEu+mHA3a06WLmQJNIzQMFgLeyta8cjWE8rHP9kwB7O9+De0IMe1vnPqrLkcry1qicNhPhCC+HvcKGmVyftku8OzPpLiMIjJ0BB6sVDauq9K6jvH4FzgkgMnDocUoPMV9YWqNj1Mg02KF8paO3oHlYUt8dzEn1K8ONipsrkLG363R2kzkBxtxgtfWjpi9cSV09OULKb3SptR6aU+wHLmXHxkWEC0UyFtia0axAn1YuYcy1qJfMfl4Jzdbvd6Sevzzz+Ps2fP4uDBgzhx4gTuv/9+AEBbWxtOnTqFf/3rX9i9ezcA4J///CdOnTqFxx9/HADw3HPP4cCBAwCABx54AL29vcjNzUVlZSWqq6uxZMkS2Gw2fPvb3x5zG2644QacOHEC586dUz1/d3c3/vWvf3n1+50sxN5e7gbnAODi4hTl9mSZ2lrb1oOzzkDHopzEgDpBErNjgrXv3IDVjmpnYDE/JUrTRrbePLF316DNjnZnppWnPZIyxKEQHdr3nTtzvgdffe4TWJ3NUL54cT5umJ/h1dcQh0J8Mkrfua5+K/51sB4AEGky4IZ5U732+ikxZkxzZnsePdOu9LTbqxoGkTziY4dTTWz1oO9cdcvQgolWF8f+JPad+9gZnBPLWplpElhUWU0+7DtXKlyoTuOFqku8UdYqBqQKUrQJinorc+7omQ7c+Pu9Sq/h7MRIvPzlZaO2JzDoddi8fGi40bN7a0a8nzscDofyu0jjpFaCesiRWPJ86txQj81Qn1pLpCVNR62Eh4fj3//+N5YuXYoZM2bg0UcfBQCkpKSguLhYyXqLiIjA1VdfDQDYsGGD8vi33noLVqsV27dvBwCsWbMGMTExMBqNuP766wEAx44dw9mzZ0fdhnvuuQfTp09XPl61apVy22wefefT39+Pzs5O1T+SlDdNrFnvqqKhi8xdZZMjOPehqt9cYE09zhdOgCuDNHOuqqVbCd5oVdIqE0t7/D2xtXUCk1plU4VV1bMa953rGbDii88eUMqtVxUl47trS7z+OiXpMQgPkw6XB+tGzpx79VA9ugekTMhPzctATLh3y63kUne7A/ioqg1Wm13J5EqKMrk8gVi8nzi4x1Xi6vlkyJzLT45SSiX3V5+Hze5QMucSIsNUwzlIe2JGsC/7zsnDIHQ67aZ/B5ukKDPkyntPe66KC4QFAZA5J04/d0dLVz9ueepD5dhVMiUGL929bNy+ZhsXZSPCuc/5x/46WPoGx7z/eDp7rUqlCxcaCBieOSf9nYo9Npk1R+Rbms9Bbmpqwr59+3Dy5EnY7Xbk5eVhx44diImJQV2d1D8oKSkJer20qWlpQ6Osa2tr0dLSgt5eadVJzOwbfj9XyZlziYmJqkDgcI899hji4uKUf1lZWS6/RqgTm/UWpbofCJmRHqtcDO2rbJsUfef2Bmi/OUC6OJV5q4zC39TDILS9kFJnzvk3uCVerMp/Y+4Sm19rObHV4XDgOy8dwQlnD7jcpEj8+rMLxu275okwgx5zMuIBAHVtvRdkPDocDvz1w6HjzK1LvDMIQrRC6Dv3wekWHK3vQFe/FYC0z3C1hHYiE1sdDgfeOHpO+XhBTrxbjw9GOp0Oi3OlBRNLvxUnz3Uq2QRT4rwzpZG8x9v9wEZitzuUv53sxEiPendORga9Tjn+eTqtXOtJrYB6Wqun2e/vnmqCpU/afy/OTcCLX1rm0qTUuMgwfHqBlBnePWDDSwfOePT6skbhHCSVmXOEkTPnTqkyhdlvjsiXNA/O3XXXXbDb7aipqcHGjRtRVVWFjRs3wmKxjBiUET+n0+lGDdwMv994rFYrvvjFL+Ivf/kLoqOj8corr6gCfMPdd9996OjoUP7JgUQaypzT6zwre9LrdUpav6Xf6vHKZLCQ+s1JGTARYQbMyYzXdoOGmRofoUynDNaec+UBMKlVluqFvjueUgfnPMycC5Dg3O92VuC1I1KgKMpkwJ82LfJpc/D52fHK7eF95w7WtSuDIuZlxWNWhvd7Ri7JT1SyTvZUtGCPByWtgFSWLGdeiH8XrjjVYEGFM3NlcW4C0idJcEosbX3zWAMGbdL5xRRmmgScZC8ETsZT29aDXme/0GkaH0+CjRwAaunqh83u/sKrKjinwaRWYNh7zMMAsPh9fO3yIsRFuH7sun15rnL7mT3VsHvwc5SJQVJmzhEAhIcZkOA8l5Iz5+SSVkDK8iQi39E8OAdIwbPs7Gyl59zx48fx/PPPIztbyj5oaWmB3S6lXTc1NSmPy8rKQkpKCiIipAuExsZG5WvD7zcWi8WC6667Dn/605+QlpaGHTt24OKLLx7zMWazGbGxsap/JK0on24aWlH2tORHbNhf0xqcASFXVbf2KGVSi3IT3Jpu6w8GvQ55zlKLmtYej06otVbaEDjBOVVTbA+zBzzV4oWyVrHnXL0GwTmHw4G/7K3Gz94qVT73+M3zVb3UfEEVnKtrV33tbz7OmgOA2PAwzHYG7ssau7D18FC7BleHQQDDJra29bg1lOS1I0Oved1c7/XUC3RicG6r8DMQp9pRYPBH5pw4DIIXqu6RF6fsDqC12/3fj7w4YDLqkZGgzeJAhMmAaLOULdnice+8ofPafDenXhenxWBFobTPr27twc4JtH8Re4qlsY8YOcnZc02d/bDbHTgpZM5NT+f1LpEvaRYFaG1txV/+8hcMDAxdLL7xxhvK7e7ubqxduxYA0NfXh9deew0A8I9//EO5z9q1a2E0GnHFFVcAALZt2waLxYLBwUG8+uqrAIDZs2dj6lTpImLTpk0oKSnBpk2blOeor6/HqlWr8Oabb2LGjBnYt28fFi1a5KPvOvSd7ehVVpQLJ1BykC303Qj1ia1iv7lAK2mVyUMhBmx21J/XfgiAOxwOB47VdwAAzEY9shK1m9QKqEtH/D0QwhuZc/GRYUrmlb8z5xo7+3D70x/jgVePQ06Ovnd1MVbPGD3L2VvmZ488sbW9Z0AJWsWGG3HtHN8FrVYI+wc5QDA1Lhw5bk4fLnKWdjvcmNjqcDiw9bCUqajXAetmpbv1msGsZEosYpwX4zXC8SiNk1oDToqq55xvsu5LVZNaeaHqDtVQCDcXp6w2u7JYm58c5ZMWBq6S20JMNHPObNSrFrxcdfvyPOX203uqPdoGQJ2970pZLU0Oct+5AZsdbT0Dyj5Pr5vYtR0RjU+z4JzFYsGmTZsQHx+P2bNnIzs7G/fddx8AICYmBuvXr8cNN9yAlStXAgBuvPFGlJSU4N577wUA3HLLLViwYAEA4Ec/+hEiIiJQU1OD/Px85Obm4qOPPoLBYMBPf/pT5TVra2tRWlqq6kF355134vDhwwCki4+NGzdi6dKlWLp0KX74wx/65WcRSsRhEIUe9JuTiZlztSGeOSf2m1uaH5jBObE8uaIluPrOHaxrVybhLslP0vSEHhg+sc6/PedahQuJJA97zul0OkyNl07czrb3+a0n5NbDZ7Hml7tUWQK3L8/F1y4r9Mvrp8WGKxdRR850wGqTsrlf/qQe/c6G2hsWZiLC5LsBAWLfOdnywmSX+83Jij2Y2Hq0vgO1bVJgallB0qSa1mbQ67AoN+GCz0/hxWzA8UfmXGkj+y95KmUCi1N153uVknKtJ0XL7zNLn9Wt7GNAmppe6wzy5yVHQe/BOcnlJanISpSOR7vKmpWKFXepMudY1kpOYj/V+vO9ynlCXnIUhyAR+Zhmwbn4+HjcfPPNSE9PR0VFBc6dO4esrCzcdttt2LdvH3JycmAwGPD666/j61//OlJSUlBZWYns7Gw8+OCD2LJli/Jcc+fOxc6dO7F69Wr09fWhra0Ny5cvxxtvvKFk342mv3/o5ODkyZPYt2+f8q+iosJX337IOt0oDoPwfHUlZ5Jkzkn95qTgXJTJgNk+6FXlDXlC2UVVc3AFS8Xyv+vmaJ/tkxhpUgKE/u85N/GyVmCo71zvoA3tPRObFjee9p4B/NfzB/Ffzx9ER6/0WqkxZjx9x2I8fP1Mjy5sPDXPWdraM2BDaaPUF/Vv+2qUr/uqpFW2MCdB6f8oc6ekVSYORSlzse+c+Hfky+zAQLU478Ip2mksaw04cRFhCDNI+wRfZSbLWasmo161kEjjE3uuioEhV4jDxgpSAmewk7tB4Nq2HmV6vKffh0Gvw+ZlucrHz+6t9uh5xL8RDoQgmbjwtKeiFQPOxcgSlrQS+ZxmI6bi4+Px/PPPj3u/2NhYPPHEE3jiiSfGvN/ixYuxbdu2Me/z3nvvufQ58lx509CF3kRSn7MSI6DTSWVXodxzrrKlWwnQLMpNDLh+c7J84QSyMogy52x2B153Dg0wGfRYM3OKxlsk9fxKjjahsbNf07LWlAkE54b3nUuI8iwLbzzvlTbhOy8dUQUxr5mTjh99apbPXnMs87PilffTwdp2dPQOKr2DluQlTihb2BXhYQYszE7A3gmWwotTtF2Z2GoX/o6Meh3WBsDfkb8tGSE4l87gXMDR6XRIijKjobPPJ2WtfYM2VDsHIxWmRMMYoMfsQDWRgUiqYRAaB+fUGZoDyExwPUgr9psrmEAG4E2LsvDzbWXoHZSmtv6/q6YhNty9oUhigHQyZUPT2MRj23ulQz3cpzNTmMjneFZBXiWm1k9kzL3ZaMBUZ1p1TVvoZs6JJa2B2m8OUDcsDqaJrR9VtSkXAJdMS3FrIpovTXRinafkYGCYQYfYCM/XZsQpnb7oO9czYMX3XjmK25/+WPn9xYYb8eRn5+M3tyzQJDAHAAtyxL5z7fjbvqEWCbctzfHLNoiZcvnJUR5NTFVNbG0aP3Puk9rzSmn4yqJkzX7+WpqdEQ/zsKxFlrUGpmRn37m2bu/vX083dUF+Sg6DcJ/Y18zdtg7qoFbgZM65u8gmBhnzJ/B9xEWEYcPCDABSNvc/9p9x+znk42tcRBjLFUkhZoUfqBnqscsem0S+x+AceY3D4VB6zmXERyjTrDwlNzlv7xlEh49L57QiDoMI1H5zAJAQZVJGq1cGUVnr1gCdLpkywYl1nmrtljJJkqLMbvcpE8k95wDgqd1VXu3tdKCmDeueeF8V+FpVlIxt37wE12v8O5w5NRYmZ6bM++XNeOtYAwAgKcqEq/yUTbaqOEW5vbLowh50rtDrdcpQiFoXJra+5syaA4DrJmFJKyCVMIoTe81GfcAE+0lNzmqyO4DzPd7NnlMPg2Bwzl2pE5hWLga18gKk5xzgfllrpRczAMXS1mf2VLsVjHY4HErmHPvNkUjMnLMK7ykuSBD5HoNz5DVNln5Y+qwAJpY1JxMnENa0BU9AyFVSv7k2AEC02YhZUwN7RUruO3euow89A1aNt2Z8gzY73nQGTyLCDLhyeqrGWzQkdQKr7p6y2x1ocwbnkmMmlvm0qigF4WHS4eOjqjZc++Ru1eqqJ3oGrHjsPydx0+/3KhMxI8IM+OENs/DsnRdhSgCUEJqNBsxw/p02WfqVk9bPLM66oBecr8zLisf/W1OMa2anT2gYhlza6nBgzGbiNrsDrx8dKg1fPdP3k3ED1UV5QwsoU+LCJxTgJt/x5VCI0kYG5yZC/N14WtY6JTZ8wou/E5UsDFRqcfv7GDqfnWiQsSgtBqucizS1bT2qEsTxdPZZlWFG7DdHopEmkUebjchMcD9Tn4jcw+AceY14gTeRYRCyUB8KUdHcpVw4LM5NCPjeNWL5RTCUtu6paFWCUZdPT0WkSduTedFE+u546nzPgLKqPpFhEIAUmHjmjouUDMCGzj5s/MNePP1BldvTWx0OB9463oDVv9iFP+ysVErGFmTH441vrMLnluYEVBBkQbZ6aqdOB3x2sW8HQQz3tcuL8JtbF6hKxNwlDoUYq7R1X1WrEkC+dFqK2z2NQslFuUN950a6eKHAoArOWbybOXdKyJwrYYmX20xGPRKdZfHuLEy1dQ/gvLOCoiBV26w5YFhZq4eZc94KMt6+PFe5vWVPtcuPaxL6zaUyc44EseFGRA6bPF8yJSagzsWIQlVgRwMoqJQLK8reCM6JU9BqgiAY5K5g6TcnEye2BkNpq3pKa2CV4qUIF/bNbpb2eMpbk1plS/KT8Pp/rVQCFla7Az/YegL/9fxBdPe7lllZ09qNO7d8jC/95QDqnb3rwgw6fPuqafj7l5ap3nOBQixtBICLi1KQHYQTG4tUE1tHz5zbeniopPXaACoN18LCnATlonxRTsI49yatiFlN7vY1G09pQycAqUcXSwE9Iy9ONVv6XV7M8WYpqDd4mp0pBhnzvVSae9m0VKXS5P3yFtW5+FiaOKmVRqHT6S6oVmCmMJF/MDhHXlMuZs6lTfzkKTtx6MQlFIdCyCWtQGD3m5OJU8UCPXOu32pT+oFFm424dFrKOI/wrxRVaY93Lx5HI15AJEV7p6F/amw4/vaFJfjixfnK5147cg7X/3r3mBcIfYM2PP5OGVb/chd2lDYrn19VlIy37rkYX72sMGAzSYcH525d4t+sOW8RJ7aWjxKck0rDpeBcoJWGayHCZMA/vrQMv7llAb5+RZHWm0OjyEocCpZ7M+u+vWcAjc7FlGnMIvGYHOAesNnR7mI/YdUQhQBYtPF0IIQvgox6vQ6bxN5ze6tdepw4qZWBZhpu+MCjknRmChP5Q2Be/VBQEoNzhSkTX2FR9ZxrDexgkLukfnNS5lyM2YiZU+M03qLxiWWt4glmINpZ2gyLM3trzcy0gJtCJpaQ+KvnnBicS/FC5pwszKDH/VdPx+9vW4gYZ4lORXM3PvWbD/BvIXtRtuNUE9b8chcef6ccA85+N1Niw/GbWxbg2TsvmtD0On/IiI9Q+q5MjQvH5SXBGbDKiI9QylZGK2v94HSLkuURaKXhWslNjsI1c9IDbp9CQ8SgR4UXj1XqklZmkXhKzNJyta2D2KfNGz2NJyo8zKAc78Ss9PGIVQfeypwDgJsWZSr7839+Uo+O3vGDnsyco7EMz5ybzn0ekV8wOEdeU+EMzqXEmBEXOfG+RFFmo1I6EGo958qbupTJmRflJcKgD/wV+OzESMiJAoGeObdVnC4ZgKV4WvSc83ZZ63BrZ03Bv/9rpXLR2jNgw9efP4iH/30cA1Y7zpzvwRef3Y87tnyMWmcmrFGvwxcvzsc737oE18xJD4pMFJ1OhydunofPLMrE725bGLAZfuPR63VK+4Hath70Dlw4sZVTWikY5SRFwug8plaMMezEXZzU6h1ilparmeOBVtYKAMnO47g7AyEqfPR9xIaHYcOCTADSsfdnb50at2SYmXM0luGZc8Xc5xH5RXBeVVDAae3qV4JN3ug3J5P7zjVb+oNiQqirgq3fHCCtFMsZQ5XN3W43/veXngEr3jnRCACIjwzDysJkjbfoQhOZWOcpMXPOF8E5QOpL+MpXVmD9ggzlc1v2VOO6X+3Glb/YiW3O3wsALMlLxBvfWIX7r56u+eQ9dy3MScRPb5yLuVnxWm/KhBQKE1uHZxj1W21463jgloYTjSbMoFf6QFa1dMNu986xSsycm5bGC1VPqRanXOy5KmfORYQZLggaaEXOQLf0W9E3eOHixkgqfJQ5BwCbl+dCXuf964e1uP+Vo8oQqJEwc47Gki5kzmXER0zqYVBE/sTgHHmFOKm10IvBOXFia00IZc/JJa1AcPSbk+UlS79bS7/VrVIOf9p+sgm9zhPldbPSERaAmU3hYQbERUgnOn4raxVeJznGOz3nRhJhMuDnN83Fo5+eDZPzZ1/aaEHfoFTCmhxtxuMb5+GFLy5FMS9wNVWsGgqhLm3dVdYCS5+zNHxG4JWGE41Fzkrqt9qVYTMTJQ+DAJhFMhHilGlXFqf6rTYl2zo/JQr6AKk0EI+jrh7H5QzA8DA9psZFeHV7ClOj8dj62UqFw/Mf1eGeFw9h0GYf8f6c1kpjESeST0/n/o7IXwLvqpWC0mkh68KbmXOh2HfObh/qNxcbbsT0IGqymq+a2BqYfedeOyJOaU3XcEvGJmcPNFn6/JKFKGe2AkBSlG9PxHU6HW5Zko2XvrwMGfHSBYheB9y+PBfv/r9LcMP8jKAoYQ11YnC0fFj5nzjt+Nq5gft3RDQSMSvJG33nHA6HMtWYWSQTI2bOiaWVo/nH/jNKBpg3F38nSuzd2uzCxNZBm10JMuYlR/skyLhxcTaeuHm+Uta99fBZfPmvB0bM7JMDo7HhRi6+0AWmp8cqmZhL8oIniYAo2AVXLREFLHHaX2Gq91ZY1MG50MicK2uyKE3Wl+QnBUW/OVn+sImtSwIs66+zb1CZ/pkcbQ647ROlxppR3tSFvkE7LP1Wn1/syWWteh2QGOW7zDnRnMx4vPGNVXj7RCPmZsahiJlyAUWcqi1O1+0dsOGdk1IJclxEGFYWsqSVgot6KEQ3Lp02sec7c74XXc4hQ+w3NzFiCeV4GWeVzV348esnlY9vWpjls+1yl9gewpW+czWtPbA6g4wFXi5pFV0/dyoiwwz4ynOfYMBqxzsnm3Dnlo/xp02LEOVsIeFwOJTAaFqAlAlTYMlKjMRTmxehqqUnaKfSEwUjZs6RV/iqrDVXKGsNlaEQYr+5YCppBYD8ZGFiawAOhXj7eKMyAfTaOekBHfgUV91d7bszEfLFQ2KUya8/l7iIMNy4MJOBuQCUER+BKOeEvzJhgeXdU03oGZBLw6fAZOSpAgUXb09s5TAI70l1cSCE1WbHN/9+WGlT8bmlOVhZFDg9ZJOFDEBX2nyI1Qa+nkp+5Yw0bLl9sTLBdU9FK277v33ocC4MS33ypHMllrTSaC4vScPnV+Yxs5LIj3jGTV5R3iSduMZHhiE52ntZOaFY1ir2m1sWZMG5vBSxrDXwfh9bxZLWAC/FE/vu+LrvnMPhUC4efDUMgoKPTqdTFlPqzg9NbBVLw6/llFYKQgUp3m3BUCpklpYwODch4WEGxIRLGVxj9Zz7zY4KHK5rByC11Ljv6hJ/bJ7LVGWtLhzDxWEQvsycky0vTMZf71qCWOfP+mBtO27+04do6epX9ZtL4zAIIqKAweAcTVhn3yAanZk/RanRXu0lFR9pUhrnh0JZq93uwL6qNgBSIDPYTvLTY8MRHibtNipbAqvnXFv3AHaXtwCQMoLmZyVovEVjU02sGyN7wBss/VYMOJtCJ3kxeE7BT85olCe2dvVb8e6pJgBAcrQJS/MTtdw8Io/ER5qUhcIKLywkMXPOu5Seq539I/ZcPVTXjiffLQcAGPQ6/GLjPESaAqsTjzpzbvzgnBgkLvBx5pxsQXYCXvjiMiQ5W1mcPNeJz/xhLw7VdSj3SWHmHBFRwGBwjiZMXdLq/ZPWXGf23NmOXvRbXRtXH6hONVjQLveby0sMmKljrtLrdUqpcW1rD6yjTAHTwpvHGpR+LtfOSQ/4n21KjHur7hOhmtTKzDkSDJ/Y+s6JRvQ7S8PXzUqHMQCnHRO5Qm7D0GzpR0fv4ISeSw7OGfU6VXsH8ozcd6530Kb08pP1DFjxzRcPKUMg/uvyQszLivf3Jo7L3WO4WF6dl+z7zDnZjKmx+Pvdy5AeJ/3MK5u78d2XjyhfT2XmHBFRwOBZN03Y6Ubf9JuTZTuDQQ6H1JQ5mO2tDN5+czJ5xddqd6AugH4f4nTJ6+YGfimeX4NzQj8cBudIJPYCLGvsCrq/I6LRFKR6p7R1wGpXAisFKdHswegF6r5z6uPfY2+cQpWzp+3crHh89bJCv26bq5KEwUrjZc45HA4lgzM9LlwZzOAvBSnR+Mfdy5RWMXLgEwDSmDlHRBQweIZBE3ZaOOkt8kFwLjeE+s6p+s0VBGdwTlzx9UYvH29o6uzDh1XSzzY3KRIzp8ZqvEXjE1erx+q74w3ihQODcyQS99n7q9uwq1yadjwlNhyLcgK7NJxoLMMntnqqsqVLycpmSat3qNo6CAORdpQ24S8f1gAAwsP0+OVn5iIsQLN3xd554wXn2roHlOxNf5W0DpeZEIl/fGkZpg0bzsTMOSKiwBGYRzwKKuVCo+SiNO+fdOSIE1tbgrfvnM3uwD5ncC4hMgzFPigB9od8oZFxVYBMbH3j6DnIbWuumzvVq30PfcXViXXe0CpcOLDnHInEia37a85j0Cb9IV0TBKXhRGMRgyATWUhivznvUy9OSce/890D+M5LQ+WW37tmhs+nmk6UnAE/Xva7ON0+3w/DIEaTGhuOF764FHMy4wAAEWEGnyyqExGRZwKruyoFpXJnz7losxFTYr2/AidObK1tC97g3Mlznejsk3qrLM1PCtoL33wvZSN409Yj55TbwVKKF2M2wmzUo99qV2UO+EKzUNaawsw5Euh0OhSmxShTEWXXzgnsacdE41FnznkenDslBufSGJzzBnFxqtkiDYW4/5WjSpDrkuIU3LYkW6vNc1lytBmVzd3oHrChZ8A66tCKCqE3c74f+82NJCHKhOe/sBT/OlSPkimxSIjigh0RUaBg5hxNyJnzPUofuJIpMT7JWBKDc9VBXNb6YQj0mwPUZa1VATCx9cz5HhyoOQ9AunAqDpKLJ51Op1ygNLsw6W0iWNZKYykeljmRmRARkA3YidyRkRCh9IebyEISM+e8LyVG3XPulYP1+M+xBgDSJPuf3TgnKDLgxe+jxTIw6v3EzLmCAMhUizIbceuSHCxk6wIiooDC4BxNyI5TTcrtS4pTfPIaKdFmRDrLrmpagzdzLhT6zQFAXEQYkp2lkZUBkDn3uiprLriyfeTSnvaeQZ9OIlZNa43hKjmpDQ9oXzsnOErDicZi0OuQ52yLUdPajUEPp4vLwblosxGZCRFe277JLE2osjhU146HXj2ufPzYp2cj1QdVGL4gZqKPtcimypwL8FJdIiLSDoNzNCE7SpuV25eVpPrkNXQ6HbITpey5M+d7YPXwBFtLVpsd+6raAEgTvoK9x4ecPddk6UdXv1XTbdl6ZGi65LVzgqOkVaY6sffhUIjW7qEV/USWsNAwhcN6hQZbkJtoNPLE1kGbA3UetMXo7BtEfbtUHVCcFs2gtZeIAyE+qmqDxXkesX5BBtbNDp79T3K0axNb5cy5iDAD0oMk8EhERP7H4Bx5rG/Qhj0VLQCkEy1fTsjMTRo6wT7X4dvm+b5woOY8LM5+c8sLk4P+BD8/eehivkrD7LnK5i4cq+8EAMzJjEOuxr1c3DW8746vyBcNseFGmI0Gn70OBSexj1Z+chRmpAf+tGMiV6iHQrh/rCpTlbTy78Jbos1GRISpj0UZ8RF4+PqZGm2RZ8Sy1tGO4QNWu9IvOS85Kmj7DRMRke8xOEce21vRir5BKYvtsmmpPg04BXvfOTHD8PIS35T/+lOeMG2sUsO+c68JJa3B2MA+dVjfHV+Ry1qTY9hvji40NT4CN8ybiogwA765ujjoFw+IZBMdClEqTKMvYb85rxF7rkofAz//zFzEhodpuFXuE3u4jpY5V9vWDZtdmoIdCP3miIgocHFaK3nsXaHfnK9KWmU5SUPBoJrWHqwq8unLed17pdLPSqcDLi4K/uCcOG1My75zrwklrdcEWUkrcGFTbF/oHbChe0DqZ8dhEDSax2+eD5vdAQOzOiiETDg4x2EQPpMWE670Ef7CqvygHJTlSuacOIxE60mtREQU2Jg5Rx5xOBzY4Qw4hRl0WFmU7NPXyxUy52qCLHPubHsvTjlP8OdmxiMpBAIk+SnixFZtfh8nz3WirFG62FqUk4CM+OBr1C0PhACA5k7flGurJ7Wy3xyNjoE5CjVilrcnE1tPNTBzzlduXJQJvQ5YUZiEe1cXa705HnElc04MCjNzjoiIxsLMOfLI6aYunDkvNUm+KC8R0WbfvpWyVWWtwTWxVQ5iAlL5byjIToyCXgfYHdqUtdrsDjz876HpbsFY0goMW3Ufo5n0RKiDc8EfGCYiclW02YgpseFo6OxDpZuZcw6HQ8mcS4s1Iz6Sixve9JlFWVg3awqizcagLaVPUg2EGBjxPpXMnCMiIhcxc448oipp9UPAKT0uAiaD9HatDbbg3Cmx31xoBOdMRj2ynBN0q5q74XA4/Pr6f9hVoUy/zYiPwIaFmX59fW8Re+40dfoqODd0wcDgHBFNNvLE1vM9g2jrHjmAMpLGzn509A4C4DAIX4kJDwvawBwAmI0GxEVIffJGL2sdCgqLVQdERETDMThHHhGzwfwRcDLodchKlMoWa9q6Ybf7NxjkqX6rDR+clibaJkf7dqKtv8krwN0DNp8OMxjucF07frGtDACg1wG/3DgPMUHWRFqWFGWGXEnoq58hM+eIaDLztO/cqYZO5TZLWmk0cruIkcpaHQ6Hkjk3NS4ckSYWLBER0eg0Dc49/vjjmDt3LuLj42E2m5GZmYmbbroJR44cUe5jsVhwzz33IDMzEyaTCQUFBXjooYcwODioeq79+/fjqquuQmxsLCIjI7FixQq8/fbbLm3Htm3bsGLFCkRGRiI2NhZXXXUV9u/f79XvNZR09g1if/V5ANIU1Tw/penLQyH6Bu1+DQZNxEdVbegdlJrxXzotBfoQ6umUL1zw+GsoRHe/Ffe8eAhWZ3D2K5cW4qK8RL+8ti8Y9DqlB+Foq+4T9cbRoYm2GQnB15ePiGgiVMG5JteDc6phEGkMztHI5EWvngEbuvutqq+1dg8o2ZfsN0dEROPRNDi3c+dONDc3Iy8vDwUFBTh37hxeeuklXHbZZeju7obNZsPVV1+NJ554Ak1NTcjPz0d1dTUeeeQR3H777crzHDp0CBdffDG2bdsGs9mMxMRE7NmzB+vWrcObb7455jb85z//wdVXX409e/YgMTERZrMZ27Ztw8UXX4zDhw/7+CcQnN4va1GCI5dNS/VbSUJOEA6F8Hf5rz+JQVl/9Z374WsnlAEUc7Pi8Y0rg2xs7whSnX3nWrr6vZ4ReqiuHe+XS5mbWYkRWF4QfNPwiIgmwtPMOU5qJVeIvWOHZ8+x3xwREblD0+Dc888/j7Nnz+LgwYM4ceIE7r//fgBAW1sbTp06hX/961/YvXs3AOCf//wnTp06hccffxwA8Nxzz+HAgQMAgAceeAC9vb3Izc1FZWUlqqursWTJEthsNnz7298ecxu+853vwGazYenSpaiurkZlZSVyc3PR29uL73//+7775oOYGHDyZw+13KShE5uaIOk7916p1G/OoNdhVbFvJ9r6m9g7paLJ98HSN4+dwwsf1wEAIk0GPLFxHsIMwV+ZL5/YW+0OtPW43g/JFb/aXq7c/sqlhSHx8yIicod4rHIny1ue1KrXAYXMeqJRjDWxlZNaiYjIHZpeqYWHh+Pf//43li5dihkzZuDRRx8FAKSkpKC4uFjJeouIiMDVV18NANiwYYPy+LfeegtWqxXbt28HAKxZswYxMTEwGo24/vrrAQDHjh3D2bNnR3z9+vp6HDt2DABw/fXXw2g0IiYmBqtXrwYAbN++HTabbcTH9vf3o7OzU/VvMrDbHdhZJgXnIsIMfi0pFCe21rQFfuZcVUu3kuW1KCcBsUHaF200xUKZz3ulTT4dCtHQ0Yf//udR5eOHr5+J3BBZhU6N8c1QiGP1HdjuDKRPjQvHhgXBOTSDiGgipsSGI9JkAOB65pzVZsdp531zk6MQHmbw2fZRcFNNXbcMz5wThkEkMzhHRERj0zyNoqmpCfv27cPJkydht9uRl5eHHTt2ICYmBnV1UpZMUlIS9HppU9PS0pTH1tbWoqWlBb29vQCA1NShLK7h9xuJ/PyjPba3txfNzc0XPA4AHnvsMcTFxSn/srKy3Pq+g9XR+g5l+uOKwmS/nrCKmXPVQZA5954wNOOyEJnSKkqONmNpvhScrWzpxqG6dp+8jt3uwL1/P4T2Hqlvy9Wzp+CmIJ3OOpLUmHDldvMIDaU99et3Tyu37760ACaj5rt7IiK/0+t1SvZcbVsP+q0jL7qKqlu7MWC1A+AwCBpbipA519ylzn6vEDI15anBREREo9H8au2uu+6C3W5HTU0NNm7ciKqqKmzcuBEWi2XETBzxczqdbtRsneH3G+8+7j72vvvuQ0dHh/JPDPSFMq1KWgEgIz5CmWwZDD3nQrnfnEzMxnr5kzM+eY2ndldiT0UrACA9LhyPfnq23/oc+kNqrJg51+eV5yxrtODN4w0ApFX9zyyaHIsHREQjkfvO2R2utcUobRjKeJqWFjpT1sn7kmNMyu3RMuciTQZMiQ0HERHRWDQPzgFSACw7O1vpOXf8+HE8//zzyM7OBgC0tLTAbpdWMJuahgIeWVlZSElJQUSENIGwsbFR+drw+41Efv7RHhsREYHk5JH7hJnNZsTGxqr+TQY7VNlgKX59bZNRr0ybrGnt8WkZ5UT1DFixr7INgBRULE4LzXKGdbPTEeHMntx6+JxLGQnuOFbfgZ+9VQoA0OmAn39mLuIjTeM8KriIq+7emkIsZs196eJ8lmQR0aTm7sTW0oahViUcBkFjSYkeCrqJPef6rTbUtkmB4PyUqJBaVCQiIt/QLDjX2tqKv/zlLxgYGEoBf+ONN5Tb3d3dWLt2LQCgr68Pr732GgDgH//4h3KftWvXwmg04oorrgAAbNu2DRaLBYODg3j11VcBALNnz8bUqVMBAJs2bUJJSQk2bdoEAMjIyMCsWbMAAK+++iqsVis6Ozuxbds2AMCVV14Jg4EXtbJmSz+OnOkAIJV5pMdF+H0b5NJWS58V551ljoFoz+lWDNikgPKl01JC9qQs2mzE2llTAAAdvYN492TTOI9wXe+ADd944SAGbVIQ9ksXF2B5QWgN1QDUmXPDV909UdnchdeOSH02E6NMuGVJ9jiPICIKbaqhEC3jZ96fEia1sqyVxiJmzrUIx/Da1h7IA9jZb46IiFyhWXDOYrFg06ZNiI+Px+zZs5GdnY377rsPABATE4P169fjhhtuwMqVKwEAN954I0pKSnDvvfcCAG655RYsWLAAAPCjH/0IERERqKmpQX5+PnJzc/HRRx/BYDDgpz/9qfKatbW1KC0tVfWg++lPfwq9Xo+PPvoIubm5KCgoQE1NDSIiIvDDH/7QXz+OoCD2UPN3SassO3FoKER1AJe2qjIMQ7SkVbZ+QYZy++VP6r32vD96/YTSr2VWRizuXV3stecOJKqec14Izv1mR4VyQXDXqjxEmowTfk4iomDmduZcoxSciwgzqM47iIZLihJ7zg0dw1WTWlMYnCMiovFpFpyLj4/HzTffjPT0dFRUVODcuXPIysrCbbfdhn379iEnJwcGgwGvv/46vv71ryMlJQWVlZXIzs7Ggw8+iC1btijPNXfuXOzcuROrV69GX18f2trasHz5crzxxhtK9t1o1q1bhzfeeAPLly9Ha2sr+vr6sHr1auzcuRNz58718U8huOwIgOCcOBSiNkCHQjgcDuxw9pszGfRYXpik8Rb51vKCZKWXynulTWj1wlCDt0804m/7pCB6RJgBT9w8P2QHGoiT3posE+s5V9vag38dkgKkcRFh2LQsd0LPR0QUCvKSoyAnsI83sbVnwKqUIxanRUOvD83Md/IOk1GP+MgwAOqyVnEYhJi5SURENBrNUiri4+Px/PPPj3u/2NhYPPHEE3jiiSfGvN/ixYuVctTRvPfeeyN+/qqrrsJVV1017rZMZoM2O94vawEAxEeGYX52gibbkZMU+JlzZY1dONshBVmW5CeGfOaSQa/DDfMz8PudFbDaHfj34bO4Y0Wex8/X1NmH7758RPn4wetmhPSqc3iYATHhRlj6rBPuOfe7nadhc6bN3bkiD9Hm0H7vERG5IjzMgMyECNS19aKiuRsOh2PUdhNljV2QW9qy3xy5IjnajPaeQTRb+pX3lhgEZnCOiIhcEZqpKOR1+6vPw9JvBQBcXJQCg0YryTlC5pwrE9e0EAgZhv62QVXa6vnUVofDge+8fARt3VIvyjUz0nDz4tCfNJrqzJ6bSFlrfXsvXjog/exjzEbcviLXG5tGRBQS5EWerv6xF0LUwyAmx7Avmhh5sFPfoB3dA9JgrEoxc44954iIyAUMzpFLAiXgJPZ+qQnQzDm5pBUI/X5zsqK0GMzJjAMAHKvvRKnQTNsdO8ua8V5pMwApYPU/G+aE7DANkVza2jNgQ5czCO6uP+ysUIZnbF6ei7iIMK9tHxFRsBMDJGOVtnIYBLkrWWhP0eLMnqt0vscy4iMQYeJwOSIiGh+Dc+SSd50BJ70OuKQ4RbPtiDAZlP5mgZg519E7iP015wFIPW5ykydPKcOGBZnK7X96kD1nszvwP/85pXz84HUzkBhlGuMRoUMcCtHU6X7fuabOPrzwcR0AINJkwJ0rPS8rJiIKRQWpQ8djsR/YcOLiEstayRVy5hwgDYVo6RpAZ5+00MaSViIichWDczSuurYenHZON5ufnYAEjQMm2c6+c63dA7D0DWq6LcPtLm9Ren5dOk27IKYWrps7FWEGKcvtlYP1ys/BVf86WK9kLMzNjMM1s9O9vo2BKlVYdfektPWPuyoxYLUDAG5bmjNpgppERK5ydWKrHJxLjjYhWQi6EI0mOWbomNti6Vey5gBOaiUiItcxOEfjEktaLwuAgFNukljaGljZc4FS/quFxCiTUsbbZOnH7tMtLj+2b9CGX7xdpnz83+umT4pyVllqrDix1b3gXGtXvzLZ1mzU465VzJojIhpOFZwbpay12dKPVmfP0+I0Zs2Ra5KHZc6JmZkFzJwjIiIXMThH43pX7KEWAAEnT4dCdPQO4hfbSvGBG0Ejd9jtDqVfWkSYARflJfrkdQLZeg9LW5/dW4369l4AUgB4WUGS17ctkKXEeB6ce2p3FXoHpQbUn70oW1UiS0REkuRoE2LDpQnWlaOUtZY1sqSV3JcyrOdcpWpSKzPniIjINQzO0Zh6B2zYW9EKAJgSG44Z6dpPLssRM+faXB8K8a2/H8KT757G5j9/NGYzaE8dO9uBli4psLKiMBlm4+RrAHx5SSriI6VBBG8db3Cp7LijZxC/2VEBANDpgO+sLfHpNgYiVc85i+s959p7BvDsnmoAgMmgx92XFHh704iIQoJOp0NBqhQoqW/vRa9zqqaIwyDIE+qecwOqc0yWtRIRkasYnKMx7aloQb+zl9VlJSkBUWqYK2bOtbiWOXesvgPvnJQyAK12B36xrWycR7hvx6lm5fZlJdqX/2rBZNTj+rlTAQB9g3b852jDuI/57c7T6OiVgnjr52diegAEgP3N055zf/6gGt3OC8ybFmViShyz5oiIRiNObK1suXCRrrShU7k9bcrkOxaRZ1KGHcMrW6SF4yiTAWmx7FtIRESuYXCOxiT2ULt0mvYlrcDQQAgAqG51LXPuNztOqz5+/eg5HKvv8Op2qXvzBcbPSgvi1NaXxiltPdvei6c/qAYgBfbuXVPsy00LWMNP7F3R2TeIpz+oAgAY9TpmzRERjWO8ia3yMAidDihOY8YTuUYcwnS2vRd1bdLCcX5KdEAsahMRUXBgcI5G5XA4lGwwk0GPlYXJGm+RJDY8TDkRqm0bP3OurNGC/xyTMrjEc6SfvlXqtW1q7erH4TPtAKRSmKnxEV577mAzJzNOaYD8UVWbcpI6kl+8XaZMGb1jeS4yJunPLS4iDCajtDtu6nQtOPfsnmpY+qwAgE/Pz0BWYuQ4jyAimtzGmthqtztQ1ih9LjsxEpEmo1+3jYJXmEGPBGdLj1MNnZCH1edzGAQREbmBwTkaVVljl9Kkf0l+IqLMgXOiKvedO9fRh77BC/vGiMSsuW9fNU0JAO0qa1b66U3UzrJmOJwnY4GSYagVnU6HDQvFwRD1I97vVEMnXnZm1sWGG/GVSwv9sn2BSKfTKT1rmrvGD85VtXTjD7sqAQB6HfDVyybvz46IyFVjTWytbetRhutM46RWcpOcAS8H5gD2myMiIvcwOEejUk1pDbCAU46QJTRW9lxVSze2Hj4LQCo7uH15Lu5dPVQ6+dO3TsHhcIz2cJftKBX6zU2bnP3mRDfMy1CyFP958MyIP+Of/OeUEtD86mWFiHOuOk9Wqc6+NG3dA0o24Ug6+wZx1zMfC1lzmchN5uo8EdF4cpIiYdRLB6fhE1s5DIImIjn6wt5yzJwjIiJ3MDhHo1L1UCsJsOCcOBSidfTg3O/eO62sYn5+ZR4iTUbcMD9D6SVzsLZdGRThKavNjl1lUnAuJtyIhTkJE3q+UDA1PgLLC5IASL+fAzXnVV/fW9GqBDSnxoVj8/Jcf29iwBGnvbWMkj1nszvwX88dVHolFadF4+HrZ/hl+4iIgl2YQY9s5+JeZUsX7EKaU6kQnOMwCHKX2DtWxsw5IiJyB4NzNKKOnkEloJKXHIW8AMvMyU0eypyrGWUoxJnzPUpJZWy4EZuW5QAADHodvrVmmnK//32rFDa759lzh+ralWmjFxenwGjgnxWgHgzxslDa6nA48D//Oal8fO+aaQgPM/h12wJRqjDRrWmUoRCPvXESO52B4ITIMDy1aTFiwid3xiERkTvynQGTvkE7znb0Kp8vbRQntTJzjtwzPHNOp0PAnTsTEVFgYxSBRrSrvFkJWAVaSSsAZCcOnfCMNrH1DzsrYXV+D7evyFMFMdbMSMO8rHgAQGmjBa8eGrkvmisCufxXS1fNnIJIkxR0e+3IWaU34BtHG3D4jDQpt2RKDD49P0OzbQwkqTHhyu2RJrb+fX8dnto9NJ31t7cuVE0uJiKi8Y02sVUuazUZ9cjlvpXcNDw4lxEfwYVHIiJyC4NzNCKxpPXyACtpBaA6cR6prLWxsw8v7q8DAESZDLhjWNmkTqfDd9YOZc/98p2yMft8jUXsN3dJMfvNyaLMRqyblQ4AsPRZ8c7JRgza7PjZW6eU+3x3XQkMet1oTzGpiCUxTZY+1df2V7fhe68cVT7+wadmYpmzbJiIiFw30sTWvkEbqlukQF1RajQz4Mltw8ta81nSSkREbuLZB43o8pJUrJ05BakxZizOC7weaolRJsQ4p8eOFJz7465KJdh227IcJESZLrjP8oJkrCpKBgDUtfXihY9r3d6Oho4+nDwnlcLMzYwbsefIZLZhwVBW3MsHzuD5j2pR7fx9Lc1PxKUMZipSxeBc51DmXH17L+7+6wEM2qQs0E3LcnDrkhy/bx8RUSgQg3OVLVJw7nRTl9KfliWt5InkaPV5ZgGHQRARkZuMWm8ABaZr50zFtXOmwm53QB+AmU06nQ7ZSZE4frYT9e29GLTZEeZc6W7t6sff9tUAAMLD9PjCqvxRn+fbV03D++UtAIAnt5/GjQszEWly7c/C4XDg/3ZXKh9fypLWCyzNT8LUuHCc7ejDrvIWHKprV75237rp0OkC772lFVVZq3MgRHe/FXc9sx8tXQMAgBWFSXjgWg6AICLylBg0qWiSsuVUwyDSGJwj9zFzjoiIJoqZczSmQAzMyXKdE1ttdgfqzw81df6/3VXoG5Sy5j57UfaI4+1lczLjsW7WFADShMynP6h26bV7Bqz42nMH8af3q5TPrZ6R5u63EPL0eh0+7cyes9kdON8jDc64Zk465jp7/pFENRCisx92uwPf+vthJTMzNykSv7llgRKEJiIi98VHmpDkzKavaJYy50obxUmtDM6R+1KGnWsyc46IiNzFqzwKWmIzfHkoREfPIJ7dK2XNmQx6fPHi0bPmZN9aMw1yDPL3OyvQ3jMw5v3r2nqw/rd78PrRc8rn/ntdCWZlxLn7LUwK64WprYA0zODbwrRckiRFmSAnEjZb+vD49nK8ebwBABBjNuKpzYsQH3lheTYREblHLm1tsvSjs29QGQYBACVTYrXaLApiicIxHFCXTxMREbmCwTkKWuJQiNo2qY/Zlj3V6Oq3AgBuXJSJ9LiIcZ+nMDUaNy6UAkiWPit+v7Ny1PvuqWjB9b/erZzIR5uNeGrTItx9SYHH30eoK0iJVibjAsAtS7KRm8wV5eGMBr2SzXHynAVPbi8HAOh1wJO3zEdhKrM5iIi8QZzYWtncjdIGKUM5LiIMabHsHUvuE4/h0Wajqo8sERGRKxico6CVkzR0cl3d0gNL3yD+/IFUZmrQ6/BlNwJm37iyGCZnueDTH1ShsVM9LdPhcODpD6rwuf/7SCnNzEuOwr++uhxXspx1XF+/ohB6HZCdGImvX1Gk9eYErBRn37kB29Dk4Puvno7L2M+QiMhrxKymT2rOo9E5hGfalBj2QiWPffaibOh0wOeW5fB9REREbuNACApaOULmXE1rN/76YS06eqXA2Q3zMpCVGDnaQy+QER+B25bm4M8fVKHfaseT28vx40/PBgD0Ddrw/X8dw0sHzij3v6Q4BU9+dj7iIsK89N2EtstL0vDR965EeJgB0WbudkaTEmPGyaFqady4MBOfX5mn3QYREYUgMTj3htCiooT95mgCvrVmGr58aYHLg8WIiIhEzJyjoJUWEw6zUXoLeCPQoQAAElRJREFUlzVZ8NT7UjmqTgd89TL3y0y/elkBokwGAMCLH9ehprUbjZ19uPmPH6oCc3dfUoA/376YgTk3JUebGZgbR5pQBrMwJwE//vQsrr4TEXlZvtCsf3/NeeU2h0HQRDEwR0REnmJwjoKWXq9Tsufq2nrR2i0Ncrh2zlSPRtgnRZtx1yppgITV7sB3Xz6C6361G4fq2gEA4WF6PPnZ+fjvdSUwBPAUWwpeNy7MRKTJgJlTY/H72xbCbDRovUlERCEnMyFSaWUhYuYcERERaYXLOxTUshOjUNbYpfqcJ1lzsrtW5eHZvdU43zOIDyvblM9nxEfgD59byIms5FNL8pPwyQOrYTLooWcAmIjIJwx6HfKSo1DaaFF9vjiNwTkiIiLSBjPnKKiJE1sBYM2MNJRMifX4+WLCw/DVywpVn1uSl4h/f20FA3PkF+FhBgbmiIh8TJzYCkiLcDHhbFdBRERE2mBwjoJaTrL65PprlxeOck/X3bY0BzPSY6HTAZuX5eCvdy1BUrR5/AcSERFRUCgY1v6CJa1ERESkJZa1UlDLF4JzlxSnYE5m/ISfMzzMgH9/bQU6egcZlCMiIgpBw4NzHAZBREREWmJwjoLakrxEXDk9FWfO9+LB62Z47XmNBj0Dc0RERCFKnNgKMDhHRERE2tK0rPXnP/85Lr30UqSnp8NsNiMnJwebN29GZWWlcp+jR49iw4YNyMjIQHh4OObMmYOnn35a9TwOhwNbtmzBokWLEBsbi/j4eFx//fU4ceLEuNtgs9nw6KOPYtasWYiNjUVUVBSKi4vx3e9+F729vV7/nsm7jAY9ntq8GG/ec/EFq+BEREREIxk+1Z3BOSIiItKSzuFwOLR68dzcXNTU1CA7OxsGgwFVVVUAgClTpqC0tBRnzpzB4sWL0dPTg4SEBGRkZODYsWMAgF/+8pe45557AAAPP/wwfvCDHwAAioqK0NXVhXPnziE+Ph4HDx5Ebm7uqNsgPrawsBA6nQ7l5eUAgK985Sv4zW9+49L30tnZibi4OHR0dCA21vOBBERERETke0sf3Y6Gzj4Y9TqceGQtTEa2YiYiIiLvcjVWpOlZyBe+8AXU1NSgpqYGlZWVSrCtoaEB27dvx5YtW9DT0wOTyYTy8nIcPXoU3/ve9wBIQTU5s+23v/0tAGDDhg0oKytDTU0N8vLy0N7ejkcffXTMbdi9ezcAYNq0aSgvL0dZWRmmTZsGAKipqfHFt01EREREGtu0PAcGvQ6fW5bDwBwRERFpStMzke9973vIzs5WPl61apVy22w2w263AwB0Oh10Op1yGwA6Ojrw8ccfA4DqfsO98847Y26D/JqlpaUoKipCcXExSktLMXPmzDEDe/39/ejs7FT9IyIiIqLg8JVLC3H8B1fhoetmar0pRERENMkFzDKh1WrFr3/9awBAfn4+rrjiCtx4440wGAzo7+9HUVER5syZgx//+MfKY+rr6wEAN998MwDgpZdewrRp05Cbm6uUyMr3Gc0DDzyA++67DwBw+vRplJeXQ6fTYfbs2cjKyhr1cY899hji4uKUf2Pdl4iIiIgCT3iYQetNICIiIgqM4Fx3dzfWr1+PHTt2YMqUKdi6dSvMZjOWLl2KrVu3YunSpRgYGEBrays2bdqkPC4sLAyANFji+9//PvLz81FXV4f09HRcfvnlqvuM5rnnnsP//u//oqioCNXV1aipqUFRURFeeOEF3HHHHaM+7r777kNHR4fyr66uzgs/CSIiIiIiIiIimkw0D841NDTgkksuwdatW1FcXIwPPvgAM2bMUL6+bt067N27FxaLBfX19bjqqquUr8m94cxmM374wx+ioqICPT092L9/P4xGo+o+o/nud7+LwcFBrFu3Djk5OcjOzsbatWsBjF0SazabERsbq/pHRERERERERETkDk2Dc8ePH8fSpUtx4MABrFq1Cnv37kV+fr7qPjt37lRu19XV4eGHHwYAzJw5E7NmzQIAVFVVqYY3vPjii9i2bRuAoZJXANi0aRNKSkpU2XcdHR0AgEOHDsFms8Fut+PQoUMAgKioKO99s0RERERERERERMMYtXzx9evXK0E1i8WCq6++WvnaXXfdhbvuugvXXHMNIiMjkZaWhvLycvT39yMyMhJ/+tOflAEQBw4cwMaNG1FQUIDBwUFUV1cDAJYsWYKvf/3rynPW1taitLQUU6ZMUT63YcMGPPvss9i1axfy8vKg0+lQW1sLANi8ebOvfwRERERERERERDSJaRqc6+/vV27L2WoyubT0uuuuw86dO1FaWoqYmBhcc801eOihhzBnzhzlvvn5+bjoootw8uRJ9PT0oKCgABs3bsT9998Ps9k85jb84Q9/wLRp0/Dcc8+htrYWOp0Oc+fOxec//3l85Stf8d43S0RERERERERENIzO4XA4tN6IUNDZ2Ym4uDh0dHSw/xwRERERERER0STnaqxI84EQREREREREREREkxWDc0RERERERERERBphcI6IiIiIiIiIiEgjDM4RERERERERERFpRNNpraFEnqvR2dmp8ZYQEREREREREZHW5BjReLNYGZzzEovFAgDIysrSeEuIiIiIiIiIiChQWCwWxMXFjfp1nWO88B25xG634+zZs4iJiYFOp9N6c4jIDzo7O5GVlYW6uroxx2ITEYUC7vOIaDLhPo+IvMHhcMBisWDq1KnQ60fvLMfMOS/R6/XIzMzUejOISAOxsbE8aSOiSYP7PCKaTLjPI6KJGitjTsaBEERERERERERERBphcI6IiIiIiIiIiEgjDM4REXnIbDbjoYcegtls1npTiIh8jvs8IppMuM8jIn/iQAgiIiIiIiIiIiKNMHOOiIiIiIiIiIhIIwzOERERERERERERaYTBOSIiIiIiIiIiIo0wOEdERERERERERKQRBueIaFLatWsXrr76aqSkpECn00Gn0+H3v/+96j5Hjx7Fhg0bkJGRgfDwcMyZMwdPP/206j5bt27FDTfcgNzcXERERCAtLQ1r1qzBzp07L3jNJ598EjNmzIDZbEZqairuuOMONDQ0+PT7JCICvLfPe++995THD//3zjvvqO7LfR4RacVb+zwA+P3vf4+FCxciISEBERERyMvLw5e//GW0traq7sd9HhFNhFHrDSAi0sInn3yCt99+G/n5+Whpabng6ydOnMDSpUvR09ODhIQEFBUV4ejRo7jzzjvR0dGBe+65BwDw8ssv49VXX0VSUhIKCgpw4sQJvP3223j33Xfx/vvvY9myZQCA+++/H4899hgAoKioCGfOnMGWLVuwZ88efPLJJ4iKivLb905Ek4+39nkyk8mE+fPnqz4XFxen3OY+j4i05K193pYtW/DlL38ZAJCVlYWMjAwcP34cv//971FbW4vXX38dAPd5RDRxzJwjoknpc5/7HDo7O/HWW2+N+PUtW7agp6cHJpMJ5eXlOHr0KL73ve8BAB5++GH09vYCAFatWoV9+/ahpaUFx44dwyuvvAIAsNlseOGFFwAADQ0N+NnPfgYA+Na3voWysjJ8+OGH0Ol0KCsru2All4jI27y1z5Olp6fjww8/VP1bvHgxAO7ziEh73trn7d69GwAQExOD06dP49ixY1izZg0AoKamBgD3eUTkHQzOEdGklJSUhIiIiFG/brfbAUAphZBvA0BHRwc+/vhjAMDnP/95XHTRRcrjVq1apdw2m80AgO3bt8NqtQIANmzYAACYM2cOCgsLAWDUE0ciIm/x1j5PdvbsWcTHxyM+Ph5LlizBSy+9pHyN+zwi0pq39nnyeZ3FYkFhYSFmzZqFbdu2IScnB7/61a8AcJ9HRN7B4BwR0QhuvPFGGAwG9Pf3o6ioCHPmzMGPf/xj5ev19fUjPu6Xv/wlACkwt2nTJgBAXV2d8vXU1FTldlpaGgCgtrbW69tPROQOd/d56enpyMnJQV9fHz766CPcdNNN+N3vfgeA+zwiCnyu7vM2b96MX/3qVzAajairq8Px48cBACUlJSgoKADAfR4ReQeDc0REI1i6dCm2bt2KpUuXYmBgAK2trUqwDQDCwsIueMwjjzyCH/3oRwgLC8Ozzz6LWbNmAQAcDseIryF/Xl6pJSLSiqv7vJkzZ6KyshI1NTU4fPgwysrKlAvQn//85wC4zyOiwOfqPm/79u247777EBsbi2PHjqG5uRkrV67EW2+9hU996lMAuM8jIu9gcI6IaBTr1q3D3r17YbFYUF9fj6uuukr52rRp05Tbg4ODuOOOO/DQQw8hOjoar776Kj7zmc8oX8/OzlZuNzY2KrebmpoASA2GiYi05so+LyUlBXl5ecrns7OzsXLlSgBD2SHc5xFRMHBln/fggw+iq6sLK1euxMyZM5GcnIz169cDAA4dOoSWlhbu84jIKxicIyIaxc6dO5XbdXV1ePjhhwFImSNyVlxHRwfWrVuHLVu2ICMjA++//z7WrVunep4rrrgCRqM0HFvuy3To0CGcPn0aALB27VpffytERONyZZ/37LPPYt++fcr9zpw5ozRMz83NBcB9HhEFB1fP8wDg+PHj6OvrAwAcOHAAAKDX6xEeHs59HhF5h4OIaBJ6+eWXHQUFBY6cnBwHAAcAR0pKiqOgoMBxyy23OBwOhyMqKsqRkpLimDVrlsNsNjsAOCIjIx179uxRnueLX/yi8vj8/HzHkiVLlH9f/vKXlfvdd999yv2KioocERERyu2uri6/f/9ENLl4a5+3efNmBwBHcnKyY86cOY7w8HDl+bZs2aLcj/s8ItKSt/Z5Dz74oPL41NRUR2FhofLxTTfdpNyP+zwimihmzhHRpNTZ2YmKigrU1NQon2tubkZFRYXSBPi6666D0WhEaWkpoqKisH79euzduxfLli1THtPf36/crqysxL59+5R/J06cUL724x//GI8//jhKSkpQXV2NqKgobN68Gbt27UJUVJQfvmMimsy8tc/73Oc+h5tuugnR0dEoKytDXFwcrrzySrz99tvYvHmzcj/u84hIS97a5z300EP49a9/jQULFmBgYABnz57F9OnT8cgjj2DLli3K/bjPI6KJ0jkco3SwJCIiIiIiIiIiIp9i5hwREREREREREZFGGJwjIiIiIiIiIiLSCINzREREREREREREGmFwjoiIiIiIiIiISCMMzhEREREREREREWmEwTkiIiIiIiIiIiKNMDhHRERERERERESkEQbniIiIiIiIiIiINMLgHBERERG55eGHH8a8efO03gwiIiKikKBzOBwOrTeCiIiIiAKDTqcb8+ubN2/Gr3/9a/T39yMpKclPW0VEREQUuhicIyIiIiJFQ0ODcvvFF1/Egw8+iNLSUuVzERERiIuL02LTiIiIiEISy1qJiIiISDFlyhTlX1xcHHQ63QWfG17Wevvtt+OGG27Ao48+irS0NMTHx+MHP/gBrFYrvv3tbyMxMRGZmZn485//rHqt+vp6bNy4EQkJCUhKSsKnPvUpVFdX+/cbJiIiItIYg3NERERENGHvvvsuzp49i127duEXv/gFHn74YVx77bVISEjAvn37cPfdd+Puu+9GXV0dAKCnpweXXXYZoqOjsWvXLuzevRvR0dFYu3YtBgYGNP5uiIiIiPyHwTkiIiIimrDExEQ8+eSTmDZtGu68805MmzYNPT09uP/++1FUVIT77rsPJpMJH3zwAQDghRdegF6vx1NPPYXZs2dj+vTpePrpp1FbW4v33ntP22+GiIiIyI+MWm8AEREREQW/mTNnQq8fWvdNS0vDrFmzlI8NBgOSkpLQ1NQEADhw4ABOnz6NmJgY1fP09fWhoqLCPxtNREREFAAYnCMiIiKiCQsLC1N9rNPpRvyc3W4HANjtdixcuBB/+9vfLniulJQU320oERERUYBhcI6IiIiI/G7BggV48cUXkZqaitjYWK03h4iIiEgz7DlHRERERH536623Ijk5GZ/61Kfw/vvvo6qqCjt37sQ3vvENnDlzRuvNIyIiIvIbBueIiIiIyO8iIyOxa9cuZGdnY/369Zg+fTruvPNO9Pb2MpOOiIiIJhWdw+FwaL0RREREREREREREkxEz54iIiIiIiIiIiDTC4BwREREREREREZFGGJwjIiIiIiIiIiLSCINzREREREREREREGmFwjoiIiIiIiIiISCMMzhEREREREREREWmEwTkiIiIiIiIiIiKNMDhHRERERERERESkEQbniIiIiIiIiIiINMLgHBERERERERERkUYYnCMiIiIiIiIiItLI/wcIGbFvrySL7QAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABOcAAAGHCAYAAAD7rjZMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3wUdf7/X9s3m2x6JRCSIE0FFAuIomJDUbFhOc7DeuedFb+WOzv2k7O3u/t5KmfvWLCAh4LnoQiCSO9JgCSkJ5tNts/vj92Z/cxmy8zszCZZ3s/Hgwcpk93Z3Smfz/vzer9eOo7jOBAEQRAEQRAEQRAEQRAEkXL0/b0DBEEQBEEQBEEQBEEQBHGgQsU5giAIgiAIgiAIgiAIgugnqDhHEARBEARBEARBEARBEP0EFecIgiAIgiAIgiAIgiAIop+g4hxBEARBEARBEARBEARB9BNUnCMIgiAIgiAIgiAIgiCIfoKKcwRBEARBEARBEARBEATRT1BxjiAIgiAIgiAIgiAIgiD6CSrOEQRBEARBEARBEARBEEQ/QcU5giAIIu1ZsGABdDoddDodli1b1uf3HMfhoIMOgk6nw4knnpjy/VPKxIkTodPp8Pjjj/f3riTF5ZdfjsrKyoTbcRyHd955B1OnTkVxcTGsViuGDh2K6dOn41//+pcm+3b33XejoqICRqMRubm5mjyHGni9XpSWlkKn0+GDDz6Ius28efOg0+kUPf6yZcuEcyjRvwOZF198EQsWLOjv3YhJfxzP//3vf3HRRRehvLwcZrMZOTk5mDJlCv7+97/D6XQK21VWVsY8piKvyytXrsR5552HiooKWCwWlJSU4JhjjsEtt9wi2u7EE0+ETqdDdXU1OI7rs2/fffed8Bzs5/bNN9/gyiuvxJgxY5CZmYny8nKcc845+PnnnyW/7ssvvzzm61m0aBGeeeYZ6HQ6fPXVVzEf46WXXoJOp8NHH30Ev9+PJ598EqeffjqGDh0Km82GsWPH4i9/+Qs6Ojok7xdBEAQxMDH29w4QBEEQRKqw2+14+eWX+0z0li9fjp07d8Jut/fPjingl19+wdq1awEAL7/8Mm699dZ+3iPtueOOO/DYY4/h97//PW677TbY7XbU1tbim2++wSeffIKrr75a1ef75JNP8PDDD+Ouu+7CGWecAYvFourjq8miRYuwf/9+AMHjYdasWX22ufrqq3H66acrevyJEyfihx9+EP3svPPOw4gRIwZ9cVhNXnzxRRQWFuLyyy/v713pQ38cz/fddx8eeOABTJkyBQ8++CBGjBiBnp4erFixAvPmzcO2bdvw1FNPCdsfe+yxUY+n7Oxs4evPP/8cM2fOxIknnoj58+ejrKwMDQ0NWL16Nd555x088cQTor+12+3YvXs3vvnmG5x88smi373yyivIzs5GV1eX6Od///vf0draiptuugkHH3wwmpub8cQTT2Dy5MlYvHgxTjrpJEmvPyMjA998802fn48ZMwbHHHMM/vznP+OVV16JeV6++uqrKCoqwtlnn43e3l7MmzcPv/nNb3D11VejsLAQa9aswUMPPYTPPvsMq1evRkZGhqT9IgiCIAYgHEEQBEGkOa+++ioHgLv66qu5jIwMrrOzU/T7Sy+9lDvmmGO4Qw45hDvhhBP6Zydlct1113EAuDPPPJMDwP3vf//r711SzGWXXcYNHz487jY9PT2cxWLh5syZE/X3fr9ftf1xOp0cx3HcQw89xAHg9u/fr9pja8WZZ57Jmc1m7tRTT+X0ej23Z88exY/V09Mjabvhw4dzZ555puLnGegEAgHJ7wWPVtcQ/phMBi2O53j79d5773EAuKuuuooLBAJ9ft/V1cUtXrxY+F7q8XT88cdzI0aM4Lxeb5/fRV4HTjjhBO6QQw7hJk+ezM2ePbvP89tsNu73v/89B4B79dVXhd9Fe48cDgdXUlLCnXzyyQn3keOC17XMzMy421x00UWc2WzmWlpa+vxu8+bNHADulltu4TiO43w+X9Tt3n//fQ4A9/rrr0vaL4IgCGJgQm2tBEEQxAHDb37zGwDA22+/Lfyss7MTH374Ia688sqof+PxePDQQw9hzJgxsFgsKCoqwhVXXIHm5mbRdu+++y5OO+00lJWVISMjQ2g3Ytu2gGCrU1ZWFnbs2IEZM2YgKysLw4YNwy233AK32y3pdbhcLrz11ls44ogjBNXJK6+80mc7vo1x48aN+M1vfoOcnByUlJTgyiuvRGdnp2hbnU6H66+/Hq+//jrGjh0Lm82GCRMmYNGiRX32P1oLarSWyRdeeAHHH388iouLkZmZiXHjxmH+/Pnwer2SXieL0+mE2+1GWVlZ1N/r9eEhDd+CGdnCXFNT06d9jf881q9fj9NOOw12ux0nn3wyKisrcffddwMASkpKoNPpMG/ePADSP2sg2H539tlno6CgAFarFSNGjMDcuXNF22zfvh2zZ89GcXExLBYLxo4dixdeeEHye1NfX4+vvvoKZ599Nm677TYEAoGorZXRPqPKykqcddZZ+Oijj3D44YfDarXi/vvvl/zckTQ2NuKaa67B0KFDYTabUVVVhfvvvx8+n0/Yhv8c/va3v+Gxxx5DZWUlMjIycOKJJ2Lbtm3wer34y1/+giFDhiAnJwfnnXcempqaou73woULMX78eFitVlRXV+PZZ5/ts09dXV249dZbUVVVBbPZjPLycsydO7fP58WfA//4xz8wduxYWCwW/Pvf/wYA3H///Zg0aRLy8/ORnZ2NiRMn4uWXXxa1SlZWVmLjxo1Yvny50L7Inyt8a31NTY3oOaMdqyeeeCIOPfRQfPfdd5gyZQpsNptwfZL6WiKJdzwHAgHMnz9fuMYVFxdjzpw52Lt3r+gx4u1XNB544AHk5eXh2WefjdrubLfbcdppp8Xd72i0traisLAQRmPfBiD2OsBy5ZVX4qOPPhK1f77zzjsAgEsuuaTP9sXFxX1+lpWVhYMPPhh79uyRvc+xuOqqq+DxePDWW2/1+d2rr74KAMJ7bDAYUFBQ0Ge7o48+GgBU3S+CIAgi9VBbK0EQBHHAkJ2djVmzZuGVV17BNddcAyBYqNPr9bj44ovx9NNPi7YPBAI455xz8N///he33347pkyZgtraWtx333048cQTRW1E27dvx4wZMzB37lxkZmZiy5YteOyxx/DTTz/1aWvyer2YOXMmrrrqKtxyyy347rvv8OCDDyInJwf33ntvwtfx0Ucfob29HVdeeSVGjhyJ4447Du+++y6efvppZGVl9dn+ggsuwMUXX4yrrroK69evxx133AGgb0Hv888/x6pVq/DAAw8gKysL8+fPx3nnnYetW7eiurpa8vvMs3PnTsyePVsoJKxbtw4PP/wwtmzZErWYGI/CwkIcdNBBePHFF1FcXIwZM2Zg9OjRqniceTwezJw5E9dccw3+8pe/wOfzoaioCC+88AJefvllfPXVV8jJycHQoUMBSP+sFy9ejLPPPhtjx47Fk08+iYqKCtTU1GDJkiXCNps2bcKUKVNQUVGBJ554AqWlpVi8eDFuvPFGtLS04L777ku4/wsWLIDf78eVV16JU045BcOHD8crr7yCu+66S9L7s2bNGmzevBl33303qqqqkJmZqeBdDBbmjj76aOj1etx7770YMWIEfvjhBzz00EOoqakRig08L7zwAsaPH48XXngBHR0duOWWW3D22Wdj0qRJMJlMeOWVV1BbW4tbb70VV199NT799FPR3//yyy+YO3cu5s2bh9LSUrz55pu46aab4PF4hDbvnp4enHDCCdi7dy/uvPNOjB8/Hhs3bsS9996L9evX4z//+Y/oPfr444/x3//+F/feey9KS0uFIk1NTQ2uueYaVFRUAAB+/PFH3HDDDdi3b59wzi5cuBCzZs1CTk4OXnzxRQBQ3Dra0NCASy+9FLfffjseeeQR6PV62a+FZeHChTGP5z/96U/4f//v/+H666/HWWedhZqaGtxzzz1YtmwZ1qxZg8LCwrj7FWv/N2zYgIsvvhg2m03y6+Y4TlTI5TEYDMJrO+aYY/Cvf/0LN954I377299i4sSJMJlMcR/3kksuwc0334y3334bf/rTnwCE27/Zltl4dHZ2Ys2aNZJbWnkiX49Op4PBYAAA0fl6ww03CNv4/X68/vrrmDx5Mg4++OC4j89fcw455BBZ+0UQBEEMMPpbukcQBEEQWsO3ta5atYr79ttvOQDchg0bOI7juKOOOoq7/PLLOY7r25L29ttvcwC4Dz/8UPR4q1at4gBwL774YtTnCwQCnNfr5ZYvX84B4NatWyf87rLLLuMAcO+9957ob2bMmMGNHj1a0us56aSTOKvVyrW3t4te38svvyza7r777uMAcPPnzxf9/Nprr+WsVquo1QwAV1JSwnV1dQk/a2xs5PR6Pffoo4+K9j9aCyr/XLHw+/2c1+vlXnvtNc5gMHBtbW0JHzOSn376iauoqOAAcAA4u93OnXXWWdxrr70mei38Z/ztt9+K/n737t192tf4z+OVV16J+Zqam5tj7lO8z3rEiBHciBEjuN7e3ph/P336dG7o0KF9Wq2vv/56zmq1it6nWM9/0EEHceXl5ZzP5xPt99KlS6O+Hpbhw4dzBoOB27p1a9zniUZkG+I111zDZWVlcbW1taLtHn/8cQ4At3HjRo7jwp/DhAkTRG2ITz/9NAeAmzlzpujv586dywEQvUfDhw/ndDod98svv4i2PfXUU7ns7Gyh3fLRRx/l9Ho9t2rVKtF2H3zwAQeA++KLL4SfAeBycnISvuf8sfzAAw9wBQUFomMvVlsrf47u3r1b9PNox+oJJ5wQ9fOT81qiEe145lsnr732WtG2K1eu5ABwd955Z8L9isaPP/7IAeD+8pe/JNyWZ/jw4cK5HfnvwQcfFLZraWnhjjvuOOF3JpOJmzJlCvfoo49yDodD9Jh8WyvHBc/1I488kuM4jtu4cSMHgFu2bJlwPWevC9H47W9/yxmNRm716tWSXg9/bYn8d+yxx4q24z+XNWvWCD/77LPPOADcSy+9FPc59u7dy5WUlHBHHnmkqq39BEEQROqhtlaCIAjigOKEE07AiBEj8Morr2D9+vVYtWpVzNasRYsWITc3F2effTZ8Pp/w77DDDkNpaamoFW3Xrl2YPXs2SktLYTAYYDKZcMIJJwAANm/eLHpcnU6Hs88+W/Sz8ePHo7a2NuH+7969G99++y3OP/98IW3xwgsvhN1uj6lGmzlzZp/ncrlcfVoFp02bJgrFKCkpQXFxsaT9isbatWsxc+ZMFBQUCO/JnDlz4Pf7sW3bNtmPd9RRR2HHjh346quvcOedd+KYY47B0qVLMWfOHMycOTNqGqNULrjgAsnbSvmst23bhp07d+Kqq66C1WqN+jgulwtLly7FeeedB5vNJjrGZsyYAZfLhR9//DHuvixfvhw7duzAZZddJqhxrrjiCuh0OsnqxPHjx2PUqFFSX35MFi1ahGnTpmHIkCGi13LGGWcI+8oyY8YMkfJq7NixAIAzzzxTtB3/87q6OtHPDznkEEyYMEH0s9mzZ6Orqwtr1qwR9unQQw/FYYcdJtqn6dOnR219Pumkk5CXl9fntX3zzTc45ZRTkJOTI3zm9957L1pbW/ucR2qQl5fXR6El97VI4dtvvwWAPgEWRx99NMaOHYulS5cm3C81Oe6447Bq1ao+/6666iphm4KCAvz3v//FqlWr8Ne//hXnnHMOtm3bhjvuuAPjxo1DS0tL1Me+8sorsXr1aqxfvx4vv/wyRowYgeOPP17Sft1zzz1488038dRTT+GII44Qfh4IBESfhd/vF/1dRkZGn9fy8ssvi7a54ooroNfrRefrq6++iszMTFx88cUx96mtrQ0zZswAx3F49913Y6oYCYIgiMEBtbUSBEEQBxQ6nQ5XXHEFnn32WbhcLowaNQpTp06Nuu3+/fvR0dEBs9kc9ff8JLC7uxtTp06F1WrFQw89hFGjRsFms2HPnj04//zz0dvbK/o7m83Wp2BjsVjgcrkS7v8rr7wCjuMwa9YskX/SzJkz8eabb2LLli0YM2aM6G8ifYr4VrvI/YrmZ2SxWPpsJ4W6ujpMnToVo0ePxjPPPIPKykpYrVb89NNPuO666xQ9JgCYTCZMnz4d06dPBxD0n5o1axYWLVqEL7/8EjNmzJD9mDabTXJrm9TPmvck5FsHo9Ha2gqfz4fnnnsOzz33XNRtYhUaePiJ/nnnnSccDzk5OTjuuOPw4Ycf4vnnnxeKuLGI5eMnl/379+Ozzz6L2WIY+Vry8/NF3/PnWayfR54fpaWlfZ6D/1lra6uwTzt27JC8T9Hei59++gmnnXYaTjzxRLz00kuCn97HH3+Mhx9+WPGxHI9o+yH3tUiBf5+iPd+QIUP6FOalHit8++/u3btl7U9OTg6OPPJISdseeeSRwrZerxd//vOf8dRTT2H+/PmYP39+n+2PP/54jBw5Ev/85z/x3nvvYe7cuZLavu+//3489NBDePjhh3H99deLfvfAAw+IPBqHDx8u8hXU6/UJX8/w4cNx8skn46233sLjjz8Oh8OBRYsWYfbs2TETxNvb23Hqqadi3759+OabbxTZDhAEQRADCyrOEQRBEAccl19+Oe6991784x//wMMPPxxzu8LCQhQUFOCrr76K+nt+4vTNN9+gvr4ey5YtExRUAETFMzVgjf7PP//8qNu88sorUSemamG1WqMGV0QWBj7++GM4nU589NFHGD58uPDzX375RdX9KSgowNy5c7Fs2TJs2LABM2bMEAqfkfsZq3ghx7dO6mddVFQEAH1M9Vny8vJgMBjwu9/9Dtddd13UbaqqqmL+PR9mAgRVhdF46623cO2118Z8DEDe649HYWEhxo8fH/OcGjJkiCrPw9PY2BjzZ3yhubCwEBkZGTFVhKyfGhD9vXjnnXdgMpmwaNEiUVH9448/lryvahyTcl+LFPj3qaGhoU8hub6+XtL7E42ysjKMGzcOS5YsQU9PjyzfOSWYTCbcd999eOqpp7Bhw4aY211xxRW4++67odPpcNlllyV83Pvvvx/z5s3DvHnzcOedd/b5/R/+8AecddZZwvdKPQavuuoqfP311/jkk09QX18Pj8cjUguytLe345RTTsHu3buxdOlSjB8/XtFzEgRBEAMLKs4RBEEQBxzl5eW47bbbsGXLlrgTtLPOOgvvvPMO/H4/Jk2aFHM7fsIaOTH75z//qc4Oh1i8eDH27t2L6667DrNmzerz++uvvx6vvfYaHnnkkahJhmpQWVmJpqYm7N+/HyUlJQCCgQqLFy8WbRftPeE4Di+99JKi5/V6vejq6oqq7uNbSfniD5+Q+euvvwoKOwB9AgWUIPWzHjVqlNA+/X//939RJ+02mw3Tpk3D2rVrMX78+JgKzVi89dZb6O3txYMPPojjjjuuz+8vvPBCvPLKKwmLc2px1lln4YsvvsCIESOitoaqzcaNG7Fu3TpRa+tbb70Fu92OiRMnCvv0yCOPoKCgIG6hMx46nQ5Go1FoGwaCqtPXX3+9z7axlKbsMTl69Gjh53KOSTVeSyR8i+obb7whKvCuWrUKmzdvxl133aX4se+55x5cdNFFuPHGG/HSSy/1Kex1d3djxYoVshNbGxoaoir4Iq8D0bjsssuwcuVKjB07FuXl5XGf58EHH8S8efNw9913xwxmGTJkiCpF53PPPRcFBQV45ZVX0NDQgFGjRkU9p/nC3K5du/D111/j8MMPT/q5CYIgiIEBFecIgiCIA5K//vWvCbe55JJL8Oabb2LGjBm46aabcPTRR8NkMmHv3r349ttvcc455+C8887DlClTkJeXhz/+8Y+47777YDKZ8Oabb2LdunWq7vPLL78Mo9GIO++8M+qE8JprrsGNN96Izz//HOecc46qz81z8cUX495778Ull1yC2267DS6XC88++2wfr6VTTz0VZrMZv/nNb3D77bfD5XLh73//O9rb2xU9b2dnJyorK3HhhRfilFNOwbBhw9Dd3Y1ly5bhmWeewdixYwU1YWlpKU455RQ8+uijyMvLw/Dhw7F06VJ89NFHSb9+OZ/1Cy+8gLPPPhuTJ0/GzTffjIqKCtTV1WHx4sV48803AQDPPPMMjjvuOEydOhV/+tOfUFlZCYfDgR07duCzzz7rk/TL8vLLLyMvLw+33nprVF+7OXPm4Mknn+xTwNKKBx54AF9//TWmTJmCG2+8EaNHj4bL5UJNTQ2++OIL/OMf/4jb5iuXIUOGYObMmZg3bx7Kysrwxhtv4Ouvv8Zjjz0mKLXmzp2LDz/8EMcffzxuvvlmjB8/HoFAAHV1dViyZAluueWWuIV3IOiB9+STT2L27Nn4wx/+gNbWVjz++ONRC67jxo3DO++8g3fffRfV1dWwWq0YN24cjjrqKIwePRq33norfD4f8vLysHDhQnz//feSX68aryWS0aNH4w9/+AOee+456PV6nHHGGUJa67Bhw3DzzTfLejyWCy+8EPfccw8efPBBbNmyBVdddRVGjBiBnp4erFy5Ev/85z9x8cUXi4pzHR0dUX0WLRaLUIiaPn06hg4dirPPPhtjxoxBIBDAL7/8gieeeAJZWVm46aabYu7TkCFDJCken3jiCdx77704/fTTceaZZ/bZp8mTJ0t8F6RhsVjw29/+Fs899xw4jot6f+rt7cX06dOxdu1aPP300/D5fKL9KioqwogRI1TdL4IgCCKF9GscBUEQBEGkADatNR7Rkha9Xi/3+OOPcxMmTOCsViuXlZXFjRkzhrvmmmu47du3C9utWLGCO+aYYzibzcYVFRVxV199NbdmzZqo6aCZmZl9njtR2mlzczNnNpu5c889N+Y27e3tXEZGBnf22WeLHjMybTRaciQA7rrrruvzmMOHD+cuu+wy0c+++OIL7rDDDuMyMjK46upq7vnnn4+6/5999pnwvpWXl3O33XYb9+WXX/ZJp5SS1up2u7nHH3+cO+OMM7iKigrOYrFwVquVGzt2LHf77bdzra2tou0bGhq4WbNmcfn5+VxOTg536aWXcqtXr5b8eXBc7PdP6mfNcRz3ww8/cGeccQaXk5PDWSwWbsSIEdzNN98s2mb37t3clVdeyZWXl3Mmk4krKiripkyZwj300EMx349169ZxALi5c+fG3GbLli0cAO6GG24QvR6WyMRVOUT72+bmZu7GG2/kqqqqOJPJxOXn53NHHHEEd9ddd3Hd3d3C6wXA/e1vfxP9LZ9c+v7774t+Hu385Z/7gw8+4A455BDObDZzlZWV3JNPPtlnP7u7u7m7776bGz16NGc2m7mcnBxu3Lhx3M0338w1NjYK28U6BziO41555RVu9OjRnMVi4aqrq7lHH32Ue/nll/ucRzU1Ndxpp53G2e12DoDouN62bRt32mmncdnZ2VxRURF3ww03cJ9//nnUtFY+YVTpa4lGrOPZ7/dzjz32GDdq1CjOZDJxhYWF3KWXXsrt2bNHtF28/YrH8uXLuVmzZnFlZWWcyWTisrOzuWOOOYb729/+JkqHjpfWWl5eLmz37rvvcrNnz+ZGjhzJZWVlcSaTiauoqOB+97vfcZs2bZK9z9HSWvlk2lj/pBDv2hIN/pw2GAxcfX19n9/z502sf5HXaYIgCGJwoeO4JKLNCIIgCIIgCCLFVFZW4tBDD8WiRYv6e1cIgiAIgiCShjK3CYIgCIIgCIIgCIIgCKKfoOIcQRAEQRAEQRAEQRAEQfQT1NZKEARBEARBEARBEARBEP0EKecIgiAIgiAIgiAIgiAIop+g4hxBEARBEARBEARBEARB9BNUnCMIgiAIgiAIgiAIgiCIfsLY3zuQLgQCAdTX18Nut0On0/X37hAEQRAEQRAEQRAEQRD9CMdxcDgcGDJkCPT62Po4Ks6pRH19PYYNG9bfu0EQBEEQBEEQBEEQBEEMIPbs2YOhQ4fG/D0V51TCbrcDCL7h2dnZ/bw3BEEQBEEQBEEQBEEQRH/S1dWFYcOGCTWjWFBxTiX4Vtbs7GwqzhEEQRAEQRAEQRAEQRAAkND+jAIhCIIgCIIgCIIgCIIgCKKfoOIcQRAEQRAEQRAEQRAEQfQTVJwjCIIgCIIgCIIgCIIgiH6CPOcIgiAIgiAIgiAIgiCiwHEcfD4f/H5/f+8KMQAxGAwwGo0JPeUSQcU5giAIgiAIgiAIgiCICDweDxoaGtDT09Pfu0IMYGw2G8rKymA2mxU/BhXnCIIgCIIgCIIgCIIgGAKBAHbv3g2DwYAhQ4bAbDYnrY4i0guO4+DxeNDc3Izdu3dj5MiR0OuVucdRcY4gCIIgCIIgCIIgCILB4/EgEAhg2LBhsNls/b07xAAlIyMDJpMJtbW18Hg8sFqtih6HAiEIgiAIgiAIgiAIgiCioFQJRRw4qHGM0FFGEARBEARBEARBEARBEP0EFecIgiAIgiCIAc2qmjbM+3QjdjR19/euEARBEARBqA55zhEEQRAEQRADFo7jcMNba9HY5UJtqxOvXnF0f+8SQRAEQRCEqpByjiAIgiAIghiwONw+NHa5AAB1bT39vDcEQRAEMThwuVx48sknMWnSJGRnZ8Nms2HUqFH44x//iF27dmHevHnQ6XRR/82dO1d4nIaGBlxzzTWoqqqCxWJBQUEBxo8fj9/97nfo6Qnfl9m/v+mmm0T78vnnn4t+/9VXXwEANm7ciMsvvxxjxoxBdnY2cnJycMQRR+Dll1+W9BorKytjvoZffvkFr776qvD9d9991+fvp02bBp1Oh+rqanAchwULFuD000/H0KFDYbVaUV5ejvPPPx/r1q1T8AnIg5RzBEEQBEEQxIClqcstfN3j8ffjnhAEQRDE4KC9vR0nn3wy1q5dCwCw2+0YMWIE6urq8M9//hOTJ08WbX/YYYfBYrEI31dWVgIAAoEAzjzzTKxduxZGoxEHH3wwent7sW3bNqxfvx5PPfVU1CTbBQsW4KGHHoLdbgcAPP/881H3c9WqVfj3v/8Nm82G6upq7Nq1C2vWrMHVV1+N1tZW3H777ZJer91ux8EHHyz6WWZmJi688ELccMMNcDqdeP3113H88ccLv9+zZw+WL18OALjsssug0+mwYMECLF++HKWlpaisrMTWrVuxcOFCLFmyBOvXr0dVVZWk/VECKecIgiAIgiCIAUuTwyV87XT7+nFPCIIgCGJwcP311wuFudtuuw1tbW1Yv349Ojs78eWXX2LUqFGi7RcuXIgff/xR+Mcr57Zt2yY8zpIlS7Bu3Tps27YNHR0dWLhwITIzM/s8t8lkQldXF1577TUAwPbt27F48WKYTKY+21ZUVOD9999HV1cX1q9fj82bNyMnJwcA8Oabb0p+vRMnThTt/48//oiRI0ciKysLF1xwAQDg/fffh8sVHlO88cYb4DgOOp0Oc+bMAQCce+652LRpExoaGrBlyxY8/fTTAACn04mPP/5Y8v4ogZRzBEEQBEEQxICl2SFWzvEDaYIgCIJINWc/973ovpQqiuwWfHbDcZK27ezsxHvvvQcAmDBhAh577DHRffP0008HECy2JSIQCAhfL1iwAAaDARMnTkRWVhbOPffcqH9z3nnn4YMPPsDzzz+Pa6+9Fs8//zw4jsOsWbPw9ttvi7Y96aSTRN9XVFSgoqIC69evFyn5kuHyyy/Ha6+9hs7OTnz66ae46KKLAACvv/46AOCEE04QFHFsOy8ATJ06Vfharf2JBSnnCIIgCIIgiAELOwnyBTh4/IE4WxMEQRCEdjQ73GjscqX8n5yC4LZt2+DzBZXmU6dOlbSgVVVVJfJr41ViY8eOxbRp0wAAr732Gk444QTk5uZiypQpeOutt2I+1plnnoktW7Zg4cKFWLBgAXJzc3HppZcm3I///Oc/2LhxIwDg97//vZSXCwBYvny5aP9zc3OF35144olCmy5fkFu9ejU2b94MIFi8iwWvnMvPzxcUeFpByjmCIAiCIAhiwNIUMSHpcfthMRr6aW8IgiCIA5kiu7bqKTWel+M44WupSvNIz7n8/Hzh77/66iu8+OKL+OCDD/DTTz/B6/Xihx9+wA8//ACPxxO1uHXDDTfgs88+wxVXXIGuri7ccsstUb3pWL744gtcfPHFCAQCuPHGG4XiXENDA8477zzRtgsXLkRZWZnwfaTnHO91x7+GOXPm4IEHHsBXX32F5uZmoUiXlZWFWbNm9dkXn8+Ha6+9Fq+//jqysrKwcOFClJSUxN3/ZOnX4tzTTz+NV199FbW1tejt7UVRURGOOeYY3HPPPRg/fjwAwOFw4J577sEHH3yApqYmDBs2DJdeeinuvvtuUc/y6tWrcdddd+GHH36Az+fD4Ycfjnnz5uHUU0+Nuw8LFizAO++8gw0bNqClpQUFBQWYNGkS7rvvPkyYMEHT108QBEEQBEHEp6nLJfre6fEhL9PcT3tDEARBHMhIbS3tT0aPHg2j0Qifz4fvv/9ekh3EwoULBXVZJGazGXPnzsXcuXPhcrnw9ddfY/bs2eju7sYnn3wStTh3yimnYMyYMdiyZQv0ej2uvfZa1NXVxXz+f/zjH7j++uvh9/vxwAMP4J577hF+53a7sXLlStH2brd44W7ixIlYtmxZzMe//PLL8eCDD8Ln8+H111/HO++8AwCYNWtWH988h8OBiy66CF999RVKSkqwaNEiHHnkkTEfWy36ta11+fLlaG5uRlVVFUaMGIGGhgZ88MEHmDZtGpxOJ/x+P2bMmIFnnnkGTU1NqK6uRk1NDR544AHRAfDLL7/g+OOPx5IlS2CxWJCfn48VK1bgjDPOECJ6Y7FgwQIsXrwYfr8flZWVqK+vx8KFC3Hsscdi9+7dGr8DBEEQBEEQRDz6KOcosZUgCIIgYpKTkyP4qq1duxZ33nmn0OYKBFtHV6xYIemx9uzZg7vvvhs1NTUAAKvVipNPPhl5eXkAgOzs7Kh/p9PpcP311wMAzjzzTFRXV0fdjuM43H777fjTn/4Eg8GAN954Q1SYA4LJsRzHif7FKiTGoqqqSvCPu++++9DU1ASgb0vrvn37MHXqVHz11Vc4+OCDsXLlypQU5oB+Ls69/fbbqK+vx9q1a7Fp0ybceeedAIC2tjZs2bIFH3/8Mb7//nsAwEcffSRKy3jrrbfw888/AwDuuece9Pb2orKyErt27UJNTQ0mTZoEv9+P2267Le4+9GcaB0EQBEEQBBGfSJ8dSmwlCIIgiPg8//zzOPzwwwEAf/3rX1FQUIAJEyYgPz8fp556KrZt2yba/rzzzsPkyZOFf3/+858BBOsiDz/8MKqqqlBcXIyJEyeivLwce/bsgU6nwyWXXBJzH/74xz+iubkZ7777bsxt3nnnHfztb38DECz0Pffcc6L9UBO+ENfd3Q0gWLA7/vjjRdtceeWVWLduHYBg4fDiiy8W9uXBBx9UdX8i6de2VqvVik8//RSPPPIIurq6sHXrVgBAUVERRo0ahX/84x8AgIyMDMyYMQMAcMEFF+DGG28EACxevBgTJkzA0qVLAQCnnXaa0Fs8c+ZMrFy5Ehs2bEB9fT2GDBkSdR+UpnG43W6RlLKrq0vOSycIgiAIgiAkQMo5giAIgpBHXl4eVqxYgRdeeAHvvvsuNm/ejK1bt6K8vBznn38+pk6dKqjhgGA3IktpaSkAoLy8HA888AC++eYbbN++HRs3boTJZMLRRx+NuXPn4owzzoi5DwaDAYWFhXH3k62ptLS0oKWlRf6LlciFF16IG264AU6nEwBw2WWX9Wn3ZfeHD4zgGTNmjGb7BgyAQIimpiZR/3BVVRU+++wz2O127NmzBwBQUFAAvT4o8mNN+Orq6tDS0oLe3l4AQHFxsfC7yO1iFecikZrG8eijj+L++++X9JgEQRAEQRCEfFxePzp7vaKfkXKOIAiCIBJjtVpxyy234JZbbon6+3nz5mHevHlxH8Nut+Oee+7p02oaDTaIIhonnnhin20uv/zyuGmpiWALjInIysoSVHOxiOdbpzX92tYKAFdffTUCgQBqa2tx8cUXY/fu3bj44ovhcDiifriRySOxDgC5CSU+nw9/+MMfJKdx3HHHHejs7BT+8YVEgiAIgiAIQh1aut19fkbKOYIgCIIg0o1+L84BweJZRUWF4Dm3ceNGvP3226ioqAAQlDcGAgEAEIz7AGDYsGEoKipCRkYGAGD//v3C7yK3i4fD4cDZZ5+Nl156CSUlJfj222/79B5HYrFYkJ2dLfpHEARBEASRjqzY0YJjHl2KOxeuT+nzRra0AsG0VoIgCIIgiHSi34pzra2teP311+HxeISfffHFF8LXTqcTp59+OgDA5XJh0aJFAID3339f2Ob000+H0WjEySefDABYsmQJHA4HvF4vPvnkEwDAuHHjhJbWOXPmYMyYMZgzZ47wGP2ZxkEQBEEQBDEY+PcPNWjodOGtlXVocrhS9rxNXVGUc25SzhEEQRAEkV70m+ecw+HAnDlzcM0112DEiBGi1lC73Y7zzz8fQ4cOxXHHHYfvv/8es2bNQnV1NbZv3w4AmD17NiZOnAgAeOihh7B06VLU1taiuroaZrMZ9fX1MBgMmD9/vvCcdXV12Lp1q2BuCERP4+A588wzJfVWEwRBEARBpDONTJGstduDYrs1Jc/bHKUQSMo5giAIgiDSjX5TzuXm5uKSSy5BWVkZdu7ciYaGBgwbNgyXXnopVq5cieHDh8NgMODzzz/HjTfeiKKiIuzatQsVFRW49957sWDBAuGxJkyYgOXLl+PUU0+Fy+VCW1sbpkyZgi+++EJQ38UiMo1j5cqVwr+dO3dq9fIJgiAIgiAGDS1Me2lHjzfOlurSHKWtlTznCIIgiFSSKOiAINQ4RvpNOZebm4u333474XbZ2dl45pln8Mwzz8Td7qijjsKSJUvibhMteaM/0zgIgiAIgiAGOhzHiYIZOns9cbZWl6iec5TWShAEQaQAk8kEAOjp6RF87gkiGj09PQDCx4wS+q04RxAEQRAEQQx8ut0+uH0B4ftUKueiFedIOUcQBEGkAoPBgNzcXCFs0mazQafT9fNeEQMJjuPQ09ODpqYm5ObmwmAwKH4sKs4RBEEQBEEQMWnpFivl2lNanIviOUfKOYIgCCJF8H71fIGOIKKRm5sryjZQAhXnCIIgCIIgiJiwLa0A0JHCtlbecy7LYkR3qChHyjmCIAgiVeh0OpSVlaG4uBheb+oWp4jBg8lkSkoxx0PFOYIgCIIgCCImLRGtpZ0pUs75A5yg2qvIt2FTQxcASmslCIIgUo/BYFClAEMQsei3tFaCIAiCIAhi4BOpnGvvSY1yrs3pgT8QTD8rybbAZg5OiqitlSAIgiCIdIOKcwRBEARBEERMmiM851IVCMH6zRXbrbCZgw0fTje1tRIEQRAEkV5QcY4gCIIgCIKISaRyrrM3NcW5ZqadtjjbgkxLUDnXQ22tBEEQBEGkGVScIwiCIAiCIGIS6TmXOuVc+HmL7Jawco4CIQiCIAiCSDOoOEcQBEEQBEHEpL8850TKObsFmSHPOY8vAK8/kJJ9IAiCIAiCSAVUnCMIgiAIgiBi0hLhOef2BeDyaq9ea+oKe84V2a2wWYzC9z2kniMIgiAIIo2g4hxBEARBEAQRk0jlHJCa1tbm7ujKOYB85wiCIAiCSC+oOEcQBEEQBEFEpcfji6pS6+jVvrW1qSu65xxAia0EQRAEQaQXVJwjCIIgCIIgotLiiF6Ea3dqr5zjAyGyrUZYTQYhrRUg5RxBEARBEOkFFecIgiAIgiCIqLCtpTpd+OedGivnOI4TAiGKs60AQMo5giAIgiDSFirOEQRBEARBEFFh/ebKczOEr7X2nOt2+9AbCp0otlsAAFmknCMIgiAIIk2h4hxBEARBEAQRFbY4N7I4S/i6o1fb4hzf0goE/eaACOUcpbUSBEEQBJFGUHGOIAiCIAiCiArrOXcQU5xr79G2rZUNg+CVcyLPOTcp5wiCIAiCSB+oOEcQBEEQBEFEhVXOscW5To3bWlmvu2J7FM85Us4RBEEQBJFGUHGOIAiCIAiCiEqs4pzWnnNNXS7h6yJSzhEEQRAEkeZQcY4gCIIgCIKIClucG1HEes5p29ba7Ojb1krKOYIgBjs7mrrR5HAl3pAgiAMOKs4RBEEQBEEQUWnpDhbh7BYjcm1mWIzBoaPmyjm2OJcdUs4xxTlKayUIYrDx/fYWnPLkchw//1u0MgsfBEEQABXnCIIgCIIgiBi0hIpkhSH1Wq7NBED74lyzKK015DnHtLU63aScIwhicPHNliYAgMsbwNq6jv7dGYIgBhxUnCMIgiAIgiD64PL64Qh5uxVmmQEAuRnB/7Vua+XbvsxGPbKtQcUcKecIghjM1Hf0Cl876RpGEEQEVJwjCIIgCIIg+sD6zRVmBZVzOSHlnMsbgMurnXqNb2sttlug0+kARCjn0sRzzusP9PcuEASRIuo7w8W5bgq1IQgiAirOEQRBEARBEH3g/eaAcHEuL1ScA7RrbXX7/MJj82EQAGAzpU9aK8dxuOyVn3DY/Uvw3bbm/t4dgiBSAKuc63YN7msYQRDqQ8U5giAIgiAIog8tjr7KOb6tFdCutZUtChaH/OYAwGjQC4EUg105t6OpG8u3NcPp8eODn/f29+4QBKExLq9fdG1zDvIFBoIg1IeKcwRBEARBEEQfRG2t9pDnXAqUc01dLuHrIkY5BwCZlqDv3GD3nNvLKGi6XNqGaxAE0f80dLpE33dTqA1BEBFQcY4gCIIgCILoQzzPOQDo6NFGOdfEKPaKI4pzNnOwtXWwp7U2dIQn6tTeRhDpz772XtH3/aGc29HkwF0L12PFjpaUPzdBEImh4hxBEARBEATRh+iec0xbq0bKuWa2OJcdoZwzp4dyjvWeclBxjiDSHvacB4DufriG3fvJRry5sg43vfsLOI5L+fMTBBEfKs4RBEEMQnY2d+ONH2vRqdHkmCAIoplRzhUJnnOMcq5Xo7ZWkXLOKvodn9ja4/EjEBi8k0tKbSSIA4t9Hf2rnPMHOKypawcQXABx+ygpmiAGGsb+3gGCIIjBitcfgMmQ+jUOf4DDnJd/wr6OXvy6twPzZ01I+T40dbnQ4/GjsjAz5c9NEERqEAVChDznclLgOdfsiOM5Zw4PXXu8fmRZBudQVqyco0UWgkh3IpVzqS7O1bQ64fKGC3KdvV5YmQRsgiD6H1LOEQRBKOCzdfUYN28xbnlvXcqfu7HLJazA/rq3M+XPv6+jF8fN/xYnPr4Mq2vaUv78BEGkBt5zzmY2wBYqionSWrXynOtK7DkHAD2DWHFWz3rOuX3UYkYQaQ6rlgVSHwixuaFL9H2XRspngiCUQ8U5giAIBby5shYubwAfrtmbctVDXWuP8DXrzZQq/rejBZ5QO8T3ZCpMEGkL7znH+80BQF5mCpRzoaKgXgcUZEVPawUAp2dwhkIEAhwameTGABds0yUIIn1hC/JA6pVzm+rFxblOKs4RxICDinMEQRAKYD2RUp0auKctXJxrdXrg9afWN2Qv8/xaTc7j0dnjxVNfb8PXm/an/LkJ4kDB4wsIk7fCrLBaTqSc69VWOVeQZYFBrxP9jlXO9UfaoRq0ON3wRFy3yXeOINIXjuP63XOuj3KO2ukJYsBBxTmCIAgFsF5MzhQnbtUxxTEAaO3WZoIci73t4QFmmzO1zw0AL/13F55Zuh3XvvlzvygHCeJAoNXJ+M0x6jWrSQ+zMTh81KI4HwhwQjttUYRqDhAr5war2qwhQkEDUGIrQaQzrU6P0HHAk+qC/KY+ba10zSGIgQYV5wiCIGTi8vrRxUykelKsnIsszjU5+k70tIQtzrVr5DkVD36A6fVzfd4LQntcXn+fSQaRfrQ4wud2IeP7ptPpkBcKhdCiONfW44EvlMJanN23OCdSzqV4YUQtIo3hAQqFIIh0Jto57/YF4EtR50Nrtxv7u8SLmdTWShADDyrOEQRByKQ1Qi3W38q5VKvH9raHn78/inPsILdTo7Y6Ijob9nXisAeWYNrjy6gNL83h1WuAWDkHhFtbtWhrZa9nkWEQQERaa4oXRtSivrPvggqdTwSRvkQrzgGps0XZ3ODo8zMKhCCIgUe/FueefvppTJgwAbm5ubBYLBg6dCguvPBC/Prrr8I2DocDc+fOxdChQ2E2mzFixAjcd9998HrFF5TVq1dj+vTpyM7Ohs1mw7HHHouvv/5a0n4sWbIExx57LGw2G7KzszF9+nSsXr1a1ddKEHLw+VO3mkbIJ7IY1pvi1qo9/Vic8/gCaOgKTyzbnakf3DV09u/zH8i8ubIOLm8A+zp68cPO1v7eHUJDmpniXBHjOQcAOSHlnMsbgMur7vWvSVScs/b5vc2Snsq5bmprJYi0ZR/Tyq5jbDS7U3QNi/SbA0g5RxADkX4tzi1fvhzNzc2oqqrCiBEj0NDQgA8++ADTpk2D0+mE3+/HjBkz8Mwzz6CpqQnV1dWoqanBAw88gMsvv1x4nF9++QXHH388lixZAovFgvz8fKxYsQJnnHEGvvrqq7j78OWXX2LGjBlYsWIF8vPzYbFYsGTJEhx//PFYt26dxu8AQfSlobMXx/z1G0yd/61IuUAMHFoiimGpnCB2u319lHtNKSzONXT2guPC36daOdfj8YkGlB00uEwpq2vahK9b6fqU1sRXzmmX2NrEFP+LEirnBmdBK3pb6+B8LQRBJIY954fn24SvUxUKEa04R4EQBDHw6Nfi3Ntvv436+nqsXbsWmzZtwp133gkAaGtrw5YtW/Dxxx/j+++/BwB89NFH2LJlC55++mkAwFtvvYWff/4ZAHDPPfegt7cXlZWV2LVrF2pqajBp0iT4/X7cdtttcffh9ttvh9/vx+TJk1FTU4Ndu3ahsrISvb29uPvuu7V78QQRg89/bUCzw42GTheWbqY0yoFIc0RRIpWtVZGqOSC1yjnWbw4IGrKrrZyJR0NEO1hnP7TVHqi0Oz3Y3tQtfB9ZJCbSi1iecwCQZ9MusbUpQVur2HMufdpaHYO00EgQRGL2MWOnkSV24etUtbNHhkEApJwjiIFIvxbnrFYrPv30U0yePBkHH3wwHnnkEQBAUVERRo0aJajeMjIyMGPGDADABRdcIPz94sWL4fP5sHTpUgDAaaedBrvdDqPRiJkzZwIANmzYgPr6+qjPv2/fPmzYsAEAMHPmTBiNRtjtdpx66qkAgKVLl8Lvjz7wc7vd6OrqEv0jCDUQJ2HSjXMg0p/KuWgBCKkMhGD95ni0MIWPRWTKISnnUsfq2nbR96TsTW9ipbUCQK5NO+WcyHMuSiCEOK11cBa0qK2VIA4s6juD57xeB4woyhJ+norz3u3zY0doYa2CUe1RWitBDDz6PRCiqakJK1euxObNmxEIBFBVVYVvv/0Wdrsde/bsAQAUFBRArw/uaklJifC3dXV1aGlpQW9v8IJXXFws/C5yu2jwjx/rb3t7e9Hc3Bz1bx999FHk5OQI/4YNGybrdRNELPo7CZNITB/lXArVGwNNOQek9jht6BQ/f3sKC4MHOquYllYAaO2m61M6I25rje45B2hcnIvmOccq5wZhIITb5xdeo0EfNp+itFaCSF/4gnxJtlW0uJGKttbt+7uFBOwjhufBZAhed6itlSAGHv1enLv66qsRCARQW1uLiy++GLt378bFF18Mh8MBjjU2CsH+TKfTRd0m2naJtpH7t3fccQc6OzuFf2yhjyCSYR+zot5ObWMDkshiWCrVG9GVc6krzkUrDqbyOI1sa+2gAnbK6FOcc5JyLp3h21otRj2yGLUaEE5rBdQ/B1klcFTPuUGunNvfGT5vKgvCKhZKayWI9MTl9aMltJg1JDdDdA1LxXnP+s2NLbMj2xosDlJbK0EMPPq9OAcEC2AVFRWC59zGjRvx9ttvo6KiAgDQ0tKCQCCYXNnU1CT83bBhw1BUVISMjAwAwP79YX+uyO2iwT9+rL/NyMhAYWFh1L+1WCzIzs4W/SMINWDbBkkVNDCJbOdLpXqDLc7lZwYnyM0Od8zFBrWJrpxLYVtrpOccDS5TQq/Hjw37OkU/I+VcesNf5wqzLH0WKvNY5ZzK5yC/2GC3GmE1Gfr8np3YDkbPuXpG/TuK8Z4izzmCSE/YccuQ3AxksYnTKTjvWb+5g8tykBMK9Omi8RNBDDj6rTjX2tqK119/HR5PeHD/xRdfCF87nU6cfvrpAACXy4VFixYBAN5//31hm9NPPx1GoxEnn3wyAGDJkiVwOBzwer345JNPAADjxo3DkCFDAABz5szBmDFjMGfOHABAeXk5Dj30UADAJ598Ap/Ph66uLixZsgQAcMopp8Bg6DswJAit6Oz1ihLbSBU0MBkIyrkMkwFjSoMTO7cvkLKJXbTiXFu/trXSOZIKftnTAa9fXABuoeJc2uLzB4TzOjIMAkhNW2u0MAgAyGTaWgdjWivrNycqzpHnHEGkJew5PyTXKkqcTsUCQ6Ryzh4qzjncPgQCqVnYJQhCGsbEm2iDw+HAnDlzcM0112DEiBGi1lC73Y7zzz8fQ4cOxXHHHYfvv/8es2bNQnV1NbZv3w4AmD17NiZOnAgAeOihh7B06VLU1taiuroaZrMZ9fX1MBgMmD9/vvCcdXV12Lp1K0pLS4WfzZ8/H2eddRZ++uknVFZWwu12o6WlBRkZGXjwwQdT+I4QhDjNCUht0YOQTmRRIlWec4EAh71twWOkIt+GkuywH1NTl1toVdAKt8+P/VHCJzpS2dYaGQhB6tKUsDqipRUA2pxuBAIc9Pro9g/E4KWtxwNejFsU4TcHiNtaO1VMa+12+4TraTS/OQCwpXhiqzaxinPd5P9EEGkJa1dTnpshsgnQuq2V4zhsbnAAAEqyLSjIsiDbagz9Llig45V0qWDJxkas2NmKa08cgeLs6Nd4gjiQ6TflXG5uLi655BKUlZVh586daGhowLBhw3DppZdi5cqVGD58OAwGAz7//HPceOONKCoqwq5du1BRUYF7770XCxYsEB5rwoQJWL58OU499VS4XC60tbVhypQp+OKLLwT1XSzOOOMMfPHFF5gyZQpaW1vhcrlw6qmnYvny5ZgwYYLG7wJBiNkXkeBGhYeBR6/H32cwlari3H6HCx5/sMV/WL5N5MeUilCIhg6XMGEfkhMeVPWncs7h8sEXek8I7VjFJLVWF2YCAAIcpeWmK7zfHNA3qRUQp7W2q5gq3tQV328OAMxGvWBoPhg95+qZFrdh+RlCwAV5zhFEeiJSzuWIPee0bmut73QJ9h9jy4IWTGwxLpWtrd1uH254ey0WrKjB719bDT+p9giiD/2mnMvNzcXbb7+dcLvs7Gw888wzeOaZZ+Jud9RRRwntqLFYtmxZ1J9Pnz4d06dPT7gvBKE1rN8cEGxrJWXKwCLSbw5IjWcIANS1ho+PinybqO2rKYqiTW32MMfnuKE5wiQzVUVkp9uHriitX529XhREKSAQ6uAPcFgTKs4V2y04rCIXu1qcAIDWbrfgfUikD+Kk1r7nVp6NCYRQUTknTmqNfU7bzEZ09nrRMwjTWtmJellOUEXT4/FTWytBpCnittYMmI1hbYzWRfnN9azfXLA4l80U5zp7vYjuzK4+e9p64PYFF1PX7e3Eq//bjaunVqfo2QlicDAgAiEIgggS2dYa4CjqfKARLRm115uaCSIbBlGRn5Fy5RzrNzd+aK7wdVuK2lojVXM8pN7Sls0NXcIE4qjKfBQxxRrynUtPxMW5vsVXq0kvTDDVLM6z19fi7NjFOd53zjkIlXN8a77ZqEdBphn2UItZNxXnCCItqWfsOCLbWrVe3N0k8puLopxL4Rxjf5d4EfnxJVtR2+pM2fMTxGCAinMEMYDo7yRMIjH9qZzbwxbnCmyiIklzlP1SG1bZeXBZNnhBZ6qCSyKTWnmo/VtbWL+5oyrzUMAUa1qd2h93ROoRFeeiKNh0Oh1yQxM8NROTRcW5GJ5zAGALTW4Hs3JuSI4Ver0OWSGv0G4PmbMTg5fOXi9u/2Ad5r6zFu+uquvTCXIgw5/zWRYjsjOMyBSltWp7DdscpTjH+hOnsq01sjjn8gbwlw/Xg+PoukcQPP3W1koQRF8iPeeAYBplFTL7YW+IaERTqKXKc45Vzg3Ls0HHdDs3d6VWOTcs34ZcmxltTk/KPOfYMIjCLItQQKBUY21ZVRP2mzuyMh9bGx3C962knEtLWEVktLZWIOg71+Rwq5qYzLbnx/KcA8TKOY7joNMNDuuHLpdXSNYuy8kAANgtYXN2p8cHu8bBPgShBQvX7MV7q/cCAD7+pR4AUFlgw7EHFeK4gwpxzIgC5NoOPAsEjuOEsf2QXCt0Op0orVXrtlZeOWc16VEV8osVe86lTrG7nxmn6nXB7qAfdrXinVV78JujK1K2HwQxkKHiHEEMIKKtNFLhYWDRr55zTHFuaJ4NHl84CCEVyrk9oufPQK7NhDanBx0qGsLHo55pax1bZsd/t/PFOVLOaQXHcVgVUs5lWYwYW5YtOgdaU3DcEamnxRHfcw6AMNF2eQNwef2wmgxRt5ODHM85IDi5c/sCqjx3KmAXGIbkBotzkcmNVJwjBiPRlO01rT2oaa3DmyvroNMB48pzhGLdEcPzBs15mwxtTo/gs8af83q9DjazAT0ev6bjx263D7Uhr+LRpdkwhNodsjPC1xw1lc+JaGSUc7ecNhp/W7wVAPDI55sxbXQxSnMovZUgqK2VIAYITrcvagtrW4oKH4Q02MkjP9BJnedcsDhVbLcgw2xAdoZR8H1qSqFyrjDLAqvJIJjCO9w+UaFQKxqZwT9vbAyQ55yW7GnrFVoNJw7Pg0GvExVrWlLkN0ikFrbYXxSrOBdhKq7K80psaxW3hQ0erzZ2gWFIbvD18Z5zAPnOEYMX9hrwm6MrcHRVvpCqDASVob/u7cTfl+3Eb/+1Eoc9sATv/FTXH7uaUvZFhEHw8ImtWl6/tjb2DYMAItpaU+g5x6ZxzzpiKGYdMRRAcAx598fU3koQABXnCGLAwN7ArabwqUnKuYEFqxriJ1deP6d5carH4xOeuyLfBiDo+8RPnLVWzrm8fqFIMyw/OMDUKrExFvVMcW4sM9DspHNEM35i/eaG5wGA2HOOlHNpCd/WajboRSoLllxbeIKnlnqVX2QwG2M/LxBWzgGpsxVQg8jURgDIYopzjkFUaCQIFrbIc920EXjvmmPwy72n4dUrjsLVx1VhTKldtL3LG8Dz3+5I9W6mHPacL2eKc7xiVsu21k2ipNbw+y9ua02l51zw+q7XBRd57z5zrLDY95/NTVj0a0PK9oUgBipUnCOIAQKb1MoWHtT08yGSh1V28EUyIFg805I9beHjg31ePtGwzemB169dgZAdYA7NCz5/HjM5b0+BwrMxpDqxGPWoLAz7MFJoinawYRBHVuYDAPIz2eIcXZ/SEX4hoCDLHNPPjfWPUus+xXvOFWVZ4vrIsco5rT2b1IS9jpaFWrjsTFurg5RzxCCFVc7xxZ9MixHTRhfj7rMOxldzj8equ07BM5ccJrSsN3W5014ttU/Uyh5WA/PXMKfHr9l7sKkh7A978BBGOaeB6lkKfFtrkd0Cg16HXJsZD55ziPD7eZ9uRBup8YkDHCrOEcQAYS8zaB9XniN8TYWHgQWvKMm1mUSrj06N1RuiMAimOMe2nEXzw1MLNgxiaF5w9Zct0qSiiMz7NZXlWEWFQWpr1Q7eb85k0OGwYbkAAIvRILTitdJAOu0IBDhhghTLbw5QXznn8QWE+x2/6BALsXJu8BS0WM85XkXDesxRWysxWOGLPHqd2EeRpchuwTmHlWN0SEXn8QdSGkjQH4jUsjl9lXP+ACd40qnNJiapdXRpuDgnUs6l6Jrj8weEMWppdrhIeca4MpxxaCmA4HjiwUWbUrI/BDFQoeIcQQwQ2DCIQ4cwxTma/A4oeOVcUZZFNEHs1XiCyBbnWOUcm2gYLUlWLfa0i8MgALFyRuv2a0dEymEqn/tApbXbjZ3NTgDAoeU5yDCH1Up80UbLgjDRP7T3eOAPBJUchVmx0xVzM8K/61ShrZ09luKFQQDhtFYAcLoHT1sra19RFqWttdtNCw3E4IQvsmVnmBKmJ7OLis3dfYMk0oloreyAuICphWLWH+AEz7nKApvo+Vify1Qp55q73eAFgsXZYj/R+885BNmhfVq4dh++3dKUkn0iiIEIFecIYoDAtrUeKlLOUeFhoOB0+4Twh8IsS0oniGxSakUB09bKmKZrGQohVs4Fnz8/M7z6qnVwCRsGUZZjhd1iRCiPg9JaNWJ1bbvw9VGhllaegpBq0uHywe0bPMURIjEtTKuyVOWcGgrvJmZxoShBcc5mGaTKudB1LNtqFCbLWk/SCSIV8EUeVpUVi0LRomJ6j3H54pxOB1EaaSZz3msRClHT6oTLG1TksVY5AGAy6IXxa6o85/Yz49PSiOJcsd2Ke846WPj+zoXr4UhhUAVBDCSoOEcQAwS++KHTASOKM4UUTio8DByaIyaP7ATRORCUcylqax0WRTmndRGZDYMoy7VCr9cJk4BUhFEciLB+c32Kc4yiijxi0gtWwVYYp0jGprWqcZ9ik/ziJbUCg1M5FwhwaAj5ZrIKGlbFQsU5YjASCHBCIISU4pxYOZfe6mvec67EboXJEJ52s8U5LXwz2TCIyOIcEPadS5Vyjl1gLYliWzDriKGYOrIQQHAR47GvtqRkvwhioEHFOYIYIPDtLsV2CyxGg+CpRRPfgQM7iCzMssBmCk8QezSeIPLFOYtRLxrYsu1f2irnwsVBfmIp8pzT+DhtEBmpi9NiqYCtDT/VhJVzR4aSWnkKmGOQQiHSi5aI61ws2OK8Gm2tzTLaWgej51yL0w2vP9jXFas4N5jCLQiCp9vjE1oWpSnnwtcOLe04+huX1y9cT9kwCECsmNVCObe5gU1qjVKcC3lddqVIocaH/QBASXbfxRedTodHzhsHW2jh5Y0f67ByV2tK9o0gBhJUnCOIAYDL6xcGKOEkzHDhId3TrAYLLXGUcz1e7YpzHMcJba3D8m3Q68N+LmLlnHbeLbxyrthugTVUlMxTua0tHg0Rba0AkBN6fofLB5+GSbUHIj0eHzbu6wQAjCzOQl6m2HuskPmefOfSC3ayHNdzTuVACHZxIVEgBJvWqnUYj1rUx0htzLKE30dq5SIGI53M+Z9tlaKcCx//6Xz/YNVibEEeADLN2nZesGEQY4f0Lc7xRVSXN5ASawqxci66MnpYvg23TR8tfP+Xj9bDpeHYmiAGIlScI4gBAGsYyye48cU5jz+AnkEy+Uh3WGVHkV3sOdejoeKh2eEW0rzYllZ+P9jttEBcPA4PMPNS2NbKt4MBYeUc21aXqtaMA4Vf6jrgC4UCHBnR0gqQci6dYT3niiR7ziV/DIg857Lit7WKlHODRG1WH0X9C5Byjhj8sPffbFLOCYjG9nkRxTlmgaFbg84LXjmXk2HCkJy+19PsjPB1JxWJuaznXKziHADMOaYSEytyAQC7W5x4+j/btd41ghhQUHGOIAYArJ8XfwPPy1R34kMkT0uEokTsOaddATWW31xwP5i2Vo0GuSK/Oeb52fYV7YtzfVUnbHGwg4pzqrKqhg2DyOvze9ZzrtWZvpOrAxGpnnMZJgPMBvW8UdlJenoq5/ouwgHitFbynCMGI2xrpFzPuXRWzu2Lcc4D2ra1tna7hWLY2DJ71PRctoiaitZWtq01MhCCxaDX4bELxgv3lpf+u0tkq0IQ6Q4V5whiAMDewIdGM9vXOAmTkEakck7sOafdpIotzg2LKM6ZjXqhvVSrFWh2YMQq54wGvTAQ19xzLlScs5rCz5kjaqujAraarK6NHQYBAAWZpJxLV6R6zul0OkE9p4ZytTk0edPpwmnAsRiMnnPittbwdZRtb6PiHDEY6RIp54xxtgySZzPDELLnSG/lHHPO50Qq57Qrzm1ucAhfH1yWE3Ubtv04FZ0HfFurxahPeIyMLLFjzjHDAQD+AIcN+7ribk8Q6QQV5whiAMAWP/jVtfwUtgwS0mh2iNu9bIx6Q0vPuXjKOSCcbNjkcGviT8gq53hPRB6+MKil5xzHcUIgxJCcDGEVODeDUc5RKIRq+PwBrKkNKudKs62igiwP60XWQsW5tIIvzhn0OlHreDT44pwqnnOhSXpBpgVGQ/zhqcivaZCktYpb88PKEYNeJ6hoqK2VGIywxR0pyjm9XicU4NNbOdc3SIsnS8O0VjYMYmyZPeo2IuVcCopz+0Np3KU51qhKvkhGl4b3e3+Xdn7KBDHQoOIcQQwA9kUpfqjt50MkD6+c0+mCSaWZKfI9SlSc433nPL4AujRQXuyJoZwDIAQFdPZ6NQtlcLh9QutaGWOkrrYhPRFkc4NDeL+PrMyLOpAWec5RW2ta0RJahMjPNIvCZ6LBF8h7vf6kjLsDAU5Q0BQlSGoFIF4YGTTKueB9XqcLTlBZhOIcKeeIQQjrWSalOAeEz/OWbg8CgfQMPWOVc5FtrVoq50RhEFGSWgHx56S1cq7X4xfGpiX2+H6iPKwvZyMV54gDCCrOEcQAQOQ5FxEIAVDhYaDAe87l28wwGvQp8z3aI2pr7atiKtY4FCK+ci58nGo1wGvoYL1Kwq9fVJwjzznVWFUTbmk9uqpvSysQDOPg6zbU1po+cBwnFFvjtbTysK3lyZz/Hb1eIYCkWEJxbjAq5+pDbV3FdgtMEcpA3neO0lqJwYgoEEJCWisQvr74A1za3r/5gnym2dCnlVPLQAheOWfU6zCyJCvqNtmM16UWi7osrPKtJEo4RTRKc8L3ATbplSDSHSrOEcQAgPecK8wyIyOUAJrPeO60aeznRSSG4zhBOcev+GakyPeIV84VZllEXks8rNKENd1VC744p9OFwxh4UpHYWs+0gw0RKefYAjadI2rBFueOHB69OKfX65Af8p1rTWFb0vJtzTj7ue/x+o+1KXvOA4nOXi+8/mCRjG1djkWeSupV9rolpThnNenBCzoHg3LO7QsnXke2twHhxFanxw9/mqqIiPRFblsrkJqk+f6E4zhhbD8kN6OPAl2rQAi3z48dTd0AgIOKs2AxGqJul5PCtlZW+VYi4foOAKWsco6Kc8QBBBXnCKKf8fgCwo2Llb3nktn9gMLh9sHjC7Zt8iu+mWa2tUob9YbL6xdStyqiqOYA7Qe5+0JtrSV2a5+BXp6o/VqbAR47MGPbwVg/LFKXqgPHcUJSq91iFPm+RMIXb1qcHk28DqPx+OKtWL+vEw8u2iScj4R6sP5PRRKUc2oVyJu6pCe1AsEwCl49NxjSWtlrWKQxPBAxUR8ExUaCYJGb1gqIlbnp6DvX5vTAHbpHRSvIa9XWun1/t6BCPjhGSyuQWs85VjkX2dIfiyyLUbguUlsrcSCROFInArfbjZ9++gk1NTXo6elBUVERDj/8cFRVVWmxfwSR9jR2usDPa9mWQbEiiQoP/Q1b9OKLYaLEQI1aq9iwkGh+c+z+AOoX53o9fsHwP1owQF4KFJ4NTJoxO7EVtX6naVtMqqlt7REmSkdU5gmJetEoCBXnPL4Aut0+2CW2MyklEOCwvckhPGdtqxMjS2IXDwn5sKE3hRIUDuxEPJn7VJNDXlEQAGxmA7rdPk39PtVCnNTad3Jqt4oTW6W2BhLEQEDU1krKOQCx05l5tAqEkOI3B0Qo5zRup2eLc8XZ0opzAFCSbUF3sy80T+IkBUkQxGBHcnFuxYoVeO655/Dxxx/D4/EgNzcXGRkZaGtrg9vtRnV1Nf7whz/gj3/8I+x2GiwThFRESa150QsPFAjR/7Qwg0deMWQ26mEy6OD1c5qpHRKFQQDaDnL3xgmDACK9EbVqaw0P7NhAiBxSl6rOT0xL61GV0VtaeQoymVCIbo/mxbnGLhdc3rBabkdTNxXnVIZVsEhpa80Vec4pPwfZ65bUyVumxQg43INCOVfPLjBEa2u1hN9HCoUglPLr3g5s39+NsyaUxWxn1AKx55y0qWW6F+f2Med8eZSCvMWoh1Gvgy+g7viRTWo9eIg05ZzWgRD7GWV0qYziXFlOBnY2O9HrDQZKSFVlEoMbnz+AZ5dux1XHVYvG+QcKktpazznnHMyaNQvl5eVYvHgxHA4HWltbsXfvXvT09GD79u24++67sXTpUowaNQpff/211vtNEGnD3g7WbD88aLdbjYJqhYpz/U9zd1/lHABkmIIDYK3aWuta2TCI6MW5Yib9qkn14lzsMAgAyM8M3zjbnNq3tZYxgRB2i1EIJaC2VnVYLfKby4u7bQFTvElFYuuuZqfo++0hXx1CPcTFucQKNrWCi+R6zgFhQ/XB4DnXwPhmlkVra7WyKhq6lhHyaXN6cPE/f8Qt76/D6z+k1pOTb4vMshhhNEhzTGKL/+nY1pqoIK/T6YTWVjVDbTZLVM6JAiF6tb2GijznJNgWhLcNj23Jd+7A4fEl2/DsNztw1vP/xYZ9nf29OylH0vLGaaedhvfffx9mc/RV1OrqalRXV+Oyyy7Dxo0bUV9fr+pOEkQ6Ey2pFQgarudmmNDq9KBdo6IHIR2xci48uMi0GNHl8mk2QaxrCx8f/a2ci5YUm4pQBj4QwhaReKbX65BrM6PN6UFHEqodJXS5vGnZerY65DdnNugxYVhu3G3FnkHav/+7W8TFuB1UnFMducW5XA3aWtnFhnjwtgJePwePLwCzceDaKO9jWtzKE7S4aZ2cSKQnWxq70OsNFnnWp3hC2xkq7khVzQHap8z3N4mKc0DwvO/s9cKh0jnPcRw21QeLc6XZVlGwXLTn1uuAAKe9cq5JVJyTrpwTJbZ2ueJ64BLpwdLN+/GP5TsBAA0dLsG38UBC0kjmuuuui1mYY9m3bx8OOeQQnHrqqUnvGEEcKOyLo0ziW4aoZa//iaWcs4VCIbTynBO1tRZEL85lW43CxFT94lwi5Zy2nnMcx6EhNLEty7H28RzhiwMdKSxgP7hoE8bPW4L5X21J2XOmgmaHG7taguq0cUNzYDXFb4sqYD771hQU53ZGKOeoOKc+LaznnITiXI5aba1d0a+v8RAH8gzsgpZIOZfAc47aWgklsMqiVPoUcxwnKOek+s0B4utLczoq5zqjL7yz8OpftQIh6jtdQnF/bFn8QpZOpxM+L+0954Kfb06GKeG4gkWc2NobZ0siHdjT1oP/e2+d8P0dM8biiAQdHOmI5GXGm266Ke7v9+3bh2nTpiW9QwRxoBHLcw4Itww5PX64fQPfVyediTVptQmJgT5NEiv3hIpzZoMeJTEUJTqdTliFZtvD1EBcnIumnNM2rbWr1yeoAaK1g/HFAYfbB68/NSts763aAwB448falKWUpoKfa6X7zQFAAXMetKZgcrW7RVyc29ncDX8gfd7/gYBIOWdPvCirVlsrPzm3W4zIMEubvNlECacD+/7Iq2jMRr2oqM0jKs4NgoALYuDRwBTnUrmg6/YF4Ande+V4guVkmGAyBBfb0lE5x6tldbrYCaV8W2uv16/KvYxXzQHxW1p5+M9Ly7RWjuOEtlY5La2A2J+usTP9jhEijNvnx3VvrRFUnGccWoorj63s353qJyQX51577TU88MADUX9XX1+PadOmobS0VLUdI4gDBd40NifDJGptAcRJmOSp1b8kUs4FOKguv+Y4TlDODc3PgD5Ocia/T+09XnhU3I89oeKxThe9OKZ1cEm9yKup7wCXfX4tB5g83W4fHKHJc5fLl1aTilWhllYAOKoy8Wql2HNO+8ngroi2VrcvIFIeHwh4/QEENCxI8sU5nQ7It8kLhEjKcy40eSuSMXkTKecGeEGLV/8OiaL+BYAsCoQgkoRNxEylT7GSpFYguKjIL3SmwhYh1fAF+RK7FaYYPnxZogWG5M97qWEQPLw1R5dLm8VlIHh88GNSOS2tgHjMx/rWEenHw59vxq97g+34lQU2PDZr/AGbziu5OPfpp5/isccewwsvvCD6eUNDA6ZNm4aioiJ8+eWXqu8gQaQzPn9AWO2MnoTJqpLSb/AymOAnrXqduCCUyQyu1A6FaOn2CKqxWH5zPKx/i5rmyrxyrizbGtXTyWTQwx56D7Q4RkVhEFFaQ9TyvFKyP0B6hRKsYsIgpLQSFGZqc8xFw+X1i1ScPDuaHZo+70CiqcuFqY99i8mPLhW1SaoJP0nOt5klGbtnmAwwh7ZTev473T5B+SY1DAIIq5aBga2c63J5hYJ+TO8pRjnn0LjFbCDR5vRoWmw+kBAp51Jo88AW5+SmafKLim1Od1qpoF1ev7BwNyRKGztPJnsNU2GBQalyzh/gNLuGNir0m4vcntpa05dP19XjtVCIjdmoxwu/nZiWns5SkVycmzp1Kt577z3ccsstePvttwEAjY2NmDZtGvLz87F48WJkZmZqtqMEkY7sd4QHJNE8KdgikBZ+XoR0+IFWQZZFSNEFwso5QD3fEB6R31yC4pwWoRBOt0847qL5zfHkhhJb2zU4RhMp59TyvJLK/ojV2+3706M45HT7sDE0sB9dYhcFfcRCpJzTWPlQ19YDfmHfwhSJDyTfuf9sbkJjlwtNDjc+WL1X9cfnOE5QCEvxmwOC6hf+HFRqKs6GQRRJDIMAwn5NwMBWzkkxhmfbWh0D+LWoyWs/1GDig1/jsld/6u9dSQvYhaNU2jwkU5zjrzMBLr3GuOxnEeucB8SLu2qMHzc3Bu/hGSYDKgsSz8nZgC2tQiH2M36ipTKLcwWZZqH1ubErfboUiDA7mrrxlw9/Fb5/YOYhOGRITj/uUf8jK9rqzDPPxCuvvIIrr7wSCxYswLRp05CdnY3FixcjKytLq30kiLRlL1N8iVb8oLbWgQHHcYIyKHLSahOZkqu78rhHRnGOTThUqzi3ryO+3xwP3/7W2etVffW7gUk5TNTWmopzpCFCObctTYpDa+s6hM/uSAktrUDw2LeagsOIVqe2A+ddzeH3eerIQuHrA6k418a8xz/ublX98R1un9B+JMVvjidPCC5Sdv41i5Ja0085x17DhsTwnrJbDrxACF4p8d/tLZos7BxoRLb9pWrM2JWMci5L/UXFgQBbkI8VBgEAWcwCQ3eSoWLdbh9qW4NjxtGldtEicixYdZJWtiD7O1nlnDzPOb1eJ4xtIxdGicFPj8eHa9/8WZg7nT+xHBcfNayf96r/kZ07P3v2bDzxxBO46qqrkJWVha+//hrZ2YmlswRB9IUtfkSGQQDU1jpQ6Oz1wusPFi4ikwTFE0TtlHPDZCjnmlQa5O4RFY9jDzB5lVWAU3+AxxbDonneqeV5JZXIAeKO/elRHGJbWqWEQQBB1VRBqLVVa+XcLiYM4tSDS4SvD6TiHNu2/XNtu6rekgDQwlw3pCrnACA3I3j+93r9cHnlTzDZEBs5xblMDVXLarJPgnJO3NY6cF+LWrR0u0XnbkcK/ELTGY8v0MdaIFWhECLPOasxzpZ9ESn+0yixVco5D6irnNsi028OEBdTNSvOJdHWCoTDNNqcHkX3F2JgwnEc7v54A7aFxtCjSrLw0LmHHrA+cyySr6KHH3646A0zmUzo6Ojok9C6Zs0a9faOINKcfQmTMEk5NxBoFk1axYoStrWqV2X1hqy2Vg1WoMVJrbGfPz9THAqRFyWNUCmst1ZZFO+WnIzUFrAjPee2NTnAcdygH1CsZpNaq6QV54Dg+bCvoxdtPR74A5yk1Xol7GoOF+cOGZKDITlW1He6sL2pOy3efymwx7fLG8D6fR04Yrj0zyoRrCm7nOKcuLXcC6tJWtoqTxPTrlQsQ1lhU9lMXSvE17BYba1MIEQKC40/7mqF1WTAYcNyU/acALCaWQwAtGupO1BocrgQ6eefCg9WIKKt1Sa3rTU8VmhJK+Wc/LbWZM97NgxCit8cIA7w0OocTMZzDhC3wjZ1uVFREH8sTAwO3l21Bx+t2QcguND24m+PEIkdDmQkvwvnnnuu6PtzzjlH7X0hiAMOtvhBnnMDl1hJrUCEck5Dz7lEyjl2UssqUZJhbzujnMuPp5zTrkDGK+eyLMaoBrFsATsVE7xorUMt3Z4+x8VgwucPYG1dB4Bg2128NpxICkJFHI4LfvZyijpyYNtaq4syMaI4C/WdLjhCibnFCgb9g43IBZofd7WpXJxTqpwTq1flTsBE19csGZ5zzLW3J8mWMC1hJ+rlMczhbSYDdLrgeZQqz7n/7WjBb/+1EjodsOiG41Lq87Nyt7g4lyqVV7oSreUvVd0WXb3h41V+IARjx5Gkcs4f4LBubwfGlmYjwyxvgUBtxD6Tsa9pWSoq5zaxyrkyu6S/YYtzXRopdkWeczHa+uPB/k1DZy8V59KAjfWduPfTjcL3j14wHgcVkz0aj+Ti3H333aflfhDEAQkrfR8WRZmUn0ltrQMBVolW1A+ecwWZZtEgLhpaBEKwxeNoxydPPlMga1cxJY7jOEF1EmtQl9fPba1AMBRiMBfnGrtcwrF7aLm8CXpBpjgUQqvi3O5QW2tZjhU2sxEji+347/YWAMHW1gOjOCe+B/y4qxXXTTtItccXF+dkeM6JvFHl36eUK+eYttYBrJxjJ+rRWvOBoLdSltkIh9uXsrRW/vzhOOC7bS0pLc79tJuUc2oS6YUK9Fdba/8p5/765Wa89N/dKM224t9XHo3RpdIKVFrABlnFW+xSs611U0MwnEqnA0aXSlTOWVMRCBE8NvU68XhBKqxyLnJxlBh8dLm8uPbNNYItx+8mD8fMCUP6ea8GFrI95wiCUA9emZRlMYpSk3iorXVgwLZ7RRZhROoNFYtzLq9fGIgkUs0BYqWLWp5zfHFOr4u/4pnLDLjaVJwQdPR44fIGb+DRwiCAsN8V0D9trQCwfZD7nrEr2/FacKJRwBx3rRp5BrU7PUKLVlVhMIGOXWXd0Ty433+pRN4Dfq5tVzWRUeQ5J6PYzKpllHiHKfec0+baqzb8RD0nwySajEfCJ7amKhCCVaNuaeyKs6W6dPZ6RSofQDu/qwOFaPelfmlrla2cU89z7tutzQCCBZxZ/1iBH3epH5ojFX7h3WY2xH1P1AqE8Ac4bA2dw8PzbQkXc3myU+g5V5hlgdEgv+zAjj0pFGJww3Ecbnt/nRBcMn5oDu4+a2w/79XAQ9JZcvrpp2PFihUJt3M4HHjsscfwwgsvJL1jBJHuBAKc0O4yNC8jqmdSbor9tIjoxFXOWVjlnHqTqn0dvYKHTCK/OQAwGfSC95tayrk9oeJxWU4GTHEGVfm25JQzsWBXn4fEUJxE+l1pidcfECYQJkP4fN3e5ND0ebWmiRnwylEuARHKB41a79kwiOqiKMW5QV4clUrkPaDH48f6fZ2qPX4zuwghp61VpF6Vfwzw1yuzQS9rcm8bBIEQgQAnFE5iLTDw8KEQqfKcY8+rLQ2pu4b9XNvWxx+NFh+TI3pxLkVtrS7lxTl2ESAy0EIOHMeJPJwdLh/mvPwTvljfoPgxk9kXXi07JDf62J5HLeXc7hansJApNQwCEH9eWoyffP5wUImSltbIv4umEJUDx3H4cn0DvtqQ+uOCAF7+fjcWb9wPIHjsvTB7IizG/m1BH4hIKs5deOGFuOiiizB27Fj8+c9/xvvvv4///e9/+Pnnn/Gf//wHzz77LC666CKUlZVh7dq1mDlzpqQnf+KJJ3DiiSeirKwMFosFw4cPx2WXXYZdu3YJ26xfvx4XXHABysvLYbVaMX78eLz66quix+E4DgsWLMCRRx6J7Oxs5ObmYubMmdi0aVPCffD7/XjkkUdw6KGHIjs7G5mZmRg1ahT+/Oc/o7e3N+HfE4RSmrvd8IRUD7Fk70aDXpCdt5PnXL8haveKo5xzquh7JCcMgoefUDd3u8FFzn5k4nB5hQlTtCRhFra1tE3FtlZ2whFrYJdtNQohBFpP8JodbmFSecTwPOHn2wZ5YqsoTc0ubwBdkMW2tWqjnGMVPlWFwaIcW5zbPsjffykEAlzUydPKXW1RtlaGcs+55BTefHGuyG6RFezBTmwHqnKupdstJH0n8nLk1S49Hj98Kioio+HzB1DbGi7O7WzuVj39NxaRfnMAtbUmS0MURVFnPyjnsmUW5+wWIyzG4FQ0mUXFNqcHvaEkT/4S4vEHcN1ba/DvFTWKH1cJ7YziP5ESPUulQIht+8PF9bESW1oBcRtylwbt9C3dHgRCY6ZimWMLHratNVnl3A87W/GnN9fgj2+swbKtTUk9FiGPj9fuw1+/3CJ8/+RFEyR1BR2ISCrOXXXVVdi1axfuuecebNmyBddccw2mTp2Ko446CtOnT8dLL72EiooK/Pzzz3jnnXcwbNgwSU/+3HPPYfny5TCbzSgvL0ddXR1ee+01HHvssejq6sKmTZswefJkfPTRR+jt7cXIkSOxfv16XHnllXj66aeFx7n//vtxxRVX4Oeff0ZpaSlsNhs+++wzHHvssaipqYm7Dw8++CDuuusubNy4ESUlJSgvL8f27dsxf/583HrrrZJeB0EoYW+CpFYe3s8nVS0KRF/iKecyzNoo5/YoKM7xqiePLyAyaVZCIj9ElmQ9p2JRzxTnYpkq63Q6YfVXa6UA63cyqsSOktD7PdiVW41JGDYXZLJtralTzuVnmgWl6IHQ1trl8gqTHPZ6oGbrFlucK5DjOWdT3tbq9QfQGlp4kuvbmDkIlHP7RMbw8SfqbGKrmgs90djb3isUDQHAF+CwM0XnUaTfHEDFuWTZ35/KudBnZzbqZSc163Q6YSGgJYn7BzuevvCIoZh1xFAAQT/F+z7diMe+2pL0gqVUWI9JqQV5ILlrGDtGTbSYypIjamtV/xrKFtNKc5T50bJq/mSVc6tr24Wv/7N5f1KPRUjnX//dhbnv/gJfaBDzxxNG4OSxJf28VwMXyc3fZrMZs2fPxieffIK2tja0t7ejvr4eLpcL69evx+OPP47Ro0fLevLf//73qK2tRW1tLXbt2oW5c+cCABobG7F06VIsWLAAPT09MJvN2L59O9avX4+77roLADBv3jxB2fbiiy8CAC644AJs27YNtbW1qKqqQkdHBx555JG4+/D9998DAEaPHo3t27dj27Ztwuuora2V9XoIQg5sEma8mynvO9fl8mq+mk5Eh5+0GvW6Pm0bWvke1bVKT2rlYQuHzd3JDWL2tkkrHgPapQo3Mm2tpTHaWoFw+7fWSgF2AlSSbcXI4qDhdJvTk1RLTn/DtrWWyGxrFSnnnNq8B7ubmeJcyHMOCKvnmh3utJ/cs4szh1fkCt5sq2vaVLsv8Mdwrs0Ut409kpwkQlnY80aO3xwA2AaBco6dTJbFSW0Ewm2tAOBwa3s872rpW4hLhe9cj8eH9XuDrdi5SRR1CTH8ccYWrFO1oMsX5+S2tPLwRfk2p0exhyZbnKsszMTfZo3H9UxYzt+X7cQt761T1aMzFvtExbn457yorTWJxV22EMuOxxLBel1r4TnXmIQqn8diNAhBEtGK0HKoZcbV0RYJCHUJBDg8+sVmPPT5ZuFnv51Ugdumy6sXHWgoDoTIyclBaWkpTCZlF2MAuOuuu1BRUSF8P3XqVOFri8WCQCB4EdXpdEKrA/9/Z2cnVq1aBQCi7SL5z3/+E3cf+OfcunUrRo4ciVGjRmHr1q045JBD4hb23G43urq6RP8IQg7sDXxoHGUSr0rgOFpd7i/4VcnCLAv0evF1RqvEQFFbq8To+CKmsMImICqBLR4nKs7lapSY2tDBKOfiBVKEnt/h9mk6+GYHmqXZ1rRprdzPGvLLTD1l2x+TUT7Egy8kmA160bXyQPKdi5x8TaouAAA4PX5srFdn/NHiCD6H3MTd3CQ8J5UmtQJAhmngp7XKUdHYmYm6Q+NQiF1MwZsnFb5za2o7BPXESWOKhZ/T2EY5gQAnKJSGF2TCagpO7VKd1somf8qBVcwqXdzb18GOV2zQ6XS4dfpoPHjuoUKb60dr9+HKBas093Ssl6GWzVTpnGfHXex4LBEWo0E4XrRoaxUt/Cn0nAPCiv4mhxv+gHIFJNvKv21/t6qLyYQYrz+AW99fh39+F7Yqu/mUUXjo3EMFKxoiOgMmrdXn8+H5558HAFRXV+Pkk0/GrFmzYDAY4Ha7MXLkSIwfPx4PP/yw8Df79u0DAFxyySUAgA8++ACjR49GZWUldu/eLdomFvfccw/uuOMOAMCOHTuwfft26HQ6jBs3Lm577qOPPoqcnBzhn9RWXoLgYVf64g3aWbN9am1NPYEAJ7RdFdr7rkiKlHMaeM6ZDDqR50Y8xMq55Ipze9qlFY8BwGoyCObsaqa1soEQZXHOEbY4oOUkL9IDb1SJXfh+xyAOheDTWjNMBlGBQArsKr0WnnP+AIea0Gr38AKbaFB3UFG4OLczzYtz7EQ712bCpKp84Xs1Wludbp/g2VQoo6UVEAcXyS3Oiy0D5E3eDHqdUKBT89qrJvXMAkNZHPUvEE5rBbQPhdgZpTi3uVH7a9hPu8PH6gmjimAO+Y1RWqtyWp0eoeBZmmMVrsmpGC96/QE4Q6pVpco5djFAqe9crPH07yYPx99/e4RwnP13ewt+8/9+VC00KxpsMEXC4pxKrflKlXNA2HdOi7GTSDknc+GPhR8D+wJcUuOMGkY5BwCrakg9pwU9Hh9+/9pqfLQ2WIPR64CHzzsUN50yUpav7IHKgCjOOZ1OnH/++fj2229RWlqKzz77DBaLBZMnT8Znn32GyZMnw+PxoLW1FXPmzBH+jlftPfHEE7j77rtRXV2NPXv2oKysDCeddJJom1i89dZbePzxxzFy5EjU1NSgtrYWI0eOxDvvvIMrrrgi5t/dcccd6OzsFP7t2bNHhXeCOJBgb+BS2lqB1K2EEmHaezzCSl20BEPWc04t9QbHcYLn3NA8m+RVJlb1lOzgk1XODctP7GHCDwjVPEb5YpjdYhR5s0SSTHFA1v50iYtzI0vCxaHBHArBt4qU5lhlD5zMxnDCZqsGq9D1Hb2CUX0V09IKRIRCDOLiqBTamaCVPJsZk0PKOSC6wb5cWL9Auco5m9kAc6gNVm57YpNDuXIOADJDyuXBoJyL5ZvJk2UJX8e6NVbOsf5y/MLKlgbtO0DYY/Xoqnzh2k1prcqJXDTKZe7FWvussWqvZNtaAXWKc8MixtOnH1qKN6+eJCj71u/rxAV/X4HdLX0L1GrALiomUssaDXpBuZaMzyRbiJVdnAt9bloUyPezfrZJFOdY1V2jwlAIp9vXx35EzUAlIkib04PfvLQSy7Y2AwiOEV/87UT8dtLwft6zwUO/F+caGxtxwgkn4LPPPsOoUaPwv//9DwcffLDw+zPOOAM//PADHA4H9u3bh+nTpwu/473hLBYLHnzwQezcuRM9PT1YvXo1jEajaJtY/PnPf4bX68UZZ5yB4cOHo6KiAqeffjqA+C2xFosF2dnZon8EIQe++GE16QU/hWiwZtuknEs9LQkmrTamONerku9Rm9MjrEbLSTNii4dNSRfnggNMg16aci8vkw9l8KoyIeA4TvDRSeTVJFbOaVfAFk2Csq0YmQbFIafbB0doxV6u5xcP7zunRSCEOAwiS/Q7tjh6ILW15tpMGFGUKVyPVu1uS6rVBxArbeUW53Q6neA7J7utlW2pVnD82czhhNOBCD9R1+kSK0dYzzktWsxY+LbWwiwLxpXnAAjeM7Rs83L7/Fi7pwNAMNSkLCdDKOhQW6tyGlhv1myrMGb0+jlhHKEVySS18hQxSl2lin9+PG026qNev46qzMeHf5oi2GPUtfXggr+vEAVvqcW+kFpWyjkPhEMhklHL8tddvU6swJUCfw46PX7VbUH2J+Fny1LGvI+NCn3nalv7ftY/1agXqEQEz8NZ/1iBdaHrvN1ixGtXHo3TDy3r3x0bZPRrcW7jxo2YPHkyfv75Z0ydOhU//PADqqurRdssX75c+HrPnj2YN28eAOCQQw7BoYceCgDYvXu3KLzh3XffxZIlSwCEW14BYM6cORgzZoxIfdfZGTSm/eWXX+D3+xEIBPDLL78AADIzxav0BKEWHMcJnnPluRlx1Sq5TOGunfwRUo6o7SrK5NFk0AstE2oNhEV+cxJUazxqrEDz8MW5shwrjBLM4fnVWn+AQ5cKqo82pwfukGIqUTuYVp53kfADTbvFiEyLEbk2s/CeD1bPObaIq7TtpDCU2Nrt9sHlVXcyuItR+FRHKOdKs63CxCbdE1s7IpQROp1OaG11uH3YlKTvHKsokJuaCkCxAoptr0zUAhYNfnFkoKa18m2tJXZrwpCNVLW1drm8wuddXZSJsWXhxWUtQyF+3dspqGCPDh27/LW71+uH2zcwC6wDnf0Rim5WOaX1mJEtzvWXco7jOKETZWhuRh9fYJ6RJXZ8eO0UjC4JBzm9/qP6wX+8WrbYbhHGhvHgfefUCITItZljvv5YsF6Bantd8semhVHYK0EN5VxdW1+l5Kb6Ls0XQg4UtjR24YK/rxAWfortFrz3x2NEKn9CGoqKcx0dHfjXv/6FO+64A21tQUnomjVrEvq7RXL++ecLRTWHw4EZM2Zg8uTJmDx5Mv71r38BAM4880wUFxdj3LhxGDlyJLZt2wabzYaXXnpJKGj8/PPPqK6uxqhRo1BVVSUU5CZNmoQbb7xReL66ujps3boVdXV1ws8uuOACAMB3332HqqoqVFVV4bvvvgMAXHbZZUreHoJISKvTA5c3OEhN5Ocl9pyj4lyqaZGgKOF9Q3pUaq0SF+ekK+fYtjBWkSKXLpdXGHQnCoPgyVO5/VqUcpjASDg3BepSjuOEQSE7UOTVc61Ojyaea1qjxsq2OLFV3WsUa1xfXSQuzul0OowI/Wxve6/qhcGBRDRPocnVYd+5lbuTUwCIr3Py2qIAcZFFzuewfm8HgODkjW1Tlgo/sXX7AgMuzdzt8wvva6KWVkAcCKFlWyt7To0oysSY0rB3ppahED9FtLQC4oIOqeeUEXmvTNViFSBuhVTDc05J6nlHj1dYGI1nEQMEF/r+fulE4Xu27VwN3D6/UGCUutjA+xYns8DQEbI9kBMGwcN+bmq3tvIqt5Js+ZYZLKUqKOdYvzm+IBzggJ9r2xXvFxHkp91tuPAfPwhtzNWFmfjwT1NECz+EdGQX53799VeMGjUKjz32GB5//HF0dHQAABYuXCgEK0jF7Q5fhH/55ResXLlS+Ld3714AwNlnnw2j0YitW7ciMzMT559/Pn744Qccc8wxwt9WV1fj6KOPRlNTE/bt24cRI0bgzjvvxNKlS2GxxJ9s/POf/8TDDz+MQw45BB0dHejo6MCECRPw7LPP4tFHH5X1eghCKlL95gBqa+1vEinngHBrVTKeISx7FBbn7BYjLKGV2mSUc3vbpIdB8OQzCk81WqPEE47450iOyHNOmwJ2V69PKKizA0VxKMTgU2/tV8GwWVScU7lAuTtOWysAjAgVdDhO7KOVbkRL45vErEj/mKR3Dp/UCshvaw3uU/gYkDrB6+z1ChOmsWXZCZVl0WBtBXoGWHGWnUTGC7ThyUqRck6sRs3CmBQp59jgEl71ma1hYeBAITJFPC+FC7oDQTm3VxRelfg8Y7151X5/2HNeanGOV397/Zwi9ajXHxCsKeT6zQHic1DNAnmvxy90USTT0gqIF2iVt7WGxxLnTywXvibfueT4dksTLn15paC6nDAsF+//8RhZljyEGNm51//3f/+Hyy+/HPPnz4fdHp6UnHHGGZg9e7asx6qpqUm4zdtvv51wm4kTJ+KHH35IuN2yZcv6/MxqteLOO+/EnXfemfDvCUIt5AwmclPYokD0RYpyjp8g9mqgnJNzg9PpdCjOtmBPW29SnnOiMAiJxTm1V+sbREmt8YtGeSlIa23oYnx9mIEiq/bZ1tQtKpgMBlQpzmWGzwu1fef4QkJOhkm0UMHDvv87mrpxyJAcVZ9/oNDRK/acA4KqzfxMM9qcHvy0uxX+ACc5PCYSKde5eLChLO09XtEEOBYb93UKX48fquxzi0zL5pMHBwL7GFVOImN4ALAz+652exlLpBp1VEkWdLpggXuLRomtPn9AUKiUZFuERafcDFZxTcU5JfQNhGDPxdQV55See8kq59jxipTFxMxQgI3HH0CbU91jTu45D4RDbYDgAq/FaIizdV/ElgfyPwP2c1OzxZPt3kgmqRVQp62V9Zy78Ihh+OfyXQDECdKEPFq73Zj77i+CXcHxo4rw999OFBTthDJkL1OuWrUK11xzTZ+fl5eXo7GxUZWdIoh0Z19H+CaR6AbOKpKorTX1SFLOhW5EPV4/AkkaswPKi3NAOBSio8er2MNH7ko0oLVyTk5bqzbnSGQYBI9IObd/8IVCsGlqij3nGOWckslVLHo9ftSH3vfqosyobTEjiwe3clEqfFqrUa8TlBas71yXy5eU6klUnFPiOWeTr179lSnO8aEEcrFZ1E/LVouGDunXMACiRGpNi3MtjHKuKAs2sxHDQ/eZrY2OpMNForGxvksI7Ti6qkA4l6mtNXn4e1OWxQi71RRhMaFxWytTzFEaCJFpMQoLnEqUc2xBTMp4RafTCeOVNqe6Su965pwfIuGcByAqZChpbe0QhQXJV85pdQ6yY6Zki3N2i1Gwj0m2OJdrM+Gg4izBJuPXvZ2qhbkdaDzyxRbhmDllbDH+NedIKsypgOzinNVqRVdX3wHg1q1bUVRUpMpOEUS6Iy5+xC++pNI/hOgLmx5WlMBzjuMAlwqm1ntCbaV5NpPs1Wi2gKhUxaSkOJercitNAzPgThgIkQL1hUhhFsVzDgC2DcJQCHU855hjTkV1L9vSWhURBsETqZxLVzoYw2+2SMkX54DkWlvZ4ly89PBYsOd/h8QJ3nq2OKeScm4gwfpZSWlxEwdCaHev55VzJoMOw0LX9zGlwdZWty+AGqb9Sy1Yvzn2mM3JCL9mKs7JR+SFGrp+88npwOBoawXC45YWBWMWdrwiVa2WF7rGtTvVSZfnkXvOA+KivJJ29vZklXPMOdjVq96iwH6m0FqaZHFOp9MJ467GTpfsz8zt8wvJ2fxCBH8d8gU4rK0j3zm5/LCzFR+uCVqQ2a1GPHL+OEkBKERiZL+L55xzDh544AF4vcGLgU6nQ11dHf7yl78I4QoEQcRnn4zih9VkQIYpWPwh5Vzq4VdyzQa9aBDDwvoeJes75/EFhEGEHL85nmJ7eBCktLV1D9smInEf1A4ukaWcy9RefdHYGX2gmZdpFpRj2wdhcUidtlZtPOdYhc+IKH5zADAsLwPmkFdZOhfn+AlY5OSLbaNeuUt5ew4/KbZbjbCa5LVVAeJFpE6JBfL1e4PFOatJj4NifL6JGMjKuXrWfyrBAgOQGuWcP8AJRe+KfJuQxD2mLKxA3apBa+vKGMW53BSqvNKRLpdPUCTyi1ipfE9Zn8BY4yMp8K2tnb3yFf9y21oBID80ZvD4A6r6O7LFuUR+0jzJKufaB6hybj9z/StO0nMOCI+7ejx+wWNPKnvaesHX84YXBBf6jmYXtnaT75wcPL4A7v54vfD97aePEc09iOSQXZx7/PHH0dzcjOLiYvT29uKEE07AQQcdBLvdjocffliLfSSItINf6TMb9DHVWCz8hIyKc6mHV5QUZpljpk3ZGPVGsvL4fR3hQYQSQ9VkzZWB8PFp1Oskr3iqnZjKF+eyrcaEMnm7xSh4bWnW1toVva0VCLdWtnS7B50vJN/WmpNhUlSUASKUcyp6zu1mvbFiKOeMBr2gqqtpdcI7wBI71cDl9aM3FHYQafg9usQunHs/1bQpbqtvCV0rpNyPosGqV6Wcg509XqF9/+CybKFIJBeRcm6gFedEKprE11Gb2QDeMlCrQIj6jl64Q/5AbMGbV84BwJYGdUMhAgEOq2qCk9/8TLNI7UptrckRrXUwlYEQrNIqKeVcEvcQfrxiMuhQLLElP5/xSW1X0XdOmedccsq5jihJ3nLQynNuf5wxkxJKkwiFYMMgKguC4+qjq8ILW+Q7J4+X/rsLO0PjswnDcjH76Ip+3qP0QvZoKDs7G99//z0+/PBD/PWvf8X111+PL774AsuXL0dmZvTBM0EQYTiOE27gQ3Kt0Esw8OYl+B096krwifj4A5zgnxbLbw6IMPRNcoJYpzCplYcdnLKGvHLgV6KH5GZINpgXeSMmWaAKBDhh8CWlNUSn0wkTA62UAo1MQEVJjvhYGFkSnmwOJvUcx3HCADqZNDWR55yKxcldbFtrUezxxUGh99/r50Smz+lCtKRWHr1eh6Mr84XttirwPXR5w0oEJWEQkfslpa11vSgMIlfRcwKRqpOB2dZqMepF18dY6HRhP8FujZRzbKIxm348llHObVZZObd1v0MovB1VmSda5MqxUXEuGdhFI15hnqfyQlk81GprLbSHzw85i4ocxwnFufLcDEnjaQDIZ96jNhULmPw5bzMbJL8f9iSvYcm3tWqTmNyogiqfhS3wyS/OMePqkHKuPDdD6FxaW9eh2KP5QKOutQfPLt0OANDrgIfPPVRxEBURHVnFOZ/PB6PRiA0bNuCkk07Crbfeittvvx2nnHKKVvtHEGlHZ69XWB2TKsHnV8N8AU62nJtQTqvTDV6IEm/SalNRvZFscS5Z5Vxnr1doqZLqNweou1rf1uOBJ6SAKpVoqswXB6S21MmlMaQwM+p1KMyMLM6FJ7bbm7QPhfhmy378c/lORS0wLF29PkFFk8zgOdtqgjE0OFO3rTVYnNPpgMqCOMW5ovT2nWtPoIyYnGRrqzgMQr7yAhBPzKUUyNni3KEKwyCAsN8nMLCUcxzHCRP1IbkZMVXXkfCJrV0aFecik1p5huXZBHuGZIJFosH6zbFqFYCUc8nCLhrx90q71QT+cOtMkeecXidWscqlKCt8/5Ezbunq9QnjaaltpIBYOadWKIR44V36OZ+uba1NKoRNsZQmkdgaTTkHhFtb3b6AYLNAxIbjONzzyQZh3Hj5lKqk7t9EdGQV54xGI4YPHw6/n6rLBKEUJea1IlWCytHvRGxaHOFBTzzlnJqec3v6uTgn9m+RPtjNMBtgNQVvKcm2iYhTDiWeI6EBpsPt06S1Maww66t2ZUMhtmscCrGruRu/f+1nPPrlFixYUZPUY+13qLOyrdeH0+/UamvlOA67QiqfITkZcVtu2TY5VhmULogmX5l9lRGTqsPeOSsVeOewJuxKlXN5jDKsszfxMbB+X4fw9XiFYRBAOCkbGFjKuS6XD86QxYGUllYePhRCq0AIsY9juDin1+uE5Ok9bb1wqNjeFisMAqDiXLI0REkRN+jDSnKtlXN8G2R2hkmyai0a7KKAnMRvkT9urvTxUj5zHW1TaUzd3uOFyxsce0gNgwDEnReK2lqZ/c+Lcn9IhLitVb1FAb6Alm01IsOszDKDJRnlXA2jnBvOLPSx1yMl984DjS83NGL5tmYAwc/j/04b1c97lJ7Ibmu9++67cccdd6CtjQ5iglDCPgWGsWxLjJoSfCI+bFKrdOVcchPEOmYQocRzLtlACD4pFpCu7OThVT3JKufqGTXAEMnKObY4oO6ExO3zC+3N0do/RcU5jZVzX2/aD39IzpnsSq/Yryg5w2bed67V6Val9b6l2yMoOKvjtLQC6Z/Y2iFqW+qrjBhTmo3sUFFn5e422e9/i0PadS4euUyRRUpxnlfOZZgMMcM+pDBQlXMNzDVM6gIDEA6FcHkDmiwyiJRzheL3nW1t3aagPToaHMcJk167xYixZdmi34sVlzS2kYvI14u5V6p1L04Ef69NpqUVEHvOyVlUVJIsD4gXE9TyiRWFQcgoyGepqJxT4jlntxrDSkuVxk6sZYbU7odEJKOc4ztSbGaDyIaDVfIOhOKcy+vHyl2teOHbHbji1Z8w6+8rsGHfwFD0OVxe3P/ZRuH7eTMPFh27hHrIflefffZZ7NixA0OGDMHw4cP7+MytWbNGtZ0jiHREyWAiN4UGv0QYdtIq1XNOrbZWo16XMKU0GgVZZuh0AMclr5wbli99sAsEj9OGThfaezzgOE5yW0ckbNFIblsrECxmKC0yRINtz4i2PwVZFhRkmtHq9GCbxsq5ZVubha9Z1YAS1Ehq5eEHvF4/hy6XL+nJ2u4WtogQvzhXVZgJvQ4IcOlZnBNPvvq+rwa9DkdXFeA/m/ejzenB9qZuQQUlhRaJixDxsJkNMBl08Pq5hJ5z7U6PsAhwyJDspPxq2IWR7gGknBOHQcgozlmZ1+PyiYoIasAX5/Jspj6PLQqFaHTgiOFilZsSdrc4hePryMq8Pp+1yaBHptkAp8dPyjkFxEo15++HDpcPPn9AceBKPAIBTvAoY9VXSmDHV3KUcyKlv4zxCrvg3apScY5deJeSzsyTfCBEbE9SKej1Qa9Lh8sHh0rnoFqWGSzs2Gu/DOWczx8QOlKGF2SKxqWVBTYU2y1ocrjxc02bZudKLFq73Vhd246fa9uxqqYNG/Z1wusXL679fdlOvPDbiSnbp1g8+fU2IUDspDHFmH5IaT/vUfoiuzh37rnnarAbBHHgsE9BW2uejVaX+wNWORevOJdhYgMhlE8QOY4TBhHleRmKBgkmgx75tmChSFlxTrlyjm8V8fo5OD1+xatqIuWc1NbvDHltdXJoiJKIF8lBxVlo3d2GZocbHT0eRd4vieh2+7C6Nry6y7ZAK4FVVrKKSyUUsJOdbnfSxbldMYzro2E1GVCRb0NNaw92NHUjEOCSarEaaIgnX9GPq8nV+fjP5v0Agr5zyotzyo7bYCiLGS3d7oQ+V6zf3LgkWloBdRdG1KSeac2Xqv4Fwp5zQPB8V7M453T7BMVJtHNqTGn4mNnSoI5ybmUcvzmenAxTqDg3cD6/wQK/kGU2iENHWAVVR6+6i1U83R6f4Mmb7PWe3b9mGcU5cTqqnLZWbZVzsgrySRbn+MUbm9kAi1FZ+2hOhgkOl0+1AjmrbEt2bMFTmGmBUa+DL8CJxmSJaOh0wRc6UIdHdKPodDocXZWPRb82wOnxY1NDV1IBRYnwBzgs+rUe/9vRgtW17SIlcyzUUjEnw4Z9nfh3yEbFatLj/pmHKF58JxIje+Z03333abEfBHHAIF7pkxcIAajnj0EkRmq7F7vy2ZOESX9Hj1cI/FDiN8dTZLcIxTm5CjalbSJAhMLT6VFcnBN7zslXziXreRdJtES8SEaV2IWJ6I6mbhxZmbzqJJL/7WgRrap2hQbTSidGsVqilFDAnB+tTg+qi5J6OLFyLkFbKxAsjta09qDX60d9Z6/swvJAhp08xmpbmsQUPn7c1YbfHVMp+fFFnnNxFiESkWczoaXbndDnSlScS9JMmlXODSTPOTUm6g6VQyESqVHFyjl1QiHEYRDRr4k5NjPqO13o7E1OcX0gwt+bSnIsovctN2JBV4viXJdKSa1AhHLOIb1YpnS8km9TXzmn9JxPPhAi+DkoaWnlCSofe9Hl8qpyDorHFuoce3q9DsV2C+o7XaLHT0QNEwYxvLDvuGBSqDgHACt3tWlanHvmP9vw7Dc7Yv6+ujATR1bm4cjKfDz/zQ7UtfWgtrUH/gDXb4mo/gCHuxauFwrxN548UpHlDiGd1Gk3CYIAEF7pM+h1KJE4EWJXz0k5lzqkKudsIt8j5RNENqk1mZsfv68ef0D2SihfPDYZdLJXPPNVar9uFLXqKAhNUbk9ar8E5dzIkrASRavWVrallScZ9Zy6nnNi5Vyy7GRWlKsStLUCwIg09p1rF3nORZ8EHzwkG3YL7zvXKst3TnSdS2ISz5+DvV4/XN7Y10HWKzGZMAhgICvnlE3U7Va2OKfudWxnAjVqjs0kqPy2NDhU8Y7ki3NWkz5mITYnI/iavX4OvXGOG0KMy+sXVLVl2eJjTJyers2CLju2yM5IznvKajII1y85yjm+OGfU62S1T4o851QaU7NqWaldMUBkIIS845/jOGFOoKSllYcvrnr9nBBqkQyNKlpmsPCLiK1OD9w+ae8VGwYRLfV9UnXqfOd+rmsXvjYZdDi8Ihd/OL4a//zdEVh99yn45tYTMX/WBFx05DBByezxB0QdV6nmrZW1WBe6Z48szsLVx1X3274cKMguzun1ehgMhpj/CIKIDz+YKMuxSm5bZCdk5DmXOqS2e4mUc0lMEOuSTGrlUZrYynGccHwOyc2QvVLHHqdtSaxG822tuTaT5JQvVrWndgGbHWiWxmlr5dEiFILjOCzf2tTn53uT8J3bHzo2dDrlXmM8hZmsZ1Dy7//uUKqkxaiX5N9zUFH6FufYNu1Yba0GvQ5HhZRJLd0eWam1agRCAEAO01reFadAzivnbGYDqgqVh0EEH4NRnSQZxqMm9UzhW1Zaa5ItbvFgC94jYqhRx4QCGxxun6hlUAl723uEx5hYkQezMfp4h7Uk6NA4XTSdEC2uRCifRWNGlZRhkYiLc8kp54DwuKVFViBE8P4nd7xiMuiFQrha7w9/rOt0QSWjVJIJhOh2+4SWzaSUc0xxVY3W1iaNi3PB55B2nNSxyrko4+qDirKE82VVTRsCgeQXJWLBj8ctRj1+vW86Fl57LO6cMRbTDyntc+9lF1B2tvTPmKbJ4cL8r7YK3z907qExr+OEeshe6li4cKHoe6/Xi7Vr1+Lf//437r//ftV2jCDSEYfLK9z45KyspWIVlOgLfyO1mvRxWzTV8pzTqjg3UqL/VGevV5gQDlPQFihWeCo7TgMBJuVLxqAuV5T6p11ba6z2T9bja7sGyrntTd3ChJ/3XQHE6bpy4QfQBZkWmJI0QRYr55Kb7Pj8AeFcqCrMlOQfxx7j6VacY6/58drHJlXl45stwQLuj7vacFCxtPOeX4TINBskF8OjEaleLY5y/rY5PcIk9tAhOUm36ohUyyoXs5KBV87l2kyiAmIiRIEQKr8eKT6Oo0vtwjG0pcGRVHs429I6KYbfHCA+pjt7vbKUhgcyscIggMjFKm3GjF2MR2Cyba1AcGFgV4sTDrcPvR5/wmtRZ69XaP2WM57mKcg0w+Hyqd7WWpRlkeX9lmEyCIFGTpmLu8mGQfCwgR5dLm/SNheaKecYhWhjl0tShwmrnBseRYWv1+twVGU+lmzaj85eL7Y1OUQt/mrCzymKsy0Jj2/WzmNXsxPTRif//O+v3oM3VtZhSI4VE4blYsLQXIwbmhNzfvPQos2C1c6FRwwVqQwJ7ZBdnDvnnHP6/GzWrFk45JBD8O677+Kqq65SZccIIh1hV6LlDHpzU7AKSvSFVwAVZlnienCo5TknPj6UT1DYdtQmWavQyT2/2BtR2XHa4nQLvmpyJmniwoC654iUttaCTDPybCa093g1Uc4tY1Rz0w8pxefrgx4pSpVzgQAnHBtqeMKIPeeSa2vd094rHANS/OYAsRIo/YpzweM5y2KMu2o9OaI959LJwyU9Pn+dK0hSPSlFraNmGAQQVMCYjXp4fIEBo5zzMwsMUtvyedhJUpfKnnO8+bhBr4u5+CMKhWjswikHlyh+vpW7EvvNAcF2Wh5KbJVOY1f4fh15X8pTyWIiHqw6Ntm0VqBvYmuiwsu+ZMcrmWbUtPags9ebdEqnxxcQ2nHlFpd1Oh0yzUY43D7ZBXlxkrdy5VxkgTxZ9rMJ96oq58LHiNRQiNqQcs5s0Mfcl6OrgsU5IHjd0qI45/EFhIU2KfYRI0TFueTHNF5/APd+shG9Xj/W7QG+3NAIIKj0HFmchQlDczFhWC4OG5aL0aV2/LirFZ+uqwcQHF/fMWNs0vtASCM5kwCGSZMm4fe//71aD0cQaYkoqVXGYCLLYoTJoIPXz5FyLkV4/QGhwBTPbw4IKk54kvGc62Q+2/wkUvqUtrWKwkoUDnZ5lLaWKgmDACLS6VQ+R/hBYK7NBKsp+mqnTqfDyBI7ftrdhv1d7qSCGqLB+s1dOnm4UJzbo9CLpMXphj+kvitRIU1NnNaa3GRwN9PCUS2x7dFuNaE024rGLhd2NHenlbE8fzwnUkYcMiQbWRYjut0+/LirVdJ74PGFfSmVJrXy5EYkREZj/d4O4etkwyB4Ms0GeHyBAeM519IdXmAol9HSCkSktapYnAsEOCEQoiLfFrPIO7aMDYVIbpHhp5pgcY73VopFjoaq53SmsTN8b4+8V4qtULT3nFNHORe+fjRLKM6JxyvyFZ75KibaNne7wVs0yhm38GRagsU5uW2tUvxIpcC2JcezJJAKvzih1yV/X2Fhi9D7JRTnAgFOUOEPy4/d+swubP20uw2XTalMbkej0CLRw5qHHftISXVNRG2rM6qnJ8cFfZK37e/G+z/vBQCYjXpYmGL1nWeMTWpOQshDlcbh3t5ePPfccxg6dKgaD0cQaYtSZZJOpxMmPhQIkRpY5VeiQZtN5DmnvDjXIcFbSgrFzI2/ySE91YptkVQy2BV5ziktzsVp1YlHjk2bCV5QYSatzXakKJRAPfVct9uHVaGJ7rD8DEyqyhcm10oDIVi/lmjth3Jh21pbkgyE2CUzDIKH9/3r6PGq1qrU3wQCYcPvRMoIo0GPI4bnAQgW5dl0zliwKsdkfQdF6osY5+Cve9VVzgFh37mBktbKhkHIVc7ZRW2t6l3HGrtcwsQsWlIrT1VhJsyhSVkyxbmmLpdw/E0YmhtzUQMQHzdqFAYOFBo7w8dZZBuilh6sPF0udYtzchcVk1X6s8WGZDxyAfH+Sim8RMKHQsi9hrGfbTJjRvWVc8ExU2GWJSlFYiTs9VSKcq7J4RYCLqKFQfCMLcsWVMsrd7epEoYTidxjJC/UjQEAu1TwnGODymZPqsD8WePx20kVOLQ8G8aIoqXHFxDaWY+qzMOsI6i+k0pkK+fy8vJEK7Ecx8HhcMBms+GNN95QdecIIt0QtS3KlL7n2UxodrgpECJFyLmRij3nlKsd+KKSUa8TqfHk0m/KORW8ERs6lU1s7RYjDHod/AFO1bbWth6PoIJJ5MPCFue27+/GEcNjt3LJYcWOFmEfThxVDL1eh6G5GdjV4sTe9l5FKrH9Ik+Y5NtabWYjbGYDejz+pAtju5iiktS2ViBYnPt+RwuAYGtrssWmgYDD5QPvTy3FU2hydQGWbwuqLFfubovpLQYEC2gvfrtT+L5QwaSSRaRejXEObgi1tWZZjKiKM1mSAz+xHSjKOTa1UW6LG9vWqqZyji14xzunTAY9DirOwqaGLuxq7obL649bWIsFr5oD4re0AuoXBg4U2OJE5MJRXqb2IWJqK+ci21oTwY6n5XSi8GhWnFNw3+HPe6fHJ+t+ztoHsJ+5XNhAiGQL5D5/QHg/1PSbA8THOTuGiUUtEwZRURB7wdmg1+HIyjws29qMlu7gwla8e6cS2GOkWGK3QnVRFn6ubcf+Lje63b643teJ2LY/vNgy9aBCnDGuDBcdOQxAMPl5Y30X1u3pwK97O7Bubyd2tziRn2nGo+ePk+T7S6iH7E/5qaeeEl009Ho9ioqKMGnSJOTl5am6cwSRbiQjw+cnPi5vQJJZLpEczTISDA16HawmPVzeAHqSUG+w7WvJtOSJinMyVEzsSrQUo91I2LZWpd6IIuWcjJYwnU6H3AwTWp0eVZVzjXEmQJGwoRDbVAyFWLYt3NJ64ugiAMDQfBt2tQTbFFq6PbJX67XwhCnIMqOnrRetSSvn5Le1ApGJud2iVpXBilxPoUnV4ULIj7ta8ZujK/ps4/EF8PqPtXjum+2ic4UtLishN0ErXUu3Wwg1OWRItmoDfl451+PxIxDg+n0iwSrn5CS1AmLlnEPN4lxL4jAInjFldmxq6EKACxa5D1XQfsyGQSQqzmnpF5rOsK2Dkdf/VISIqZ3Wyo6zpCnn1LPhSLY4xxYTlSxy8L7FHBe8jmVKLMK0iwIhkkhrFQVCJHfdaXV6hAUltYtzxcxCYqOk4lz4GImnnAOC1ynePiTRwpYSmhSoK6sLM/FzbTsAYHezMym1+XbGi3dkifi1WU0GHDE8T1DeA8EAQ7NRLyvchFAH2cW5k046CcOGDYs6cayrq0NFRd+BIEEQQXjPOZ0usQonkkiD3wwzJZppSbNMf4hMsxEurwc9XuUDG36wm+xA124xCsVCqXHzAFAbapE0G/SKVn8zzQaYDXp4/IEklHNsW6u8YzzHFizOxWqpU8J+GaljB5WwxSF12lo5jsPy0IDRbNDjmBHBgtMwZjKyp71HdnFOizS1gkwL9rT1or0nOYNtXuVTkGkWtSsngi3O7UyTUAhxcS7xezGuPEdQMK7c1SZSYXAchy/WN2L+4i2iSYvFqMdVx1VJDpCIRSLvMFEYhEp+c0BYOQcAvV7pE1utqO9ki3MylXNscU7FtFaRci5Bq/jY0mwA+wAAmxu6kirO6XXAkZWknNMC/l5ZZO+btm01GYQxgGZtrf2snOMXEw16naIFpoGonAMAp9sn+RrWMQADIdRW5bNYTQbkZ5rR5vSIFk5jUcMo54bHUc4B4kTpn3a3RV3YSgYlxwhbINzV0p1ccS6knDMZdBguQbVuVyHkhVCG7JFzVVUVmpub+/y8tbUVVVVVquwUQaQr/GCiNNsaN3UvGqloUyDCiG+kiQc9Nr61SqFyzusPCElduUkOdHU6nTDQlaqc29LYJaRcHlScpUh9EvRGDO67YuWcyK9J3oCbf98cbh+8/oCi5++zP6xyLsH+FGVZhNevVmLojqZuoX1nUnW+oBJilY1KfOeamAF0sUoDaNb4WannYLfbJ6wwy2lpBcTFuXRJbO2QqYwwMb5zjV0uwQz759o2XPD3FbjurTWiwtz5h5fjm1tPxO2nj+kzwZdLrih1s+/nv14DvzkgrJwDkrMVUIv6JK5hdos2gRA7m6Ur50aLElvlLzK0Oz3C3x1anpOwFSs3Q7swn3TF6w+ng8YqTPHFmpQo56zJF8TlK+eC51lZjlXRQhAbCKF0vMKTrOecqJ1dRlF+IAZCNEpIt08G/jH3d7kQCMT3hqtlxkaJClLjynNgNQWPI1b5qxbN3eH3RbJyjhkD7UwiFMLrDwgeoNWFWUnf6wltkf3pxDJJ7O7uhtWq/klIEOlCL+PFVC5zNR0QT8zanTSA1Rq5yUo2U9gzRAnsgCiZ9gQe3tOio8cLty9xwfDNH+uEry86Urn5K78a3d7jUWSqyxfD8uIko8aCXTlWS4HBrgInKs7pdDqhNbCh0yUyzFYKm9J6wqgi4ethTFv8XgWJrXIUgVIpyAyfJ0oTW3crDIMIPr9Z9eJofyNXOQeIk+feX70Xf3rjZ1zw9x+wpq5D+Pkx1QVYdMNxePLiwxTdj6KRKDGZVc6NH5qrynMCEWnZAyAUgi9+mgzyFT1Wk14w53aoGAjBK+eyrcaE6YljysLFua0KinOrWL+5BKo5gJRzSmh2hNNBY92X+HFEZ49XE4N7/rPKNBtUMf0XhwrFv384XF7h+ZVev9i21mR9UtVqawXkhUK0D8BAiP0O9S0zWPgFD1+AS/i58Z5zBr0u4XFiNuoxsSK4sLWvo1fUNq0GIs85iQuiI5jiHGv3IZfaVqfgW3xQibrtuoT6SF7q+L//+z8AwcnHvffeC5stPDHw+/1YuXIlDjvsMNV3kCDShX0d4Qu9IvPaiLZWQlvkeM4BYeWcyxuAP8DFjGyPRQdbnFOjRSSLbRHxxB2YdLt9+GhNMEI9w2TA+UkkM/HFEbcvgF6vX6RqSYQ/wAlFI7ktrUDfxFY1AgHkeM4BwMgSO1bVBD1CdjR1C4M9pSzb1iR8feLoYuHrYfnh90fJIJL3nDMZdKJrSzKwkyulxTk53liR8MXRVTXtaOxyweHyDvrWDJEyIlPa5zSZ8Z17/tsdot8dVJyFO2eMwbTRxUn5WkbDZjbAZNDB6+eiqnV45ZzdYsRwBZ6WMZ/XMnCUc4EAJ7RSDcu3yS5a6HQ6ZFmN6Ojxqqac6/X4BfVtdVFWws+9KMuCgkwzWp0ebGnskv18cvzmgKDPnk4X9NuitFZpSLF/4Iv5Hn9Alo+ZVHhvMjVaWgHAYjQgJ8OEzl5vQuWcKFxNQbI8EFzM4Ul2TC0eL8q/n2YqVM7xiyAGvS4p9aLYcy7J4lyn+qp8FnYxsbHTFXPxnOM41LYEx0ZDcqV1K02qKsCKna0AgJW72jD0CPXuU6znHLuQGY+K/Ewh6GxXEso51gN5VLE9zpbEQEDyqGHt2rVYu3YtOI7D+vXrhe/Xrl2LLVu2YMKECViwYIGGu0oQg5tkY99FpslUnNMc0UqohCJPJlOE6vXKV2+wShM1zJXZQVFTAuPcj9fug9MT3OdzDx8iGqjJJV804JU3yGvpdsMXalOQa6QORLZHqXOOsN5skopzosTW5HznnG4fVu0OFvqG5mWIVlFZ5dyeNuXKuWK7VTUD/QLmPGl1KguF2JWEcg5Iv9bWDgXKiHHluUJ7Dk9hlgUPn3covrppKk4aU6J6YQ4IFpZyMni1jvj8a3K4hHPp0PIcVUMbRMo5T/8q5/Y7XHB5gy31StNo+RY3OZP0eOyWmX6s0+kE9VxLt0dW4jcgTmo9SoJyTq/XCfecDirOSUKK8lkc0KL+mFEtj1wWvtCSyHNub1ty42lA3UAIvsU4J8OkyEA/i/HNdMpqaw3ud25GciFiVpMe5tBCQldvctcdOd0GSmDHYfFCIdp7vIJvZ6IwCB52MUHt1lb+OppnM0m2NTIb9YK/8O4WZ8I23liwSa2jSDk34JFcZv/2228BAFdccQWeeeYZZGdna7ZTRHrS6/Hj1vfXwR/g8OTFE2QpatIBtjhXnqsgCTMF6VtEGP5GajMbJK0420StVfIjz8Vtreoq5+JNrjiOwxs/1grfJ2sKnxvh4yKn5YT1alIyqMuLUM6pAT/QNBv1kj6Xkcyq5PYkE1tX7GyFJ+Sdd+LoItHgO9dmQqbZAKfHjz0ylXMeX0BoB1FzZbtQRltSLHYxhYQRMj3ngn8jLs4dnqRysb9R0tZqNupx2sGl+HRdPawmPf4wtRp/OGGE7GuSEnJtJrR0u/sUWTbs08ZvDojwnFMxREEJbCGsUkFxGeCNuHuTTk3kYdWoIySqUceUZuN/O4IKki2NXSiyFyX4iyDdbp/wWY8usUtWe/KKKWprlYZYORe/rRUI3g+HqngpdHn98PiC9yZVi3NZFuxo6kaPxx83GCHZpFYg2OJt1OvgC3DJp7WGxlhKVHNA8sq5ZMeMOp0O2RlGtHR7kj4HRWFTdu3aWgGgsTP2wqScMAiewytyBfU3u8iQLBzHCeNwuZ6E1UVZqGntQa/Xj8Yul+yQISB+Uisx8JBtEvDqq69SYY5QxFs/1eHz9Q34amMjPltX39+7k3LEMvz+jX0nEsMXF6TeSNninFOBeqODMVBXpa2V2e94oRCra9sF8+7DK3JxyJDkJs7JtF83JpHUCkSoS1Wa5PH7VJptlbQyPUqU2JpccW7ZVqaldVSx6Hc6nU4Ihajv6IVfxooqezyoOXgWe84pU87tDhUS9Dpx6IVURMq5JDxaBgodIsNv6RO/xy4Yj5cvOxLf3T4N/3fa6JQU5oBwAbHH4xd5Xf66V5ukVkCc1trfyrmalnDRQHFxLvRZeXwBSX6hiZCT1Mozhg2FaJCuAP5qQyP4S5GUllYevjWyq9erWB1yIMEWJWIp5/I0VM6pndTKw/q1xVtUZMfTSmxigOA9lB9XJxMI4XT7hDGfkjAIQFlxzuMLh4glk9TKw6tXk21rbQpZZkhd0JRLSY405VwdE3w0PF/adc9qMmBCyA91d4szYdeJVBxuH9yhYnaxzDEXe81W2toqN6mV6F8UjdZWrVqF999/H3V1dfB4xBe0jz76SJUdI9KPJRsbha+3JakoGYyIlHNKinPU1poy3D6/sHoo1beM9T3qUeB7JDeVMRHittbYg1xWNfe7JFVzgLhAJreIXM8U55S0tebY1G1r7fH4BPWKVGPjIrsF2VYjuly+pNpaOY4TwiDMBj2mHFTQZ5uheTZsaXTA6+fQ2OWSrFLUqu0kWc85juOEQIhh+TZF7UFscW5nWrS1KlPUZpgNOHlsiRa7FJccprW8s8eL4uzgZyhSzqlcnBtIyjlWraG4rdXKvh6/ovOAZZeMpFaesWXhRfjNEn3nXF4/nlyyVfj+zPFlEvcwfGwHuOBEVs2CTzrSyNzTYynntOy26NSoOCf2ynXHLHCz4+lhCj3ngOBiYrPDjVZnMMBKSWuoODxM2f00yyL/GiZa0FWjOMen3bt8inyTefiCWUm2RRP7BFFba2fssa0S5RwATKrOx+raoJ3Iyt1tOHvCEAV7KYYdgytRzvHsaunGcSMLZf09JbUOPmR/Qu+88w6OPfZYbNq0CQsXLoTX68WmTZvwzTffICdH3QEXkT60Oz2iBK9kUmcGK/sYGb6SdClqa00dbGGhSGJxLlnfI3YSrsZgtygrPICJpZxr6Xbji/UNAILF3xnjpE+mYsF6zsltLWXVAKXZCpRzGeq2tYrCICQWsXQ6HUaVBFUn9Z3BUAIl7GzuFtQBR1flR7UBYEMh9rRJb23VyrBZVJxT4DnX5HALCgSpCp9IhuRkCCrWdPCc4xUvRr0uZeq3ZIilXuWVc3arUdZESQoDSTnHKhsqC5W9TvZzVnr9EO1TaGKm00mfpB5UnAV+bi5VObdgRY2wwHLi6CJRanAi2NZICoVIjOheKamtVd0FXbY4l4xHbSSF9vA+x1PO8cU5vS65BSZ+vMIHWClB7E+cfFur5OKcSFWd/GfAnoNKw2hc3vDCthZJrYD4827sit3WWtuqTMV8dFX4uqWW7xx7LMsvziWnnKtpoaTWwYbs4twjjzyCp556CosWLYLZbMYzzzyDzZs346KLLkJFRYUW+0ikAd9saQLbqcD6Ch0o8IOJwiwLrCb5K+HZGSbwi1CU1qotouQtu7TBVrLqDdFKtAoDLSnKufdW7xFu2hcdOUzRcRkJW0ROtXKOfW52VVkpjQoVZqynh9ICEa+aA4IT3WiwigFWSZCI/Rp5wrAtzUo853YyizZVhcoGkXq9TvDVqmvrgUvhhGugwHoKaaFCUJtoBfL9XS4hqW780BwNUmIHTlorr9YwG/UYoqA1HwgWMHkcSfrOcVw45W9oXobka7zVZBACWXY0dcMX8r6MRbvTgxdCycB6HXDHGWNl7Sd73JDvXGJ4z7lcmynmZypqa3Wq+56yrY9aKudiwXvOleVkJKUEylfBLiaZwgsPGwjR7ZZ2z2JbcaV6O8YjR4VzkB1bFGtUnMu2GpEROubZBdRIahnlXIUMi4wjhucJCxOqFedYdaXEBX8etji3U4GwhbVXoaTWwYHsK9rOnTtx5plnAgAsFgucTid0Oh1uvvlm/L//9/9U30EiPfh6037R93vaelTxUhksuLx+YXKi1B/DoNcJA1gqzmmLqE0hS9oAw5akco4dDKnhOZefaRaKudGUc/4Ahzd/rAMQVFTMnqTO4kpepvLV+oaOxD468RCn0yU/GZGSiBeNg9hQCC2Lc8yAU5ZyjplMKHmfY2E06IUJoRLlnNxUyVjwra0BTvyYgxEhjU+FtqVUkCdKaw7u+3rGb+5QlVtaAXFSdo/Eia0W+AOc4HNUWWBTnEjLtrUmm9ja5HALj1Ets+A9JtTa6mHaomLx3Dc7hELihUcMw+hSeZPAHJVVz+lMIMAJC27x1Em5Sfi/JkLc1qqeoleK55zT7RPu70q6UFjyMpXbcPCIinMyCy88SpRz7QotD2KRzVx3lPrO7WcWgrVSzul0OqGVO35xrkfYDzkLz1kWo3Cf2rrfoYrHN3uMyO1WKMqyCD6kSpRzlNQ6+JBdnMvPz4fDEfygy8vLsWHDBgBAR0cHenrkJcYRBwYurx/fbW8W/SzAic060x02hXKYwuIcEFYGdai8CkqIUaScE3nOKWlrVdc/xGTQC0qmliiD3OXbmoS2yeNHFqlmEsuu1rfJbmsNDrQKMs2KVHys4rBTlbZWZQNNUSiEAt85p9snrNiW52bETFgUtbXKSGwVe86p19YKAAWhyYkSzzklxvXREIVCDOLWVrfPL1xL1GhbSgUi9UXoHFzP+M2NL89V/TltFjaMp/+Uc/UdvUK6cmUS11O7RT3lHKu0kJrUyjOWKbBtbox9HattdeL1H2sAAFaTHjefOkreTkId1c6BQluPRzjOYvnNAdr6FLP3V7XTWnmaY9xDkg1XY8lnQowUF+eY/SxUGgjBLDB0S7yGdYiSvNVVziltLRcvaKo7tmDhFxWdHn/U1n+Hyysk0lcosFGYxITZrFIhtbXJEX5f5BZwdTqdsFhZ39kruxtgO+PxTkmtgwPZxbmpU6fi66+/BgBcdNFFuOmmm/D73/8ev/nNb3DyyServoPE4GfFzhZhgsEuJO9UmDozGNnDmtcqSCDk4VfHHG4fvAnaTAjltCiQoIs95xQEQog8XNRZieZbLJodbnCcOAHv9R/UDYLgUaqc8wc4QdFVpqClFQhOankTY1XaWkW+PtIHVCOTVM79sLNVmHydOLooZhvgULattU1ZW6varScFoc+/x+OXfR4oMa6PRn8X53z+AD5asxcX/fMH3PLeOsXpk2qHxKQCsedcSDmnYRgEMHCUc6IwiCSKy3bGw6vbnVyhSlTwlqlGHVMaDoXY0hA7FOJvi7cK9gi/n1qtyAMs2nFDREeqF6qWPsVdTNFY1bZWCcq5vcxCVNLFuSQCrHjUUM4pCYRo19BzTo22VjVV+ZGwx/3+KImqIr85BcU5tX3nkm195sdDnIJugO1NlNQ62JA9A3z++efhcgVPhDvuuAMmkwnff/89zj//fNxzzz2q7yAx+Pl6U5Pw9YxxZVj0a9CAfrC3G8mBbTlLJlkqL6JNQW4kNyENJTdSseecgrbW0EDLbjHCqFKaUpHdgi2NDnj8AXT2eoUJ/p62HizbFlSzludmYNqYYlWeDwjtv14HX4CTNdhtcrjgDxUxlIRBAMEVxtwME1qdHnUCIUQKM+n7VJJtgd1qhMPlE61aSmXZtvA188TRsT+bLIsReTYT2nu8MpVzweM7w2QQqXTUgE03bu32wJYv/fH5e4LNbEhq1V1UnEth+JDb58eHP+/D35fvwJ5QsfSn3W248MihsszxedpFyojBoZzLzWCL815wHCcU53IyTCK1p1pkDhDlXA0zppFjQB4JO1FXaszOk1Rxriy8yLAlhnLulz0dwpiuINOMPxxfrWAvSTknB1FxLs69kvcp5jhtAyHULM7xdhwcF9tzjvVXHZrEeBoA8rNUUM6xLYtKlXOKAiFUTmtlFgWUt7WmvjjX0OkSWYkA4uKckoLUUZV5wtcDojjH3E92NTtFadrxoKTWwYmsT8nn8+Gzzz6DXh/8M71ej9tvvx2ffvopnnzySeTl5SV4BOJAIxDg8J/NQb85i1GPy6ZUCr87kBJb2YlzMpOTvCSSMAnpsGb2hRJXQm1JKuf4wa4aYRA8bPG2iRkcvLmyDryQbvakCkFtpgY6nU5QQcg5RjczyoxkzpEcBc8di8ZQEUunkzfo1ul0GBkqEO3r6JUVEMJxnOA3ZzboMWVE/KIOr8Rt7HJJ9vHkB9Al2RbVzfnFia3SJzseX0BQGFcVZia1X8PzbTAZgn+/Q0FxVC69Hj9e/d9unDB/Ge5cuF4ozPHUyfADZGFN3NVoW0oFkb6P+7vcwsRkXLn6YRCAWDmnJIxHLXa3sGqNJIpzIu+nJItzLcrbWstzM4TifTTlHMdxeOSLzcL3c08ZKVL9yUEN1c6BQgNTAInX1mrQ64TCmdrKOa2Kc6wdR2zlXPj6qtTDmSdfBV8+voio04kDJuRgNuphDhVOJAdCaNjWqvQcbGQ85zQtzjGPHc13rrYtvCihJB0812YWxnCbG7qEhWOl8Mey2aBXdL6MYBYc5cyd2aRWamkdPMgqzhmNRvzpT3+C2y3f6Jk4MFm3t0O4KE0dWYiDmWr/gZTYqtZKnzh9i1o/tELJKher3pDrOcdxnNDWqoaxL0+0FhG3z4/3Vu8BEJS5X3TkMNWej4cfKMoZ7P64K7w6eXRlfpwtpT13twqt3/sFDzyL7BVHtrVVTmvlzmancL04qipPtKIeDV6Jy3FAfUdsc2SeHo9P8LHSIk2tIJNVzkkfK9S19QgD4GRaWoFgMAVfHNnd4kyYNKmUbrcP/1i+E1Pnf4P7P9skUlqyKiXWc1QOaisjUgF7/ers9eDXvR3C9+OGqt/SCkR6zqVDW6t6gRC8ci7TbJCt6tHpdEKwQ32nq8+E/T+bmwRVSXVhJi45WnmoEKu4VMMvNJ3ZzxQjShK0ECu5F0uB9SRT03MOCC+ItnT3teMAgH2i8fTACYTIt5mT6nrgi/L919bKLAr0KrvupMpzLmFbqwoLJbzizhfgRJ5xSuCPkSK7sgVRdjwhZ+7M2qqMpKTWQYPsq8ikSZOwdu1aLfaFSEPYlNZTxpYg02IUVjwOJOXc3pByQqcDhij00wIi07doAKsV/Eqo3WKUHEzAtrXKVc51u31CYYKdpCQLOxnjBxdfrm8UBqGnH1qmSGKfCH5C0OPxSzav/WFnq/D1JAUtgDy5Kikw/AFOSLlVEprArlJukxEKsWwr09I6KnG78VBGZbhXQmur1mlqIuWcjFAI9n6QTGGDh29t9fgDIs9PNejs8eKZ/2zHsX/9Bn/9cotIaXvK2BJ8ct2xePaSw4WfNUgomkZD7clXKmDvUR09XmwQhUFoU5wzG/QwhtS/SlTLasG3tWaYkmvLtlsYz7kklHNun1+4JlQXZSmaFLKtrVuZ1lafP4C/fhlWzd1++pikWqZEYT6knItLQ6c05RzA+BS7fKouUmilnAPCi4puXwCOKIUq/pjW6YAyGXYT0ShIMhCC48LjhGTHUvwCb3+1taqhnOMLZXarUTQmVht27NIQRTnHLpQoCYQAxIVfpQtsQLC1tC30WSkNDKksyAR/+ZYzd6ak1sGJ7DPn2muvxS233IK9e/fiiCOOQGameBA9fvx41XaOGPzwxTmdDjh5bAmA4MSrscuF9h4v2p0eUatmusJPDkuzrbAY5adQ8rCSebVXQokw7CqXVDKT8JxjWzC1Nld+48dwEMSlk5QrHeLBrkZ39HhRmhP/mO/s9WJjfXASP6bUrrg1BBBP8jp6PJLbkiNp6XYzHnjyi1gjS5Qp55ZvCydbnzi6KOH2rIdlZDtlNLRe2S5kinMtTunKOXY1eIRMb6xojCzOwpehr3c0datS8AOAd1fV4cFFm0WKJp0OOHNcGa6bdpDgBcMqm+s7lQ3s2wehci7TbBA8Jzt6vPiVKc4dqlFxTqfTwWY2oMvl67dACJ8/ILQvDy+wJdW+y7a1RksilEptaw/4biy5fnM8olCIxi4cHUoxfHf1HiHU68jheZh+SIni/QTUW1TRgh6PD/d/ugk2iwF3n3mwqjYQSmjsCl9PErUOsu2OHb1exffDSPjPyGzUK0pWjwd7D2l2uEVeaEC4E6U02wqzMTkPLVEbvlP+cedw++DxBYueyb63/BhSqlqWX7zJNBuSfh+A5D3nOI4TxhdaLPyxJFLO8dfi/Exzn+NHKqyQYm97L45QmJvW5vQINjJKA0OsJgPKczOwt70Xu5qd4DhO0j1GnNRKyrnBguyz+eKLL/7/7d15fBv1nTfwz+iwbPm+r8ROnDh3QhIgMYRwtoRwk9B7gYWFlj7tsmx32S1HIdCFbtulpYWnpYW2Kd2W8pSjbaCUm3CFEAI5SEJOx3acOInvU7KOef6QZvQbWbKuGcmSP+/XKy9sLNtjW5r5zff3PdDc3IxbbrkFK1aswOLFi7FkyRL1v7F48MEHce6556K6uho2mw319fW47rrrcOjQIfUxO3fuxNq1a1FbW4vs7GwsWrQIv/nNbzRfR5ZlrF+/HqeddhoKCgpQVFSEyy+/HLt3747qOIaGhnDXXXdh1qxZsNlsKC4uxplnnokPPvggpp+HtA53DqkptUumFqmBgnjTc9PVkNOt7sglMgwCCCprZXDOEA6XR92tjWWxlZNAzznNLrSBZa17jvXjw5YeAL5dtGXT4y8fHY94QxDNbvQHzd3qTeQZEXqsxfK9E+k7J+7GxtM7RdyljHZi6/CoG5v95b21RTmawQbhiNOfoxkKYXTD5tKggRDRahYb15clvsMr9miJJXNxPC1dQ/j2szvVmyezScLapVPwyr+eg0e+vFTTpLnIbkW21bfE0qOsNV0y53w9J32vwd7hUTVzrthuTbgEbTxK+XeqBkIc6RmB238SSzQQrFdZq2b6cZyvqblC5tyeY77X0ZDTjR+/sl/9/7dfPDfhXoJ2f1AXmHj9dH/+5kE89WEbfvPuYbwlbJ6kitJjy55ljjjZXTMFV8ffq1LWGm/gYzziuqUzqO/c8Khb7WVaW5T4+STbakauf+3WFcNmkiLRRv8iZRCM0+2NKstRuT7otXEjlif3xxEg7x9xw+HyHbeR/eYA39pcCZIHZ845XB71/8XTb05RUyRmzsVf1qoZGJLAhqjS7mPA6VazNSPRTmpN7P6TkifmzLnm5mbdvvnDDz+MlpYW1NXVoba2Fs3NzXjiiSfw8ssvY+/evThy5AiampowPDyM4uJiNDY2YufOnbjhhhvQ19eHW2+9FQBw77334t577wUANDY2YnBwEBs2bMDbb7+Njz/+GNOmTQt7DA6HA+eddx62bNkCk8mExsZGZGVl4ZNPPsG+ffuwbNky3X7eyUYsaf3svCr1bbGf0KGTgzi1PrMHiRzRsT9GcMkQ6S/exVYiPefE4FyRjplz2rJWpyZr7pqmekOaswPBg0siB2jEktYzEihpBbS/v0ReIx0xlA6FUlWQjTybBYNOd9TBoU0HuzDqX5SfM7s8qr/PVOGc0hbF4IET/eJC0Yiec2JZayyZc4FAwrSyxBeR82sCWVqv7D6Ob5w3M+Gv+dzH7eoO+Kr5lbjrknma4KhIkiTUFOXg0MkhHO11RL3TLRKfv+mUYV5kt6Jz0Ilj/Q7197XAoGEQCmUgT6oy55p16jcHaKe1DiRQ1npQCHjPqIjvmGZVihNbfUMhfvnWIbX1w+oFVbqs4STJN7yga2h0QmXOuTxe/HFLm/r+gRODuk43j5Usy2rgoaowO+JrSrtZpd+GrjKopDBH/9JFcVM0OAghbnToFewvycvCUPdIXK1i9AzOaSe2elBoD58/I8uyen0QKxUSIQZ643kNHh8wduNPZDZJqMi34VifY0zmnDiAqT7M9TkatUX6lLWK/erizZwDfH09lc2BQyeHNAPfQuGk1vQV81+qvr5+3H+xuOmmm9DS0oKWlhYcOnRIDbZ1dHTgtddew/r16zE8PIysrCzs378fO3fuxJ133gkAWLduHUZGfC+Wn/3sZwCAtWvXYt++fWhpacH06dPR29uLBx54YNxjeOihh7BlyxZUV1dj9+7d+PTTT7Fjxw709PRgzZo1Mf52SPTKHjE4Fyh5mGyZc+IN85QELhRA7BlJFDtxMSiWV0SSbTGrPSFibUou3oQbNRCiuXMIz33cDsB3I3vlklrdvk8wMcunO5rg3CFfcE6SgOXTEwzO6ZRdmmiGmSRJaubbkZ6RqLIplSmtAHDurMglrYB2Wl00vdXEoQXG9JwTMudiOEcpi8iKfFvcEx9FMyvy1Ey2bW29OJhgj1NZlvHsR77XjyQB916+IGxgTlHj74c04vLEdbPTY9B5wWhKgFzs5b7IoGEQCjFzLlQTeaMdFtYy0xIMztksJnXacCKZcwd1yJzLz7aq07P3dgzgeL8Dj73tq26xmCT8x0Vz4j6+YErW+EQKzr2257gmABNNdrKRBpxudfMvmvN3cdD0ZD24PV71eal3vzlg/My5Np2Gq4lKhKEZsU7l7IxzvRiKGJQfjLBeGHC61UxdvSZ5W8wmNYswninRHX3GtswIpqzLOgdH1dJiwFfOr6hPYGq2GJxrTyA4p1cAV2z3cehk5HtnTmpNX3GFUX/3u99hxYoVqKmpQUuLLxPjoYcewl/+8peYvs6dd96JurpAz6OVK1eqb9tsNni9vhebJEnq7pDy376+PmzZsgUANI8L9uqrr457DE899RQAoKGhAddccw1yc3Mxd+5c/OxnP0N2dvgLn9PpRH9/v+YfBXQPjeLDw4EpXmJ51owybeZcphMXc1N1nCwV6y5oc+cQtrZ0p+TGJZ10xnkhNZkk5FiV7I3YFja9I4G/pZ6L3TybRT2mHUf61EX9VUtqdQmAhFMcw+CSnqFR7DnmO3/Oqy5IuKy3UPjeidzkaYJYcWTOAdrS1i2He+AdZ+EvyzLe3OcbBmE1SzhzZllU38NmCTSfPxJF5pzRPecKsi1qYKEzyrLWvhGX+li9esMBwNqlgQD0M1uPJPS1trb0qDvyK2aURfWcEHvWxLO41zT81nFQjNFCBRIXGtRvTqFkznllX1lYsonBuUSfw5IkqefnRDLnxBu4RI5J6Ts3POrBv/9pu3od+cryOl1fr8q1b9Cp7/CCRPx+c6vm/Wiyk40kTmqN5hykHSKmz4auGLjRe1IrMH7mnJ6VKAqlx60sx75m0DdzLlB9EWkQTO+QuHGj37VBeQ3GlTmnw5opFtVh+s61dIkbJfEHcMvybOpaJpHMOb2eI8FVZ5FwUmv6ijk49/Of/xzf+ta3cPHFF6O3txcej+8iXVRUhIceeijuA3G73XjkkUcA+AJlF1xwAa6++mqYzWY4nU40NjZi0aJFuP/++9XPaW/37WJ/8YtfBAA8/fTTmD17NqZNm6aW3yqPCWfv3r0AgHfffRfNzc2orKzEp59+iltuuQU/+tGPwn7e9773PRQWFqr/pk6dGvfPnole//SE2kNKzJoDfJkeWf702mii/+lObNIeKdMiEvEGLZZd0LbuYax66C2s/fkmXPOrDzQXL9LSZs7FdiFVplMlUtZaqONNuCRJIRcD/9AUZ2fbKGmCcxGypzY3d6tvJ1rS6vve+pS1am6C4swwExdE1/36Ayxc9xKu/L/v4tvP7MCv32nGewc61dLPQ51D6rni9Gklml30SJRell1DoxEnvWnKWiOURcRDkiR1Al60Za2a3ljl+u3wXrmkVu1j9dzH7TFnRYie/TiwllizNLqsU3GSYDwTW5Wbab0afidLqJvFhVOKDP2e2oE8ye871yxka0xLIFtDobz+482ck2VZfV3VFuVoeqLGak5V4Dz29v5O9fhuuaAx7q8ZirgxFU/mjt5au4bVn1dxROfJz7GKZVIrYExZa7+Bk1qB4Mw57TGLE8lrdQrOiS0DYq1I0QRe8hK7noplrZFe9z0G9SNVgq3x9Jw7MWDs2iKYWNGgDc4FniN1JfGfi00mSb2G65U5V5FQcC62qjNOak1fMa/2Hn74YTz22GO48847YTYHLvannXYadu7cGddBDA0NYc2aNXjjjTdQVVWFDRs2wGazoampCRs2bEBTUxNGR0fR1dWFa6+9Vv08q9V3EnnwwQdx1113oaGhAW1tbaiursb555+veUw4brfvBFhSUoIDBw7g4MGD+MxnPgMAarAwlNtvvx19fX3qv7a2trCPnYxe2d2hvv2ZoOCc2RRoTNnSNZzQDVM6EBcTie70ZVlM6qI9ll3QV3YfV9O+3znQiVUPvYVHNx6Ea4LsTk8k4mIw1l0uZecz5oEQBpavBf8Mp9UXaxrXG6E4hqnC7x8S+s0lOAwCCA5gx38zohkIEecucPDPMzTqwba2XvxxSxvue343vvz4Zpz6X6/itP96BTc98aH6uGimtIrEoH+kRaTSF6Yg25LQDft4Sv3lPd1Do+NmCyreE3oO6jGpVVGWZ1N/l8f6HHjvYGeEzwjN4fLg+e1HAQA5VjNWza+K8Bk+mp41cUxsVYLL6TKpVRHcN7M0Nws1BmdS2IUb21g3R/SgZM7l2SwJl7cpXweInEETTtfQqBrgindSq0Kc2Kr4+rkzNCXsetD2C019244nt7SO+X9HekZSWn3QEeOmUZEBZa19SQzOBWfOtRtY1grEHpzTlLXm61fWGmmDQTPJW8e/gRKcc7q9cLhiO48mu6xVDE6L67XDYuZcgkMQlGv4gMMd1wRbQBu0TCRzrqogW80QjypzjpNa01bMwbnm5uaQU1ltNhuGhmLPxuno6MA555yDDRs2YNasWXj33Xcxb9489eOrV6/Gpk2bMDAwgPb2dqxatUr92OzZs9Xv/d3vfhcHDx7E8PAwPvzwQ1gsFs1jwqmt9e2Az5o1C4WFvobFp512GgCgtbVVLZkN9fMWFBRo/pGPw+XBW/t8N0GluVlYWje2WbCyWBz1eDUX20yk9MiwCLswiVBKWyNlJIk2CQEQAHC4vPjvFz/F5Y+8i+1tvQkfUyY5ORi4yMebOTdRes4BY3fqjM6aA4L63ER4nirDIEwScLoO02M10+kSKGtVdmJzs8zIjyGLTbSgthB/uvkMfPO8mfjM3Eq1d1OwzsFRTRbxubNjazge7VAIWZbVBbSRZSfKTbvbK0dc0A6PuvGrd3yZ7iYJuGBu5biPj9XapVPUt+MtbX3j0xNqoGP1gipNhsN4qoWy1linvcmyrD5/9Wr4nSzB5zCjh0EAUHslAcmf2Drq9qqbcNPK7Lr8rMrE1lFP7DfJgLYqoSHB0tM51dobu6qCbNywYnpCXzMUMdCT6r5zo24v/vShb9PdYpIwv8a3xh9xeaIu1zeCtt1C5PWkdlqrPsct/m2MmNZabM+CP+FZE/wCtJmLYtuARJTk6ZU5p+dAiAhlrcPGlLWKf89Yg1HJLmutClvW6jsX59ksaslyvGp0GAohPkdivacQSZKkthFo6xnR9NkLhZNa01fMwbnp06dj27ZtY/7/iy++qAmqRWPXrl1oamrC1q1bsXLlSmzatAkNDQ2ax2zcuFF9u62tDevWrQMAzJ8/HwsWLADgCxgqve8AXx+5l19+GUCg5BUArr32WsyZM0eTfadkye3btw/9/f2QZRlbt24FAMyYMQMmU/qUkkwU7x7oxIh/MXn+nAp13LVILF062Jm5fedkWVb7QNUU5YT8XcRKKVPoG3FFlZXi8crY7A/OFdutuGHFdHXhs+dYP6762bu4b8PulJQCTUSJZM4pu1qjbm9MWYlizzm9e0uJP0NJbhZWL4wu6ycRJbnRlV93DTqx1596v7C2UJeFvngz0hdnpoAsy+pNUGUUE/HGc/q0Evz7qtl4/LrT8PZ/nI9d967Cc//nTHx/7UJcv2IazpxRqsm0WTa9BI0VsZUgiINmxgvO9Y+41X5cRk5TKxP+/pFuZH//fqt6Q3TZKTW69rACgPPnVqg3/X/f1YGBOHa/n/lILGmdMs4jtRJZ2Pc73GpWuV4Nv5OlMOh4jR4GAQQ2RgDfpMNkausZVtt46FHSCgSCc0B8pa16lopPK82FTSir/taFswzJutWrX6geXtl9XD13rZpfhcVTi9SPHUnhUIhjMWbOaVtM6PM7FYM2RmTOmU2SusFzciB0cK6ywAabRZ/nYEkCffmUzD6zSUr4PB13WauOmzcFwvTd/pHYzjtKgEySEgtCRUtcwyibji6PV60eqC9NfKOkVrPBFmdwzv8cKci2INua2HNWOZd7vDJau8MnRHFSa3qLOR3gtttuwze+8Q04HA7IsowPPvgATz75JL73ve/h8ccfj+lrrVmzRg2qDQwM4OKLL1Y/duONN+LGG2/EJZdcArvdjsrKSuzfvx9OpxN2ux2PPfaY+qLbunUrvvCFL2DGjBlwuVw4fPgwAGD58uW45ZZb1K/Z2tqKvXv3oqoqcHN6xx134Omnn0Z3dzdmzpyJ/Px8HDrkm0R19913x/rrIfgWNYrgfnMKcSf30MkhnDd+gmPa6htxYcB/kQ2XNRMrZZfMK/sWSZF2zfYc61ezPpoaSnH3ZfNwxeIa/OczO/BpxwC8MvDrd5vx0q4O/NeVC3DenNiydjKNWEZRGmN5kl24YRke9aAwJ7oLorgLqvdiV1zAfOH0qbotaMdTkG2FSfI9R8db7L5/KNBvrkmHklbAt1tqNknweGVN0DMWsU7Ei0WuzYIldcVYEpRR3DnoxPF+B2aU58W8oJwqlPeMN7FVKWkFjO0JI75uugadmoFAIofLg1+85bveShLwzfNm6n4sNosZl59Sg9+93wKHy4u/7TyGL5xeF/kT/bqHRvHmXt+gjsoCW0yl1zViz7kYy1o1wyDSLDgX3ANpgcHDIABtM/VY2wokSs9hEArN5EaHO+abXbEnUaJlrWaThJWN5Xh1z3GcMqVQk42qp4mUOfeHDwIb/l9eXoed7X3q+209I2PO38kSa3ZSsQEDIYwuawV8wZ2TA050DjohyzIkSYLD5VEz6cSWAYlKpOecsplbmpsFU4Kb73nCOSxyWauxAyGA2F+Dx/39bH2DFIwPBmnKWv2vi/aeEXVTS4+NErGvYXscfWOBQIC5Qoe1pHjvfPDkEGaGGfTASa3pLeZXz/XXX4977rkH//Ef/4Hh4WF8+ctfxqOPPoqf/OQnmiy1aDidgZvgbdu2YfPmzeq/I0d85SeXXXYZLBYL9u7di9zcXKxZswabNm3CGWecoX5uQ0MDli1bhhMnTqC9vR0zZszAHXfcgddeew022/gLmunTp+Odd97BpZdeCqfTic7OTpx55pl48cUXcc0118T08xDg9cp4dY/vRibbasLKxtC9k2KdOpOuNJOlivRJKxZvfKJZSIh9lpQby1OmFmHDP5+F/7xojroj3t47guvXb8E3//DRmN3KyURZ/BXmWGMOZIlNyUdiKG1VFkFZFhOyrfoualbNr0Kx3Yraohxcf+Y0Xb92OCaTpC4Yx7sh2HQo8Nxs0mEYBOBL/Vd6sMSbKaDHMIhYleXZML+mMK6dVTHwP17mnNGTWhViL6qucc5Rf/ygVX29rV5QZVhflKtPFUtbxx8SFWzD9qNw+xf7Vy6pjSn7OSfLrJ6vYy1rFW++9Gz4nQzB2b+ZnjnXLATC9MucC/zN45nYevCEfplzAPDTLy3Gr647DU/803JdKgBCmSjBucOdQ3j3gK/aYFqpHWc0lGo2QCZC5pzVLKE0ipK9nCyzusZLZECSSFPWmhNfy4dIlIx/l0dWv5/YT1WvfnMANL/HWIJzXq+sXr8SndQKBA21ibB+7NUMhEh9WavHK6sb28noN+f7PkJZq/91Ifabq9OhlFPMfo+nBdOgsNGbaNkzEDQUYpyBipzUmt7iOqvedNNNuOmmm9DZ2Qmv14uKivgybZQMt/E8+eSTER+zdOlSbNq0KeLj3nzzzZD/f/78+diwYUPEz6fIth3pVS9WZ80sD1v6EJw5l6nEG2W9Mue0O6GRL56bhGbr4jRMq9mEr587AxcvrMIdz+1UF6PP7ziGt/adxA+uXoSLFlTrcszpRAlMxtPU226Lr++RsvgsyrHq3ptpZkUe3r/jAlhNpoR3dmNRZLeie2h03ACZkjlnNkk4fVri/ebE7901NBr3DZ7Y1yfeYRDJVFWQDYtJgtsrj5s5p2kmbmTPuVxt5lwoTrcHj248pL7/zfP0nfwoWjSlEDMr8nDgxCA+ONyN1q7hqBfumimtS2LPGKouzEHPsAsd/Q54vHLUgY2eNM6cE0vLy/KykhLgTmnmnNiAXK/MOaGsdcAZ+3lMyZzLsZpRrcPv355l0b0fZDDtQIjUBeee/CAwCOJLy+pgMkmaYV7KVO1U6PBn4FbkZ0d9PS+2Z6Gj36Fb5pxY7lhgWOZc4Jx3csCJInuWdrNbp0mtQPyZc70jLnXjRo/gXF5MZa3GbN5oJibHsH7qGnSqGWvJ2tDMtppRZLeid9ilBq1bhXuuRIdBAIn3nDup0zAIxYwoE1s4qTW9xZ2iceLECezZswf79u3DyZMn9TwmSmNiSeuFYUpaAd/FULmgHMrgnnNtPWJwTq/MucBCIlKDX7fHiy2HewD4MnNClZfVl+bif/9pOR783CnqTVW/w41bntymybSZDIbEXa44LqSastYYsjcCUxmNWejaLOakBuaAQB+XQac7ZOPaEwMOHPDv7i2aUqhZmCaqSPje8UwkFvv6VKdBcM5iNqnDB450D4edJihODTOyrFUswQvXc+7prUfUIOhn5lZiXo1xQ5UkSdIOhvgousEQB04MqgNz5tcUYHZV7DvQyuLe45VxYiD686k2MyK9MufEv/+iKUWGD4MAgjLnkjytVcycS3T4giK4rDUWo26vepM6vSw36ef+eBXaU58553R78Cf/4Jgss0nNuhXXb6nKnHO4PGpQJpbrkrKu6B126TJpNhllraEmtoq/dz0z5+Kd1qqZ1KpDVlRsAyGM2bwpiDM4J25o6lG+GS0lEHhiwAGvV8bhzsBzpF6PstYJFpwT2yaIrQuCcVJreos5ONff349rrrkGNTU1OOecc3D22WejpqYG//AP/4C+vr7IX4AymhKckyRE7F2mlFoc73dm7DCCIwaMfRebv0bKnNvZ3qfuwDU1lIS9SZIkCWtPnYLXvnUOLvD/3UY9Xjy1pU2XY04XiS62tGUJ0T2nnW6POkDFqIVuKhRFCCKL/ebO0KmkVf3eCWZgiGWtRg5O0JNSdjXgdIdt5Jy8slYhc25obOacy+PFz988qL5/ywX695oLdtWSWnUQzjMfHYlqmM5zHweCeFctqY3r+9bEObFVzDhNt4EQVYXZuH7FNMwoz8U3DOgjGEquZmMk2T3nfDeEhTlWTRZOIgrEzLkYg3Ot3cNqFkui/eaSaSKUtb6067gaoFm1oEot0S+2W9Xn2JE4ytv0EO80TOX8MerxqpuPieg3eForoC0BVAIc4u+9VsfMucIcq3ptiCW7UO/ASzwDIcwmSXOuSJT4tWJ5DSr95oDkZc4BgdeByyOje3hUMyRBjwml2VazWgnQnmBwrkKn54jy+x0vc06c1KpHBiElV8zBuRtvvBGbN2/GCy+8gN7eXvT19eH555/Hhx9+iJtuusmIY6Q00dw5pGbCLK0rjnixEneYm8fZAUhnmrJWnRYTRZrpW+MvJDYdEkpao2hkXppnw31XLlAXKk9+0Ap3HJlH6UpcYMSXORd7zzntLnR63YSPpyRCEFlTbq3TMAhFkWbqX+ylPOIucDIXmonQDoUIndmhDc4ZORBC6DkXInPuuY/b1Rutc2aVY9GUIsOORVFVmI0VM8sA+G7yPjjcPe7jvV4Zf/74KADfDdDli2vi+r7xlsX0CucFozJqjXTPZfPx2r+di1Prk9M4325LTeacw+XBUX+poV4lrYC2rDXWaa16TmpNpolQ1vqHzYFBEF9aNlV9W5IkdYO1vWckquC+3mKd1KrQbugmXtqqmdZq0LlJXH8p2dftBpW1moRJq6GuV+FognM6ZM6JE5ojDoQYMqYViqasNYZNgWRt/AUTM0g7+hw43OVb+9gsJlTqVB2gXMOP9ztirsQQs+X1COACgQ2XnmFXyHvA4EmtFk5qTTsx/8VeeOEF/PrXv8aqVatQUFCA/Px8rFq1Co899hheeOEFI46R0sQruzvUt8NNaRWJi8aDGToUQun/ZLOYdDsxxzL2PVy/ufHUFuXgfH/23LE+B97cOznK1mVZxqMbA9k8dXGUIefG0XOubzi9b8LDKY5QKvK+P3BsNUs4rV6/fnOA9vcYV+ZcnBkKqRTNUIgOf/BZkvRbKIai7Tmn/du7PV787I0D6vvJyJpTaAdDjF/aurm5W90pP7uxLO4yYM1EuRgmthrV8DtTpSpzrrV7GEql4HQdMxTybIFzWMzBOWGzc0YaZc7FW1Knl4MnB9WM7oay3DFrJuUcO+rxaiZfJ0u81yVtFnviv1dlQ9EkAXlZ+mVtiUJnzgWua3pOawWAktzIA6yCaSotdM6cizTURrk+6L1mjPc1mKyNv2Di9zraO6KW89eV2HUr51eea14ZMbf60Tu7EggaChGiLRQntaa/mINzpaWlKCwcO3mrsLAQxcWpGS1OE4PYby6a4Nz0DB8KIcuyupiYUpyj2+6WeDEer6x11O3Fh/5+c5UFNs3vO5KvLK9X3/69sJOcyf66/She/9Q3abgi34Y1S2Nv/p4TR885TYZMBpW1iuVdwWWtHX0OdWdv8dSisINj4iX+HqMZmhJMyZwzmyRdeskkg9gTKVzm3An/z1Waa4PVwN3UbKtZ7ZnVGVTWumHHUXV3+8wZpThV58DseFbNr0K+/7j+tvPYuIMDNCWtcZwLFNqeNTGUtQ6nb1lrKqSq55xmUquemXPCjXosUxOBoMy5svS5Ocu2mtVp5akoa31ys3YQRPCabYpmYmvyS1u1vVCjD04V2/XNnFP+NgU5VsP6GZZpMue0Za3l+ba4ppqPR1mvDI964HBFd/7QO3POLvxM4wXkR91e9Ryn97Uh3tLyjhS1AhEzSLcf6VX7G+vRb06RyMRWQ4JzZWJiy9h7Z3FS6yz2m0tLMa/O77rrLnzrW9/CsWPH1P/X0dGB2267Dd/5znd0PThKH12DTmxt8QWCGspzNRNlwpmhif5nXnCuc3AUDpfvQqHXMAhg/KCHaMeRXrWX2RkNpTEFB8+eVa7eVL6572TYTJxM0TXoxL0bdqvvf/fKBXH1f4un51xvxmbOBX6W7qDn6aZDnerbTTr3mwOCM+fiKGv1LzTL82xRT9dMNfHGMdQ0Qa9XVgdCJKPsROk7J2bOebwyHnk9kDX3z+cbN6E1lGyrGZcs8k2gHhr14O+fdIR83MioB3/b6ftYvs0y7nCjSKrjLWsVG37nZs55wSipmtZ6WFi7xLIBFolY4hbrQAhxs3N6GmXOAYHgQG8c7QgS4XB58PRHgUEQa08dG5DXTmxN/ppIO207+nN4sc6Zc0pGlVH95oCxmXMOl0e9fumdNQfENxRC78CLySSpGcDjlbUaNQwCCMqci2FTYGe7r+e8SdL3ficSMYN0s9DHWM8+a5q+sTFkvwOBYSaAfkO4NJlzIYJz4qTWxhBDAGniizk49/Of/xzvv/8+6uvrMXPmTMycORN1dXV477338Itf/AJLly5V/9Hk8fqnJ6C04Igmaw4A6krtam+z5gyc2NqmmSyl32Ii2kVEIj29zCZJ7bciy8Aft7RG+Iz0dt/zu9Xf5SULq7FqflVcX0czrTWunnOZcxM+3g3B+weNGwYBBPeci+1mZNTtVXvcpEtJKxBU1hoic65raFRtEp+MnW2ltLVvxKXuZr/4yTF1p/f0acVoakhe1pxCvOkON7X1lT3H1cyF1QurEsrSqMy3qde5WBb2SoaLxSSp2X4UniZzLoZJ2Yk63CVkzumYrZGfSM85f8CwssCm6xTsZFCugcnOnPv7Jx3qdWr1wiq1zFGkyU4OsQFiNG1wLvo1ZaThTLGQZVntRWbkeqUwxwqL/8TZOejUbGzouZ5WlOTFEZwb1DdzDgiUto4XnNNmVev7N8jNMqsbktG+BvtGXNjrDwjNrS5I6jlHXKNtP9Krvq3HMAiF+HyLJfsdAE74W4lYTJJulTFi8kuooRCc1Jr+Yn4FXXnllQYcBqU7saQ12iwDm8WMqSV2tHQNo/nkEGRZ1rWxaapph0Hod6HIyTLDZjHB6faOuwuqGQbRUBbz9/n8aVPx0Kv74fbKeGrLEfzLBbOQZcm8xqKv7TmOv2zzNX4vzLFi3eXz4/5aYs+QaLM3xMVyYQaVr4kZnsGLXeW5mWU2YakBDeMT6TknNvBNl2EQgO/mQDkvhMrqSHZPGHEoRM/wKMrzbGOy5lJxvj+tvhj1pb7rznsHu3C0d0RTtgIAzwpBu3jK20UWswmVBdk41ufAsTimtRbZ9W34nalSlTmXjLLWWKa1dg061fNtNBUME02RfyiSw+WFw+XRvXwxnD8IJa1fXlYX8jFTNWWtyc+cO+Y/h0tSbJMfi6NshRKNQadb3eQxMjhn8reU6Oh34OSAUzMpc4qO62lFIplzWWYTCnL0CUjl2Sw4MeAcNyAvlibrNR1aIUm+6a89w66wU9+DbW3pVvtunj4tuRtu1QWBa7fSZw0wrqw11nJ2JYBblmfTrQS8pigHWRYTRt3ekFVnSuYcJ7Wmr5jPJvfcc48Rx0ETzKjbC4tJiupk4nB58PZ+X5laaW4WFk+N/ma7oSwXLV3DGBr14Hi/M60yVSIRT+J6p3kX27PQ0e8I2z/E6faoZca1RTmarJpoVRRk48L5lfjbzg50Djrxyu7jaklYphhwuHDnc5+o79996byEyhPE3mnRZm/0ZWrPuTCDS9qFpr1L6ooMufkqygn9vaORjsMgAGWaYA4OnhzCkZ6RMZsdyZ6mViZkInQOOrGtrRefdvgWjadMLcLKxtg3DPQgSRLWLp2CH72yD7Lsmxz7jfMCQylODDjU61ltUQ6W6XCzUVOUg2N9DnQNjUYdcFCC9pmUTWukbIsZkuTL9E5mz7nDnb5zWUlulq5/q7w4y1r3HU/vfkPBDemTEZzbf3xAnd48syIPy6aHfs1PiZCdbLTj/sy5srzYeoYWxTBELBJxgqdeAalwyvJ969yuoVF1zQAYkzknBrmi/R0pvfDK8226baComXOjnrAJC9qyVv2vDwU5Vl9wLsqy1g+ae9S3w712jFKQY0G21aS2EFLomcUc78R1j1dGl/Ac0YvZJGF6aS72Hh9AS9cQ3B6vOpGVk1ozQ0J/tcHBQfT392v+UWb4fx+2Yc53/o7z/udNXPOrzbjjuZ34+ZsH8cKOY9hxpBc9Q6OQ/Vsl7+zvVHubXTC3IqYeTQ0R0nPTmbizqmfmHBC4IPcMB/4Ooo9be+H0l5I1xdhvTpTpgyH++8VP1eb/Z88qx5qltQl9PbHn3EiUN4iToeecOO49kXLraGky52Isj+roC5SqJLOxsR6UTQCn26spuQGA4/3J/blKc8WG3qN4+PX96vu3nD8zpdlgVy0JvM6f3npEcw7967ajambIVUtqddnt1k5sjZw9Z2TD70xlMklqQ/XxSsL0NDzqVq8fevabA3yVBUqm+kAMP8+BE0K/oTSc1BdvQ/pE/OGD8QdBKAqyrerxJbus1e3xqlnd1TFuGhUnOL1cJE6XN3rjQCkV9XhlfOLvaQYAtQYE50rHyfQPxeOV1ceJG1GJUjKAPV55TMBJYfSwIOXv2j/igtc79v4i2IeHA21Kkp05J0nSmAoHi0nS9IlLVGluFmz+c3EswbnuoVG13VMsma7RUPrOuTyyJhHkcOcQ3F5Oak13MW97NDc345vf/CbefPNNOByBRaYS4fd4krdjScZp6x7GqD8C3xxmWEOezYIpxTlqYA4APjsvtl5d4oL2YOcQzpyZmmwKI4iLN713+pR+KC6PjKFRz5geD3oFQM5oKMX0slw0dw7hvYNdOHhyMC1LZULZfKgLv/eXstizzHjgqgUJBwzEnnNRD4TI0J5zhTlWNZNFXExqnpsG9JsDtMG5vhhvRjo0mXPpMalVMTVoKITYgDjZmXOlwg3LM1uP4JN23+bd/JoCnD+nwvDvP56pJXY0NZTg/UPdaO4cwketvTjVX1797Eft6uOuSjBYr6gN2nmPFMgxsuF3JrPbLBga9WA4ScE5JWsO0DdTQ5Fvs6DLPYpBZ/TnsHTPnEtkYyUeDpcHz2z1D4KwmLA2wmt+akkO+tpd6Oh3aDJWjHZy0Kne6Me6uRIuiz0eYsC0wOjgnBDQ+Li1V317qsGZc9EE57qGAn8PPbOixLX8oNMdcpK9pqzViMw5/6APr+xbx+aPM/jD4fJgxxFf4HR6Wa6uv4toVRVmqxPgAd/9lp6vS0mSUFuUg0OdQzjaO7YqIRwjJrUqNEMhOgfVlgrpfv4nn5ifvV/5ylfQ09ODX//613jttdfw+uuv4/XXX8cbb7yB119/3YhjpBQozs3CnKp8TbAh2KDTjU87BtDiPylmW004K8bgmnbqTGZlzillD3k2i+4ZUZrFVoiFhKbfXALBOZNJ0vRfeXJzZgyGcLg8+PazO9X3/2PVbF36mGh7zsVT1po5N+IWs0ld5CmLSVmW8b7/uWmzmLC4rsiQ751ns6jNpGO9GekQmvZXFeh/E2AksXw9uCdSKnvO/XX7UfXtf05x1pxi7dKxgyE+7ejH7mO+IOIpU4t024gQM12i2Xk3suF3JlMnHcZQ1vpJex/+4+ntmk2DaInDIKaX6d/bRxkKEUvPuXSf1KfJnNNhsmgkL+w4ppZqXrqwOmIwfEqR7+/s8cpRZcHqRRwGEWvmXIF/owxIvOecWOpo5LRWwFe+qxCf17VF+r/WYs2cMyrwIq4hw2UAa6stjMucAyJnr25v68Wox5fhd5oB/YOjEZw5V2fARolS2jo06ok6o1fsX6x7cK5MrDoLXIf2n0jv8z/5xJw5t2PHDmzduhWzZ8824nhogrj5nBm4+ZwZkGVf6nZbzwjauofR2j2MIz3DaOseQVvPMNp7RtQU2i8tqwu5yzMe8eYnXIZeOvJ4ZfUmbEpxju43o8EN76cKmeQOlwfb/LuM9aX2hMfOrz11Cn748l6Mur14+qMj+PdVs5PWpNkoD726X32+nVpfjGvOmKbL19VkzkWZvdHnDx5JknZCXyYotlvRN+JSA8hHekbUxs6n1hfDZjHmeSRJEorsVnQOjsZcxtMhlH+mU885IDhzLrXBubIQjapnV+bjwhizq42yemE17v7LLoy4PNiw/SjuvnQenhOy5iJl0MRC27Mm8g29kQ2/M5lyYxvLQIhvP7sDn7T349U9J7D5jgti6uVl1DAIhdJ3btDhjjpbY/8J3yZneb4tLbMuNVnPScicE0tav7w89CAIkWYqdvew7v2Ew9FOao3t/G02SSjI9l2LE53Wmszp8mJAQ8lSK8vLivk+Ixqx9pxTJrr7jsmY4Fy4oRDihrwRZa1iL8H+ETcwTsxti1jSmuR+c4rKoNeDEUMQxDLZ9t6RqM6tycqcOygG5zipNSPEfCd4+umno62tjcG5SUKSJJTm2VCaZ8PiqUVjPu72eNHR74DT7cX0OHYrKvJtyM0yY2jUo4n+p7vj/Q51cpARi7cScZcvaCGxtaVH3cnSo2ywJDcLlyysxnMft6N32IW/7TyW8ATDVNp5pA+PvX0IgG/K1vfXLoypT+J4bBYTTJJvISmWe49HKd0pzLHqNs1poijOzcLhrmH0O9xwe7xJKWlVFOb4gnOx3uAdF2+C0rTnHDC2J5LSc85ikjST6YxSGuKG5Rvnz5wwz/E8mwWrF1bh2Y/aMeBw46VdHfjzNl9wzmKScOmiGt2+lxicO9YXOXPO6IbfmUrp+enyyBh1eyNOFx90urHrqC9TsntoFO8f6sLKxvKov99hMThnQLaGUuLm9spwur0RN8U6hUmts9K035AY8DG6rHVvx4A6OGtWZZ5a2j4e8Rwb6+TGRBxL8LoUvFEWr/4kBudCBb0S3WwOR7wmdg2mLnMuL4rMOaMzqwtiyJz74LAwDCLJ/eYU1UGvBz0ntSrEbM2jvQ7MrymM+Dli31/9e86F7tfOSa2ZIeay1scffxzf//738dvf/hZbt27Fjh07NP9ocrGYTZhSbMeM8ry4brokSVJPMkd6huF0Z0bPwjaDJ0uJuzbBO6FGNNz/irCj/Ps0Lm11ebz4j2d2qA3fb7lgJmZW6Le7JEmSeoMYbeacktmVSf3mFOKubu+IS7dy62gor5FBpxuj7tCNlUNRes4VZFsM2aE3kpg5d6RXmzmnlFhU5NuSEiArDWqS3VCei0sWTqxpz1cLmwz3v7BHDWCeN6dCswGSKDE41x5zWWv6ZT+lit0WeL1Gkz33SXsfxHlKf/+kI6bvJ5a1GpE5J/Z6imZyorakNT2zJmIJDCTqD8KQqy+PMwhCJK7nkjmxNdEp4sr1UNkoi1d/inrOKfRoPxJKTpYZOf7gdzSZc5rgnJ6Zc8JQsXB9i43uSVoQ5XnH45XxkT+4XZ5vQ32KgkHBr4d6AxIiNJlzUb7ujcycK8yxqoNIDvk3iTipNXPE/Jc7efIkDh48iOuvvx6nn346Fi9ejCVLlqj/JYqV0hzbK0PtX5fu2oQdVb0ntQLhJ2ECwHsHO9W39cpOOrW+GLP9KdJbW3qw51h6Tmb+5VuH1GOfU5WPr50zQ/fvodwgRtNzzuuV1cVPUYYH53qGRtXAcY7VjEVTigz+3rHf5MmyrAbn0q2kFfCVo+T7d97FzDmXx6uW4QSXgBil2J4F8V73m+fN1C1DVS9NDaVqJsYJYSGtZ0kr4HsuKtPeoulT1cuec3HR3thGPv9ub+vVvP/y7uNRTSdUNPsHQpTn28YMZdJDvljiFkXfuf0Z0AxcvA72Gxic83hlPPexL1M222rCVVFWA4zXOsBIxzQ952Lf8I3nehhKMstaQ2XOGbHZrVA2ZKLpOdcpZEWV6dpzLrDBMOgMfQ5Tgoe5WeaI2cHxKIjyNbjnWL9aertsWknKeslWBb0ephnQ/1Mz1CnKXpMnNAFc/dddSt+5kwNODDhcnNSaQWJ+Vd9www1YsmQJNm3ahEOHDqG5uVnzX6JYZeJQCHHRZkRZq3b6VuDiOeR0q5OTGspzUaFTWZ4kSfhKUyB77g9pmD134MQgfvLqfgCASQJ+ePUpMfUXipY9hsy5AYdbzdwozMAMGfGG4OPWXjXwddq0YkMWlaJCYbhG30h0pTw9wy41yy4Zfdn0JkkSpvjPN0d7R9QMUXGRWJmfnJ/LbJLUjZdppXZcfop+ZaJ6MZkkXLVEG4grzLHiPJ2nySrT3gCo097Gw2mt8RF7fkYzsVW5VipODjjxcVtPmEdrDThc6g16PC09opGXHbn/lEjMnMuIstYE+6ON51jfiDoI4qyZZVEHmsTMrWSWtXYkXNYaes0Yq1T1nFMYGZwrzlUGWLkiBumNypyLpqxV2bwx6toQ7UCID5qFfnPTUjMMAtC+HiTJmOzK2uLYst8BYzPngOB75yFOas0gMd8dtbS04Pvf/z6WL1+OadOmob6+XvOPKFZi7fxBg/vO9TtcCaX0R0tctIkNhPUSrnntlsPd6s6J3j29rlxSq6b9P/dxe9RlmxOB1yvj28/sUHvx3XR2AxZOidwzIh7KDWI0Ped6haBRRmbOCc/Tv31yTH3b6JJWQNurK9qbkUQm4k0UU/2LSLdXVvubaYdB6L9IDOenX1yCm1ZOx6/+8fQJW2KxJihL7tJF1YYMKqn2l8UMj3p8TbbHoRkIweBc1DSTDqPJnDvSO+b/RVvaKmb5G5GpAWgHBEUzsVUZBgGkb1lrLJMiE9Eq/v1iCK7mZJnVcrJklrUqG1uFOda42i2M1wolFuLfpMDgAVYF2RZkBV03ag3NnPNdGz1eOeLrzbCec9njB+dkWVZ7MSrBRL2Jf9f+cX4PH7akfhgE4BsSomTlVxdkGzKwTqykaI8yKN/pf47k24xpkaIJznUOaia1puvmDPnEvFo+//zzsX37diOOhSapBqFXi5ETW//4QStOufdlfO4XmzASxcI9EeKizYhdnOIwgQcje3oVZFtxxWJf9sug040N24/q+vWN9L+bW/ChvzfGtFI7/vUzswz7XsFNyccjlq9lYuN3MbDw7oFAuXWTwcMgfN9bO9E4Gpq+PmmYOQeEHgpxQvi59MqmjcaC2kLceck8zVTuiaahXNsIPjhYp5eawuh33o1u+J2pYsmc6xp0qptosyvz1Zu7v+/qiJjZCBg/qRUA8myBv32kYIEsy9jvz5yryLehME2fN8kaCNEiVDfE2itLWdMd73fCEeXgp0Ro2i3Eef4Ot2aMlRisMbrnnCRJYwJfRvWcA4AS4XfUNeQc55GBstYcq1mzKZCoSNNa+x1uNSPeqI2bwijKWmVZxgfNvjV1vs2COVUFhhxLNCxmE1Yv8E2Bv3yxMddvm8WsPhePxpg5Z0TWHBAoawV8mXNiWwM9e2lT8sUcnLvsssvwr//6r1i3bh2eeeYZ/PWvf9X8I4pVMspaT/Q7cN/zuyHLvvK67//9U0O+j+KIf+FXbLca0osm3C7o+8IwCCMCIF9ZHsiOTZfBEH0jLvzPS3vV97+3ZpEhO2uKWJqSJ7NEJBVKhJ1dZXpxbpYZC2uNyVoUFcaRKdAhZpileeYcENgkUAYdAOkbdDTSfVfMx/yaAtx41nQsrTOmPKc6homtLGuNTyyZc2JJ68rGMjXTvK17BLuj6KkqTmptMCo4F0NZa+fgqBp0SeeSJovZpK6ZjMycEzMf62IsSxY3QKK9UU+E2G4h3l6oRWGqLWKl/E1ys8yGtAUJFtzPzahprUAgcw6I/DtSJnHqHXiJVNaajGtDND3nDncNqwHKpfXFKe8n+/CXluDdb5+Pb6+eY9j3EPvTRhpeODLqwYD/76dnT0LR2LJW3+ZMltnESa1pLuaowc033wwAuO+++8Z8TJIkeDyZMW2TkseeZUF1YTaO9TnUqTN6+8FLezUN+te/dxifnVeJFTPLdP9eo24vjvlv8o3oNwf40s7NJgker6w2r+13uLCz3XfDMasyL2Qz3UQtnFKIRVMKseNIH3a292HHkV7DG/sn6rG3Dqm7vWuXTjG8pFLM3hga9aBonKdAb4YH50ItHk+fXpKURX1RHOVRifb1mQjEc46ySaAJOqbpz2Wk+TWFeOGWlYZ+j1ph2lukG3olyGJUw+9Mpcmci7AxIpa0LppahPqyXLzjz+596ZMOzK8ZfwMhGZlzBZqy1vHPYfvFSa1pXtJUmGPFoNNt6ECI1u7A3y/W6Y7aia0jmtYsRhCD+fG2W9BmkicenEvWeqVcmPpdkpula5ZaMHEzsXso/HNv1O1Vs/H1Ds6JQ21CDYRIRla1OK013Nppi9BvblkKS1oVYl9Xo9QW5WCbf4hQR58D9eME9Y3uNwf41noWkwS3V8be4wPqhlFDee6EbSNC0Yn5r+f1esP+Y2CO4qU0Du8ddkU1KSkWO4704umtRwD4BgEo/v1P2w3ZmT3WN6I2+TdiUivguxApF2ZlkbCluRtKD1u9+82JvrI8MBji9+9P7Oy5kwNO/PrdZgCA1SzhXz/baPj3tAuLq5FImXMZniFTkjv2ZzLyuSnS9pyL7pxyPAOCWJrgXE9qe85RgDhhMdK0N+XmORPPCUbSTGsNM+lQIU5qPWVKIVbNq1SnC/99V+S+c81dYnDHqLLW6Ke1aodBpG/mHBAI/PQOu6IqMY6HkjlnNkkx9zGbqhkKYXzfOXHTKN7rUrEmkzyBslb/mtnoklaFGNgwOvgi9sjtHqesVSx5LcvT9xwdKXOuJymZc2LPudDPlQ8Oi8MgUh+cS4YaYYMtUmuKk4NCKxGDgnNWswl1/gy5AycG1X7jMyvSe3OG4gjOiRyO6MYJE0ViVGmrLMu4b8Nu9f07Lp6LM/2ZU8f6HLh3wy7dvpdC6fMEAFMMGAahUC7MysV600Hj+s2JLjulBvn+BcRftx81tPQkUT9784CaMfnlZXWG9itR5IqZcxFuEDU95zIyc27sz5SMYRBAfDcjxzJgIMSUEGWtJ4Sy1mT2nKOAGuHGcrzMOVmWhWl8mXdOMFK0LQVkWVbLWovsVtSV2FFRkK2WNO87PoiDEdYhSpZCdWG2Ic2+gaDgXISy1n0nxEl96X1zpgTn3F5ZU/GgF1mW1YEQNUXZMWdyi0O+xPWeUcTM53ivS/EMSArmcHng9JfXJis4J1aAGDmpFQBKNcG58L8jI7Oicm3i+nH8slajMudsFjOyrb7XRLjhRVv8wbksswmLDBquNtFor+Hjxz+SkTkHaPvOKdJ9c4biCM55PB5897vfRW1tLfLy8nDo0CEAwHe+8x386le/0v0AaXLQNLbUsbR1w45j6iCAhvJcXHfmNPzwc6eowaVnP2qPejpbtIweBqFQLszDox44XB51GIQkAcunGxcAsWdZcJW/afqIy4M/f9xu2PdKRHvviJrZl2014Rvnz0zK97Vr+h7F0HMuA2/EgxsW59ssEcvF9BJPY3ElwyzLbAqZ9ZcO7FkW9SZDuXFUfq4cq9nwCXsUmrjrfmychf2A063ugHNSa2yizZxr7x1Blz9Df9GUIkj+lLmL5lepj3lpnOy5vmGXGuCIZdJnrPKF8rLxpiYC2rLWdG8GLgaSjNj86xl2qf2g4sl6FNd1yZjYqmm3EHdZa+LTWvtT0IZDDGwYHZwTf0fjZc5pAi95+m52RRoI0TMklrUad31Q/r6hXn8n+h1q5ukpUwsN7eE8kdRGucEG+PrSKcoNaDGkmFE+9vyV7pszFEdw7v7778f69evxgx/8AFlZgRPDwoUL8fjjj+t6cDR5BDe21MPIqAf//bc96vvfuWQerGYTaotycM/l89X/f+dzO9XGpnoQyxymGriYEC/MLV3DahPrOVUFmvR8I3xZLG3d3KIpPXG4PGjrHsbWlm78/ZNjeGLTYTz48l7c8dxO/DWJE15/+up+jHp8u7zXr5iOivzkZAzZreLEwAiZcyOZnTlnNZvUQDjg602SrMbBRXH02FEyFCoKbOoNezqa4i9tPT7ggNPtUX+uyjT/udKZPcuiPifHK4npFW6+mDkXm2h7zonDIE4Rsj5WaYJzx8N+vljSalS/OQDIj3IghCzL2Oef1FdVkJ32/Us1GysJlGCG0yL8/eriaJxeU5StlkArrQOMdEzn4Fy8AyHEEkexL5mRZgr9/OZWGzsRtCTKzDnxfqEsX9+1ts1igsW/Rgq1uasdCGHc30D5+4Yqa52MJa2ANnOuPcLrPmmZcyGCc+m+OUNxDIR44okn8Mtf/hIXXHCBOhwCABYtWoRPPzV2AiZlrhnl4khofcpaf/nWIbW3zzmzynHenAr1Y2uX1uLlXR14efdxdA2N4vZnd+KX15yqy42rWOZg1EAIQLvYemlXh9rnLhk9veZUFeC0+mJ82NKDfccHcfWjm9A7PIoTA04MjLPD/4fNrWgoy8UCg6d1Hjw5iKc/8vUZzM+24GtnNxj6/URi5tywK/qy1kzMnAN8fVyULIVklbQCvpIwpVluNDd4DpdHfVy6DoNQTC3Owfa2XsiyrxeJ8ppkSWtqVRfmoHfYheP9Dni8cshAdY+mbImZc7HIjTJrWdtvrkh9u67UjrnVBdhzrB/b23pxtHdEc0OmECe1Ti8z7hqv7Tk3TpndoFPNcEn3YRCANjhnROZca3dgAzXWYRCAr+yvqsA3xOxIt/GZc+LwkXivTTlZZtgsJjiFYQaxSsV0+TNmlOKOi+dgyOnBZafUGPq9SqKcaHvSwKwoSZKQa7Ogb8QVss+kdiCE8Zlzw6MeuDxeTen3h4d71LdPnwDDIJJFkzkXYeK6+BwxMjEgeBgNJ7Vmhpgz59rb2zFz5tjyMK/XC5dr4vaeoomtpihHnUqnR1nrsb4RPLrxIADAYpLwnUvnaj4uSRIeWLNQLf96ZfdxdWhEosQyByMb2BYJk6X+tvOY+nayAiBfaQpkz21t6cHBk0PjBuYUz3ykz+95PD9+ZR88/tKwr53dkNTG6mLPueEIfYL6RgILwHTPdghH7IvSlKRhEIDvNV4UNDRlPJqhCWnab04hbgpsbQkspNN1yEWmUCa2ur1y2GztniT0FMpUmsy5cbKWtZNatRtFYmnry2FKWzWTWg0sa83TTGsNfy3ZfzywodmYAVkThZqyVn0HhAGBYRAAUB/njaxSYtk1NBqyN5hefFUI/tYsZbkJrWWKg/oUxyoVwTlJkvDVs2fgXz87y/Ap70X2LDUjsmucwXRGZ0UpQfnQ01qTs3kj9hQMnpr8gX9SqyRB7dM5GRTZreo1JuJAiKT1nNNefzipNTPE/BecP38+3n777TH//09/+hOWLFmiy0HR5GM2SWq0v6VrCG5/OWK8vv/ipxjxZy1dc0Z9yDTfsjwbHlizUH3/vg27dZm8pWTOVeTbDO3FIF6YP+3w9ZsxSckba756QbWmzCDHakZ9qR2nTyvGJQur8Y9nTsNtq2bjh1cvwuPXnoYs/wVjw/ZjCf99x7PraB+e3+ELVpbmZuH6FdMN+16hiM3BhyI0s1aCRjlWM2yWzOzbsdwfkJtdmY95BpelBAtM/Yt8M6IpHUrzIJY4TVDc5a7ipNaUEie2hlvca4bEMHMuJtFkznm8Mj5p97WAqC7MHpPVcNGCQHAu3NTWw11i5pxxwTmr2aQ2Zh+vrFU7qZWZc5GIwbm6OCftiufYSDfqiXj2o0BP37WnTknoaymbVT1xTsEVhwOIEz0zhdkkqe1FesYJznUOBj5WZkA/MWUoROiBEML1IdfIstbA31d8DfY7XNjTEWihk6mbyqFIkqRmUh/tHRn3NaT0nDNJMLR/cUluluZvwEmtmSHqs+sNN9yAn/zkJ7jnnntwzTXXoL29HV6vF88++yz27t2LJ554As8//7yRx0oZrqEsD/uOD8LlkXGkZyTuXi5bW3rw522+3mbFdituvWBW2Meuml+FtUun4JmPjmDA6cZtf9qB39+4HKY4+2I5XB41I8LIklYAKAlx4za/pjBpF8tsqxnP//NZONo7guLcLE0JTigXzK3Ai590oHPQiXcPduGcWeWGHNeDL+9T3/7GeTM1N2zJIDYlj5w5l/lTGf/zojk4b3YF5lbnx/26ipcvgD2EoVEPRt1eNTs3lOM6TMSbKMRpgsycmzjEEsljvQ6gbuxjNNP4DLz5ykTannOhN0YOnRxUA12hpgzOqszD9LJcNHcO4YPmbnQNOlEadAOulLVKkvHX+TybFQ7X+O0i9omZcxkwqa8oJ7C2MaasNbGec0Cgryfgy24zYkKi1yvj6Y/aAPiea2v8g7jipWzojrq9GHF5YM+KbW2Uisy5ZCvOzULPsGvc4JzRWVHKmnXE5RnT/kDJnLOYJE0/X72Jf19xGM3Wlh61hc6yaZMna05RU5SDAycG4XB50T00OubaoFCeI6V5NkP7LEuShIbyXHzc2guAk1ozRdSZc7/97W8xMjKCyy67DE899RT+9re/QZIk3H333dizZw82bNiAz372s0YeK2U4sbFlc5ylrV6vjPs27FLf/9ZnZ0Xs5XXP5fNQ478Z33SoC+vfOxzX9waSNwwCCB3QSWZPL8C30zi1xB4xMAcAVywOLCyNmvD64eFuvP7pCQBATWG2ZnBFsthtwg3iOD3nZFlWB0Jk6kIX8D1HzphRmpIsoGin/rV1D+Pnbx5U30/3IFa4rA72nEstcWJruGlvPcyci5tdM601dDBruzgMYmrRmI9LkqQOhvDKwKt7tIMhZFlW1ye1RTmGTypUhkKMlzknTmrNtJ5zxgyE8K3TyvIibyqGI04ObTOo79yWw91qJcZZM8s0mbfxEIP9PXH8XidDcE7Z9B5wuuF0h16/nfRvwOdnWwx5/eeNkwGsvB6K7FZDhzuFK2vd0iwMg5hE/eYU2omtoaeue4W2FRUGlrQqGsoC5/xMyJymGIJzYvrmqlWrsHHjRgwODmJ4eBjvvPMOLrzwQkMOkCYPsbHlwTiHQjz3cbu6+J5dmY8vLYscnCnItuJ/PneK+v73//4pDpyI7/snaxgEgJATWZMxDCJe580pV1Pl//5Jh+59WmRZxg9e2qu+/y+faUzJiPdoM+ccLi9G3b7y3kzOnEulQiEDI1xp65bD3bjy/76rloaX5mbhnNnGZHUmS01RDkKt2yuTsFCk8GqiaCjdy4EQcTObJLUMNFzm3A6h35w4DEKkKW39RFva2jPsUjNJjCxpVYjBuVBlVL5Jrb5zV3VhdtKmaBrJyLLWkVGPWnJWl8AaTdwAMWpi65+EPshXJ1jSCmiD/eNlhoUjBmkKMjU4lyuuGUI/9zr9zx+9h0EocsfZZFAy54zeuAn3GtwiTGpdNokmtSpqhQ229t7QQfneERfc/p7XRvabU3x2XiUAXyny8ukT9x6QohdTzzkjo/REYuZcPEMhhpxufP/vgYnB37l0XtSNMc+cWYZ/PHMaAMDp9uJb/28bXHH0RROHQUwxOHMu+MbNbJIm9E6WzWLGJYt807ZGXB68svt4hM+Izdv7O9VGtdPLcrF2aeKL2XjYo+w51ys0uhbLeEg/YkP93hA3eX/6sA1ffux9tfnz9LJc/L+bz0j7G9wsiylk37yqNC/XTXdiuXQ0mXMcCBE75cY2XM85cVJruKnhi2oL1b/Vuwe60C9MSm3uDGzcGTkMQqFk0Xi8stpHV3RiwKkGCzOhpBWIPuM5HppJrQn8/cTWAW069CoONuR0q4O+8m0WNZszEUUJZiROisw5ITjXNTg2gDky6lGnz5cZFHjR9M4UgnNOt0fddDD62iCugZTzn8PlwfY2X/JDfal9Umbiixts7WEy504MBP6/UQFc0UULqvDyv56NN/793JBJG5R+YgrOzZo1CyUlJeP+I4qXOHXmUByZcz9/86C6I/qZuZU4q7Esps//z4vmqAHCHUf68LM3Dkb4jLHEHVRxZ9UIwRfnhbWFcZdoJMtVS4TS1m36lbbKsowfCllz3/rsrJRNLLILf4PhMDeIwORY6KaaeJMn3ox4vDLuf2E3bnt6B1we3w7nWTPL8Of/swIzyjOjLCDU+Se4+T0lV2VBNpT2M+IAEpE4jY9lrbFT2gqEmtY66vZizzFflllDeW7Y867JFChtHfV48Ya/VQIANHcGAjHx9sWNhXhNHwzRd047qTUzzl0FBmbOtQjDPBLJnKsqyFZ7SYkVE3p58ZMONRBz6Sk1ulQBiBu68UxsnQxrFjG4Eep3JE7ZNiorKl8YxiBObE3msKBQr8Gd7X0Y9SctnD4Js+aA4LLW0K/7ZE1qFc2qzA/b/47ST0x38vfeey8KC0PvNBIlqsiehZLcLHQPjeLQydgy59q6h/HLtw8BAKxmCXdeMjfm75+TZcaPPr8Ya3/+HjxeGQ+/vh/nz6nAwhBNo8c7DoXRZa3Bi6Nk95uLx2n1xagtykF77wje3t+JkwNOXS5eL+3qwM52347e3OoCXLKwOuGvGa/cKJqSA8ELrcxc6KZaoX1sWeuAw4V/+eM2tTchAFx3Rj3uunQerBk0gn5KSQ4+OBx4vyDbopkkTMlnNZtQkZ+Njn5H2IW9cl4wmyTNxDyKzniZc5929Ks3l+FKWhUXzq9U+8++vOu42jP1sJDVP73M2Gs8AORrMljcqAgaeJ1pk1oBX6aYJAGybHTmXPx/P4vZhJqibLR1j2h6Devl6a1t6tt6lLQCwZtVcZS1Chmk6Z5dHk6pEJzrDlH6e1IMzhlV1ir0LRYz53o0LQ8MzpwTpvEqU3o/aJ7cJa1AUOZcmHJ2MTiXjJ5zlHliWvl98YtfREVFhVHHQoSGslx0D43ixIATAw6XZmE6nv9+8VO1f9f1K6bH3Qtm8dQifOPcGfjp6wfg9sr48av78Ot/PD3qz1fKG8wmyfCJjxazCQXZFrWkZSL3m1OYTBKuWFyDn715EB6vjOd3HMX1K6Yn9DU9Xhn/I0xo/fcLZyV9KqjIruk5F11wLtLQEopPcBlPa9cwbnxiizrd0GyScO/l8/EPTfWpOkTDBGfOpfuQi0xRU+QLznUOjsLh8ozJiFF7CuUY2/A7UyltBRwuL9weryaDWixpDTWpVbRsWgmK7Vb0DLvwxt4T6t+qWci8SkZZqzaLJkTm3AlxGERmlLWaTBIKc6zoHXbpPhBCGQYBJBacA3zn2LbuEfQ73OgbcemWTdbWPYz3D/kCIQ3luVhaV6TL19VmzsVT1up7/mWZTWpvx0wj/o5CBueSkBUllrWKr/meIbHlgcGZc9ljM+fEfnOnTcJJrYCvNYhJ8g0LCtc3Vvsc4bqLYhf12ZWLREoGse/c4c7odiM3H+rCC/7eHGV5Wfjm+TMTOoZ/vqBRDaxt3HcSXcJOWSRKeUNVQXZSyiqVnhdWs5Q2F0tNaasOU1v//HG7OsBjaV0Rzp+T2g2ELIsJFn9wMFzfIwDoY885w4kL2Lf2n8QV//cdNTBXmGPF725YlpGBOWBs5i77zU0M1cLOe0eI0lZxGh/FTryxDZ6WHWlSq8hiNqmNtodHPXh7fyeAQOacMqncaJHKWvdlYFkrEKgM0L2sVcicqytJLLhq1MTWZz7SDoLQ6/5LO601/oEQBRm8cVASKXNuwPjMubwwPed6k9jyQAw09ztc8HhlbD3cA8B3n5WMYTgTkdVsUjc6w2W/n0hBWStllrimtRIZRZzYeqgzct85p9uD+57frb7/7xfOTjjd3mo2qSUsHq+MDduPRvV5/Q6XupAUmwUb6aaVDSiyW/HP5zdqMrYmssbKfMyv8dXmbD/SF1d/QcWo24sfvxrImrtt1ZwJsWhUsjfGK2udDP1bUk0McLy9v1PNFphRnou/fGMFzpwZW1/KdDI1aCAN+81NDLXjTGwddXvVTAn2m4uPOJAnOHNZmdRqMUmYVx1UHxpC8NRWWZbV4NyU4pyklMGLmXMDDm2gSpzUWlOYHXWlQTpQsp77HS54vfrdf7T6Mx/tWWaU5SX2GjNiYqvXK6vBOZMErFmi32CrIk2bh9iDnoHgXHqsNeNREkPPubJ8Y87R4aa1JnNYkNhzrn/EhU87+tVBGKdPK5kQ6+xUUUpblez3YCxrpURFvbLwer26l7Q++OCDOPfcc1FdXQ2bzYb6+npcd911OHTokPqYnTt3Yu3ataitrUV2djYWLVqE3/zmN5qvI8sy1q9fj9NOOw0FBQUoKirC5Zdfjt27dwd/y3HddtttkCQJkiShqalJl5+RYiPuxhyM0Hdu0OnGDeu3YNfRfgDAvOoCfO60qbocx5qlgeyu57ZFF5w70p28YRCKLy2rw8ff+SxuuaAxKd9PL1cuFgdDRPf7DeWpLa3qonhlY9mE6bunZG+MNxCCPeeMFyroefascjz7f1YkpZl7KgVn9VQWcJE4EWgntmoz58QJzpzUGh/Nja1w/h10urHfn2E9uyo/qgb7Z84oU7NYXt1zHB39DnUCdzJKWgEgTwzOBZW1Hu93YiDDJrUqlOCALEP9GRPl9njV9UJdiT3hAIN4jtWr79wHh7vVCoyzGst1zXguDtGDNVoer6w+/zJ5M1EzrTVi5pwxG17astZA8CeZw4KUvo+ALzi3Reg3N1mHQShqIgyFSMVACMosKW0a8PDDD2Pjxo3IyspCbW0tWltb8cQTT2DFihXo7+/H7t270dTUhGeffRYjIyNobGzEzp07ccMNN+Chhx5Sv869996L66+/Hlu3bkVVVRXsdjs2bNiAFStW4PDhw1Edy+uvv44HH3zQmB+UojZDKGsdL6Oqc9CJL/5yE9490AUAyLaacP9VC9TpWYmaVZmv7qxvb+vFwSiyu9qExVkyyl0U6biDdfniGvXC/+eP2+PKzB0Z9eCnrx9Q3//3C2frdXgJUzPnxus5x8w5w5XmZWnOCdevmIZfX3fapPh9VxZkw2qWNO9T6okL+2NBC/tkTuPLVHZb6My5T9r7oFxmFkUYBqHItppxnr9NQt+IC09+EGjSn6yyrvHKWjNxGISi0ICJrcf6HHD7s/AS7TcHGFPW+vRWbUmrngpzrOq6K9aec/2TZL2iyZxLUc+5aMpajd68MZkk5PuPo9/hxhZ/SSsALJs+2YNz4TfYgMDQEHuWWRNoJYpWSoNzN910E1paWtDS0oJDhw7h1ltvBQB0dHTgtddew/r16zE8PIysrCzs378fO3fuxJ133gkAWLduHUZGfAvbn/3sZwCAtWvXYt++fWhpacH06dPR29uLBx54IOJxdHd349prr0VDQwOWLl1qzA9LUakryVVvpsNNbG3tGsbVP38Pn7T7MuYKc6z4/Y1NWFKnb881MXsumt5o4uJsSnFyuuMSiQAAM9NJREFUylrTVWVBNlbM8JUUtnYP46PW3pi/xk9f368ulFbNr4zYQyiZ7MLEwHCBxz5mzhnOnmXBv1zQiMaKPPxg7SLcc9n8pPSCnAjMJkkTCGJwbmKoKQxf1ireDDJzLj7hMueUklYAWDw1+gnsF80PlLY+semw+naygnNim47gDDIlExDIvMw58ZqoV3BOOwwi8b+fNnMu8bLWIacbf/P3T87PtuBCf89DvfgmQPt+r7FmzomTWjM5OGfPMiPL4lsjhOo5J5a1liZYFh2OOK11MFxZa67xmzcFQt/HD/zDIPJsFsyNoiVAJpsSIXPuRL8vYMesOYpXSu9S7rzzTtTV1anvr1y5Un3bZrPB6/VN31RKTZW3AaCvrw9btmwBAM3jgr366qsRj+OrX/0qjh8/jt///vfIz49ugeN0OtHf36/5R4nLspjUXknNnUNjAhu7jvZh7aPv4bB/kVVdmI2nbz4Dp9brPwzh8lNqoCTdPBdFdpe4OEtm5ly6umJxjfr2X7bFNhhia0s3frHxIADfMIyJlDUHBDLnvDLg9E8RDiaWsDFLxji3XNCIV751Dj5/uj4l7+lELK9nWevEMN6uew8z5xKmmZYtBOfEYRDRZs4BwLmzy9WbdTGzMVll8Xmaaa3aINV+IXMuk4ZBANoAkHitTERLd2DDt06HNVp5nk19brTpUNb64icdap/ay06piar0OlZK0D/WzDkxQJpoX+eJTJIklPjPvSEHQviDc8V2q2E9J6MbCGH830B5DXYPjaob4Uvri3WrUEpX4qbnkaDgnMPlQb9/E4X95iheEyaFwO1245FHHgEANDQ04IILLsDVV18Ns9kMp9OJxsZGLFq0CPfff7/6Oe3tvhv6L37xiwCAp59+GrNnz8a0adPQ3NyseUw4v/rVr/DMM89g3bp1WL58edTH+73vfQ+FhYXqv6lTJ9+Nn1GUoRAjLg86+gM3L5sOduGLv3hfvUg0VuThma+fadiOcUVBNlb4G8Yf6RnBhy094z5e7DmSrJ5z6eyiBVWw+Re2G7YfhcsTOogVbHjUjX/7f9uh9Ii+9TOzJlzWgGZiYJihEMpi12ySkJul/yKcaKl/0yI3y6wZtkOpU5KbpZ73gnfd+zQ95xici4eYdTIklLVub+sF4GuBEUsgK9dmwdmNYwfHTE9WzzlN/6nwZa0T7RqYKCPKWls1mXOJr9FMJknNomnrHkl4cN7TWwNl03qXtCqUoL8ygTNak2mAlVLa2jM8qvmbyrKs3n8YmRWVG+Y1r9m8yUlC5lyIIOzpBiRCpJvxes6JmZXMnKN4TYjg3NDQENasWYM33ngDVVVV2LBhA2w2G5qamrBhwwY0NTVhdHQUXV1duPbaa9XPs1p9J44HH3wQd911FxoaGtDW1obq6mqcf/75mseE0tbWhltvvRVnn302br/99piO+fbbb0dfX5/6r62tLfInUVQaysS+c76dzhd3HsN1v/5AbUh7an0x/nTzGZqTpBGuWiIMhohQ2qo08c0ym7hjEoX8bCs+6y/b6Bl24a19J6P6vP9+8VM1c3JJXRG+dnaDYccYL3Fi4JAzdDNrJQujKMealn0DaeL72tkN+O6VC/C/Ny7P+BuqdCFJgXLjo73aG/pkTuPLVNqNEd+5t2vQqWa2L6wtjLm0fZVQ2gr4srXFDEgjidNa+4WyVlmWsf+4r6y1tihHE8TLBGLwwZCy1hJ9gqtT/Bl4Iy5PyEyraLV1D+P9Q77SwYbyXCwxqE2Hcl6R5dh+r/0jgedepl9LlOCcyyNrhrAMjXrgcPk2kcvyUhGc8z2/8mwWNWPTSKH+zqdP8n5zAFBbHD44px0YwvtAik/Kg3MdHR0455xzsGHDBsyaNQvvvvsu5s2bp3589erV2LRpEwYGBtDe3o5Vq1apH5s921fKZrPZ8N3vfhcHDx7E8PAwPvzwQ1gsFs1jQjl48CAGBwexefNmFBQUIC8vD2+//TYAYMuWLcjLy8POnTtDfq7NZkNBQYHmH+ljetBQiP99vwX/5w8fYdSfWXX+nAr87z8tT0rZz6r5Vcjxlxa8sOMYnO7QWVCyLKtlDbXFOTBN8rTvaMUS/ASAd/Z34olNLQB8GRA/+vziCdlDTAzOhc2c89+IF/ImnAySa7PgmqZ63ftxUmKUia1Dox5NwCWZ0/gylXZjxHfu3dEeX0mr4jNzKzWlXFNL7Em77uTbAtcHcSBER79DDRw0ZtgwCCDQ7wrQlhMnosXfF9hi0i+4OlUcCpFA37ngQRBGbdiJGbk9MfSd05S15mRWIDhYcZihEMmawpkbZnNX3dBN0pox+O9sNUtYPIF6O6dKQbZVHZbRHhScO8FJraSDlN7V7tq1C01NTdi6dStWrlyJTZs2oaFBmwWzceNG9e22tjasW7cOADB//nwsWLAAANDc3IyWlhb1cU899RRefvllAIGSVwC49tprMWfOHE32HeDrHzc0NIShoSG1f53X68XQ0BA8nvDTFskYDWWBheajGw/hrj9/ok5Zu/rUKfjFNaciJ0llgLk2Cy5a4Ns17xtx4Y1PT4R8XM+wSw3CcBhE9M6eVa7u5L6y+zgGHOEX4X0jLtz29Hb1/dtXz01aU+5Yhet7pHB7vOqNVVGG70ITkZZmYqswFKJ3SGz4zfNCPHJDnHuVklYAWDQl+mEQiuLcLDQ1BDJGklXSCoRvDr/veGAYxKwMK2kFtAGIfh0y52RZRmuXrxKjtjhHt+DqFKGFSbwTW71eGc985AvOmSRgzRJjSloBbdA/lqEQk6mstVQIznWHC84ZmBVlMZuQbfU9P5UNBq9XVv9eyWp5EPx3XjSlyJA+iOlIuYYf63XAK5SHi8+RinwO4aL4pDQ4t2bNGjWoNjAwgIsvvhhNTU1oamrC448/DgC45JJLUFFRgYULF6KxsRH79u2D3W7HY489pu4sbd26FQ0NDZg1axamT5+uBuSWL1+OW265Rf1+ra2t2Lt3L1pbWwEA5557LmRZ1vw755xz1M+VZRmLFy9O1q+D/GYImXPirsTN58zAD69eZFgT1nCujCK7S1yUcRhE9KxmEy5d5BsM4XR78dKu42Efe++GXTjW5+tBuGJmKa5pqk/KMcZDvKEKlTknZstk+kKXiLRqCsWhEIFrnJjJwp5z8bGLPef8594dwjCIeDM/xKmtyRoGAfhu1JVsQHHzKpOHQQBBAyF0yJzrGhpVnw96DINQTC0RmsPHmTm3ublb/dyzGstRVWjcTb1YLt8zFP3vVZs5l9lrFvHcKwbnxH5iZQZnRSll6kpAfsDhVvssJy1zLqjn3OnTWNKqUEpbRz1edA4FnhfJyq6kzJbS4JzTGXgSb9u2DZs3b1b/HTni20W67LLLYLFYsHfvXuTm5mLNmjXYtGkTzjjjDPVzGxoasGzZMpw4cQLt7e2YMWMG7rjjDrz22muw2fjiSDfl+bYx/VPuumQuvr16Tkp6c62YUaqeZF//9ETI3cY2DoOImxj8/HOY4OdLuzrw7Ee+j+XbLPjh1adM6NJhMXMuVM+5XpavEU1a2obSgaFHvZpprZl9A2wUTeac0w1ZlrHjSC8A3+803sDM5YtrMa3UjnybRdOOIRnUG3WHmDkXCM5lYuac3gMhWnQeBqEQ13vxTmwNLmk1UlFufGWt/UJgOJOntQJASV5qM+eAQN+5IX/2byo2boKDsMumsz2GQiyLbxeC8ic5EIJ0kNLGAYcPH474mCeffDLiY5YuXYpNmzZFfNybb76py2PIWJIkYUldEd7e3wmLScL/fO4UTQAn2SxmEy4/pQa/eqcZLo+MF3Yew1eWa7O2xB1TlrXGZmldEepK7GjtHsa7BztxvN+ByoLAha9z0Ik7ng30frzn8vmGDwJJVKSec72TqESEiLSqw0x7U27A7Flm2CwsH4pHblDm3NE+BzoHfb/XhbWFcW/wFeZY8fq/nYtRjzfppV152RacGHBqmtPvPxEoa52ZgZlzYnBaj+Bca/eQ+rZewyAA7Xovnsy5IacbL35yDIBv+MeF/iFZRhEz52LJSJxMZa0lYTLnkpkVpQTklc1dbXAuOb9/8e8sScCp9cycUwRvsC2p8719op/BOUrcxOukTgTgv65cgG+cNwN/uvmMlAbmFJrBBR+Nze5iWWv8JEnClYt9pa2yDGzYflT9mCzLuPO5nejyL5A+O68Sa5em/vkQibbv0djgXB8zZIgmrVph110p1QcC01pZ0hq/4H6fYr+5U+IYBiEymaSU9FzK92cqDTrd8Hp9LVgOCJNaczNsUisA5FjNsJp9gdRenTPn6nTMnCvJzVI3447E0XPubzuPqWuEy06pMfz5Fe9ACLHvX6YPsRL7fXYPhylrTVLmnMsjw+n2BGVVJytzLnBemV2Zn/FB2VjUhtlgUzLnJEnbu5AoFgzO0YRUX5qL21bNmTBTBufXFKh9XT5s6UFrl3YRJk7pmsrMuZhdEaav33Mft6t96Epys/C9NQtTUtocK7um59zYstbJtAtNRFrVhYFrhNJXVZYDDb8ZsI9frqalgAfb/SWtAHBKmk4aVCYDyjIw7PLgWF9gUuusDJzUCvg27ZRrox4DIVoNKmuVJEktbT3SM6JpDh+NZJa0Atr1Rk8MmXPK30CSgLyszAsGi0pzA4G3VExrBaBp7TPk9KQkc06sYGlqKE3K90wXYnBO7I3e6X+OlOZmJW2iN2UePnOIoiBJEq4SMrb+vE2bPafsmNqzzCjhbknMZpTn4RT/FL1dR/ux7/gAjvaO4J6/7lIf88BVCwzfrdRL8A1iMG3POd6IE00muTaLepOsTGsddLrh9t/Y85wQv5ws7cbIjrbAMIhT4pjUOhGIN+qDDnfG95tTKK8RXXrOCVlteg6EAAKlraMer6bnVCStXcPY3NwNAGgoz8WSJASPi3MTm9ZakG2d0P1+9aDJnBODc/6/rUmC4ev8XJu2b7EYSC1O0j3GvOoC/NNZ03Hu7HJ8/dwZSfme6aImRHBOlmU1gJsu9yo0MTE4RxSlKxdrs7tk2Xcj5fXKOOI/OU8pzkmLzK6J6Iqg3+9/PrMDA/4G2FctqcVFC6pTdWgxC75BDCaW6RTlMJhLNNlU+ycydvQ54PXKKSlbykRZFhOy/BkLAw43drb7gnNVBdmoKDBuCqaR8rOF4JzThf3HA/3mGidBcG7Q6YbL403oayllreX5Nk3psx7EViZtMZS2PvORNmsuGWtHzbTWOIJzkyHTP+y0Vn/gpSTXBrPBAco8ofpi0OlOyRAxSZLwnUvnYf31yzRZdARU5AeeA0pZa9+IC6P+8xT7zVEiGJwjilJNUQ6aGnwNUZs7h7DN38vm5KATo27fCZmTWuN32Sk16sXu8bcP4e39nQB8N1XrLp+fykOLWaSec+KNeKb3byGisZSyGJdHRuegMyVlS5lKaStw8OQgBv3ln6dMTc+sOcA3EELRPyZzLjPLWgFtECKR0tYhp1vtF1ZvQE9gcShEtBNbvV5ZDc6ZJGDNEuNLWgFfL78si+/WL9qBELIso9+/USr2IctUVrMJBf7XnJKxJsuymjmXjMCLtvrCzevDBGMxm1DlD1gqwTmx7Lkin8FMih+Dc0QxEBdQf/b3RuMwCH2U59tw1swyAL4bVsUPrl6Udru1ds3EwPF7zhWl2c9GRImrFoZCtPeOaMuWmDmXEOXGVryOLEpwGEQq5QeXtWb4pFaFeN1PZChEa7cxwyAUU4RN2SPd0U1sfWPvCXW661mN5agqTM7NvCRJanAn2uDc0KgHHn/JfbqtxeKllK12+QNyfSMu9XySlOCc+JoPLmvl9WFCUDbYeoZdGB51J7UnIWU2BueIYnDRwirY/LuOG3Ycg8vj1eyUTuEwiIRcFTSZ9x+a6nD2rPIUHU38NJlzIXrOcSAE0eQm9qw51udISdlSprJnjZ14meik1lQSM+cGHG4c8GfOTSnO0b1EcyIRr42J9J0TJ7XWl+QmdEyhTC2JLXPO5fHigb/tUd//0ulTdT+m8SjBnWjLWifjekUJzvU7fCXV2kmtxp+fgwdCsE/xxFMjbLAd7R3R9JtkcI4SweAcUQwKsq34zLxKAL5eFG/tO6nZKZ3CstaEXDi/Ui0nqC+1446L56b4iOIj9pwLlTknLrQmy2KXiAJqhImtR3tHNFksLFtKjN02NmC1ME2HQQBAfnbg+bDv+ACG/K0SMnkYBKBfcK61e0h9W89JrQpx3dcWRebc799vwcGTvmNaWleEixZU6X5M41GCO063FyMh2m4E65/EwTnAF8Q8keSsqDEDIYZ8fwOLSdIE7ih1aovFoRAOnOhncI70weAcUYyuEgYXPPtxu2anVNxBpdjZsyz49T+ejq+d3YA/3NSUtlkBYuZGqMWvUqKTb7Nw3DrRJCRmzh3tdQT1FGLmXCJygzLnGspy0zqoIN6Mf9Tao77dmMH95oCg4FyUJZihiJlzRpS1FuZY1U3FI73jZ871Do/ix6/uV9+/+7L5SR8iJp5fosmeEwOjBdnp+zqKheZ3NOTSliwmYRJnbpiBEEX2LA6dmyA0E1t7tJlzFQzOUQLS886XKIXOmV2OktwsdA+N4pXdxzFb2L1mz7nEnTatBKdNK0n1YSTEajYhy2LCqNurZjmIlBsNDoMgmpyqC7UlMV458D7LlhITvKmzKI2z5gBtWeu21l717VkVzJyLhthzzoiBEIBv7bfraD+O9jrg9njDbro99Op+9WdZs6QWi6cWGXI84ykKCs6JQYZQNMG5NA5yx6IkTzuxtXMwEMRMRlZUXpiec8yqnji0G2wj7DlHumHKBlGMrGYTLltUDQAYdXuxs70PgLJ7ygsn+SjZc8NBZa2yLKuL3XTO5iCi+FUVZkNJgDjWN8LMOR2JWSdAeg+DAKBmZQHAgDNwPcn0slYxSK1Hz7k8m0VTrqinqf7SVo9XxrE+R8jHHDgxgN+93wLANzX1totmG3IskYgBnmiGQkzKsla7NjiX/My5wGu+e2gUIy7fJi+vDRPHFAbnyCAMzhHF4cqgwQUAh0GQljIUYihoIMTQqAdu/+QzZsgQTU5Ws0ktfWnvdXAan46CM+dOSUF2kp7ybGOvE5KU2ZNagaBprXGWtbo8XrT3+vrA1ZXYDSsJFNd/yhTWYPe/sEedenrzOTNQXZiaNWNCZa2TJDhXLARxu4dHkx54ETPnxOcT14wTR7UQnDvSO4ITA76gvM1i0kzYJooVg3NEcVg8tQjTy7RTv6ZyGAQJlMy5kaDMOc3UrRzehBNNVkpZTOegEyf6fQt7kwTkZ3Nhnwix55zFJGF+TUEKjyZxeSGeD1OL7ZrBQ5lIj8y5o70jakDMiGEQCrGlSaiJrW/uPYE39p4E4Ctp/+rZDYYdSyTi77WHmXMhlYoDIYZGg6a1Jjdz7ojwfOLGzcSRZ7Oorwcxc66iwMa+gJQQBueI4iBJEq5crM2e4zAIEikTA4ddHnj9NweANgOAPeeIJi9xYuvBk4MAfP2gTCYu7BMhTmudVZmPbGt6B7FCBWsbMzxrDtBmafWNRM7wCsXoYRAKcf13pFsbnHN5vPivF/ao73979ZyUBlbFAE/vUOTfa78jsME4WYJzmsw5oazVapaS8jsQS/Pbxcy53Mnx+08Xtf4NtmN9gez3ZJQ9U2ZjcI4oTlctCQ7OMXOOAuz+G0JZBhzuQGnrZNyFJqKxaooCQyBcHpa660XMnEv3klYg0CJB1Jjh/eYAfQZCtGiGQeSO88jETBEqJ4LLWv+wuRUHTviC70vqinD5KTWGHUc0inNjy5zTTmudHFm9Y3rO+TPnyvJsSdk8yRdK2cU+k8ycm1iU7HePsAHPfnOUKAbniOJUV2rHqfXF6vvsOUcicedT7DvXKyx0ixicI5q0QvWc4s1X4sSbo6V1Rak7EJ2YTZIm4AgAsyozP3POZjEjx7/JFW9wrrVrSH3byLJWcf0nlrX2Do/ix6/uU9//zqXzUl7yJk5r7Y2x59xk2VAUp7V2DjrR7c8wTEZJKwBkW00IFQPktNaJpVbYYFMwOEeJYnCOKAFf8/cNKbZbcWp9SYqPhiYSsSn5yKgQnBN2qpklQzR51RSNDc4xYJ+4VfOrcNkpNVizpBZXLB47vCkd5QdNgs/0Sa0KJRgU70AITVmrgdUN9iwLyvwBnbbuQObcT17brx77lYtrsLSuOOTnJ1OsAyH6J+FAiHybBVazLzp28OSgmhmVrMCLJEmavnOKIm7eTCi1IZIyKvLHBuyIYjE58pOJDHLh/Cq8ddt5KMyxTpodRYqOJnNOGArRK/TOKeRACKJJqybErjtvvhKXa7Pg4S8tSfVh6Cov2wL0+96WJGBGeeZnzgG+4FxHvyP+zDl/WavVLIUMhuupttiOzsFRHB9wwOn2oK17BL/b1ALAlwn1n6vnGPr9o1WYY4Uk+VpuxFLWas8yw2qeHDkdkiSh2J6FEwNOHO8XJrUmsZ9Yns2CAYd2oBgzqyeWUOcUZs5RoibHWZbIQHWldjb2pzFyrIG9j2EhONfHzDkiQuiFPcuWKJQ8IYumriTzJ7UqlLWV0+2Fw+WJ8GgtWZbV4NyUYjvMBvcKm+rPopFl4GivAw/8bQ/c/oyrm8+ZEbKMPRXMJgkF2UpGYvRlrZNtA7okd2wgrCw/ecGxUJlzvD5MLCGDcxwIQQlicI6IyADhes5Nxv4tRDRWaW4WsizaZVhxiBtCInFia2PF5ChpBRIbCnFy0Ilhf0sJI0taFeJQsD9sbsHrn54AAFQXZuNrZ88w/PvHQgnyjJc51z00incPdKp9cifbeiVUlloyAy8sa534apk5RwZgWSsRkQHEnnPD7DlHREEkSUJNYTYOC32xeE6gUMTg3GQYBqEoCgrOVRZE38+pVXhdGTkMQiEOhXj8nWb17f+8aM6Ey3QstGcBXcPod7jgdHvQ2jWM3cf6sefYAPYc68enHf2ack4AarbdZCEOhVCUJ7GfWJ5t7HOG14eJpTzPBqtZUqetA0BFAYNzlBgG54iIDCBmzg2H6TlXxJ5zRJNadWGOJjjHnkIUiljW2jiJgnNitlasQyGSNQxCMbU48D1k/7364qlFuPyUGsO/d6yUzDlZBhbe8zJGPd6In7NqQZXRhzWhlIQ4F5eFCNgZJTdLe4vuG1LBgreJxGSSUF2Yo5bPA0BpLoNzlBgG54iIDJBjFQdCjM2cy7KYkG3lQotoMgvuWcPMCAqlvjQXgG8YxClTilJ7MEmUSFlrS7eYOZer2zGFMzVEAPDuy+bBZHCvu3iIgadQgbnCHCvmVudjbnUB5lYXYPHUokkzIVgRqsVAMksW84LKWotyeW2YiGqKstXgXLHdOqZVBVGsGJwjIjKA2C9k2BnInOsX+rdI0sRbtBNR8gRPbGXmHIXyD031GB51o7EiHw2TZFIroA1Wxxqca+0aUt9ORllrTVG2OgUVAK5YXIOldcWGf994rF5Yjb9sPwpZljGtLBdzqwswr7oAc6vzMaeqANWF2ZN+fVKa4uBccM85XhsmptoiO4BuAOw3R/pgcI6IyAD2LLGsVcic899gFE2y5spENFZw5hxvwCiUwhwrbls1J9WHkXQFmrLWyJNFRWLmXDLKWm0WM6YU56CtewTZVhP+86KJ+/f67LxKfHz3Z2E1mSZcP7yJIjhzzmYxjclmM1JwcI7DICamWmGDrSKJPQkpczH3kojIAJrMOX/POafbowbqWL5GRNWF2sU8zwtEAWJZa3/MmXO+4FxlgQ3Z1uQEoO68eB5On1aMBz+3eEzgfaIpyLYyMDeO4My58nxbUrMJgwdCFPPaMCGJr3NmzpEemDlHRGSAUD3nxLKcQg6DIJr0aoWFfY7VnLQgAlE6ELOFYilrHXS60TXky7SrLzG+35ziogVVuGiSDU7IVMFZzMkOvLCsNT2IWbmxTJMmCofBOSIiA4TqOSfu/DNDhoiqheAcMyOItDTTWmMIzrUI/ebqktBvjjJPSVDmXFleaoNzXDNOTMsbSvGZuRVo6RrGF06fmurDoQzA4BwRkQFyQ/ScUya1AtqbDiKanPJsFkwt8fWpmkyN/omiURTntFalpBUA6pPQb44yT3HQdNRkZ84F97dj5tzEZDZJePy601N9GJRBGJwjIjKAXdNzbmxwjgMhiAgAHv7SUjy//Si+uKwu1YdCNKEUxBmc0wyDYOYcxcFmMSPPZsGgv/KhPMmZc8HBOWbOEU0ODM4RERlA23POt7jrZVkrEQVZPLUIi6cWpfowiCYcs0lCvs2CAacbfcOxlLUKmXOlyes5R5mlONeqBufK2HOOiJKA01qJiAxgNknItvpOsSNq5tyo+vFCLrSIiIjGVejfyIqprLU70HOOZa0Ur5LcQEAu1ZlzDM4RTQ4MzhERGSQ3y7e4UjLn+kfYc46IiChayrWyd8QFWZaj+hwlcy4/28IsdYpbifDcSf60Vu3kbj6PiSYHBueIiAxi9y+uhp3+zLkR9pwjIiKKlhKc83hlDPmz0Mcz6vbiaO8IAKC+1A5Jkgw9Pspc08p8JdFmk4SpJTkRHq2vMZlzucycI5oM2HOOiMggdqs2c04zEIK7oEREROMSr5V9I64xQYtg7b0j8PoT7OpL2G+O4ve1s2fA4fLi1PpiVORnJ/V7iz3nrGYJuVnmcR5NRJmCwTkiIoMomXMOlxcerxyUOcddUCIiovGILSB6h0dRWzR+BlNLV6DfHCe1UiKqCrPxvTULU/K9rWYTsiwmjLq9KLJnMQOUaJJgWSsRkUGUnnMAMOLyqA2tJcnXC4eIiIjCKxQ2sqIZCtHaLUxq5TAISmMzyvMAALMq81J8JESULCkNzj344IM499xzUV1dDZvNhvr6elx33XU4dOiQ+pidO3di7dq1qK2tRXZ2NhYtWoTf/OY3mq8jyzLWr1+P0047DQUFBSgqKsLll1+O3bt3RzyG9evX46KLLsKUKVOQnZ2N2tparFmzBtu3b9f95yWiycUulCEMO93o809rLci2wmTiLigREdF4xMy5/iiCc8owCICZc5TefvLFxbj1M4144KrUZO8RUfKlNDj38MMPY+PGjcjKykJtbS1aW1vxxBNPYMWKFejv78fu3bvR1NSEZ599FiMjI2hsbMTOnTtxww034KGHHlK/zr333ovrr78eW7duRVVVFex2OzZs2IAVK1bg8OHD4x7D+vXr8dJLL8Hj8WDatGk4evQonnvuOaxYsQLNzc3G/gKIKKOJwbmhUY9a1sp+c0RERJFpy1pjC87Vl7LnHKWvWZX5uPUzs/g8JppEUhqcu+mmm9DS0oKWlhYcOnQIt956KwCgo6MDr732GtavX4/h4WFkZWVh//792LlzJ+68804AwLp16zAy4pvG9LOf/QwAsHbtWuzbtw8tLS2YPn06ent78cADD4x7DFdeeSV2796NY8eO4dNPP1WDfkNDQ/jzn/9syM9NRJODXWjoO+R0qyU5nNRKREQUWfBAiEhau30957LMJlQVJLeJPxERUSJSGpy78847UVdXp76/cuVK9W2bzQav1wsAkCRJbYSp/Levrw9btmwBAM3jgr366qvjHsOtt96KuXPnhj2GcJxOJ/r7+zX/iIhE4nSt4/0OyP4JcoV2DoMgIiKKRMyc6x4aHfexsiyrPeemlOTAzPYRRESURibMQAi3241HHnkEANDQ0IALLrgAV199NcxmM5xOJxobG7Fo0SLcf//96ue0t7cDAL74xS8CAJ5++mnMnj0b06ZNU0tSlcdES8mcKykpwdq1a8M+7nvf+x4KCwvVf1OnTo3p+xBR5ssRBkIc7R1R3y5k5hwREVFE4vXyF28dwuWPvIOfvrYfe471Q1Z2vPxODDjhcPk27DkMgoiI0s2ECM4NDQ1hzZo1eOONN1BVVYUNGzbAZrOhqakJGzZsQFNTE0ZHR9HV1YVrr71W/Tyr1XfBfvDBB3HXXXehoaEBbW1tqK6uxvnnn695TCRutxtf/epX8bvf/Q55eXl47rnnUFlZGfbxt99+O/r6+tR/bW1tCfwGiCgTiZlz7b0O9W2WtRIREUXWUJ6rCdDtONKHH72yD6t/8jZW/uANrPvrLrx7oBMuj5f95oiIKK1ZIj/EWB0dHbj00kuxdetWzJo1Cy+++CIaGhrUj69evRqrV69W33/yySfx29/+FgAwe/ZsAL7y0+9+97v47ne/qz5u1apVmseMZ2BgAJ///Ofx97//HZWVlXj++edx2mmnjfs5Nptt3LJXIiKx59yxvkDmHAdCEBERRWbPsuCFW87Cnz48glf3HMeuo4E2Mkd6RrD+vcNY/95h5GdbUC9MZ61j5hwREaWZlGbO7dq1C01NTdi6dStWrlyJTZs2aQJzALBx40b17ba2Nqxbtw4AMH/+fCxYsAAA0NzcjJaWFvVxTz31FF5++WUAgZJXALj22msxZ84cTfZde3s7Vq5cib///e+YN28eNm/eHDEwR0QUDTFzjmWtREREsZtSbMe/fnYWXrhlJd799vm474r5WNlYBqs50FNuwOHGJ+2BwJ0YqCMiIkoHKc2cW7NmjRpUGxgYwMUXX6x+7MYbb8SNN96ISy65BHa7HZWVldi/fz+cTifsdjsee+wxdQDE1q1b8YUvfAEzZsyAy+XC4cOHAQDLly/HLbfcon7N1tZW7N27F1VVVer/u+GGG7B9+3YAvkayX/jCF9SPXXLJJfjOd75j2M9PRJnNrgnOBcpaGZwjIiKKXW1RDq49YxquPWMa+h0uvLXvJF7ZfRxvfHoC/Q43AECSgLnVBSk+UiIiotikNDjndDrVt7dt26b52EUXXQQAuOyyy7Bx40bs3bsX+fn5uOSSS3DPPfdg0aJF6mMbGhqwbNky7NmzB8PDw5gxYwa+8IUv4I477ohYeioew549ezQfmzNnTrw/GhER7MJAiI5+oeccp7USERElpCDbiksX1eDSRTVwebzY0tyNTYe6ML+mADVFOak+PCIiophIcvCoI4pLf38/CgsL0dfXh4IC7tYREbC1pRtrf75pzP//081n4PRpJSk4IiIiIiIiIkqWaGNFE2JaKxFRJhIz50Sc1kpEREREREQKBueIiAwi9pwTseccERERERERKRicIyIySLjMuQIG54iIiIiIiMiPwTkiIoPk2sZmzuVYzci2hs6oIyIiIiIiosmHwTkiIoNkW8yQJO3/K7Iza46IiIiIiIgCGJwjIjKIySQhJyhLjv3miIiIiIiISMTgHBGRgYL7zjE4R0RERERERCIG54iIDBTcd45lrURERERERCRicI6IyEDBmXNFOVkpOhIiIiIiIiKaiBicIyIykD2LmXNEREREREQUHoNzREQGCg7OFbDnHBEREREREQkYnCMiMlBucFkrM+eIiIiIiIhIwOAcEZGB7MEDIdhzjoiIiIiIiAQMzhERGYg954iIiIiIiGg8DM4RERkouKy1kD3niIiIiIiISMDgHBGRgewMzhEREREREdE4GJwjIjJQbnDPOZa1EhERERERkYDBOSIiA+UIPefMJgl5Nss4jyYiIiIiIqLJhsE5IiIDiT3ninKskCQphUdDREREREREEw2Dc0REBhKntbLfHBEREREREQVjcI6IyEC5QhlrIfvNERERERERURAG54iIDCT2nCti5hwREREREREFYXCOiMhA+ULmXLE9K4VHQkRERERERBMRg3NERAaaUZ6HZdNKYM8y46qltak+HCIiIiIiIppgLJEfQkRE8TKZJDz1tSY43V5kW82RP4GIiIiIiIgmFWbOEREZTJIkBuaIiIiIiIgoJAbniIiIiIiIiIiIUoTBOSIiIiIiIiIiohRhcI6IiIiIiIiIiChFGJwjIiIiIiIiIiJKEQbniIiIiIiIiIiIUoTBOSIiIiIiIiIiohRhcI6IiIiIiIiIiChFGJwjIiIiIiIiIiJKEQbniIiIiIiIiIiIUoTBOSIiIiIiIiIiohSxpPoAMoUsywCA/v7+FB8JERERERERERGlmhIjUmJG4TA4p5OBgQEAwNSpU1N8JERERERERERENFEMDAygsLAw7MclOVL4jqLi9Xpx9OhR5OfnQ5KkVB8OESVBf38/pk6dira2NhQUFKT6cIiIDMVzHhFNJjznEZEeZFnGwMAAampqYDKF7yzHzDmdmEwmTJkyJdWHQUQpUFBQwEUbEU0aPOcR0WTCcx4RJWq8jDkFB0IQERERERERERGlCINzREREREREREREKcLgHBFRnGw2G+655x7YbLZUHwoRkeF4ziOiyYTnPCJKJg6EICIiIiIiIiIiShFmzhEREREREREREaUIg3NEREREREREREQpwuAcERERERERERFRijA4R0RERERERERElCIMzhHRpPTWW2/h4osvRnl5OSRJgiRJePTRRzWP2blzJ9auXYva2lpkZ2dj0aJF+M1vfqN5zIYNG3DllVdi2rRpyMnJQWVlJS688EJs3LhxzPf86U9/innz5sFms6GiogLXX389Ojo6DP05iYgA/c55b775pvr5wf9effVVzWN5ziOiVNHrnAcAjz76KE499VQUFxcjJycH06dPx9e//nV0dXVpHsdzHhElwpLqAyAiSoWPPvoIr7zyChoaGtDZ2Tnm47t370ZTUxOGh4dRXFyMxsZG7Ny5EzfccAP6+vpw6623AgCeeeYZ/OUvf0FpaSlmzJiB3bt345VXXsHrr7+Ot99+G2eccQYA4I477sD3vvc9AEBjYyOOHDmC9evX47333sNHH32E3NzcpP3sRDT56HXOU2RlZWHJkiWa/1dYWKi+zXMeEaWSXue89evX4+tf/zoAYOrUqaitrcWuXbvw6KOPorW1FS+88AIAnvOIKHHMnCOiSemaa65Bf38/XnrppZAfX79+PYaHh5GVlYX9+/dj586duPPOOwEA69atw8jICABg5cqV2Lx5Mzo7O/HJJ5/gueeeAwB4PB788Y9/BAB0dHTghz/8IQDg3/7t37Bv3z68//77kCQJ+/btG7OTS0SkN73OeYrq6mq8//77mn+nn346AJ7ziCj19DrnvfPOOwCA/Px8HDhwAJ988gkuvPBCAEBLSwsAnvOISB8MzhHRpFRaWoqcnJywH/d6vQCglkIobwNAX18ftmzZAgD4p3/6Jyxbtkz9vJUrV6pv22w2AMBrr70Gt9sNAFi7di0AYNGiRZg5cyYAhF04EhHpRa9znuLo0aMoKipCUVERli9fjqefflr9GM95RJRqep3zlHXdwMAAZs6ciQULFuDll19GfX09Hn74YQA85xGRPhicIyIK4eqrr4bZbIbT6URjYyMWLVqE+++/X/14e3t7yM/78Y9/DMAXmLv22msBAG1tberHKyoq1LcrKysBAK2trbofPxFRLGI951VXV6O+vh4OhwMffPABPve5z+HnP/85AJ7ziGjii/acd9111+Hhhx+GxWJBW1sbdu3aBQCYM2cOZsyYAYDnPCLSB4NzREQhNDU1YcOGDWhqasLo6Ci6urrUYBsAWK3WMZ9z33334b/+679gtVrxxBNPYMGCBQAAWZZDfg/l/ys7tUREqRLtOW/+/Pk4dOgQWlpasH37duzbt0+9AX3wwQcB8JxHRBNftOe81157DbfffjsKCgrwySef4OTJkzjrrLPw0ksv4YorrgDAcx4R6YPBOSKiMFavXo1NmzZhYGAA7e3tWLVqlfqx2bNnq2+7XC5cf/31uOeee5CXl4e//OUv+PznP69+vK6uTn37+PHj6tsnTpwA4GswTESUatGc88rLyzF9+nT1/9fV1eGss84CEMgO4TmPiNJBNOe8u+++G4ODgzjrrLMwf/58lJWVYc2aNQCAbdu2obOzk+c8ItIFg3NERGFs3LhRfbutrQ3r1q0D4MscUbLi+vr6sHr1aqxfvx61tbV4++23sXr1as3XueCCC2Cx+IZjK32Ztm3bhgMHDgAALrroIqN/FCKiiKI55z3xxBPYvHmz+rgjR46oDdOnTZsGgOc8IkoP0a7zAGDXrl1wOBwAgK1btwIATCYTsrOzec4jIn3IREST0DPPPCPPmDFDrq+vlwHIAOTy8nJ5xowZ8pe//GVZlmU5NzdXLi8vlxcsWCDbbDYZgGy32+X33ntP/Tpf/epX1c9vaGiQly9frv77+te/rj7u9ttvVx/X2Ngo5+TkqG8PDg4m/ecnoslFr3PeddddJwOQy8rK5EWLFsnZ2dnq11u/fr36OJ7ziCiV9Drn3X333ernV1RUyDNnzlTf/9znPqc+juc8IkoUM+eIaFLq7+/HwYMH0dLSov6/kydP4uDBg2oT4MsuuwwWiwV79+5Fbm4u1qxZg02bNuGMM85QP8fpdKpvHzp0CJs3b1b/7d69W/3Y/fffj4ceeghz5szB4cOHkZubi+uuuw5vvfUWcnNzk/ATE9Fkptc575prrsHnPvc55OXlYd++fSgsLMRnPvMZvPLKK7juuuvUx/GcR0SppNc575577sEjjzyCpUuXYnR0FEePHsXcuXNx3333Yf369erjeM4jokRJshymgyUREREREREREREZiplzREREREREREREKcLgHBERERERERERUYowOEdERERERERERJQiDM4RERERERERERGlCINzREREREREREREKcLgHBERERERERERUYowOEdERERERERERJQiDM4RERERERERERGlCINzRERERBSTdevWYfHixak+DCIiIqKMIMmyLKf6IIiIiIhoYpAkadyPX3fddXjkkUfgdDpRWlqapKMiIiIiylwMzhERERGRqqOjQ337qaeewt133429e/eq/y8nJweFhYWpODQiIiKijMSyViIiIiJSVVVVqf8KCwshSdKY/xdc1vqP//iPuPLKK/HAAw+gsrISRUVFuPfee+F2u3HbbbehpKQEU6ZMwa9//WvN92pvb8cXvvAFFBcXo7S0FFdccQUOHz6c3B+YiIiIKMUYnCMiIiKihL3++us4evQo3nrrLfzoRz/CunXrcOmll6K4uBibN2/GzTffjJtvvhltbW0AgOHhYZx33nnIy8vDW2+9hXfeeQd5eXm46KKLMDo6muKfhoiIiCh5GJwjIiIiooSVlJTgpz/9KWbPno0bbrgBs2fPxvDwMO644w40Njbi9ttvR1ZWFt59910AwB//+EeYTCY8/vjjWLhwIebOnYvf/OY3aG1txZtvvpnaH4aIiIgoiSypPgAiIiIiSn/z58+HyRTY962srMSCBQvU981mM0pLS3HixAkAwNatW3HgwAHk5+drvo7D4cDBgweTc9BEREREEwCDc0RERESUMKvVqnlfkqSQ/8/r9QIAvF4vTj31VPz+978f87XKy8uNO1AiIiKiCYbBOSIiIiJKuqVLl+Kpp55CRUUFCgoKUn04RERERCnDnnNERERElHRf+cpXUFZWhiuuuAJvv/02mpubsXHjRvzLv/wLjhw5kurDIyIiIkoaBueIiIiIKOnsdjveeust1NXVYc2aNZg7dy5uuOEGjIyMMJOOiIiIJhVJlmU51QdBREREREREREQ0GTFzjoiIiIiIiIiIKEUYnCMiIiIiIiIiIkoRBueIiIiIiIiIiIhShME5IiIiIiIiIiKiFGFwjoiIiIiIiIiIKEUYnCMiIiIiIiIiIkoRBueIiIiIiIiIiIhShME5IiIiIiIiIiKiFGFwjoiIiIiIiIiIKEUYnCMiIiIiIiIiIkoRBueIiIiIiIiIiIhS5P8DT+f6CY8031cAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABOcAAAGHCAYAAAD7rjZMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5hTZdrG7/RMyfTemAIDqFQLiIKiKIgCFlxc10VXXd3iuqxt1bViW91du+66ip+rq+hasCACilIUpEmHYWCYYYbpfTKZST/fH8k5eU8mmUk5KROe33XNxZA5SU6Sk3Pe93nv575lHMdxIAiCIAiCIAiCIAiCIAgi7MgjvQMEQRAEQRAEQRAEQRAEcbJCxTmCIAiCIAiCIAiCIAiCiBBUnCMIgiAIgiAIgiAIgiCICEHFOYIgCIIgCIIgCIIgCIKIEFScIwiCIAiCIAiCIAiCIIgIQcU5giAIgiAIgiAIgiAIgogQVJwjCIIgCIIgCIIgCIIgiAhBxTmCIAiCIAiCIAiCIAiCiBBUnCMIgiAIgiAIgiAIgiCICEHFOYIgCILwkbfeegsymQwymQzr168f8HeO4zBy5EjIZDKcf/75Yd+/QJk8eTJkMhn+/ve/R3pXguKGG25AcXHxkNtxHIf3338f06dPR1ZWFrRaLQoKCjB79my88cYbIdm3Bx54AEVFRVAqlUhJSQnJc0iBxWJBTk4OZDIZPvroI4/bPPLII5DJZAE9/vr164Xv0FA/JzOvvvoq3nrrrUjvhlcicTxv2rQJP/vZz5Cfnw+1Wo3k5GRMmzYN//znP2EwGITtiouLvR5T7uflrVu34oorrkBRURE0Gg2ys7Nx9tln48477xRtd/7550Mmk6G0tBQcxw3Yt40bNwrPwX5u3377LW688UaMGTMGCQkJyM/Px4IFC7Bz505J3xuCIAhi+EPFOYIgCILwE51Oh2XLlg24fcOGDaiqqoJOp4vAXgXG7t27sWvXLgDw+Jpikfvuuw8///nPMXbsWLzxxhv46quv8PjjjyM7OxufffaZ5M/32Wef4YknnsDixYuxYcMGfPPNN5I/h1SsXLkSzc3NALwfDzfffDO2bNkS0ONPnjwZW7ZsEf3k5OTgnHPOGXD7yUw0F+cicTw//PDDmDFjBurr6/HYY4/h66+/xvvvv48LL7wQjzzyCB544AHR9p6Opy1btuDVV18Vtvnyyy8xbdo09PT04JlnnsHatWvxwgsv4JxzzsEHH3wwYB90Oh2qq6vx7bffDvjbm2++iaSkpAG3//Of/0RNTQ3++Mc/YtWqVXjhhRfQ0tKCqVOnenwcgiAI4uRFGekdIAiCIIjhxqJFi/Duu+/ilVdeEU3Ili1bhrPPPhs9PT0R3Dv/4JVil156Kb788kts3rwZ06ZNi/BehY7+/n48//zzWLx4Mf7973+L/nbDDTfAbrdL9lx9fX2Ij4/H/v37AQC33347srKyJHv8ULBs2TKo1Wqcd955WLt2LU6cOIGCggLRNgUFBQNu80R/fz/i4uJEtyUlJWHq1Kmi2zQaDVJSUgbcHitwHAej0TjgvYgE/DEZDKE4ngfbrw8//BBLly7FTTfdhNdff12kqrzkkktwzz33DCjm+nI8PfPMMygpKcGaNWugVLqmRNdccw2eeeaZAdsXFRVBp9PhzTffxIUXXijcrtfr8eGHH+IXv/gFXn/9ddF9XnnllQHv0Zw5czBy5Eg8+eSTuOCCCwbdR4IgCOLkgZRzBEEQBOEnP//5zwEAy5cvF27r7u7Gxx9/jBtvvNHjfcxmMx5//HGMGTMGGo0GmZmZ+NWvfoXW1lbRdh988AEuvvhi5ObmIi4uDmPHjsW9994ratsCHIWkxMREHD16FHPnzkViYiIKCwtx5513wmQy+fQ6jEYj3nvvPZx++ul47rnnADgUIO7wbYwHDhzAz3/+cyQnJyM7Oxs33ngjuru7RdvKZDLcdttteOeddzB27FjEx8djwoQJWLly5YD999SC6qll8pVXXsGMGTOQlZWFhIQEjBs3Ds888wwsFotPr5PFYDDAZDIhNzfX49/lctfQiG/BdG9hrqmpGdC+xn8e+/btw8UXXwydTocLL7wQxcXFgqonOzsbMpkMjzzyCADfP2vA0X43b948pKenQ6vVoqysDEuWLBFtc+TIEVx77bXIysqCRqPB2LFj8corr/j83jQ0NGD16tWYN28e7r77btjtdo/qLU+fUXFxMS677DJ88sknmDRpErRaLR599FGfn9udpqYm3HrrrSgoKIBarUZJSQkeffRRWK1WYRv+c/jb3/6Gp59+GsXFxYiLi8P555+PyspKWCwW3HvvvcjLy0NycjKuuOIKtLS0eNzvFStWYPz48dBqtSgtLcWLL744YJ96enpw1113oaSkBGq1Gvn5+ViyZMmAz4v/DvzrX//C2LFjodFo8J///AcA8Oijj2LKlClIS0tDUlISJk+ejGXLlolaJYuLi3HgwAFs2LBBaJXkvyt8a31NTY3oOT0dq+effz5OO+00bNy4EdOmTUN8fLxwfvL1tbgz2PFst9vxzDPPCOe4rKwsLF68GCdOnBA9xmD75YmlS5ciNTUVL774osd2Z51Oh4svvnjQ/fZEe3s7MjIyRIU5HvY8wHLjjTfik08+QVdXl3Db+++/D8BR1HPHU/EyMTERp5xyCurq6vzeZ4IgCCJ2IeUcQRAEQfhJUlISFi5ciDfffBO33norAEehTi6XY9GiRXj++edF29vtdixYsACbNm3CPffcg2nTpuH48eN4+OGHcf7552PHjh2CqubIkSOYO3culixZgoSEBFRUVODpp5/Gtm3bBrRBWSwWzJ8/HzfddBPuvPNObNy4EY899hiSk5Px0EMPDfk6PvnkE3R2duLGG2/EqFGjcO655+KDDz7A888/j8TExAHbX3XVVVi0aBFuuukm7Nu3D/fddx+AgQW9L7/8Etu3b8fSpUuRmJiIZ555BldccQUOHz6M0tJSn99nnqqqKlx77bVCIWHPnj144oknUFFR4bGYOBgZGRkYOXIkXn31VWRlZWHu3LkYPXq0JB5nZrMZ8+fPx6233op7770XVqsVmZmZeOWVV7Bs2TKsXr0aycnJgurM1896zZo1mDdvHsaOHYtnn30WRUVFqKmpwdq1a4VtDh48iGnTpqGoqAj/+Mc/kJOTgzVr1uD2229HW1sbHn744SH3/6233oLNZsONN96IWbNmYcSIEXjzzTfxl7/8xaf356effsKhQ4fwwAMPoKSkBAkJCQG8i47C3FlnnQW5XI6HHnoIZWVl2LJlCx5//HHU1NTg//7v/0Tbv/LKKxg/fjxeeeUVdHV14c4778S8efMwZcoUqFQqvPnmmzh+/Djuuusu3Hzzzfj8889F99+9ezeWLFmCRx55BDk5OXj33Xfxxz/+EWazGXfddRcAh7LrvPPOw4kTJ3D//fdj/PjxOHDgAB566CHs27cP33zzjeg9+vTTT7Fp0yY89NBDyMnJEYo0NTU1uPXWW1FUVAQA+PHHH/GHP/wB9fX1wnd2xYoVWLhwIZKTk4U2TI1GE9B72djYiOuuuw733HMPnnzyScjlcr9fC8uKFSu8Hs+//e1v8e9//xu33XYbLrvsMtTU1ODBBx/E+vXr8dNPPyEjI2PQ/fK2//v378eiRYv8UvxxHCcq5PIoFArhtZ199tl44403cPvtt+MXv/gFJk+eDJVKNejjXnPNNfjTn/6E5cuX47e//S0Ah9p04cKFHttaPdHd3Y2ffvqJVHMEQRCEGI4gCIIgCJ/4v//7Pw4At337du67777jAHD79+/nOI7jzjzzTO6GG27gOI7jTj31VO68884T7rd8+XIOAPfxxx+LHm/79u0cAO7VV1/1+Hx2u52zWCzchg0bOADcnj17hL9df/31HADuf//7n+g+c+fO5UaPHu3T67ngggs4rVbLdXZ2il7fsmXLRNs9/PDDHADumWeeEd3+u9/9jtNqtZzdbhduA8BlZ2dzPT09wm1NTU2cXC7nnnrqKdH+jxgxYsA+8c/lDZvNxlksFu7tt9/mFAoF19HRMeRjurNt2zauqKiIA8AB4HQ6HXfZZZdxb7/9tui18J/xd999J7p/dXU1B4D7v//7P9FzA+DefPNNr6+ptbXV6z4N9lmXlZVxZWVlXH9/v9f7z549mysoKOC6u7tFt992222cVqsVvU/enn/kyJFcfn4+Z7VaRfu9bt06j6+HZcSIEZxCoeAOHz486PN4YsSIEdyll14q/P/WW2/lEhMTuePHj4u2+/vf/84B4A4cOMBxnOtzmDBhAmez2YTtnn/+eQ4AN3/+fNH9lyxZwgEQvUcjRozgZDIZt3v3btG2F110EZeUlMQZDAaO4zjuqaee4uRyObd9+3bRdh999BEHgFu1apVwGwAuOTl5yPecP5aXLl3Kpaeni44993MID/8dra6uFt3u6Vg977zzPH5+/rwWT3g6ng8dOsQB4H73u9+Jtt26dSsHgLv//vuH3C9P/PjjjxwA7t577x1yW54RI0YI3233n8cee0zYrq2tjTv33HOFv6lUKm7atGncU089xen1etFjnnfeedypp57KcZzju37GGWdwHMdxBw4c4ABw69evF87n7HnBE7/4xS84pVLJ7dixw+fXRBAEQcQ+1NZKEARBEAFw3nnnoaysDG+++Sb27duH7du3e23NWrlyJVJSUjBv3jxYrVbhZ+LEicjJyRG1oh07dgzXXnstcnJyoFAooFKpcN555wEADh06JHpcmUyGefPmiW4bP348jh8/PuT+V1dX47vvvsOVV14ppC1effXVgqeSJ+bPnz/guYxG44BWwZkzZ4pCMbKzs5GVleXTfnli165dmD9/PtLT04X3ZPHixbDZbKisrPT78c4880wcPXoUq1evxv3334+zzz4b69atw+LFizF//nyPaYy+ctVVV/m8rS+fdWVlJaqqqnDTTTdBq9V6fByj0Yh169bhiiuuQHx8vOgYmzt3LoxGI3788cdB92XDhg04evQorr/+eigUCgDAr371K8hkMp/ViePHj0d5ebmvL98rK1euxMyZM5GXlyd6LZdccomwryxz584VKa/Gjh0LwOGjyMLfXltbK7r91FNPxYQJE0S3XXvttejp6cFPP/0k7NNpp52GiRMnivZp9uzZHlufL7jgAqSmpg54bd9++y1mzZqF5ORk4TN/6KGH0N7ePuB7JAWpqakDFFr+vhZf+O677wA42rtZzjrrLIwdOxbr1q0bcr+k5Nxzz8X27dsH/Nx0003CNunp6di0aRO2b9+Ov/71r1iwYAEqKytx3333Ydy4cWhra/P42DfeeCN27NiBffv2YdmyZSgrK8OMGTN82q8HH3wQ7777Lp577jmcfvrpkrxWgiAIIjagtlaCIAiCCACZTIZf/epXePHFF2E0GlFeXo7p06d73La5uRldXV1Qq9Ue/85PAnt7ezF9+nRotVo8/vjjKC8vR3x8POrq6nDllVeiv79fdL/4+PgBBRuNRgOj0Tjk/r/55pvgOA4LFy4U+SfNnz8f7777LioqKjBmzBjRfdLT0wc8F4AB++W+Hb+t+3a+UFtbi+nTp2P06NF44YUXUFxcDK1Wi23btuH3v/99QI8JACqVCrNnz8bs2bMBOPynFi5ciJUrV+Krr77C3Llz/X7M+Ph4n1vbfP2seU/CwQIY2tvbYbVa8dJLL+Gll17yuI23QgMPn8x6xRVXCMdDcnIyzj33XHz88cd4+eWXhSKuN7z5+PlLc3MzvvjiC68thu6vJS0tTfR//nvm7Xb370dOTs6A5+Bva29vF/bp6NGjPu+Tp/di27ZtuPjii3H++efj9ddfF/z0Pv30UzzxxBMBH8uD4Wk//H0tvsC/T56eLy8vb0Bh3tdjhW//ra6u9mt/kpOTccYZZ/i07RlnnCFsa7FY8Oc//xnPPfccnnnmGY/BEDNmzMCoUaPw2muv4X//+x+WLFniU9v3o48+iscffxxPPPEEbrvtNr9eD0EQBBH7UHGOIAiCIALkhhtuwEMPPYR//etfeOKJJ7xul5GRgfT0dKxevdrj33mV2bfffouGhgasX79eUFABEBXPpIA1+r/yyis9bvPmm296nJhKhVar9Rhc4V4Y+PTTT2EwGPDJJ59gxIgRwu27d++WdH/S09OxZMkSrF+/Hvv378fcuXOFwqf7fnorXvjjW+frZ52ZmQkAA0z1WVJTU6FQKPDLX/4Sv//97z1uU1JS4vX+fJgJ4FAVeuK9997D7373O6+PAfj3+gcjIyMD48eP9/qdysvLk+R5eJqamrzexheaMzIyEBcX51VFyPqpAZ7fi/fffx8qlQorV64UFdU//fRTn/dVimPS39fiC/z71NjYOKCQ3NDQ4NP744nc3FyMGzcOa9eulSRpdihUKhUefvhhPPfcc0IqrSd+9atf4YEHHoBMJsP1118/5OM++uijeOSRR/DII4/g/vvvl3KXCYIgiBiBinMEQRAEESD5+fm4++67UVFRMegE7bLLLsP7778Pm82GKVOmeN2On7C6m7+/9tpr0uywkzVr1uDEiRP4/e9/j4ULFw74+2233Ya3334bTz75pMckQykoLi5GS0sLmpubkZ2dDcARqLBmzRrRdp7eE47j8Prrrwf0vBaLBT09PR7VfXwrKV/84RMy9+7dKyjsAAwIFAgEXz/r8vJyoX36jjvu8BgMEB8fj5kzZ2LXrl0YP368V4WmN9577z309/fjsccew7nnnjvg71dffTXefPPNIYtzUnHZZZdh1apVKCsr89gaKjUHDhzAnj17RK2t7733HnQ6HSZPnizs05NPPon09PRBC52DIZPJoFQqhbZhwKE6feeddwZs601pyh6To0ePFm7355iU4rW4w7eo/ve//xUVeLdv345Dhw7hL3/5S8CP/eCDD+JnP/sZbr/9drz++usDCnu9vb3YvHmz34mtjY2NHhV87ucBT1x//fXYunUrxo4di/z8/EGf57HHHsMjjzyCBx54wKdgFoIgCOLkhIpzBEEQBBEEf/3rX4fc5pprrsG7776LuXPn4o9//CPOOussqFQqnDhxAt999x0WLFiAK664AtOmTUNqaip+85vf4OGHH4ZKpcK7776LPXv2SLrPy5Ytg1KpxP333+9xAnrrrbfi9ttvx5dffokFCxZI+tw8ixYtwkMPPYRrrrkGd999N4xGI1588UXYbDbRdhdddBHUajV+/vOf45577oHRaMQ///lPdHZ2BvS83d3dKC4uxtVXX41Zs2ahsLAQvb29WL9+PV544QWMHTtWUBPm5ORg1qxZeOqpp5CamooRI0Zg3bp1+OSTT4J+/f581q+88grmzZuHqVOn4k9/+hOKiopQW1uLNWvW4N133wUAvPDCCzj33HMxffp0/Pa3v0VxcTH0ej2OHj2KL774YkDSL8uyZcuQmpqKu+66y6Ov3eLFi/Hss88OKGCFiqVLl+Lrr7/GtGnTcPvtt2P06NEwGo2oqanBqlWr8K9//WvQNl9/ycvLw/z58/HII48gNzcX//3vf/H111/j6aefFpRaS5Yswccff4wZM2bgT3/6E8aPHw+73Y7a2lqsXbsWd95556CFd8Dhgffss8/i2muvxS233IL29nb8/e9/91hwHTduHN5//3188MEHKC0thVarxbhx43DmmWdi9OjRuOuuu2C1WpGamooVK1bg+++/9/n1SvFa3Bk9ejRuueUWvPTSS5DL5bjkkkuEtNbCwkL86U9/8uvxWK6++mo8+OCDeOyxx1BRUYGbbroJZWVl6Ovrw9atW/Haa69h0aJFouJcV1eXR59FjUaDSZMmAQBmz56NgoICzJs3D2PGjIHdbsfu3bvxj3/8A4mJifjjH//odZ/y8vJ8Ujz+4x//wEMPPYQ5c+bg0ksvHbBPU6dO9fFdIAiCIGIdKs4RBEEQRIhRKBT4/PPP8cILL+Cdd97BU089BaVSiYKCApx33nkYN24cAEdr2Jdffok777wT1113HRISErBgwQJ88MEHgoInWNra2vDFF1/gsssu86oM+eUvf4k///nPWLZsWciKcyUlJfjss89w//33Y+HChcjNzcUdd9yB1tZWPProo8J2Y8aMwccff4wHHngAV155JdLT03HttdfijjvuEAIC/CEpKQmPPvoo1q1bh/vvvx/Nzc2QyWQoKSnBkiVL8Oc//1nUOvfOO+/gD3/4A/785z/DZrNh3rx5WL58uc9+Vt7w57OePXs2Nm7ciKVLl+L222+H0WhEQUGBKKDjlFNOwU8//YTHHnsMDzzwAFpaWpCSkoJRo0YN6p+3d+9e7Ny5E0uWLPEaOHHLLbfg2WefxbJly/Diiy8G9bp9ITc3Fzt27MBjjz2Gv/3tbzhx4gR0Oh1KSkowZ84cydV0EydOxK9+9Ss8/PDDOHLkCPLy8vDss8+KCkoJCQnYtGkT/vrXv+Lf//43qqurERcXh6KiIsyaNUtQtA3GBRdcgDfffBNPP/005s2bh/z8fPz6179GVlaWKKgAcLRBNjY24te//jX0ej1GjBiBmpoaKBQKfPHFF7jtttvwm9/8BhqNBtdccw1efvnlAQEY3pDitXjin//8J8rKyrBs2TK88sorSE5Oxpw5c/DUU095VKr6w9KlSzFr1iy89NJL+Mtf/oK2tjbExcXh1FNPxR133IFbb71VtP0PP/yAs88+e8Dj5OfnCy3iDzzwAD777DM899xzaGxshMlkQm5uLmbNmoX77rtPCBAJhi+++AIAsHr1ao+2BsGEzxAEQRCxhYyjqwJBEARBEARxElJcXIzTTjsNK1eujPSuEARBEARxEiMfehOCIAiCIAiCIAiCIAiCIEIBFecIgiAIgiAIgiAIgiAIIkJQWytBEARBEARBEARBEARBRAhSzhEEQRAEQRAEQRAEQRBEhKDiHEEQBEEQBEEQBEEQBEFECCrOEQRBEARBEARBEARBEESEUEZ6B2IFu92OhoYG6HQ6yGSySO8OQRAEQRAEQRAEQRAEEUE4joNer0deXh7kcu/6OCrOSURDQwMKCwsjvRsEQRAEQRAEQRAEQRBEFFFXV4eCggKvf6finETodDoAjjc8KSkpwntDEARBEARBEARBEARBRJKenh4UFhYKNSNvUHFOIvhW1qSkJCrOEQRBEARBEARBEARBEAAwpP0ZBUIQBEEQBEEQBEEQBEEQRISg4hxBEARBEARBEARBEARBRAgqzhEEQRAEQRAEQRAEQRBEhCDPOYIgCIIgCIIgCIIgiCiH4zhYrVbYbLZI7wrhRKFQQKlUDukpNxRUnCMIgiAIgiAIgiAIgohizGYzGhsb0dfXF+ldIdyIj49Hbm4u1Gp1wI9BxTmCIAiCIAiCIAiCIIgoxW63o7q6GgqFAnl5eVCr1UErtYjg4TgOZrMZra2tqK6uxqhRoyCXB+YeR8U5giAIgiAIgiAIgiCIKMVsNsNut6OwsBDx8fGR3h2CIS4uDiqVCsePH4fZbIZWqw3ocSIaCPH8889jwoQJSElJgUajQUFBAa6++mrs3btX2Eav12PJkiUoKCiAWq1GWVkZHn74YVgsFtFj7dixA7Nnz0ZSUhLi4+Nxzjnn4Ouvv/ZpPwwGAx544AGUl5dDo9EgNTUV06ZNw7Zt2yR9vQRBEARBEARBEARBEIEQqCqLCC1SfC4RVc5t2LABra2tKCkpgclkwuHDh/HRRx/h22+/RW1tLbRaLebOnYvvv/8eKpUKpaWlOHLkCJYuXYqjR4/i3XffBQDs3r0bM2bMQH9/PzIyMpCUlITNmzfjkksuwcqVKzFnzhyv+2A0GjFz5kxs374dcrkco0aNglqtxv79+1FZWYmzzjorXG8HQRAEQRAEQRAEQRAEcZIR0bLr8uXL0dDQgF27duHgwYO4//77AQAdHR2oqKjAp59+iu+//x4A8Mknn6CiogLPP/88AOC9997Dzp07AQAPPvgg+vv7UVxcjGPHjqGmpgZTpkyBzWbD3XffPeg+PP/889i+fTtyc3Nx8OBBVFRUYO/evejs7MSVV14ZuhdPEARBhJwNla145PMDqOsg41yCIAiCIAiCIKKTiBbntFotPv/8c0ydOhWnnHIKnnzySQBAZmYmysvLsXr1agCOHt65c+cCAK666irh/mvWrIHVasW6desAABdffDF0Oh2USiXmz58PANi/fz8aGhq87sMHH3wAACgtLcUvf/lLJCQkYOzYsXj11VcH7RU2mUzo6ekR/RAEQRDRg9Fiw+/f/Qlvba7BU18divTuEARBEARBEARBeCTiDcstLS3YunUrDh06BLvdjpKSEnz33XfQ6XSoq6sDAKSnpws9vNnZ2cJ9a2tr0dbWhv7+fgBAVlaW8Df37bxx+PBhAMAPP/yA6upqZGdno6KiArfffjueffZZr/d76qmnkJycLPwUFhYG8OoJgiCIUFHV2otekxUAsKeuO8J7QxAEQRAEQRAnL0ajEc8++yymTJkiZAWUl5fjN7/5DY4dO4ZHHnkEMpnM48+SJUuEx2lsbMStt96KkpISaDQapKenY/z48fjlL3+Jvj5Xtwx7/z/+8Y+iffnyyy9Ff+eFYQcOHMANN9yAMWPGICkpCcnJyTj99NOxbNmykL8/ES/O3XzzzbDb7Th+/DgWLVqE6upqLFq0CHq9HhzHDdievU0mk3ncxtN23rBaHRO3tLQ0HD16FFVVVZg1axYA4OWXX/Z6v/vuuw/d3d3CD19IJAiCIKKDoy29wu/1Xf1CoY4gCIIgCIIgiPDR2dmJadOm4c477xSCN8vKytDc3IzXXnsNGzduFG0/ceJETJkyRfgpLi4GANjtdlx66aX497//jRMnTmDMmDFIT09HZWUl/vvf/4qKcyxvvfUW9Hq98H9vtZ7t27fjP//5D+rq6jBixAhYrVb89NNPuPnmm/HMM89I8E54J+LFOcBRPCsqKhI85w4cOIDly5ejqKgIANDW1ga73Q7AobTjKSwsRGZmJuLi4gAAzc3Nwt/ct/NGfn4+AKC8vBzJycmQyWQ444wzADgUd/zzuqPRaJCUlCT6IQiCIKKHKqY45+n/BEEQBEEQBEGEnttuuw27du0CANx9993o6OjAvn370N3dja+++grl5eWi7VesWIEff/xR+OGVc5WVlcLjrF27Fnv27EFlZSW6urqwYsUKJCQkDHhulUqFnp4evP322wCAI0eOYM2aNVCpVAO2LSoqwocffoienh7s27cPhw4dQnJyMgAIgaShImJpre3t7Vi1ahUWLVoEtVoNAFi1apXwd4PBgDlz5uCNN96A0WjEypUrMX/+fHz44YfCNnPmzIFSqcSFF16IlStXYu3atdDr9dBqtfjss88AAOPGjUNeXh4AYPHixdi2bRvOOuss4YOZNWsW3njjDVRWVqKnpwc6nU4ImigrK6OoYoIgiGFKVatB9P8jLb2YUJgSmZ0hCIIgCIIgCImZ99L3aNWbwv68mToNvvjDuT5t293djf/9738AgAkTJuDpp58WdTfOmTMHgKPYNhSseOqtt96CQqHA5MmTkZiYiMsvv9zjfa644gp89NFHePnll/G73/0OL7/8MjiOw8KFC7F8+XLRthdccIHo/0VFRSgqKsK+ffug0Wh8er2BErHinF6vx+LFi3HrrbeirKxM1Bqq0+lw5ZVXoqCgAOeeey6+//57LFy4EKWlpThy5AgA4Nprr8XkyZMBAI8//jjWrVuH48ePo7S0FGq1Gg0NDVAoFCLpYW1tLQ4fPoycnBzhtvvvvx8fffQROjo6MHLkSOh0Ohw7dgwA8NBDD4Xr7SAIgiAk5qibUu5Ii97LlgRBEARBEAQx/GjVm9DUY4z0bgxKZWWlYCc2ffr0QW3HeEpKSkT/X7FiBS6//HKMHTsWM2fOxHfffYe3334bb7/9NhQKBc466yzcdtttuPbaaz0+1qWXXoovvvgCK1aswFtvvYWUlBRcd911A4pz7nzzzTc4cOAAAODXv/61ry85ICJWnEtJScE111yDbdu2oaqqChaLBYWFhTjvvPNw//33Y8SIEQAcRn0PPvggPvroIxw7dgxFRUVYvHgxHnjgAeGxJkyYgA0bNuAvf/kLtmzZgt7eXkybNg0PP/wwLr744kH3o6SkBN9//z3uvfdebNy4ESaTCdOmTcODDz4oVHAJgiCI4YXNzqG6TaycO9pMba0EQRAEQRBE7JCpC62aS4rn9TUPgGXixIkipVpaWppw/9WrV+PVV1/FRx99hG3btsFisWDLli3YsmULzGYzbrjhhgGP94c//AFffPEFfvWrX6Gnpwd33nkn4uPjB90HvtPTbrfj9ttvj+3i3FBVSgBISkrCCy+8gBdeeGHQ7c4888whZZDr16/3ePupp56KL774Ysh9IQiCIIYHdR19MNvEnqFHyHOOIAiCIAiCiCF8bS2NJKNHj4ZSqYTVasX3338PjuOGLNKtWLFCCIFwR61WY8mSJViyZAmMRiO+/vprXHvttejt7cVnn33msTg3a9YsjBkzBhUVFZDL5fjd736H2tpar8//r3/9C7fddhtsNhuWLl2KBx980J+XHBBkqEYQBEHEHO4trQBQ19mHfrMtAntDEARBEARBECcnycnJ+NnPfgYA2LVrF+6//36hzRVwtI5u3rzZp8eqq6vDAw88gJqaGgCAVqvFhRdeiNTUVADwGtQpk8lw2223AQAuvfRSlJaWetyO4zjcc889+O1vfwuFQoH//ve/YSnMAVScIwiCIGKQqlZXcS5erQAAcJz4doIgCIIgCIIgQs/LL7+MSZMmAQD++te/Ij09HRMmTEBaWhouuugiVFZWira/4oorMHXqVOHnz3/+MwBHcOgTTzyBkpISZGVlYfLkycjPz0ddXR1kMhmuueYar/vwm9/8Bq2trfjggw+8bvP+++/jb3/7GwBHoe+ll14S7UcoiVhbK0EQBEGEClY5N3NMFr7c2yjcflp+cqR2iyAIgiAIgiBOOlJTU7F582a88sor+OCDD3Do0CEcPnwY+fn5uPLKKzF9+nRBDQcAu3fvFt2fD/XMz8/H0qVL8e233+LIkSM4cOAAVCoVzjrrLCxZsgSXXHKJ131QKBTIyMgYdD9NJlfybVtbG9ra2vx/sQEi41h3PiJgenp6kJycjO7ubq9SSoIgCCI8XPHqD9hV2wUAeOnnk/CH5bsAAL+fWYa7Z4+J4J4RBEEQBEEQhH8YjUZUV1ejpKQEWq020rtDuDHY5+NrrYjaWgmCIIiYguM4VDmVc3nJWkwsTBH+doQSWwmCIAiCIAiCiDKoOEcQBEHEFK29JvQYHSazZVmJyE+Jg1bluNx5CoogCIIgCIIgCIKIJFScIwiCIGKKqhaD8HtZZiLkchlGZiUCAGraDTBZKbGVIAiCIAiCIIjogYpzBEEQRExxlElk5Ytyo7J0AAA7B1S3GTzejyAIgiAIgiAIIhJQcY4gCIKIKaqY1tWyTEdxji/SAeQ7RwxfOg1mtPeaht6QIAiCIIiYhPI8oxMpPhcqzhEEQRAxRZVH5RxTnCPfOWIYcqy1F1OeXIezn/oWx1rpGCYIgiCIkwmVSgUA6Ovri/CeEJ7gPxf+cwoEpVQ7QxAEQRDRAB/6kKRVIiNRDQAYla1j/q6PyH4RRDCsOdAMs80OAPi2ogWlmYlD3IMgCIIgiFhBoVAgJSUFLS0tAID4+HjIZLII7xXBcRz6+vrQ0tKClJQUKBSKgB+LinMEcZKwsbIVzT1GXD4pHyoFiWaJ2KTXZEVjtxGAQzXHD1qK0uKhVsphttqprZUYlhxhisonOvsjuCcEQRAEQUSCnJwcABAKdET0kJKSInw+gULFOYI4CTjaosf1/7cNHAfIZTJcdXpBpHeJIELCMQ8trQCgkMtQlpmIQ409qG4zwGKzU5GaGFYcZdqx67uoOEd45n876vDJTydwx0WjcVZJWqR3hyAIgpAQmUyG3NxcZGVlwWKxRHp3CCcqlSooxRwPFecI4iTgx2Md4D0qK5p6IrszBBFCjnoIg+AZleUozlntHGraDKJWV4KIZux2TnRsN1BxjvCA1WbHw58dQL/Fhie+PIjPbjs30rtEEARBhACFQiFJMYiILkg2QBAnAYebXO1QeqM1gntCEKHFUxgED4VCEMOVhu5+9Jltwv9JOUd4ollvQr/FcZwcaOiB0WIb4h4EQRAEQUQLVJwjiJMAtjjXYyQJNBG7sOqiAcW5bKY4R75zxDDCvZjc1WeBwUQLLYSYRqZoa7Vz2F/fHcG9IQiCIAjCH6g4RxAxDsdxolZWUs4RsQxfnFMr5ShIjRf9bWSWq431CCW2EsOIox6KyaSeI9xpcIbh8Oyu64rMjhAEQRAE4TdUnCOIGKe5x4QepiDXQ8U5Ikax2Ow43t4HACjNSIBCLo6XH5EeD5XCcdtRamslhhGeisn1lNhKuNHoVrCl4hxBEARBDB+oOEcQMY57AIS+n9paidjkeHsfrHZH8ol7GAQAqBRylGQkAACOtRpgtdnDun/h5qt9jVjwyg944suDkd4VIkg8eSSeIOUc4UYjKecIgiAIYthCxTmCiHFYvzmAlHNE7CJKas0aWJwDgFHO1lazzY7ajr6w7Fe46e634E8f7MZv3/0Je+q68PqmalFQBjG84DjOY1srJbYS7rgfEyc6+9HWa4rQ3hAEQRAE4Q9UnCOIGGdgcY6Uc0RsMlhSq6fbYzGx9fsjbZjz/Eas2FUvuv1QY4+XexDRTnOPCXpn+ENRmstHkdpaCXfclXMAsLu2K/w7QhAEQRCE31BxjiBinAq34pzZaofJaovQ3hBE6KhilXOZCR63YRNbY8l3rt9swyOfH8B1y7YKE3TWcs+9SE8MH1i/ufPKM4XfKRCCcKexe+AxQa2tBEEQBDE8oOIcQcQwVpsdRz20s1FiKxGL8Mo5mcyz5xzgamsFgCPNsVGw2lPXhUtf2oS3NtcIt50zMh3/vXmK8H8qzg1fjjAtrePyk5GRqAZAyjlCjMlqQ1uvGQCQm6wVbt9zoitCe0QQBCHmle+OYuE/N2Pfie5I7wpBRCVUnCOIGKamvQ9m60DT+x4KhSBiDI7jUNVqAAAUpMZBq1J43K44I15IcR3uba0Wmx3PfV2JK/+5Gcecr12jlOOReafgnRunYEpJOrQqx2W+MkYKkScj7HE6MjsR+SlxAIBmvdHj+Z04OWliWlonj0hFpk4DwKGcszuDcgiCICJFQ1c//rbmMHYc78TTqysivTsEEZVQcY4gYhhvahlSzhGxRlOPEb1OXy5vqjkA0CgVGJHu8O062tIL2zCdtB5t0ePKVzfjhXVHhNcwoSAZX94+HTecUwK5XAaFXCYoBY939KHfTO3sw5GjTFvryKxE5Kc6inMcJy7IECc3DV2uYyEvWYuJhSkAHNf7Y22GCO0VQRCEg59qO4Xft9V00JiEIDxAxTmCiGEON7lM4EcxRvgUCkHEGlUtrsnnyEGKc4Dru2Cy2odla+B/fzyOS1/8HvvqHW0hCrkMf5pVjo9+O21AEMboHEdxjuNiy2PvZIHjOFQ621pzkrRI0qqQlxwn/P1EV2wmDhP+w/rN5SbHCcU5gHznCIKIPLuYcBqz1Y6t1e2R2xmCiFKoOEcQMQwbBnFGcZrwOynniFiDVReVeUlq5RH5zrUMr3bPmjYDHvh0P0zOdsayzASs+N00/HHWKKgUAy/po7Ndr/UwtbYOO9p6zeh22hDwYSa8cg4Qq6WIkxs2qTUvRetWnOv0cA+CIIjw4b5IsOlIW2R2hCCiGCrOEUQMw0/GtSo5TstPEm7Xk3KOiDHY4BN39Zg7bGLrcPOdY73jZp+ajS9vn47xBSlety/PYYpzjJKWGB4ccWtpBSB4zgEUCkG4aOgSK+fGFyRD5kxsJuUcQRCRxGy1Y3+9OARi05HWCO0NQUQvVJwjiBilz2xFbYej5ak8W4eUOLXwt55+Us4RsYU/ba1s8Y5NwhwO1DHFmItPyfEafMEjVs4Nr9dKiFuRecUnq5yrp7ZWwgmrnMtN0UKnVQnnwopGPYwW8nciCCIyVDT1CIp/nsrmXvJNJQg3qDhHEDHKkeZecE6v+9HZOui0SuFvpJwjYg1eOZeWoEZqgnrQbcsyEwVFydFh1tZ6otNVjClMix9y++wkDZKc3/1KLwExRPTCFo95xWdBiutzr+8i5RzhgFfOqRQyZCQ4klr51larncOBhm5vdyUIgggprHqXT5IGSD1HEO5QcY4gYhQ2qXV0jrg410Oec0QM0d1vQaveBGBo1RwAaFUKFDkLW0daesFxwyexta7DVYwpTIsbZEsHMpkMY3IcLe1NPUZ091Fhfjghamt1HttJcUokahznc2prJXh45VxOshZyuWP1YWJRivB31oydIAginOxmzj+3zigVfiffOYIQQ8U5gohR2DCIMTlJSIpTCf+ntFYilqhi/OaGCoPg4RNb+8w2NAyjtgpeOadSyJCt0/p0n/Ic13tSOcyUgic7fFtrRqJGUITKZDLkpTg++4YuI+z24VNcJkJDn9kqBIfkMmm+lNhKEEQ0sMt5/lEr5bh2ShF0zgWm74+20TWMIBioOEcQMcrhZpf5e3lOoltbKynniNiB9eUqy0zw6T4j2cTWYZJiynEcTjiVUvkpcYI6ZihY37kKam0dNnQYzGjrNQNwFZN5+FAIs82ONoMp7PtGRBdsam9esqtoPzpbB63KMdSn4hxB+Mex1l5c/+Y2vPLd0UjvyrCm02BGdZvDF/jUvCTEq5U4uywdgOM6d7CRwqoIgoeKcwQRo/BtrWkJamQmapCkZZRz/aScI2KHKj+SWnnYYsfRYZLY2tVnQa/JUVj3xW+Op5wpzpHv3PBBFAaR7VacS6XEVsJFYzeT1Mqk+SoVcozLTwYAnOjsR1svFXIJwlde23AMGypb8bc1h8nfMwh2n+gSfp9UmAoAmF6eKdy2kXznCEKAinMEEYO09ZoExcXobB1kMhk0SjnUCsdXnpRzRCxR1eJ/cY4tWA2XxNY6JgyiINX34tzoHDaxlYpzwwXWb26gco5CIQaD47hh5SUZLI1elHOAuLV1T4DquVa9Ccu31VKyInFScazNNTaobadk7EBh/eZ4H8wZozKE2zZWRmdxrqnbeFJdR4jogIpzBBGDVLqFQQAOnyK+tVVvIuUcETvwCqM4lQJ5yUOHJABAWZar/fXIMPFhO8EopApSfXudAJASr0Z2kiMdrbJZT4PNYQJbNGbbsAFSzg1GW68Js57dgNnPbxR82GKdBlY553YOnOhUqgCBt7b+5r87cd8n+3DLOzsCuj9BDEfYdvHmHipMBwp73pnkXCwYkZ4gBHPtPN4Jgym6RAN/W1OBqU+tw+3v7470rhAnGVScI4gYRBwG4ZrU8aEQPf3RdREkiEAxWW2o7XCsaJdmJvjswxavVgoFruGS2FrX4Vq596etFXApBbv6XMm2hP9wHId+sy0szzVoWyvTukjKOTFf7WtEVasBlc29WHOgKdK7ExZY5VxuiptyjklsDaQ4t7++GzuPdwIA9p7oFrXQEkSsYrXZ0dRDxblg4ThOOO9kJKpFC4vTneo5i43D1ur2SOyeRziOw/JtdQCAVfsah8X4kIgdqDhHEDHIYaY4V84U5wTlnNFCFxsiJqhp6wMf9FWW6VtLKw/fKqg3WtEyDApWbFtroR/KOYBCIaSA4zhc/3/bMe6RNfhsd33In49XdKbGq5DuTGrlERXnSDknotVp6QDgpClEs8o5d/VwXrIWmTqHcnZ3XZffyYjvb68V/f/HY9EziSaIUNHUY4SN+a40UXEuIKrbDIKCeWJhCmQy1wLq9FGM71xlW9j3zRt1Hf3oMDiuIzY7B32UqfqI2IaKcwQRg1QwvlKstxZfnLNzgCFM6g+CCCWBhEHwjGKDEoaBF1tdB9vW6qdyLmd4vdZopKa9DxsrW2G1c3hrc01In6u734LmHkdhaVSWTjShAYAsnQYqheM2Us6J6TS4inPtTKEulml0esFpVXKkxKtEf5PJZJhQkALAsRBxzJma6Av9Zhs+29Ugum1LFRXniNiHbWkFSDkXKLtYvznG/xIApo1Mh8LZ7bApikIh2AALAOgynBz2CDw9Rgt++9+d+MPyXTBaaK4Ybqg4RxAxht3O4Yhz8l2YFodEjVL4G5vYqjeeXBcbIjY5GkAYhKfth0MoxAmnci5OpUBGonqIrcWwyrnDpJwLCPZY21/fHdJBq+i4zh54XMvlMsFbjIpzYjqY4lyHIfaVcxzHodF5DOQlxw0o5ALApABbW7/c1zhANfLjsY6A9pMghhP1XeIACApDCQyR31xRquhvSVqV4EFX1WqImmsZG2ABAJ19J8ciD89L647gq/1N+GJPA/774/FI785JBxXnCCLGONHZjz6nKm50dpLob7xyDqDEViI2YIsYgba1Ag7fuWiG4zghEKIg1fMEfDBGZSeCvwsp5wKDPdYsNi7g5Evfnst7UisP39qqN1rRQ4stAmxxrt0Q+5OqHqNVUMK7+83xBJrY+gHT0pqR6GiNre3oi5pJNEGEioHKudgv9IcCvjgnkwHjC5IH/J1tbf0+StRzu+s6Rf8/mYpzXX1mvLvVdd7/Ym9jBPfm5ISKcwQRY1Q09Qi/s2EQgFg513OSpNgRsQ3f1iqXAcUZ/rV6ssq5o1Ge2NqqN8FktQPwL6mVJ16tFJLRKpt7/fadIsTFOQDYcbzTy5bBwyo5R7kltfJQYqtn2IlU20nQ1to4SFIrz/iCZKE476ty7mhLL7bXOI7xUVmJ+MWUIuFv1NpKxDon3M6pLXojXTf9xGix4VCjY04yKisROq1qwDbTyzOE3zceibzvnNlqx/6GHtFtXX0nz3zpP5uPCwIPwLGYU9veN8g9CKmJaHHu+eefx4QJE5CSkgKNRoOCggJcffXV2Lt3r7CNXq/HkiVLUFBQALVajbKyMjz88MOwWMRflB07dmD27NlISkpCfHw8zjnnHHz99dd+7c/dd98NmUwGmUyGqVOnSvIaCSLcsC1ro92KczpRWysp54jhjd3OCcW5EekJ0CgVft1fp1UhN9mhNKlsju7E1jpmouBvUisP7z/Zb7GJwiUI3zja6lacqwlde9+RQZJaeSgUwjPtJ1lbK5vUmpfsWTmn06ow0qksPtTY41NLNquaW3RmIc4uSxf+T6EQRKzjrg612Dh0nEQKKinYX98Nq7Og6e43xzM+PxlJzq6eH462iUI4IkFFUw/MzoVQnq6T5HPvM1vx1ubqAbev3NfgYevQ7ofVZh96wxglosW5DRs2oLW1FSUlJSgrK0NjYyM++ugjzJw5EwaDATabDXPnzsULL7yAlpYWlJaWoqamBkuXLsUNN9wgPM7u3bsxY8YMrF27FhqNBmlpadi8eTMuueQSrF692qd9+fbbb/GPf/wjRK+UIMIHGwYxsDjnamulNihiuFPf1Q+jxXEBL8tMCOgxePVcd78lqlU2J0RJrYEV58h3LnA4jkOVm3Ju5/HOkCkpeJWeTqtEljNp0x1RcY7aDAE4Pif3QIhoLrpLAZvUmpviXVXLT46tdg4HGroHfUyz1Y6Pf3IkEqsVclw5uQCTilKgUTqmDaScI2KdBg/nVPKd8w9WpTuxMNXjNkqFHOeMdKjnuvos2Fc/+Lkp1Hhq++88SZRz72+rE17rlJI04fYv9oS3tXXZpmpMWvo1bv7P9pNyrBrR4tzy5cvR0NCAXbt24eDBg7j//vsBAB0dHaioqMCnn36K77//HgDwySefoKKiAs8//zwA4L333sPOnTsBAA8++CD6+/tRXFyMY8eOoaamBlOmTIHNZsPdd9895H50dHRg8eLFKC0txeTJk33ad5PJhJ6eHtEPQUQD/IlMpZChJENcsEiKY9paSTlHDHPYpNYyP8MgeNiWwSNR3Npa18EU59L8b2sFKLE1GFr0JvS6GeP3GK0h8So0mKxCsW1UVqJXf0FRWysV5wAAepNVUGoAjkJUT39sX+tY5VyuF+UcAExglCu73AzP3fnmULPg3XfxqdlIS1BDo1Tg9BGOCXZ9V7/onEQQsQTHcR7VyC16Ks75A3ueYUNp3GF95zZVRtZ3bpeH4tzJoJwzW+14Y9Mx4f9LF5wmXDMONfYMsPUIJT9UtUFvsuKbQy2IU/nXERMLRLQ4p9Vq8fnnn2Pq1Kk45ZRT8OSTTwIAMjMzUV5eLqje4uLiMHfuXADAVVddJdx/zZo1sFqtWLduHQDg4osvhk6ng1KpxPz58wEA+/fvR0PD4HLMW265Bc3NzXj33Xeh03n2dnHnqaeeQnJysvBTWFjo34sniBBgstpQ3WYA4DDHVynEX3FxIMTJsRJExC7BhEHwsC2D4Rx8+Avrf1MghXJuGKTTRhPssRGvdg0Wt4egtZUtOnvzmwNIOeeJDg/q17YYb21llXN5PijngKF9597fXif8fs2ZLq+5qaWu1tYt1NpKxChdfRb0e2j9buqO7XOJ1PDnmXi1QrDV8MT0US7fuU0R9p3zdG48GZRzn+2uR4NTGTprbBZG5+gwb3yu8PeVe8PT2tpvtuGn410AHP7KRemBjXeHMxEPhGhpacHWrVtx6NAh2O12lJSU4LvvvoNOp0NdnWNwkJ6eDrncsavZ2dnCfWtra9HW1ob+fsfAJCsrS/ib+3beWLZsGT7++GM88sgjmDJlis/7fd9996G7u1v44feVICJJVYtB8GtwD4MA3AMhYltNQMQ+Va0G4feRASvnmMTWKC5Y1UnQ1lqSkQCVwqHCqjwJWwWCgS3OzRufJ/y+MwShEKIwCC9+c4A4mZM85xx48oTqiPHEVl+Vc2NydNCqHGPpPSe6vG5X19GHTc7UxMK0OExjvOZEvnPU2krEKOxiB2sr0NRDyjlfaekxCu/j+IJkKOTeE+YL0+JR6uz0+am2M2Lige4+C445x5WlTOdRrKe12u0c/rWhSvj/b88vAwBcyhTnvtjTEBaLiJ3HO2F2+s2dU5YxxNaxScSLczfffDPsdjuOHz+ORYsWobq6GosWLYJer/d4ELC3yWQyrweK+3aeqKurw5IlSzBjxgzcd999fu23RqNBUlKS6IcgIs3hZld79eicgcckKeeIWKJKAuUcW9SL7rZWxyBXp1UiOX5g4pkvqJVylGY4Xm9Va+8A02PCO2xxbsGkPKHIEQrlHNsqO1jRWaNUCBNHUs456PRQiGvvjW21C5/WqtMoPaYh8igVcozLTwbgOJ94e18+3HkC/BB60RmFkDOT6gkFKcKxv+VYe8z7+REnJ6xSnW/lBhwFp3DS3W/BukPNMJiG32L6Lh/85lh49ZzVzuHHY6ELWxoMdtHi3FEZ4E993f2xPV9ae7BZWOw+qyQNp49w+M3lJsfhrGLH71WtBlSEYVH3hyqXcnLayPRBtoxdIl6cAxzFs6KiIsFz7sCBA1i+fDmKihxS+ra2NtjtjklES0uLcL/CwkJkZmYiLs4h429ubhb+5r6dJ6qqqtDb24utW7ciKSkJiYmJ2LRpEwBg+/btSExMxL59+yR8pQQRWipESa0DJ3Ui5Rx5zhHDHD49M1OnQXJcYAWrlHg1Mp0Fjmhta7XZOcGcOtCWVh7ed85q54QWeGJo2GNjbE4SJhSkAHBM4qQ2CT/KFIlHDdIKBLh851r1Jp8SOGMdTyq5aA56CRaO49DoPP5YJaU3hmpttdk5fLjD0QkilwELTxePn9VKOc5wTtwau42oJd+5qMFqs+M37+zEOX/9dsi2ZWJw2DCIyUWuwlK4lXO3vL0DN/1nB+75aG9Yn1cKxGEQKUNuL/KdOxIZ3zk2DGJSUQpS4tUAYls5x3Ec/rn+qPB/XjXHc9mE8La2bj7qKs6xSu2TiYgV59rb2/HOO+/AbHYd8KtWrRJ+NxgMmDNnDgDAaDRi5cqVAIAPP/xQ2GbOnDlQKpW48MILAQBr166FXq+HxWLBZ599BgAYN24c8vIcLSiLFy/GmDFjsHjxYtG+mEwmGAwGGAwGoQhot9uFxFiCGC4cFhXnBirnkuJIOUfEBh0GszARHxmgao6Hb21t6zVHZQtcU49RMLkvTA0sDIJnNNMmeZhCIXyGLwSnJ6iRmqDGmcWuJLMdx6Vd5eeVcwlqBfIGaVMExL5zjZQk6PH7G43faanoMJhhcipgc5OHPjewChZPBZyNR1qF42jm6CzkeDj+2AkTpbZGDxsqW7H6QBPqu/rx4rojkd6dYQ2rRD4tP1mwgwhnWmuP0YKt1Y5ry3eHW0KWDB4qdtW6LB8GC4PgmVqWDqVTqhYp3zn3dNkU56JvlyF250tbqtqx54QjIXdsbhLOL88U/f2S03IFBeHKvY0hVUt397vSesuzE5GlG3rBKRaJWHFOr9dj8eLFSElJwbhx41BUVCS0lup0Olx55ZW4/PLLce655wIAFi5ciDFjxuCOO+4AAFx77bVCsurjjz+OuLg4HD9+HKWlpSguLsa2bdugUCjwzDPPCM9ZW1uLw4cPCx50559/PjiOE/2cd955AIApU6aA4zhMnDgxXG8JQQQNX5zTaZUeJ3WJGrY4R8o5YvjCmuYH6jfHw/rORaN6TpzUGqRyjlFike+cb3T3W9Cqd7QA8u3Tpxe7ihw7aqTznTNabIIaaeQgSa08olAI8p3z6DkXy22tbEE2zwfl3ITCZOF3T8W597e5PJoXnem564RCIaKTz3a7VC2bjrSihxZgA4ZVzhWkxglFguYwKucONbhsavrMNhwfRipVm53DXmfBJy9Zi+ykoc9NiRolJjtbiKvbDGFPg+Y4TjgnpsSrUJwejxSnhYjeZIXFFl4bkLqOPqw90BRy+5FX14u95tzHHJk6jbAgc7y9TyiehYKtx9rB16CnnaR+c0AEi3MpKSm45pprkJubi6qqKjQ2NqKwsBDXXXcdtm7dihEjRkChUODLL7/E7bffjszMTBw7dgxFRUV46KGH8NZbbwmPNWHCBGzYsAEXXXQRjEYjOjo6MG3aNKxatUpQ3xFErNPdbxEG6qOzdR4ndUqFXEga7IlxDwUithEntSYMsuXQjGQKVtHoO8cOUguCVM6NYRS1pJzzDbYQXOYs5E4uSgV/ipVSOVfV2iv4fY0cJKmVJz+VTWwdPpO3UOHJc64thpVzbBHBF+VcfkocMhIdbfy767pEapwWvRHrDjksYbJ0GlwwJsvjY4wvSBbGET+S71xUYDBZ8fVBl7WPxcbh20Mtg9yDGAxeOSeXATnJWmQnOb4znX0WmKzh6ag62Ngj/n9Dj5cto4/KZj36zI73aaIPqjmeGRFMbT3R2Y9257ViQkEKZDIZUp1trYAjwTdcGC02XPHqZtzyzk78kymeSc3eE1343tlGOiI9HnNPy/G43WVMCNbKvY0h25/NjBL7nJFUnAs7KSkpWL58OaqqqtDX1weLxYLa2lq88847GDt2rLBdUlISXnjhBdTX18NsNqO6uhqPPvooVCqxv9CZZ54ptLX29/fjhx9+wMUXXyzaZv369eA4DuvXr/e6X/w2P/74o6SvlyBCTWUz29LqfVLH+86Rco4YzlSJTPOHLmIMRrQntrLm1IEmtfIUpMYhTuWYWFdScc4njnoIaEiOU2G0s6h7sKEHvRIZdrPPNVhSK49IOddFba0e21pj2HOOVc4NltTKI5PJBP8nvdGK6naX7+QnP9UL7fMLTy+AUuF5iqBSyHGGs627ucdE3pVRwDeHmtHv5jm5al/oJtGxDq9Czk7SQqWQi9q7W3rCo8R1L8Ydahw+xTlWlTvJhzAIHtZ3bmNleH3ndnnwyEthinPd/eG7jhxt6UWbU/EttW0GC1v4u2VGqddz/pxTc4SW45V7GkLWYr3ZGQYhlzmCKU5WoiIQgiCI4GHDIMYMUpzjE1up5YEYzhwVqZmCU85FfVtrp3RtrXK5DOXOok9tRx/6zFSkH4oqL+mpZzhbW+0csLu2S5LnYovDo3xo1xYp56itVVScUysdQ9x2Q+y2tTZ0uz7zvBTfVLWs/xN/3HIchw+21wm3e2tp5Zla6po4RSpZkXDxOdPSyvujra9slWzR4GTCaLEJCip+8YNtywxXKMSB4VycY66H/ijnTstPRqqzlfSHqjZYw9hKusdjcc4lBOoMo3KOXZANVSt1VWsvVh9oAuBoXb1qcoHXbVMT1DjXqWps6DZiV510Vh48LXojKp3jn3EFKQGHvMUCVJwjiBjhcJPrwl0+SMJfkvOE12e2hfXCR8QWHMfBFkGDYr6IlqhRIscHP5PBSE/UIC3BsUIajW2tJzrE/jfBwp8fOC46lYLRhiflHAAhtRIAttdIU6Bgj79RvrS1plBbKws/gUrSKpHpbN9sj2XlXJd/yjnAc2Lr1uoOQQE3rSwdI9IHX/A4m3znooZOgxkbnCqj3GQtrj7DUVg1W+34roJaW/2FDYPI81CcC4fvnNlqHzAWGU7FOb54o5TLcFpe8hBbu1DIZUI7o95oFYIKwgGr9pvgPEemssW5MNojsMdgc4iUmq9tqBIsNG46twRaZ0eFN+Yxra1f7JFelcuGC51zkqa08lBxjiBihMMi5dzApFYeXjkHgFZViYDo7rfgouc24uyn1qEmAi1N/WabMHgpy0wY0jTfF/iiS3OPCd1R5sd4wqmcS0tQI4EJdQkUtu2dfOeGhldpxrulp57BhELsPC7NSjKf1KpVyUWqOG/otCokOc/p7ID+ZIUPf0hLUCM90VFw7+gzR3QhIZQ0dvvnOQc4POP4UyY/IfVHNQcA4/KTkeD0ndtSRb5zkWTV/kahHXnehDxcNi5X+NtX+6m11V9YH0f+HMwuAIYjsfVIix4Wm/g71dBtRJeHwJtoQ2+0CNexMbk6xKkHL/q4M4Npbd10JDytrRabHfudQQcj0uOFxdqUCHnOnWC6Jbr7LTBapPU5bOzux4pd9QAcc8JfTCka8j4XnZoNtbPt9ct9jZJfU3846vIYPJn95gAqzhFETMBxnFCcy0nSIjneuxxYp3X9raefinOE/6zc24CjLb1o0ZtECXHh4libyzSfT88MFnFra/QUrMxWOxqdK/WFEqjmAHFxjhJbB8dosQmBHGWZ4vTU/JQ4YdL2U21n0Epkk9WG4+2u51LIfSs68+qOxi5jzBahfMFis6PH6aWamqBGunOCxXEYFpPaQGhwKudS41U+T4J1WhVGOs+bhxp70NJjFPzJkuNUmH2qZ1NwFqVCjjOdnkBtvSZUtZLvXKRgW1rnT8jDWSVpQnHhu4pWsi7wE9YeIFLKOdZvjm/PBwaGREQj+050C+MzVqXrK+dGIBSiolEPkzMVld1nNhCiM4zXEHeLCqmPuTc2VQvF38VnjxDNC72RpFXhvNGOwmmr3oRt1dLaGfBhEGqlHKeP8N2nMBah4hxBxABNPUZhUjJYGAQAQWUBkO8cERhbGY8hdoUvXLATwTIffLl8oSTD1cZV1xE9CqSGrn5hoFsQpN8cz+hsUs75Sk27AXahECxu9ZPJZIJ6rs9sE/l+BvRcbX1Ccc0XvzkevtXZaufQoo+OUIiDDT14f1stDGFUZ7PKhvQENdKdba0ABA+pWMJm54RJm6+qOR6+bctq5/DEqkPCxPSKSflDtjfxUGtr5Gno6sc2Z0t9WWYCTs1LglIhx+xTswEA/RYbNhwOr7H+cIdVIBcIxTnXuaQpDIEQbBGOLZYfaoz+6/WuAMMgePJS4oROht11XWHpZNjNeKiJi3OuolVXGDsqTgwozkl3zHUazFi+rRYAoFHK8atzSny+77wJTGvrXukW5mvb+4TXfHpRqs/XoFiFinMEEQP4GgYBiJVzlNhK+AvHcfiRmYhFopXOmwdYMLBm6o1haFvxFXaQJoXfHOAw/+WNjg+Tcm5QhjrWzmBWeIP1nRP5zQ3iG+oO6zvXEAWtrX1mK37++o+495N9eHX90bA9L6tsSI13KecACMl3sURbr0loZ8xL8c93k52Asurna84auqWV52zGF+jHKirORYKVexuExZv5E/IFZe+c09jW1qZI7Nqwpd5TW2tyeJVzbBjEVZPzhd+Hg+/crgDDIFimO9VzNjsn8iILFbvrXN52E5hzI9uFFE71tfuit5TH3H+21KDP7GiTXXRmITKYRayhuHBMFrQqR+lo9f4mWCTyLf+him1pPbn95gAqzhFETMBOsAcLgwCApDhSzhGBU9Pehxa9a6IbieLcEUbtJVVbKzv4buqOfIGDR5TUmiqNck4mkwnniRa9KaxGx8ONIYtzxa5QiB1B+s6x4Rz+FJ1Zbzr3FfdIUNfRL6gd9teHbzLJBj+wnnOAOMU1VmALsf4q5zy1m00sTBnUr9adU3KToHN6YP54jHznIgFbWJ0/0aVqmVaWLqQdrjvULLlnVSzjqa01Xq0U/JpDXZzjOA6HnMW53GQtppamg3c4ONgQ3cU5juMEFVpynAolQwTLeCPcvnP8PqsUMpyS6zoHitpaDeGZL/UYLUInFI9Ux5zBZMVbm2sAOMI3fj291K/7J2iUuHCsQ5XbYTALrajBwj7OtJPcbw6g4hxBxARscW6otlZSzhHBsNWtfamxywh7mH2u+ONdo5SjOF2aglVecnQq53i/MwAolKitFRC3tlZSa6tXhirOjcnRCcb4O2o6gipQsM/lT1trforruIiGUAhWpRZOtQGrnEtLUCM9gWlrjcHEVvY8leuncm5Mjk5QQPBc40MQBItSIcdZTt+5doNZMIEnwsPRll5BYTWhIFlkzaBSyHHRKY5JtMFsC5t3VyzQ4FycS45TIZEJYOL9RZu6jSEtRNd19EPvtAM4NS8JWpUCpc5FyKMtvZKplULBic5+tDnPtRMKUyD30TfVnSmlaUL4QKiP3e5+i2CVckpukqilMhKec+5+cwBEC+LB8P72OsH+Yf6EvIDGlPPGu1S5K/cE39rKcRy2OJVziRolxuf7nu4bq1BxjiBiAL6tVSGXDam4EHnORVkqJRH9/OhWnDPb7GgNY8tYv9mG6nbHQGpUdiKUCmkuY5k6jWDAH03FuVC0tQJuoRBUnPMKXzBTymUY4UEFoFTIMdnZ2trcYwpKuca3taoVchT5MWhmlXOeBvbhRlScC+M1hlXHpSaokcYo59pjsK2VVc7l+amcUyrkGMdMghLUCpGfkK+wra3haD8jXHy+h1XN5Q/4+9xxLq+yr/ZRaqsv2OwcGp0hK6zVBeAKhTBZ7SH1QTvY6Gqx5FVcY53/mm12VLVGbxF8N+M3F0gYBE+8Win4udZ29KGmLXSBM3tPdAm/u+9znFoBjTOQI1xprZ7GEFIlBL+1uVr4/TfnlQX0GOePzhKK1qsPNMFkDU6Ve7hZLxR0p5SkSTamH87QO0AQwxyrzY4q5wSyOD1+SCPNJFLOEQHCcRy2ekhoCmcr3ZEWveCx408L1lAo5DJk6RxKm2gqzrFtrfkpoSnOUSiEZ2x2Dseck4IR6fFQeRk0njGCbW0NzHfOYrOj2vlcpZkJfg1QWb+x6FDOuYpk4WyZZotzafFqZCTEdiCESDmX7J9yDhBPROdNyEMCoxLylalMKIT7wg0ROjiOw+e76wEAMhlwGaNm4TlnZIbQdvz1oeagJ9EnAy16o+Dj6H69FSe2hq7Yz/rNnZLHF+dc1+to9p1j/eYmBeg3x8MGzuyt7x5ky+DYPYRHHq+e6+oPl3JuYMiaFG2tBpNVCDubXJQyZJeVN7QqhaDK1Rut2FQZnLJx81FqaXWHinMEMcypaTfA7JS5+1Ks0DHKOT15zhF+UNfR77FwFc6CQEWj7+En/sL7zrX1mmC2RkfrCD+Yyk7SSJpgVZ7FFOcoFMIj9Z39wnEwmCKZX+EHgO01gfnOHW/vg8XGDflcnshI0EDtXN2PNuVcj9EKa5jasETFuUSx51xstrUO9Mbyh7njciGT+Z/YxzI2N0lQ4/94rD3sFgcnK3tPdKOm3TGJP7s0XVQ44tEoFZjFTKLZSTDhGVaN6q5Uz0lmE1tDt4DH+sqdmudQt7I+aNHsOydKPS1ICeqxxjCvuTKEY5Q9jHJugod95sOzOvssYfHV9LTYLUVbK3u98NQF4A/sYkCwqa2bKQxiAFScI4hhToUffnMAkBTnUs5RIAThDz9Wuwb3bGEsnAUBcTKxdMo5QKw+CUci21D0m21CoaNAojAInuR4leChc7hJT2buHjja6lvwyMTCFKElemeAxbmjbFJrln9FZ7lcJqg86rv6I/5ZureQuptbhwqR51y8GmlMWmu7IRbbWh3nKJkMHoszQzGpKBUb7pqJ7+46P2AVhUIuwxSnwqWzz0Iq3DDBtrQumOi9HfmS05jW1v3U2joUJ0RhEOLvlEg5F0J1/UGnMk6nVQoFQrY4d6gxOr9jZqsd+52Fw+L0eKQy599AYH1xQ3VecQRYdAFwBlhkDCxa8cU5s9WO/jAEq7CL3XHOBdnmnuB9DvnrBSAOQAuE6aMyhUWZbw4GHjhjtdmx9Zij2yA9QS1aND6ZoeIcQQxz/ElqBdyVc9TWSvgO27Z05WSXx01910AZfqioaHKtGgc6ofRGTpJrpTyUK+O+wr6vhRL6zfGUO9+/HqM1pG06w5WhwiB4EjRKYfJ0uFmP7gC8adik1lHZ/icQ88W5PrMtpH5IvtDmplILl5G2u+ecVqUQvHHC2db6U20nFrzyA15adySkz8MrITISXcpJfylKjw9IdcdCra3hxWbn8IWzOKdSyDDn1IEtrTwzyjMR7wysWXuwOarDBKIBtoDBBu0A7m2toRkfdBjMQnfCKblJkMkciz6ZOg3SncWuQ409EV+A8cShxh5BaT6pKHWIrYemIDVOKE4dCVFxzj3Agn+/WcShEKG/tvIFYrkMgi9on9mGXlNw8zWR0jrI4pxaKcccZ+HfYLbhu4qWgB5nb323EH5ydll6wAEisQYV5whimCNWEvlSnCPlHBEY/AqXRinH3HGuCUG4lHMcxwnHe0aiGpk6zRD38A92pTwafOf4llZA2qRWnjHkOzcovhbnAHFr60+1/qvnjgSY1MrD+iOF0wPSE+7KuXAZafPFOaVcJqzq862t4Wxrfe7rSuyp68I/vq7ECQ/+QVJgsdmFVqdgJ1rBwnpDUShE6Nl6rF347M8fnYXkeJXXbbUqBS4YkwXA8T2k4ungsAti7sq5HKY4F6rFu4Me/OYAQCaTCaEQ7QYzWiVK75QSqcIgeORyGcqdC1XHO/rQb5ZetebLPqewxbkwLPLw14ycJK2otTrYBVS28JzrZ4CQJ9gAoUBbW9nrxTnkNydAxTmCGObwSYtxKoVPCX8JagX4xQlSzhG+cqKzT5DbTy5KRV5ynBB1Hy7PudZekzABl1o1B4il/o1RYKzPhkFImdTKwyptQ+npMlxhi3ODtbUC4lCI7TX+h0IcGSIVdihEia0RPnbdlXNdYVLO8ROn1AS1oIDg1Sbd/Zaw+Eja7JzIFH1ziIpVjjYnx+9STLSCYUyOTmj92lrdQb5zIcbXllYediFt1b6mkOxTrMAuNOYP8JwLvXLuQMPApFbh/0yx7kAUhkLsYhalgg2D4BnlHKNwnPh6LBVscW6Sl+JcKlP8DrUq3WCyCuq8gtR4ZEmo1mSVc7kpwS/onF2aLlxfv61oCUjZ98NRxm+ujIpzPFScI4hhTJ/ZitoOxwS+PDvRJ0mwTCYT1HNUnCN8hVfNAcCU0jTI5TJhZbm+Mzw+V4dD6DcHiD3nokE5xyqgCiX2nAPEni4VVJwTwXGcMBnIS9YOmWTJKud2HPdPOWezc6hqdSZuZyQE1KLIKuciGQrBcRxa3ZRz4WgFAoAOZxEwjVE6pDGJreForz3a0iuapIRKSSZKapVgohUMcrkMU0ocxenufgsONUVf4SBWMFltWLXP4R2XoFbgwjHZQ97n/NGZ0Koc55S1B5rCFtAyHOHVRWqlXJT2DDgK/fwQO2TKucaBYRA80Z7Yyhe61Eq5ZOOzUPvO7WGKc+MLkj1uk8IU50J9DWEX1vJT45Cd5DoGgy/Oue6fJ8GCjlIhxyXjHK2tRosd6w41+3V/o8UmjJXyU+JQmBbZRaZogopzBDGMqWzuFVbP/VES8b5zPRH2JiKGD2w7DO8xxK8sG8LkcxXKpFYAyGEGLE1RUJyr62A850LQ1joyKxG8xUoltbWKaO01CUEGZT60mWYnaYXB5Z66Lr9UWnUdfcL2gbS0AuK0zkgq53pN1gGvPRzKuT6zFUaL43lTE1yTqYwwJ7ayaYWAI4kuFAsXbKqkFBOtYKHW1vCw4XCrcF66+NQcxKmHTvCOVysxc7SjtbXdYMa2AJS9JwMcxwnnzrxk7YDFbqVCLlhphMqjlW9rVSlkA6wUxkZxKESnwSykB5+WlxSwB6Y75cw4T+oxisVmx756h1KxKC0e6YmebVJSwug5d8KtW0LscxhsW6vj2Naq5KKCYzBcNt6l3P18t3+trT8d7xTGCueMTPfo93eyQsU5ghjGHGZWqH0Jg+BJYpRz0WgsS0QfW6sdA3q1Ui54c4Tb5yqUSa0AkKXTCMWqxigIhODbWhVymUjVJxVxagVGOIt+R1r0sFE7mkBVi0H4faiWVp4zna2tJqsd+5n2pKEI1m8OELc9R1I5597SCoTHc44Ng0hnFC/pieFNbGXbpADHhOpYm8HzxkEQTco5ADibaUn68RgVf0LFZ0xL63wfWlp5LmFaW7+i1laP9BitgurVvaWVh/eda+s1SR6u0W+2CQrq8mzdgAJXWWaiYCUSbco5UXuoBGEQPKxyTuri3OEmPUzO4tBgHnlsIERXiD3n2Gt3gYTKOY7jhGtGXnKcZIWwM4vThH1cV9GCrw/6rp77oYppaSW/ORFUnCOIYUygxQpeOWe22YWLE0F4o7G7X2ifnliYAq0zQYtNMwuHWodPapXLAku0HAqVQo5M5+ppU3fkPef4gmdOkhZKRWgu13xR32ixi5R6JztHW30Pg+A5nW1t9UOdcqTFdR4f6cciC0tOslZouWqI4LHrHgYBhKedtNPgKgCyyjm2rTUcyjnWb44nFL5zrCdmpD3nAEdROc3pP7S1up0K/SGg12QVWsfSEtQ4148J7QVjsoRiz+oDTeQL6AG2MOJNjcormTgOkocyHG7Wg/9Y3P3mAMf4hB/3HGvthdEifUBCoOySOAyCJztJI4T7SO2L6+s+p4raWkOtnGPaWlPikaVzLby06AMvzvX0W9HnDNSQcjFHIZfh9gtHCf+/56M9Pned/HDUdV08uyx9kC1PPqg4RxDDGNaDy5+21qQ4SmwlfIf1m5ta4jK+D6dax2qzCwqj4owEoUAoNblONWCLXvqVcX/QGy2C4iiUXhyU2OqZKj+SWnnOLHZ9N3bU+O47d7Q5eOWcSiEXJo6RVc4NnLB2haHlnVXFsZ5zorbWEKseDCaroO5IYNoNNzOm11LRwPoHRYFyTi6XYWqp4/jXG62i1ElCGr4+2CS0bl86LhcqPxZsEjVKzBiVCcBRVNoZQKJ0tFPTZsBDn+0P+Pvm7vfliWwJDfrdEYVB5HlebOdbW+2cePwfadgwCCmLczKZTFhAbOg2Sjpf2c0spEwcJMCCbWvt6g/tNeREl1g5lyVSzgVeDGYX7KRezLn2rCJcfIrD+7Kzz4I7/rd7yMWZHqMFe090AXCMedgiJEHFOYIY1vBqpuQ4leCF4Qu8cg6gUAhiaDz5zQHhTYisaTcI/hRjQ9DSypPLrIy3SLwy7g91HaENg+BhPV2iabAfaY4GUJwbmZkorPLvPN7pk2UAx3E45Hzf5TKgJMP/pFYevs283WBGvzkyqgrPba1hUM4xz8EruABxi6snVZ+U7D3RLShf5k3IE46FLcfaJVcq8cl7CrksaiY2rO8ce80gpOGz3YG1tPLMdZq3AxBCJWKJez7ei7e3HMdv/rszoGRm1seRtexgCWViK1vQdg+D4BH7zkVHAdxu54RghYxEjeTJ8uwY5YiEC4h7nMUhlULmUanIw/qzhdqigVfOyWQOhZtGqRCuZ8H4ILNJrXkSW6TIZDI8fdV4oeV7c1U7XttYNeh9th3rEK6V1NI6ECrOEcQwheM4QVbP+hL4Au85B1AoBDE0vN+cSiET+YmEMyGSNUD2RyXqL+zgO5KtrWJj4NAV50KdhjZc4YtzKfEqpDPFnsGQy2U4w6meazeYUT2E15jFZsd9n+wTJlnBKkLDWSz3hkflXFg859i2VqY4F8ZAiF1MGMTkEanCQkZXn/QJpo3OVMlsnQYKH1LawwG7cLOFinOS0t5rwqYjDkVYfkocTg/A1+vCsdlQKRzHyur9sdXa2tDVj23OcUqP0SpKPfWVeh+Kc6xyTurQKHaf2WRWlmhMbK1uNwghJRMLUyQ39heNUZp6B9nSd3qMFsHfb2xu0qDX3ZS4MKa1Osd9WToNNEqF8DvgaGsN1COcTyEGXN0hUpKaoMaziyYIns3Prq0c4L/KwvrNTaOW1gFQcY4ghil6k1Xwi/NHNQdAWNEHSDlHDE5Lj1EoMkwoSBGlw7E+V6EuBhwW+SuGrjjHBi80RjCxtY4pdoayrbU4I0GYsEnt6TJc0RstaHKqIkZmJvo12Th9BOs75711TG+04Ma3tuP97XXCbb8/f2QAe+siGhJbI1ecY9paRcq58LW1sm1SkwpTRIoAKRNMjRab8FpCMdEKlJFZichwenZuq+6ANYK2ALHGqv1NQqvYvAl5A5JEfSE5TiX41DV2G7HbqRyKBVbvF4dc7Aqgbde3tlbXWLtJwsRWm50T0uhHpMdDp/WcpskqvAIpQIYC0XlvkPbQQCkPQSjE3rpu8HWuodpwlQq50G0UymuZ0WITlOfsgixfELbYuIA97xpFba2hUVpPK8vA784vAwBY7RxuX74Lei9tyJudfnNyGTCllIpz7lBxjiCGKawZbaaXCHBvsBd+8pwjBuPHapff3JTSNNHfVAq5IGUPdTGgglGehCKplUesnItgcY4JZyhMC51yTqWQC2mk1W0GmKzRYzIdKY61uhRvvra08rC+c9u9hEI0dPXj6n9tEZQwaoUcL/58Eq46vSCAvXURTiWrN1h1WryzkB+OQAhWOccW51ITwpPWynGcYDCu0yhRlpkoUgRIGQrBnpdCNdEKBJnM5TvXa7Lioc8P4F8bqvD+tlqs3t+ErcfacbhJj5YeY0Bthyczn++uF35fEEBLK484tTV2Wlvd23Q9BbMMBXvOzPHyvcphlHMtEra1VrcZ0O8MeBi8xVIttCVWNOoDVlJJye4QhUHwlDPhX1IV53bX+eeRxye2hvJaJg6DcF3LpUhsbWSUc3khXNBZMqtceD9rO/rw0GcHBmzTqjcJXRrj8pORHOe5EH0yoxx6E4IgopE2pjiX4WdxLimOlHOEb3jzm+PJT41DQ7cRHQYz+sxWxKtDc1nhk4kT1ArJPU1YWLPcSCrn2IFaKF8v4GgTrmjSw2rnUN1mCGnxczjA+s3xhUtfGV+QDJVCBouNw87jA9Ub++u7cdN/tgvmzinxKvz7l2fgrJK0Adv6i7itNTLJu6xyriwzEfvqu9FntsFktQltOqGg0+DZc06lkCMlXoWuPktI21obuo3CgtmEwhTI5TJBSdbWa8LWY+2w2Ox+mfh7fy7GPyiKlHOA4xqxcq+jUPLe1tpBt01QK5CWqMb1Zxfj5uml4di9YUl9Vz+2O1W4o7ISg1KOX3xKNu6Xy2C1c/hqfxPunztW8jbEcNPUbcQOt3Mt22LuK/wCI9tS6E42u3gnYXFOFAYxSHEOcLRhNnQboTdZcaKzP6SLd77AF+dkMsf1T2rSEzXISFSjrdcsYXGuS/jdt+KcCrUdQHe/BXY7F5BydSjEViZscU7sczh2iOPDEw1hUM4Bjuvti9dMwtwXN6HXZMWKXfWYUZ6BKya5Fh5Zy4Np5DfnEVLOEcQwpZWZBPnb1soq57zJjgkCALY6L6RKuUzUssfDrvA1hEg9pzdahGJVeY4uJAMjntwoUc7xAzW1Qo7sEBu+l2cPr1CI7j5LSBUDR1v9D4Pg0aoUGJfvmKAcazOIilXfVbTgZ69tEQpzI9Lj8clvp0lSmAOAAtF3MTLHLl8A02mUoklFd4hbWzuY4lxqvNgjkC/WhTIQQpT855zsyWQyQT1nMNuw90S3h3v6D6uCiCblHADMHZfrsweuwWxDXUc/nlx1KCyhIcOVL/a4giAWTMwLqpiWEq/G2c5j8kRnP/bXR0drZDB8tX+gArCuo1/UXTIUJqtN2N5bSyvgOK/ximApi3Nsi+qp+UMX5zzdLxIYLTbB+25kZqLXdtxg4ccobb1mj9YJ/sBxHHbXOc7FSVolitOHDmFKdl5TOC503Ub1oqTWgW2tANASYCs1v9Cs0yhD9hnxFKXH44krThP+/8CK/Tje7upGYNOUzymj4pwn/C7OmUwmbNq0Ce+88w5ee+01fPLJJ6iurg7FvhEEMQiitla/i3MudVNPPynnCM+06k2ocrb4jStI9qiKYweyJ0LUSseuloZa1cUOhBoiFAjBcZzQ1pqfGhfSYiQgNlyuiPLi3L83VmHC0rX40we7Q/YcgSS1srCtrbx67p0fj+Om/2xHnzNFdXJRCj757TSU+qnMGwyRci5Cba38olGGTiNOuQtx8FCHs7iToFYMMPfOcCa2Gsw2GC2hadtmPa5Y3yW2tXULY4IdDGL/oOhSzqUlqLHxnpn46o/T8d6vp+DVX0zGk1eMw92zR+PX00tw9ekFmDU2G2cWpyLDGdZh56L/vBNJNhxuFX6fNyHwllaeS05ztbau8lDYGm6wLa3nj84Ufh/MkN4dX9v+ZDKZMEZolnDxjk1qPSV3cPXZKXlMca4hssW5Aw3dsDq9EEPR0sojpe9cfVe/UODjVc5DkRrPhkKE5lomamv1opwLpCDMcZxQnMtNCc9izoKJ+bhycj4Ax3X39vd3w+L0IOUtHtQKOc4o9j/Y5mTA5/6jzZs346WXXsKnn34Ks9mMlJQUxMXFoaOjAyaTCaWlpbjlllvwm9/8Bjpd6My6CYJw0BpMWysp5wgf2Mb6zZV4Nm3NT3Gt8IXKd45NavWWYiYVaqVcaEWLlHKus88Cg7OIE+qWVkCcfvv25hpMLkrFRadkh/x5A+HjnQ7vpU93N+CvV40PKt3UG1XO4pxWJfea2jcYrMJ0W3UHdh7vxL83HhNuu3RcLv7xswmS73u8WonUeBU6+ywRCYQwWW2CTUJ6glo8oQlxGAP/+KkeknVFia0Gc0Cf6VB4a5NiQyE2V7XjtgtGBf1cDd1sISG6lHMAoFEqfGq9enfrcfxlxX4ADsWuJ9sEwnVdTdIqMcIHlc9QXHxqNh74dB/snMN37p7Zo4dta2tzj6uldWRWIhadUYj1zmLmrtpOn69jrOq/YIjzQ3aSBtVtBhjMNvSarEjUBGflwXGcUGRLT1APqTxlv1uRTmxlvf0mhiAMgocdo1Q26TEtCMUVe66e5GNBkVVjd/aZUYLgv4fu1HuxMgnWc67DYBY8PsO5mLN0wWn46Xgnatr7sKeuC89+XYlrzypCrXPhefKIlJCM32IBn5RzCxYswMKFC5Gfn481a9ZAr9ejvb0dJ06cQF9fH44cOYIHHngA69atQ3l5Ob7++utQ7zdBnPS0BdXWSp5zxNCI/eY8t96FQ63DtlqyKq9QwbeKtehNEUkcFHuPhN5PpiA1DjPKHYoDg9mGW97ZgZe/PRIVZtPuNOtdg9NQKDXNVjuOOwePpRmJAakW2eLcW5trRIW5W88rxUs/nxSyQSmv+mjqMYb92GU93TISNUgRTWhCtwhkt3OCUXfaUMW5ELS2Wmx27Kt3tEkVpsUhnVksK0yLFyZaO453SqLca+yKXuWcP7AqaDbwh3Bht3PCIpFU/oIZiRphsa2mvQ/H2yPjTykFq/c3Cambc8flYjJz7vUnFOIE850a6n1mQyGkWMBr0ZuE9OVT8pKGLJSOSIsXWmsPRfh7E+owCB6Rco5RtgfC7gAKiqwKPFQWDey4TxwIwXrO+X/9aozQYk6iRokXrpkEpXMM9a8NVXj260rh79TS6h2finMXX3wxampq8Pe//x0zZsxAfLx4slBaWorrr78eq1evxjfffBOSHSUIQkwwba1JcZTWSgzN1mpHcU4hl+GMYi/FOTYhMkRqnXAltfLwSW02OydE24eTug7X+1iYFvrJt0wmw2vXnY5LxzvanTgO+PvaSvxh+S70m6MnvdVosaGLGRizg1mpqGk3wOZs0wmkpRVwGFiXZjpW1vnHksuAxy8/DfddMjakbcr899Fm5yT1RPIFtjiXnqgWT2j6Q/c96u63wPk2D/CbA4C0BNf1sT0ECr6KRj1MTmXCpMKBbTp8a6vZasdPtf4b1bvDT7bUCjnSPRQjhwusGobaWj3TbjDDbONVL9JNrMcXulonI6GylYovmZbWS8flIjtJK6SZ7jnRJZx/h6LeS1KmJ9hQiEDTM1n8CYMAALlcJnx36jr6IzqG5wugcSpFSBdORYmtQZ4r9pzoEn6fUJDi033clXOhgF9szEjUiBbv0hPU4IcMLXr/j7eGCC7mTChMwV2zRwNwjCtX7HKlTlMYhHd8Ks79/ve/h1o99ACgvr4ep556Ki666KKgd4wgiMHhvX0UcpnHCclgiDznSDlHeKDDYEZls2OF8rS8JK+tG6LiXAiUTBzHCRO33GQtkuNDH7vOToIaI+A7V8cUnQrDoJwDgDi1Ai//fBLunj0a/ML9yr2NWPivzVEzeXM3+K4LwfFWFaTfHM+ZI1zF7Hi1AsuuPxPXTR0R1L75QiR951g1d0aixm1CE7oJZAczWfJUrMoQKeekn1jtZpIhPalH2BaszUfbB/zdX/jJVk6yNuR+lKEkUaMUVIWVTXrYfSyknEyI/AUlbMdmQ4YiGXwUDC09RmyvcVhvlGYmCAWcSUWOAnmf2eZzwBFbwBgsEAIQv3dSFOdEfnN5vi0+skW8isbIFLZb9SZhbDAuPxlKCZKovaHTqoSi6+FmfcCq/sFUzoOREmLPOZPVhhbn+MbdykSpkAvWRYEcb6xyLhIBQrdML8W5boW4RI0SE0KQ7Bsr+PxN+uMf/zjo3+vr6zFz5sygd4ggCN9o07vaeBR+DtA1SgXUSsfXvyfERt3E8GRbtWsSOWUQL6A4tUKYEIeiiNPQbRRar8fkhMfPNEdUnAv/xEXc1hq+lU6ZTIbfzxyJ1395BhKcbTMHGnow/6XvhUlQJHFfNQ6Fco4NgygLIqzhuqkjkKhRYkR6PP5369mYOSZLit0bElF6cpgLy62i4pzabUITOuUc62fn0XOOVc6FoK11F+th5KFN6mwmFGJzkKEQBpNVWFCLtqTWQOCV0AazLWSBQsMZ0cQ6SbrPm73GhVthKxWrD7haWi8dlyu0g7LfwV11vilV6/1pa5X4vTvAFOdO9bE4Fw2+c6KW1hD6zfGUO8d/eqM14Pf9cJMeRotDiTrRg8rZG6xFQyiSpdl0dU/FYf6Ya9WbfFaDCo/d7fuxHQrkchme/dkEkeXEWSVpIS3mDnd8fmfefvttLF261OPfGhoaMHPmTOTk5Ei2YwRBeMdu5wSVQqafYRA8fCgEec4RnvjxmKsY481vjocfTDT3GIVEJqk4zLS0jg5DSysA5DHS/0gU58RtreFRzrHMOiUbK35/DkakO5673WDGta//iOXbasO+Lywtbn4rJzqkn8wfbZVGOTeuIBk7H5yF7+48H6flh2+FuCCCyrkBnnNxrsF4qHx6AHGrqifPOfa2jhC0tfIeRmqF3KPyJTtJizJnm/OeE93oNQV+zW2M8ERLasaIWlvJd84dkb+glMo5ptDXMkyLc1/udbW0zh3nSqAVFed89J3jlXM6jRLJcYOr80UeYBKMDw46i2talRwlGb5dc6KjODe4Ylhq2LZZXxWR7vDp6YB/+5wa4oWmoRZks5xqTTsnVqj7AptEHKkFnawkLf62cLzQlXHZ+NzB73CS43Nx7vPPP8fTTz+NV155RXR7Y2MjZs6ciczMTHz11VeS7yBBEAPp6rcI8eX++s3xJDlbWymtlfAEHwYhl8Gr3xwPr9axc9K3yIQzqZVHtDIewbbWOJUiYp5S5dk6fPb7c3DOSIfqx2LjcN8n+/DwZ/slL8D6SotbW2solXNyGVCcEVxhVKNUhL3tMBzpyd4QtbXqNEhNCL9yzlNxjm1rldpDsrvPgmNtBgDA2LwkaJSegz741FabncP26sBVqA1RMNGSEtZ3LtAJdywjMnOX8PMe7sq5Vr0J2/iW1owEUZH31LxkqBSO8+4uHzwe7XZO+F75UvBm0zODfe/0RosQyDEmJ8nnLpgxOTqh0BENyjlPimGpYUMhjjQHFgqxsbJV+P1sP9KhU0XKOennTOKk1oHjjmASW0Wt8REMELpwbDY+/u00/PuXp+OKSfkR24/hgM/FuenTp+N///sf7rzzTixfvhwA0NTUhJkzZyItLQ1r1qxBQoL00cIEQQyE9V7KCFA5x/vO6U1W8nohRHT1mXG42TFROiUvSVBZeoNtpZO6NUmU1BqmttbcCLa1chwnDNQKUuOGTG4LJSnxavznV2fhhmnFwm3/2XIci5dtExVEwoX7oFRqzzm7nUOVUzk3Ij3Ba6ElmmHT2MLdJsi2jKYnqEXKuVBMaHhYzzlP/qusr1C7Qdq21t2MufikQZQY0yRqbQ2VB1mkYBdcKBRiIA3M9SdHwuJclo4tMEnf6h1q2JbWS8bliK6TWpVC8GSrajUMqdpt6zUJoRtD+c0BLhUTEFh6Jgu7+Oir3xwAJGiUKE53zLkrmvRhT+a22znsrXN4t2UnacJS9BEV8pv9P1eYrXZscS46ZyRq/LJJYb2OQ3EtY6/VBR7O68EktvKF59R4FeLUkR3TTC5KxcWn5kR0XDsc8Kvh99JLL8Wbb76JG2+8EW+99RZmzpyJpKQkrFmzBomJgbd/EAThH6xCIWDlnFO6z3GAwUytrYSLbdUdwsB3SsnQq4siE3qJ1Tp8q5NKIUOpjy0fwcIOhIJRAvaarLji1R9wyQubfFZ5tepNQvJjJFpa3VEq5Hhk/ql45qrxghphy7F2LHjlB9S2S69cGwx35VyHwQxDEC2C7tR39Qt+NMH4zUWStAQ1tCrH0C78yjmmrVWnQZxaAY3T2zSkxbnewZVzKXEqIe1O6kAIVpkzmHpkSkm6oHT5IYhQCFY5J6WSKlIUpycI/rfU1jqQphCpXlQKuaAolaI1M9ys8tLSysOHQgDiAron2PPkUEmtAKBWMu9dkMq5g0xSq69+czx8YdtktaOm3RDUfvhLVWsv9M5rbzhaWgHHNZk/h1YGUJzbebwTfc70+RmjMvxStes0Siid24dCBc4eg57aWgNVztnsnLB9JFVzhH/47cZ37bXX4h//+AduuukmJCYm4uuvv0ZSUnh8gAiCcMAq5wItzlFiK+ENsd+cD8W5ECW2mqw2HGt1DDrLMhOFSVyo0aoUwiQ/GOXcmv1N2FXbhUONPXhqVYVP9xEntUbPYOpnZxbi/VumCkrd2o4+/Oy1LYLSLBy4F+cAadVhVRL5zUUSmUwmfB8buvoDTrULBH7RSK2QQ+dMd+aVbKFsa2WVc56Kc3K5TLhdas85kSn6IJPU1AS1oOY52NgTsPI0WlqUpEKpkGOksxBe3WaA0WKL8B5FF6FUvfCLUK29/pvMR5K2XhO2OgOritPjRcmlPGLfucFbW/0Jg+Dh37uWAAz6WdgwCE+vYzDGMh68B8Oc2LpLdN7zPVghGOLUCoxwLlhWNvuf7rzxiKuldXp5xiBbDkQmkwkBR6FRzrnGfZ7Um1kBekS29ZoECyRWVU9ENz7PdCZNmoTJkydj8uTJeOONN6BSqdDV1YWZM2cKt0+ePDmU+0oQhBMpinNsqyL5zhEs/MBXJgPOGsJvDnBXzkmnpqpqMQgDi3AltfLkOAdDzT3GgAff7Orul/sasb++e5CtHZwYwnskkpw+Ig2f33YORjkLV009Rix67ceweUV5GpTWdUh3vImTWoevTUe+87gxWuyisIRQwyvnMhLVQtuKMKHpt4SsUDiU5xzgSmxt6zVJth8cxwnFubQENYqGULqyra28p6e/iDzIYmSyNcapALJz4u/gyU6oVS/8Nc5m50KSYhwqVu9vAn9JnsuktLJMZpRzQ4VCNLDKOR8XxLIleu/4MAi5zJVc7CuRDIXwdVFCanjfOaPFLlrI9IVNbHFuVKbfz50SwoUmftyXlqBGvFo54O/ZAbZSs8d2LCzmnCwMPAK8cPnll4v+v2DBAqn3hSAIHxEZbycGZhjPKucosZXg6e63CAPGMTlJIq8NbxSEyIT+cHP4k1p58lK0ONjYA6tz8M2uXPqKe+vF39Ycxn9uPGvQ+7DFpsK06BtM5aXE4f1bpuK6ZdtwqLEHbb0mXPPvLXjnpikhTyX1rJyTsBgcA8o5QKxkbejqD9iX1B9sdg4dTj831uONL86ZrXb0W2weJx7B0uFUMshk8Jq0mJ6oBpodLWAGsw2JmuD3o6a9T1BRTCxMGdJHZ9rIDLy+qRoAsLmqHZd4aMcbCn6yFadSDJkqOVwQJ7bqw5puHM20M6qXUIR/ZLuFQgRyjYsEX+0fvKUVcLQGZiSq0dZrxu66LtjtnNc2Rlbtn+9jwdvdAyyQ985stQvBBqWZiX4rI1mPuoMNYS7OOQuechkwviB839fROTqsPdgMAKhs7sWIdN8W0dp6Tdhf73iPTs1LCuiayCe29pltMFltknnSmq12oQjvqaUVCDzApTFEnpVEaPF5dPLwww+Hcj8IgvADVjmXFXBbq2tg39NPyjnCwY4a1m9uaNUcACTFKZGoUaLXZJW0rbWCadUYE6akVp4ct1CIQAbfR9xUIBsqW7H1WDumDNIqXNcRvco5nvREDd7/9VQsfnMr9pzoRmefBT9//Ue8feNZIq8fKTFb7UJLokIuE9SMUoZCiJRzw7g4xw7w6zv7Mb4gJeTP2dVnFtQs7IKRe8pdSIpzzqJgarzaa9ohq6jr6DVLUpzbXcf4zfmgHjmzOA1KuQxWOxdQKATHccJkKzdFGzOm2uzCS0WEkiejETYMIjcEKklWjdPUbcT4AsmfQnLae03YUuVQnRalxXv1aZPJZJhYmIpvDjWju9+RqOxtwUXsOefbNTcnSVwsGQf/C1RHW3qFIAp/W1oBR8E2OU6F7n5LWJVz/WabEMhQnq1DggTnUl9hE1srm/W46JRsn+73/RHX+TYQ1RwAJDMBR919FmQlSVOca+o2CtdOb56HqfEqqBQyWGycX55zDaKWbSrODRfCY+BDEISktLKBEImBnXCTSDlHeIBtt/LFbw5w97kySpb+e4hplxwbZuUc2wIQiO+cwWQVWhX4IAXAoZ4brK1O5DkXBYEQ3kiOV+G/N0/BmcWOYpzeaMV1b2zF1gDb9YaCPeexExkplXN8cS47STNkQnE0I/KADFMohCgMwoNyDgid71ynwbG4lDqIypfdpzaJElvZdrmJg4RB8CRqlJjgLOJVtRr8Dpvp6bcKhuZ5MdSiNDbIFMZYpTHELWk5yYGZzEeSNQeah2xp5fHVd67e6eunUsh8XuxmDfr9UTKxHGQKav6GQQCOcRcfCtGiN4WtNXlffbewOBbOllZAXJzzx06D9Zub4affHE+q6FomnaCBHcN4U87JZDIhJdhTB4E32LErtbUOH3wqzs2ZMwebN28ecju9Xo+nn34ar7zyik9P/vzzz2PChAlISUmBRqNBQUEBrr76auzdu1f0mEuWLEFBQQHUajXKysrw8MMPw2IRfzF27NiB2bNnIykpCfHx8TjnnHPw9ddfD7kPb731FubMmYOCggJotVrk5+fjyiuvxJ49e3x6DQQRCXjlnFohR1JcYKtWIuUcec4RTrZWu8IgzvJROQe4vFrMNruo7ToYDjvT+5LjVKLBcDgQrYx3+1/gYFsk503IE1btdxzvxHeHW7zejy/o6bTKqG9b02lV+M+NZwleWgazDdf/3zbRKrVUsH5z4wuSBYUUqzQMhvZekzDgHs4trYDY1FzKwIzBYCeG4rZWsXJOakxWG3qdqYHe/OYAIJ35m1SJrazvkq/qRNZ3bssx/74nDaIwiNhRQWTqNMLEtyJM/pX+crhJj+NhTsRsCLG/oHtr5nBg1T5XS+ulQ7SFi4pzzHfVnXpncSQnWetzgifbEuyPQT/LASap9ZQAinOAu+9ceL47bKEz3MW5kowEITXV18RWjuOwyTkmiVcrcPqIwNT9qcw1RMqFphNdvnVL8GPgDoMZJqtvwTlsgFAsLejEOj4V566++mr87Gc/w9ixY/HnP/8ZH374IX744Qfs3LkT33zzDV588UX87Gc/Q25uLnbt2oX58+f79OQbNmxAa2srSkpKUFZWhsbGRnz00UeYOXMmDAYDbDYb5s6dixdeeAEtLS0oLS1FTU0Nli5dihtuuEF4nN27d2PGjBlYu3YtNBoN0tLSsHnzZlxyySVYvXr1oPvw1ltvYc2aNbDZbCguLkZDQwNWrFiBc845B9XV1T69DoIIN3zxgzXe9pekODYQgpRzhCMYhA8tGJ2tG3Sy6w6r1jkhgVqn02AWJgxjcnRhb+FiJ7+NAQy+K5tdxbmxOUm46+Jy4f9/W1PpUV1os3NCG0JhlLa0uhOvVuLNG87E+aMdrSJGix03/mc7vq1olvR52MljXkqcMFmVSjnHtrTy6ZHDFXFAS3iKc61efFBTmOtMKIpzvGoOELfQupPG7FOHBMo5o8Um+DyNzEr0uZB+NlOc23zUP5WpKKnVx1TJ4YBMJhPM8FvDqADyla3H2jH7+Y246LmNYQ2sYBeFcpJCoZwLzMcqUnQYzNjiVGYXpsXhtPzBC1rjC1LA19q8hULojRb0OMe/3loKPSFevAtQORdEUqun+x1sHDpwSgpEYRA+KIalRK2Uo9QZ1lTV2guLsy14MA416gVBw9TS9IC94lgVeJeUxTmR56H3Y5Atprf6qJ7j054BIDs5vAvcROD4VJy76aabcOzYMTz44IOoqKjArbfeiunTp+PMM8/E7Nmz8frrr6OoqAg7d+7E+++/j8LCQp+efPny5WhoaMCuXbtw8OBB3H///QCAjo4OVFRU4NNPP8X3338PAPjkk09QUVGB559/HgDw3nvvYefOnQCABx98EP39/SguLsaxY8dQU1ODKVOmwGaz4e677x50Hy6//HIcPHgQjY2Nosc3GAz49NNPfXodBBFOrDZXAl+gSa2AOBCClHME4FB18TWjKaW+q+YAt4KABGodVkER7qRWwM1zrsv/wfeRFtf+j8xOxOxTcwTj5EONPVjJKACE5+nuFwzAozEMwhtalQKv/fJ0XOz0fzFb7bj1nZ1YvX/gawyUVr3rM8jUaYQQkh6jFd0SeGZWtbpUMcNdOZet0wjKQik9IAej3UtbK1swC0VbaweT1Jo+SDgSn9YKiFtwA+VAQ7fwXfVHPTK5KBUapWPovbmq3a/kWHailRdDyjnAYfTOE670Z1/hC0Jmqx2f72kI2/OGWjmXI1LORX9xbu2BJqGdcqiWVsDRRs63QR5u6oHBNHARWvSdCrQ4F8B7x3Gc0Naak6QVqY39IRLKOb44l6BWYFRW+Mdm/GdqsXE+qVnZlNYZowJraQUG+qdKBXuNLhhk3BeI0pVf0MlI1EgWYEGEHp8959RqNa699lp89tln6OjoQGdnJxoaGmA0GrFv3z78/e9/x+jRo/16cq1Wi88//xxTp07FKaecgieffBIAkJmZifLyckH1FhcXh7lz5wIArrrqKuH+a9asgdVqxbp16wAAF198MXQ6HZRKpaDe279/PxoavF9MlyxZgrFjxwr/nz59uvC7RuP9ZGkymdDT0yP6IYhw0GEwC4b9khXn+kk5RwTmN8cjtc9VRZPrnDomwFXlYGD9OQJZGT/CKOfKsx3Kv7tnu66Rz649PGDVl11BjdYwCG9olAq88ovJmDchD4Bj4Pz793bhs931kjw+67OSnaQVFS+lUM+JwiCGuXJOqZALk8eGAFqyA0GcIO7Zc05KtQEPW/AbTDnHqvmkaGsV+c35UZzTqhQ4w+nTWN/V71dbNmvuHUvKOWBgYms0wR4vGwaxJJAa1nMuOwRJqslxKqidheJA1V/h5EtmQWvuab4lHU92tjDaOWDviYHKsvouxu/Lj+9USrzrvQuksHmis1/oWAm0pRUARmUnCm2e4QiFaO4xCj5m4xh7iXAyWuQ7N7SSVew3F1gYBCBWgYfKc85X5Zwvx5zFZhfGTRQGMbwIOBAiOTkZOTk5UKmC88RpaWnB1q1bcejQIdjtdpSUlOC7776DTqdDXV0dACA9PR1yuWNXs7NdySy1tbVoa2tDf7/jApaVlSX8zX07X+GVc2lpaaJCoDtPPfUUkpOThR9f1YIEESytXiZB/sIanutJOUcA2Bag3xwgVs5JUSxh1ROjI6Cci1MrhMJCY4//BQ5eOZegVggql3NHZmCqU5FY096Hj3aeEN2nroMJg/BiDBzNqBRyPL9oIhae7oj9s9k5LPlgt8gnKFDYwWiWTiMqXkrhO3eU8Qgc7so5AMhwLtx091skC2gZjDaR5xzT1hpiz7l2Rjk3qOccc61sl6CtlW3tmuRna9e0Mpd64wc/UltZc+9YU86xCzDswkw0wB4ve+u7w9Z2yxfM0hPU0KqkV73IZDKhiB/tba2dBjM2O1NaC1LjBBX6ULApyrvqBoZC1DPKuXw/rrkymUzwAAvEr+9AQ3BhEDwapUJYTDra0uuzF1mgsIsSoUpmH4pR2b4HyPSZrdhe7fjc81PiUJKREPDziq9l0re1JsepRF7g7rC+y74U55p7jIKQI5Y8Sk8GIp7WevPNN8Nut+P48eNYtGgRqqursWjRIuj1eo9yf/Y2mUzmtSXAfbuhsFqtuOWWW/DOO+8gMTERK1asEBX43LnvvvvQ3d0t/PCFRIIINazXQDDKuSRRIAQp5wiXeqgwLc7vwi+76ixFKx2b1MqulIYTfuLS3G3yq8DRZ7YKBaOR2S6/PJlMhnvmjBG2e+GbIzBaXIPpOuZ9i+ak1sFQyGV45qrxuG5qEQCA44Dnv6kM+nFZ5VyWTiO5cq7KeezrtMqgzqvRAp/GzXGA3kM7l9R4b2sNjdpAeEwfi3Ps39hW2EDhJ6lxKoXf5yeR71yV775zsaycK89OBD9Uj7a2VrYNmuOA749KH3jjjs3Oodl5zssNoeqFv8bpjVb0maN3HLj2oH8trTxsAcmT7xw7VvGnrRVwvXfd/RbRddwXDrJhEEF2BvCJrVY7J1LshwKR31yYwyB42MXayiHOFVurO2B2dijMKM8Myrs4NUH65HGrzS4Uxr0ltfL429ZKSa3Dl4gX5wDHhKWoqEjwnDtw4ACWL1+OoiLH4L6trQ12u+PL1dLikpQXFhYiMzMTcXGOg6652WVA7b7dYOj1esybNw+vv/46srOz8d1332HGjBmD3kej0SApKUn0QxDhQKriXCLT1krKOaLXZBXaLPwxRubJSNRArXBcUoJta7XbOWHQVZQWjwRNYInEwcKvNpptdnT4MRiranH5oIxyU2FNLkrFrLGOhZ+mHiP+++Nx4W9skWm4tbWyyOUyPLbgNMG4uaatL2j1VotzMKpSyJAarxa9P8EmkhpMVuGYHZmVGPbwkVAQbmU0r5yTycSFsGSmONfdH1rPudRBinNJWiVUCsfnGqznXIveKBwv4wqSoVT4N5Qen5+MROc5bUtVm8++c/xkS6dVCvePFeLVShQ5FyQqm3uFQkw04K6UW3+41cuW0tGiNwrvQSgn1mzqaDQntn65r0n4fe4QKa0spRkJwkLFrtquAd81tuDt77gnO4hQiIONrHLONxWgN9i22FC3tu5m1IeTIlScK0qLF3w7h0ps3Vgpjd8c4O6fKs01tanH9T0f6vhjlXO+JASzxza1tQ4vIlaca29vxzvvvAOz2TVIWrVqlfC7wWDAnDlzAABGoxErV64EAHz44YfCNnPmzIFSqcSFF14IAFi7di30ej0sFgs+++wzAMC4ceOQl+fwwFm8eDHGjBmDxYsXC49RX1+P6dOnY/Xq1TjllFOwdetWnHHGGSF61QQRPFK1tSrkMmGAT2mtRFOQketyuUwYANR39vtldO5ObUcf+p0r0ZEIg+DJCdB3jg2DKM8e2CJ51+xyQSXyyndHheLJCaY9c6hV1GhHJpNhhHOybbbZRW2PgdDiDITITNRALpeJ0myDVc4dY8MghrnfHE9SXHg9RfmCV1q8WuRDlBIn/YSGhVUwpA3iOSeTyYRQiGDbEnezrV0BTFCVCrlgG9DWa8YRHxJA7XZOOAcFcn4eDvDn+n6LDbUdwathpaLdTWm5sbI15K3i4Qr/yGEm/NHqO9fVZ8Zmp1oxPyUOE3xsaQUc45KJTvVcW69pwEJOfVfgyjl/PcBY+LZWnUYZ9LU+XKEQNjuHfU7fvrxkLbJC4IPoCwq5DKOc46qadsOgqkW+OKeQyzBtZHDFOTaRu1uia5k/PsPs+92sH/p4I+Xc8CVixTm9Xo/FixcjJSUF48aNQ1FREe677z4AgE6nw5VXXonLL78c5557LgBg4cKFGDNmDO644w4AwLXXXovJkycDAB5//HHExcXh+PHjKC0tRXFxMbZt2waFQoFnnnlGeM7a2locPnxY5EF34403Ys+ePQAcrbCLFi3C1KlTMXXqVDz22GNheS8Iwh/a9K6BYrDtV3woRI8EaYfE8IadDOQEOBngPVsMZltQCZqRTmrlYX06GvxQA1YyrSWe0szG5CRhgTM4obPPgmXfVwMA6pxFpvQEdcTUglIi8iEMQk1pYROqnQPULJ1LqRms51xVjPnNARB514RaOcdxnFB8dV8wUivlwiJQKNJaffWcY//uCFUKvLgiRWvXNLa11Yc2yXaDWWjPCmWbYyQZneMqMhyOEt85i80+wCux3WDG/oaB4QJSwhbKckKpnBsGia1rDzYLyciXnJbjt7KZLaD/VCv2nePbWjMS/ff1CzSxtcNgFgonY3OTIA8yVEFcnAvd9+ZIix4Gs6MQNtFPn02p4RNb7Zz4+s1S39UvpLBPLEwRFdcCQatSIM55jEh1LRMltQ5RpNVplMLz+9TWSsq5YUtAxbmuri688cYbuO+++9DR4TAQ/+mnn1Bf73sqW0pKCq655hrk5uaiqqoKjY2NKCwsxHXXXYetW7dixIgRUCgU+PLLL3H77bcjMzMTx44dQ1FRER566CG89dZbwmNNmDABGzZswEUXXQSj0YiOjg5MmzYNq1atEtR33jCZXAf4oUOHsHXrVuGnqqrKvzeGIMIAq5zLDEI5B7han0g5RzSJVtkCLM4xK8/BtBpGOqmVhy1S+jP4Psoo50Z5UM4BwJ8uKhdS1t7YVI3mHqPP3iPDhfwU10pwMD6Ebb0mwdg427kgIZfLhOJfXWdfUMWWWEpq5dExxd1Qe4oazDaYrI7CERsGwcNPiqRSG7D46jkHuPbNaueCUhOKwyACM0UXh0IM7TvXyCibY1UFEY2JrezxxdZQNoS4tZX9vEM5sR4OxTk2UGjueN9bWnnYwBbWd85iswsKpECsPMQtwb6/d2wBLZikVp6MRI2wUH+wsSeoa+Fg7A4woToUsD6f3lpbNzEtrdODbGnl4T1UpVKBs+PkoQJJZDKZMCZt9kHlSsq54YvfS/N79+7FrFmzkJycjJqaGvz6179GWloaVqxYgePHj+Ptt9/26XFSUlKwfPnyIbdLSkrCCy+8gBdeeGHQ7c4880ysXbt20G3Wr1/v020EEc20MnJmqZRz/RYbLDY7VH565xCxgxQXclExpqsfp+UH5qVyOEqUc2z7WKMfLT+8ci5erfDagjYiPQGLzizEu1tr0Wuy4oFP9wsFqIJhGgbhDjvYDMaHsIVZJc5i2rAKUuNQ3WZAn9mGzj7LkMUZb7BtyLGinEuKC59yrk0/uNVCaoIK9V396Oq3gOM4ST39eM85tVKOePXgyhd239oMJpEfnq/Y7Bz2OItzOUnagFXGY3J0SI1XobPPgh+PtcNm50TtwO6Eq80xkoiKcyFsz/MH1p/wnJEZ2HTEoXJcX9mKP1w4KmTPy37eoZxYB7oAFS66+yz4wakszUvWBtRGPqmQCYVgCutN3a40S39bWgHXQpHjsXxvlWeL+1IU5wBHqMQGfSu6+y1o7DYG9HqGQqwYjkxSK085m9ja5Fk5t/EI4zdXninJ86bEq9HQbURXn1mSa1l9F+szPPRnlqXToLrNAL3JCoPJOmiHBT9mlcsc9yOGD37PxO+44w7ccMMNOHLkCLRa10n9kksuwcaNGyXdOYIgBsIPFuNUiqBb33SiUAhSz53MsCv1wba1AsEppXjVhFYlx4j0hIAfJ1hEExcfi3P9ZpvQnjoqK3HQlpU/XDBKMDb++qAr0KhwGIdBsORLlODLJrVm61yfCevRUheERxV/vMWpFIIp/XCHPbeH2raA9RP0pJzjjbRtdk7y5Fi+OJeeoB5yopQuQWLr0ZZeV2tXEOoRuVwmpLbqjVb8eKwddR19ONTYgx01HVh/uAVf7m3E/7bX4c3vq/HJTyeE+8ZaUivPiPQEaFWO8+HhIYzew0W7wXVsjy9IFor3u2o7Q6IE5WnqYZWSoU9rBaJTObflWDssNkcFbc5pvqe0siTHq1DmDCc62NAteJTVBxEGAYjHB754gPF8td+lBDyrOM3v5/UE29p6sCE0ra286lAhl2FcgAuvUlGeM7hyzmbn8L2zkJ6kVWJCQYokz8sntlrtHHoluJaJPOdShh57sEpXdlzkCX5Mn52k9Tu0iIgsfs/st2/fjtdee23A7fn5+WhqavJwD4IgpIRPaw1WNQcMVFcEqjwhhj+NEre1BqqU6jfbUNPu8Akpz9YNqiYJNezgmy1eDkZVa6+wGj/Sg9+c++PfMK0Yr208Jrq9MC02Jt/sSrA/nn3usJNGVjnHvk8nOvsxIYBiicFkxfF2R2GvPEcXtP9PtCBOaw3twgurLvKknGO9froMFtG+BQPHcYL3T+ogYRA8aUzhMNBQCFFaYZC+S2eXZWCVM4XyF29s9fl+saqcU8hlGJWlw776btS0G9BntiJeHVnvzXbm2E5P0OD88kwcbemFnQM2HW3FZePzQvK8vHJOJhNPyKUmU6T+ir7iHBtUdVp+4CqzSUWpqGo1wGLjcKChB6ePSBUtGAWknGMLmz6+d0dberG/3lE8m1CQjOIMaRYf2WLZ90fbMOuUbEkel6fXZEWlU2E+OluHuCFUyqEmL1mLRI0SvSarqNOCZ8+JLsHO4dxRGZKNI1OY60xXn0Xk7RoIfHFOp1GKQpy8wSa2NvcYUeLl+DFZbcJ1OZTFfSI0+F1K1Wq16OkZWJU/fPgwMjOlkY0SBOEZk9VltC9FcU6sriDl3MkMPzBXK+UBF2kLJFDOVTbrheIW6ysSCRI1SuE74uvEZaikVnd+c16ZyB8MGDq1a7iQmegKbQiqrZVZIc7yppwLMLGVVeiMjWALtdSIzu2hbmsdwgeVLZxJGQrRa7IKqhpfzlkZCUxba29g+7FLQt+lcwNID8xO0kTcjD2U8K2tHAccaR46xTbUuKtCzxvtmueE0neOXwzKSNRArQyd6kWrUgg+Wr6YzIeboQr/viL2nXMU2NkFo6H8vjyhVSmQ4nzvfG0J/ny3y5t9/sR8v5/TG9PLM4Rr7ap9jZKnCe890SWMy6Lh/COTyYTxVX1X/wAV20bGb27GKOlqEynsQlOQylmbnRO+5/mpcT6pQn31iBR5SMeo0jqW8XtJasGCBVi6dCn+97//AXB8QWpra3HvvffiqquuknwHCYJwIR6oBK9ySwpjoh8R3TQ4Bwm5ydqAfTRykrWQyxwJWoEWY0R+cxEMg+DJTdZCb+xFY7fRJ48RUVKrD8W51AQ1fj2jFM9+XSncVhgjgRByuQy5KVocb+8Lqq2V9dkUKefYNNgAi3Ost1Uk/Q2lRqyKDu3Ci0hd5OG6lMJ4u3VJ2GLLtqam+lCcSxcp5wIrzvG+Swq5DOMKgmvtKslIwGMLTsVX+5ugUcqRoFEiUaNEgvMnUaNw3aZ23DahMDniarJQMjqH9ZLSB6SGlRI2DTgjUYPTR6QiTqVAv8WGDZWtknsoAo6gAn5BIhwqyewkLTr7LGjRG2G3c1GlHm4dws/SVzz5zgXb1go4bBa6+ixo6TENeSxwHIdPdzcAcPiAzQsg3MIbSVoVZpRn4ptDzWjRm7DjeCfOKpGmZRaQJqFaakbn6PCTc7HkSLNeFM7De0MCwHSJ/OYAaReaWvRGYXHJ1xCwLLatdZBi+sngURrL+H2F//vf/465c+ciKysL/f39OO+889DU1ISzzz4bTzzxRCj2kSAIJ6zxtjTKOdekKdSJfkT00muyChP4YCTwKoUcOUlaNHQbAy7OHWKTWqOgWJKTHIfK5l6YrHafQgdYtceoIdpaeW48twT/2VyDdoMZSiaFNBbIT4nD8fY+6E1WdPdbRC2OvsIqOrwq5zoCO96iJRlYaiKlnPM0gRa3AkmnnGOLc+k+FOfSRJ5z/quEek1Wwd9odLZOkiLZL88uxi/PLg76cWKFMTmu7yB7LYgU7W7KOa1KgbPL0vFtRQta9CYcatRLZurP06J3pVMH6v/qDznJWlQ06WGxcejoMwdVBJMakSo3iDFveXYi4tUK9JltQuqoJMW5ZC0ON+thtg09Pthd14VapzfqtLIMUaFFCi4dn4NvDjm8a1fta5S2OMcohgMJ5QgF7PiqkinOdfdbhGJiWWZCwJ+tJ9iFpmCLcyK/OR+7JViPyMHUmidDuncs47dWOikpCd9//z0+/vhj/PWvf8Vtt92GVatWYcOGDUhIiJxxN0GcDLCriJmJwV/YwzmBI6KXJgkv5HxhqcNgRp/Z/4JvtCmZ8vz0nePbWuNUCp8HhYkaJf529XiMzErEXbNHQ6OMrJ+LlEgRCtHiVM4p5DJRESYjUS0YyJNyTkxYlXMGcQHDnVR2QhNgEIMn2MmRL55z4rRW//dj74ku2KOotSsWGZMrVs5FGnfPOQA4j1HibKiUvrW1sSu8E2vRhD/KfOf44pxc5lvrujeUCjnGO5Wu9V39aO5xLSDGqxWioos/5DBK7qHeu8+cqjkAmD9Req/CWWOzhRZoKVtbOY4Til06jRJlmdGRaC5W2boWRTcfbYPN+dqlSmnlSXXznAuGelFxzrfvubvnnDdYD+m8FFLODTf8Ks5ZrVYolUrs378fF1xwAe666y7cc889mDVrVqj2jyAIhlaJVhF5wjmBI6IX9kIe7Eo9W4zxNwSA4zhByZSRqEF6FKzg+5PYarTYhJXxkUMktbpzwZhsfHPHefjNeWWB7WiUIkrwDVBNySvnMhM1ovdUJpMJK84nOvvBcf5NRjiOE9Q5uclakcJruJOoVoLvsAp5Wqt+cF+oULW1soWTtIShJ9fpQQZCsK1d0aIeiTUyEjWCZUdFk97v77TU8EVcmcxVZD6f8Z1bf7hF8udsCPPEOiuKE1t5K5e0BHXQpv5s2+NPxzuF8Uleim9+X57w1QPMarNj5V5HcU6tlGPOaTkBPd9g6LQqwV+Nb22VgsZuo9BmPaEwJWransuzPSe2bmRaWqX0mwNcaa1A8MU5dkHR14VctnNg8LZWUs4NZ/wqzimVSowYMQI2my1U+0MQxCC0ifw3gp9IigMhSDl3siJaZQu2OCfyAfOvGNOqN6HTOeAZmxsdKqZckXJu8IkLm9Tqi9/cyYBYOee/us1m54RCCus3x8P7zpmsdtHihS80dBuFRYlYUs0BDr+/RGfQSMjTWp3KuUSNElrVQNWne8KdVLDKubSEoQv58Wol4pz71xGAco4Ngwg2qZXwDq+I6TCY/f5OSw1/7kmNV0PpNNwfkZ6A4nTHosDO452S+/WySvaccCvnoqg4x3Gc0C0iRastW1BfV9ECo8UOIPCWVsD34tzmqnah0HjhmCzJEqvduYzxsftyb8MgW/pONPrNAY45EK+m5ItzHMcJYRBqhRxTSqVr7QWA5DjpPOfYxUpf21rj1AokOedtzXrflHO5pJwbdvjd1vrAAw/gvvvuQ0dHRyj2hyCIQZBcOacl5RwBNHaxyrkg21pTXIMMf5VSFUwbU6STWnnY92OottZA/OZinWCVc+29JqGVkF015gnGd66iMTb95nj483vIPeeECbTnBSNxwp2UnnOu15Xqg3IOcLXG+RsIIWrt0ipRmkHF91DB+s5FurWVP07cPQ3PH50FALDaOfxwtF3S5wy3mXtOMtsqFz2JrT1GK8w2RwFNivEuq5xbc6BJ+D0Yj1dfC5ufMimtCyRMaXXnwrFZQmvrV/ubhPbOYIjW4hyb2NqiN6HTYMaxNoMwzjizJFXy8BzWoiHYaxm7eO3PMcgXhJt7jF6VxbxyTqWQiVLKieGB38W5F198EZs2bUJeXh5Gjx6NyZMni34IgggdrRIHQiQxyjlKa3XQ1mtCXUdg/lXDlaYeVgIvnXLOX4+xaDTn90c5x/vNARAGjSc7BUEUawG3MAhPyrm0wBNb2WJwrCnnAJcyOpRhPyarTXh8b+oWccKdhMo5A6uc801JzhcQO/rMfk1cG7qNwvV3YhS1dsUi7omtkaLPbEW/xdEp5O6lGErfOZGZu4Rm9t4Qqb+iyHNuqKAZf8nUaYTrBbsYHYxyjrW98KacM1psWLPfUQzUaZWitmip0WlVwrHZojdhR03wQho2DCLavDbdW1s3Md/F6RK3tALSXsv44ly8WiEq+g0F/301Wuxer+38WDUnWUvXqmGI3yXlyy+/PAS7QRCEL0gVK88jTmul4lx1mwHzX/4evSYr3r15CqaVZUR6l8ICu1IfdHEuJXClVDQWS/zxnKsk5dwAcpK1kMkAjgssEKKFad3I8rAgUcgo5/xto2aPt7FRUgyWEl45Z7baYbTYPLacBosoMdWLci4pTiUcA1Iq59oDKM7xPpb8vvjqa/kT498UTeqRWGQsm9jaGLninCgMwu04mVqaDrVSDrPVjg2HW8BxXMC+Ze7wE2u5zPM5T2qita21VWIbFwCYVJg6QGEdTHEuy4dAiHWHWmAwO4q8l5yWE5LzMMul43Lx9UFXauuU0vSAH8tqs2NvfRcAR2hBNCX5AgOLc6H0mwOku5bZ7ZwwPi5I9c/zMMstFCI5TlzY6zNb0e20KSK/ueGJ38W5hx9+OBT7QRCED/AriTqtZ28ff0mKY5Vz1Nb6wjeVwvuwal/jSVOc4weVaqU8qEQ0ILh0Tj45Uy5zBCpEA0laFRI1SvSarEMW5462OIpzWpXc5/StWEetlCNbp0UTk47nDy3MBI1VePCI21r9VM4521rVCjlKMmIvbd79/B6KSeFQYRCAI2U3SatCd79F0kAIf9NaAXERr93ge3GOVaCcPiJ1kC2JYBmVnQi5DLBzwOHmnqHvECJEyi2362KcWoEpJWnYdKQNDd1GHG3pxSiJrBj44lymTgOVwu8GJ79JjVdDpZDBYuOiKhCiTWIbF8DhFfn5HrEXW14QxbmMBA2Uchmsds5rSzDb0np5CFtaefjWVrPVjlX7m/DQvFMDDtOoaNIL3nzRuCjBqmz31/dgS5WjxTwjURMS32KprmVtvSaYrYF5Hua4+RyWu513wt0WT0hP6M/6BEFIBr+SKNVAJU6lEC7aJ7ty7lhrr2jQtu9EdwT3JrzwbTS5ydqgV//j1ArBn8efYozVZheKW6WZiSFfXfYHXj3X2O3d48NoseF4uwGA/0mtsQ7f6tzWa4bR4l+gFDtZ9KicE7W1+n68GS02HGtzfV7hmASHG53IUzQ053c+DAIYqC5i4dt2OgMIYvAG/1g6rdLnz49V97X5ETbAJx/KZMBkKs6FFK1KgeJ0R7H8SHMvrE7fsXAzmHIOELe2rj8sTWur2WoXjstwqV7kcpng5xlVxTmJO0UAse8cTzCec473zrFvnt677j6LkOibpdMEpWLzFba1tVVvwvYgWluj1W+Op5zpUFi5t0FoQ58xKkMyJas7UlzL6pixiq9hEDziEJKB17Bwt8UT0uP3aFQul0OhUHj9IQjCM+29JnxzsBn95sDSjvvMVkEanynRQEUmkwm+cye7cu7lb4+CtSA61KgXVrbCRVVrL6589Qc8+Ol+r0UgqTGYrIJvRY4HZVIg8IPd5h4jLD5OrPbWdwvmz6OjpKWVh2/17bfY0NPv+XtyrNUgHD/l1NIqIphWZ1Y55ykQIjlOJaSS1vnhOXe0pVfwHBsTJcnAUsN6iobKd46dQGcO0nrGJ7b2GK2SmJQDrrZWd7P+wWDNsX1NbO01WXHIqbIcna0LWdIi4YL/TpqsdtS0R8YDtl1UeB54jPGhEIB0vnMOk3fH73lhTFnkF6A6+yx+L6CEilaJPecA4JTcJCEwAXAoobKDXOzOdr537QYzTFbxe7dqfyMsNscHOn9CXsAKNn9hU1tX7WsM+HHY4lw0JlQnx6uEcauBmVvNKA+drx97LQt04UCc1OpfAS3bra3VnUYJbWqIyOB3cW7FihX45JNPhJ8PPvgA9957L3Jzc/Hvf/87FPtIEMMejuOw+M1tuPntHXjg0/0BPYaofUhCHxJeXXEyF+eq2wyi1gMAMNvsQjx7uHhjUzV+qu3COz8ex5Zj0ibAeYMNOQimvYOFL8bYuaF92nj+u+W48Pt5IfAKCQa2aNngJbGVDYMYSWEQIoIJCWlhBp/ZHgIhZDKZMLht6Or3ufAj8pvLiT2/OSA8yrl2w+DqIp4UxvC6W4LWVqvNLjxOqh/FOVFbq4+Jrbtru4TC+xnFpJoLB6OzI5/Y2sYq5zwkHpZlJgjXum3VHegzBz+GYq/HOUnhU72w17iWKElsZce8UnWLqJVynJbnOrZykrRQBqmaztZ5f+8+C1NKqzsXjs0WipCr9gWe2soX55RyGU7NS5Zq9yRllIfx1rmjQmdJkyrBtYwNr/JXuZkl+q4OHF+zY1TynBue+H1GWrBggehn4cKFeOKJJ/DMM8/g888/D8U+EsSwp7rNgAMNjpX3748GtsLa2us6CUulnAOYRL9+S9jUWtEGq5orSnNJzPec6ArrfhxsdPnrrD3QHJbnZCXwORKtsrFKKV9aDVv1Jqzc61jdTYlXYf7EPEn2QypyfQiFOMKEQZByTowUyjm5zHvxh28L8cczqaKRTQaOzc+L9ZzzpvgMFl9bz8Qpd8G3trJ+P2k++s0BYgVUu49trWxb2Bkj0nx+LiJwWPU0m+IdTtjiradAAplMJiRvmm12we8qGNjrcTiVc6JggyhpbZU6rZWHbW0NJgyChx03sQFGjd392FrtOHeUZiTgtPzwLQIlapQ436kea+sNrLW1x2hBVatjXDM2NymqrEZYRrt5rp2alxTS4AopElvrQ9nWSsq5YY9kJitTpkzBN998I9XDEURM8QMzaGvuMQXk78YmV0m1igi4Ev2sdk4wfj2ZON7uUs0lx6nw6IJThb+F03fObudwhFHqfX2wOSzFUnalXqoLuUgp5UMxZvm2WqGlddGZhVE3CMxhVh8bvRXnGOWcp5Xck5nglHOO8156osZrS1AgvnPiZGBSzgWKeALtvUjGJsp1BTihYWFbUv1RzrGTtjYf21p3MkmtFAYRHlgz94oIKefaffBTZH3npGhtFSenR0Y5F23FObnM9zRmX5jMFOekKICyxZKmbtcx88WeBqFFecHE/JB5oHnjUqa19cu9/re2vrHxmLD/0djSylPuZoMSypZWwNFKy9PdH9hCEztO8bdAzIozPH1XG0QFflLODUckKc719/fjpZdeQkFBgRQPRxAxx5aqNtH/j7Ua/H4MUXEuBMo54OQMhXj526OC5P+mc0swpSQNfA1gbxiLc3WdfehjPDPqu/oFtWUoaeqWfjLgT2KrxWbHu1sdLa1yGfDLqSMk2QcpyU1hB99e2lqb2aRW/1ZCY52CAJVzNjsn+A55amkVHj+AxFZejZORqJZ0sSOaCMe53de2VlZt0CWBco4tzvnjOccq5zp8aGu12uzYVesozmUnaSiFOUwUpsYjXu1YpIlUW6s4EMLzMTZtZAZUCseAYf3h1qAX1MRm7uH3nAM8t8pFAn7Mm5agltSrbVpZutBmP10CC41sL6rDz3a7AsYWRKAbgG1t/Wq/f62tFU09eHV9FQBHS+svpkTfuIzHXTk3PYQtrYCbcs4QXFurRikfdFHLE2rmPp6+q/wCskYpF7XgEsMHv4tzqampSEtLE35SU1Oh0+nw5ptv4m9/+1so9pEghjV2Ozeg3aGqpdfL1t5p7ZXefwMIj7oiWqlt78MnuxyquSStEjecU4x4tRKjnG2Jlc36sJkje1IHrD3QFPLnFU0GQqKcG7xYsnp/kyDNnzU2OyoLW+z74kk5Z7LaUONMai3LTAyb6fNwIVDlXIfBLEwoPIVB8BSm+t9GzftJxapqDoAouCBUnqL8BFqtkIsCKNxJTZBWOdcZoHJO5DlnGLqttaJJLxiNn1GcFnb1y8mKXC7DKOeku7ajD72m8Hvi8sottUIOncbzsZ2oUQqtzrUdfUGHV4RCye4LYvVX5ItzHMcJ52ipWxRTE9RYs2QGPv39ObhycvA+cDkePMCOtuiFxdUJhSkozkgI+nn8JVGjxMzRrtbWbdW+tbba7Bzu/XgfrM5r72/PL4u6kC4WtlMhXq0IufUAW/AKxKKB4zhhkbIgNS6gawo/HmrRm2Bniq4cx6HR+dh5KYE9NhF5vI+kvPDcc8+JPmy5XI7MzExMmTIFqakk9ycIdyqa9AN8CXgfB38IWVtrXOgT/aKVl787wqjmSoXJ7PiCZBxu1sNq53CosUfkURIqKj0U59YcaMYdF48O6fOGYjJQkOIqsA2llPrP5hrh9xumFUvy/FKTyxhze2ojYJNaR2VRS6s78WolUuNV6Oyz+KWcY/17fFbO+ZDYynpYjYniSUewiJRzEoQweEJITE1UDzoRYNtapfCc62Aewx/POY1SAZ1GCb3J6lMgxA6R3xyNccPJ2Bwd9jgN6Sub9aJ2xHDg67F9/uhMIcBp/eEWlGSUBPyc/GKZQi4bdEFCaqKtrbXHaBWsLkKhbM5O0ooKkkE9VvLA906kmpsQOQ/dueNyscbpX7xqXyPOLksf8j5vba4RgiDKMhNw2wUjQ7mLQROvVmLW2Gx8c6gZV59eIErjDQUpIhW4/9fVdoNZsBDKD3AxOjtJg4ONDjuijj6zUMDuMVqFxSTymxu++F2cu+CCC1BYWOjxQlVbW4uioiJJdowgYoXNbi2tQHQV51jlXKgmcNFIXUcfPvnJoZrTOVVzPOMLkvHhzhMAgH313WEpzlUwfnMZiRq09ZpwuFmPmjZDSFddefNYtUIuma9LUpwSiRolek3WQZVS++u7scPp51SenejTwDESJMUpEadSoN9iQ4OH4tIRRgk7Kjt2iz3BkJ8ah84+C5p6jLDa7D4l5LHJd5mDKedEnnM+FOcaGb+53BhWzsWFVjlnt3NCe+lQ6pbUICc07rAtqf6et9IT1Y7inA+eczsYvzkKgwgvrFrncFN4i3Psse2tpZXnvNGZeOqrCgAO37lfnRNEcc55Pc7WeffYDAVik/nIF+dafQyaiQbcVYccxwnFObkMuGxCrre7hpwLx2ZDo5TDZLXjq/2NeGT+qYMeV3Udffj7msPC//961XholNHlAeyJ1355OmraDShJD71CUXQtC8Bz7oQoDCIwmwT37yv/HWmkpNaYwO/ycklJCVpbB5qetre3o6Qk8AsSQcQqnhK8qgLxnGOMt6U0x2VbkULV+hSNvPLdUUG2f+M5JSJlx7iCFOH3cPnO8b46aqUcN0xz+Xt8fTC0qa38xTwnWSuZBF4mkwm+cw1dRpHsnuUtRjV3/bTiqJXgy2QyYRWy0Tn4ZmGDPEg55xn+eLDZOZ+VGaxyLmuQBQmdViV4CNV1DK3MO3QyKudCYFnQ1W8RlMdDFTBSmFagQCY07rDKOX/aWgHX9bO73wKz1XsIEsdx2FHjKM7FqxWikAIi9IgSWxvDm9jazR7bCYMXh0Zn6wTl2Zaq9oCtMIwWm1Awzg2zkXucWiGMBT0lQIYbNmgm2j1BEzWOxUjAUSjZVdeFWqf36TkjM8KqgPS0b+cLra1mbK32nijMcRzuX7EP/c7j95dTR+DM4uGxIKGQy1CWmQh5GAraKaK2Vv+vq/USFOeyRK3Uru8K2wkTzrRnQlr8Ls55Mzvt7e2FVksHAkGwWG12IUo9I1EtTARr2gyw2PxLRm1jzHFVPqhOfCUcvkTRRl1HHz5yKuN0GiVudFvpHpOjg9J5kd97oivk+2Oy2lDd5ijYjsxMxNxxrpXWtQdD5ztnMFmFVmapJfC8z5jZZhcNtHnae034fI9jdTlJq8QVk4L3fgklvGF2n9kGvZv/ER8GAQDlpJzzSD7b6uyj7xw7SRyqBYkf5DZ29w95buWVc3IZMDKGi6nsuT0UlgXipFbflXOBTGjcYT3n/FfOufZ1sBbb+q5+oZA8qSjFJ7UnIR2sH2S4E1vFSa2DH18ymUxIbTVZXWM+f2EVazkRaEnjn7OpZ+ACVLjxNQU6WuBtF5p7TPjM6WMMAPMj2NLKc+l41z6s2uc9tfWTn+qx6Yij0yc3WYt75oTWUmW4IlpoCsCigVX3+5vUyuMthKQxQmnPhLT43Nb6/+3deXgb9bk2/nskWZI3ed/jPY6zLyQQJyFlJyyF9oT1tCUpFM4L7fvS5XR5WcrSFvidnkMLhbfQ0paU05bS0vbQFFoCFMKSEJKQkH214zhe4iXxbsuWNL8/pBl9R5ZsLaPF9v25rlw4iWwrxh7NPPM8z/2Nb3wDgPtF6IEHHkBKivdE2+l0Ytu2bVi8eLHuT5AoGE6XnJBL2Pc296iLjFdU58IlyzjU5t5ldvLMIKrzgrswlGVvaqGeSa3A9Exr/ek7x9WuuVvPr9REowOANcmI2sJ07G/pxbH2fgzYHUgNsBBaD8fa+9W79LWF6ajKS8PM/DQca+/Hjsaz6OizR+XucTSXT4snHae6hzR3+gDg99ub1K6VG5eVIsUcva+vHsSLpbaeYU3h40i7+8LRYjKgNDvxAi0SgTYkJLjiXLCdc4A73XFfcy9csvv/T6D/D6NOF455xpCr8tJgTUr8kZ1wWZOMMBsNGHG6orKyoDOE0bNIL2h8dUVQnBMv9rv6RwIWfncKI61LOdIac9mpZuSnW9De517xIMtyzLqrO4Wx6WDGKi+ozcNLO5oAAJsPd6jFulC0CBfWxXEozhXYrDhyuh8jDhe6B0dD7kjV02QaawXc5wfHOwYwNOpUQ8bMJgOumF8Y52cGXDI7Xx1t/ce+Njx87fwx10ud/XZ8/9UD6u9/8Nn5mpU35BVpWqt4/hNuAFphgDH0eKU9k76Cvg24a9cu7Nq1C7IsY+/evervd+3ahUOHDmHRokXYsGFDFJ8q0VjDo0589v99gOWPvokDLbEdewjGFmGkdWV1jqYYF0pia++wQy1k5Kbre8Kk3Us09Ytzzd1DeHmn+yQ63WLClwLsh1k4IwMA4JKBA1EeqTkijEUqozyXzy0AAMgy8NbB6Iy2iqlshTrfZRsvodPhdOG3HzYCACQJWLeiQtfPHQ3FwtdHLGraHU40ehL6mNQamFisDbZzThzXyB8nEALQjoc0nQm8d66hc0BdND6VR1oVSuBPNLqiOwfEAsb4r0tpFpPajaxLWqunwGc0SOOmxPojjimOl9iqjLQCDIOIF+X1sHtwNKbjlmJYSE4QRapVM3PVY/87R9rD+pzx3heVSKEQk2msFdB2divH2kvn5CdEgSvVYsJFtfkAAo+2PvTX/epx+ZpFxbhkTkFMn+NkkmJ23/QCwgs30n/nnPdnRVvgZ+fcZBV0ce7tt9/G22+/jfXr1+Pvf/+7+vu3334br7/+On72s5+hpqYmms+VaIzNRzqwu6kbnf0j+NPHp+L9dMYQwyBWVudoRqhC2TunOVGJZufc0NQfa/3p28cw6nR3qX1xVcWYrjnFwhjunRNHdtTi3DzvHddNUdo7J14M6L2fQlOM8emUeuPAabR4ClwX1+ajLCfxu820nXPef09D54Da9VhTMHVHJCM1I4zOudOe7glJmrh7QuyUOzVO8e+gUGifM4XDIBTKxWE0uqJD6ZyTJEntntOlOOfpWMhKGT9J0x+x0268xFYlDMIgucdaKfbEn1ExZTnatGOtE59zZSQn4RzP90h9x8C4NwgCiWYnezAKEqk41xda52K8+eu+vXZR4qzquGqhd1XKq3u0o61vHjiNv3n+LDMlCQ9eMzemz22yEV/LesLoSFfGWs1GQ9jXc+LNynZ2zk05IS/QeP7552GzTf0TWpocxH1g/lIU42l41KneeS/JTEZZdgqq87xJQqEktkYrqRXw3Tk3tTvnmruH8AfP6EmaxYQvnR84xGZBSYb69t4o7507LBbnPDvLFpZkqHey3z/WqY5H60m8GCicYKdXqMbrnPMNgpgMxIsl8e4k980Fp3icYm0gHZ6Tzpwg9mxqOufGSWwVC+HTonPOc/Ol3+4IGMwSrlD2cgFApmccSJ+xVvfnDqaryZf4XP3twwTcxUylGDS70JYQHTDTUW2BNrE1VsSx1mC+twHgQk93EgC8c2RscN5EtBfWse96KRBe49rjXZwLYZ9lIvA9f0q3mnDR7NBHm6NFGW0FgNf3t8Hh6R7vGx7F/f+zT33cA5+eOym+3vGmFOdC7ZyTZVk9Hy7JSg47wCIn1ZvmfLpPLM65306zmDTXdjS5hLXddvv27fj2t7+Nm2++GWvXrtX8IoolsaOppSe+JxO+dp3sht0zirqyOgeSJKEq19tZcyyEsdZoFufSp1Fa6zPveLvm1q8sVy8W/ZlVkA6z52RmT3N0O+eUi450q0ktAhkMEi7zjLaOOFzYfDj0k/2JaJOd9L0YmBGgGHOwtVddmF2dl4rVNbm6ft5o8d05pzgq/BxP5XCBSGWlJCHZs98tmLFWl8u7ZzOYtLvSrOA658TUx9nTqHNOloH+EX2P76F2t2R6VigMjDjHTUmdyNCIE8Oj7vfPSg39AkR8rmcG/F9c7TrZDWUn/rIKjrTGiyaxNYbFuS6xODRBWqtC3DMXzut1a5x3zmnGWnvim9iqHPsNUug7JePBt3PuqvlFsJgSZ5+p72jrR55zsP/4xyG1S/JTs/ISPpgrUSjXDsOjrpDSmbsHRzEw4n58uGEQgHudg9J1p4y1yrKsNqnEo/OW9BNyce73v/89Vq1ahQMHDuAvf/kLRkdHceDAAfzzn/9ERkbGxB+ASCeyLGuLcwnWObdVHGmdmQPAHVevHJCPd/QHnYgVzeW46ZpEv6nbOdfaM4Q/bHePPqeajbj9/KpxH282GdSRmvqOgah1FfYMjapFstmF6ZoRrcvnefd+RCO1VbxTr3c6XG6aRd3LIRZjfu3TNRerBd+REncAtfaKnXPeC0Z2zgUmSZLaTdncPTThse/s4IhaSJ9o3xyg7dQcb6TskFAIj8cFcKwpO+cA/W++hNs5B0TWPXdmMPwwCN/3CTTWuvOEN3FzKffNxc3MfO8ez9gW50LvnJtbZFPPz7Ye75wwNdqXch5gMkhx6V5KqJ1znnPebKFDKJEV+LxGfWZJ/FNafV0tjrbubcVHDWfwmw9PAnDvUXv0X+ZPmvOxeMsS1uGE0j2nx745hfI919lvx6jThbODo2pDSDw6b0k/IRfnHn30Ufz4xz/G3/72N5jNZjz55JM4ePAgbrzxRpSVlUXjORL5dfLMoGbev7PfHtHdeL2JYRArqrzdQdWe7pq+YYd6d3Ai0VyOazYZYE0yqM9pqnrmnePqIvj1KyuCSiJbKI62Rql7zl8YhKKuKkftbPznoXbdv7+VDjCz0YDscboIw2EwSOoeO6UY0z04gv/Z7U4yS7OYsPacGbp+zmjKSklSx0LEnXNK55zZZEAZk1rHpdyYsDtcmrExf9qFGxITJbUCQIrZpIYSBOqc6x4cUS+A5xTapsWFSLpFuPmic2Jrh+f/oSQhqOOHJrE1gudyVuh2ywrjuCUWWwIFQuwQklrPrWBSa7xYk4yozHWvAzne3h9ywStc4vdFsAVgg0HCKs+N2IERp2btSjCUm2UFNmvY426REAtMp+NYnJNlWX19mChoJlGINzcLbBYsr8yJ47Px72JhtPUf+9rwf/+8R/27b15eG3Zy6HQUbmJrc7f3xmHkxTn395wsu68RxQaV6XDjcSoLuTh3/PhxXH311QAAi8WCgYEBSJKEr3/96/j5z3+u+xMkCuQTnyX9shzfEwrRgN2B3U3dAICqvFTNC7dm71x7cKEQ0RxrBYSl4TpfvCWKtp5h/P4j9665FLMRt68ev2tOsWCGuHcuOsW5Q372zSmSjAZcMts9itA37PCbshUJpVBRmBGdiwGlm6nf7kDvkAMvbW9Sx9GuXzoDaZbQUhbjSZIkdVRA+bqNOFw40en+GWZS68RKQgiFEI/l/pZt+//47ouL033DsDvGjppo9s0VTY8ux2h2zqndLSlmmCbYCQj4dBsEGCcNRtdAaEmavsRCYpef5zHqdGHXyW4A7oscvUf+KTTKTasRpwsNncEHaUVC6ZxLt5hgTQp+PHFVtfdG7PtHg3+9Hhpx4qwnKEXvcKZg5aR5u9Ta4rgmpnfIod5InQxJrYC76/A8TxH/zguqE/JcINViwsWe88mugRHUe0LpFpdmTprdv4lC0wU+FF7nXIlOxTnAPdqqDZTha9ZkFnJxLjs7G3197hPckpIS7NvnXiTZ3d2NwcHQ04mIwuVvSX+wi8aj7aMTZ+DwLN9eWa29g6ZNbA1u71xHlJfjKkvDp2rn3LObvV1z61ZUBH0nfJGY2BqlzrnDQgJdbeHYHVhiauvr+/UbbR0ccaidp3qPtCrEnRonzwziha2N6u/XrSiPyueMJuXr1DfsQL/dgRNdA+rPeQ33zU1Ik+A7wd65UDvnAKDUc7Iry9rQDoVm35yfn7WpKD1KgT+yLHtDGYLsbtFe0OjUORdGcc5kNKiFQn9jrQdbezHk2SO0lF1zcTcnDnvnlGmFYL+3FcoKEwD4QFhtMhFNGEScLqyNBkk91rb3xa84J57vhptmGWuSJOHFf6vDtnsvwa2rAgeNxZs42goASUYJP7x+YUIWExOZpgs8hPRx7VhrZJ2Kvp2uTGqdOkIuzq1evRpvvPEGAODGG2/EV7/6Vdxxxx3413/9V1xyySW6P0GiQHw75wDtCU48bRVGWldWaxfeV+eFHgqhnCgaDVJYYzwTUS7g+kf0T/RLBJs8RS1rkgF3rA7+xKk6L1VdYh+tzrkjbd7vAd/OOcC9ZFoJpnjjwGnd/v9owiCiVpzznny8sPWEWjy/YFYeqvImXzFLvGhq6xnSjCTPKph8/55Ym6HpnBv/Zp62Wzi470/xZNff3rlp2TknBP7ouVN0QAhlCPaGkfaCJoKdcwOR7ZwT36/Lz2oJJWUdAM5lGETciTet/rC9KWCIh15GHC70em5U5oRYHJqRlYLyHPdxaNfJsxgMMoSlTdP1Er8La6Ubp7N/JG5rYjRJrZOkcw5wn58H2+UdLxfPzlfX2ADAly+cyV25YQh355zYkBHpWGu+8L3W3jusuSFZzM65SS3k4tzTTz+Nm2++GQBwzz334Jvf/CZOnz6NtWvX4pe//KXuT5DIH6dLxj4/nUz+uiXiYYtwx7SuSts5Jxbngu6c81yo5qSao3KHS9lrJstAn31qdc+NOFzqAv/agvSQTrZNRgPmFbsvDE6eGYzogtIfWZZxyNM5V5RhRUbK2OTBVIsJq2e6C7yne+26dfCJyXCFUXohF9v2X/74lPr2FyfpCIXYYdjaM4yjp8WkVp7gTiSUzjntWGuQnXPZQijE2fGLc/4K4VORtnNOv2O7WNQK9piq2dMTQreBLz2Kc8pzdhcZtSPQO4V9cwyDiL/FpZnqTbL3j3Xi8h9vxj/2tUbt852JcGxauSE76pSxXSj0jqclQYpzYihEvLrntAFok2Pn3GSRYjbhc+e5pxYWzcjAly+qjvMzmpy04UbBvZaNOl3qa0t+ukXzsxaOsWOt7JybKkIqzjkcDmzcuBEGg/vdDAYDvv3tb+Ovf/0rfvSjHyEriycxFBv1Hf0Y9BNHnQiJrd2DI9jf4i64zC2yjbl4yE0zq90Mys6H8bhc3uW40dq/YUuOzuhTImjtGYISDBlOG7lm75zOo61tvcPqHfrx7l5qUlt1Gm3VjtFEf6xV+X9QkZOCC2blReXzRVuRb3GunZ1zoQhl51x7rzDWGuRJbKnw8+0bCuFyyTjsKc6V56QgdRLtO4yEeGzXc6eoprsl6LHW8EaBfIlpreF2kuem+d87J8sytnuSWtMspmkz/pzI8tIt+PFNi9Xzps7+Edz5m4/xv3/3sd/Ox0h1hlF4Fq0SRlu3HAtutLW1W7ywjl/XSyKEQnRGeY3LdHfvVbPx2t2r8Yc7V8BiCn6fInlpAyGCu2m/r7lHvW6tq8qJOJBK/Flt6x3W3HBn59zkFlJxzmQy4a677oLdrv+LIVEoxJHWNcJOrtY4LrFVfFh/Ri1E+O6bA9y7KZTE1ubuoQnHHs4OjsDpGWWM1omKZvRpaGp1zkUaXb5QKM7t0Xm0VTNmVxi4OHfJnAIoDZN67Z2LxRiNv6/3uhUVcUmi04N4p7NN6JwzG5nUGoz8dCtMnv/3gRJVFWLXRrB7h8TvN9+x1pNnBtU9YuP9rE016dboBEKIabtBj7Umi90G4Xchn9VxrBXQdgGeOjuk7jtcUpbJXUwJ4or5hXjzGxfg0jneG1V/29OKy3/8Ll7bq28XnVisDadza0VV6HvnWnsT48K6IEPbjRMPYnFusgRCTCYmowFzi20szEUgK4zk8Q/rz6hvL6+KfJdpoaZzbhgtnhvumSlJSDbz/+1kFvJY6/Lly7Fr165oPBeioIlhEBfNzoPZkxSXCJ1zW4WTMXE5sGimMNo6UfeceBEUrROVaC0NTwSnhPG2cIpzC0oy1bf3+AkhicQRccxunIJBbpoFy8rdL+bHOwaC3lU4npYYJDsVZlghXtummI24ftmMqHyuWCj2CbhQkgOr8lKDSquc7owGSR23mDit1ZMEmmpWdy5OROzM8y3+HWqbfmEQgLY4p+fOuXA657JSw9vT46tLj7HWVO9rqRgKsaPRewGlHHMpMeTbrHhu3VI8efNitQuza2AEX/7tx/jKbz/WfE9GQjOyHcb3V06aBXOK3MeY/S29QRWixc65aAU0BcP3BlQ8dPaFXvgniqWMMPanbmvw7iL3XXcU1nNITlLPjdp6htVOVya1Tn4hX018+ctfxr//+7/j6aefxtatW7Fnzx7NL6JYEDvnFs7IVC/4EqE4t8UTBmE0SDg3QNJbdQiJrdrF6NHvnJtqia2RpiNV5aYizTMCp3coxOE2cSxy/G4ecbT1jQOnI/7cbTHYT5FkNGj2Ylx3zgzYrGP36k0W4kXT1uNd3qTWabK/TA/KqHPfsCNgsUiWZfW4F2xSKwBYTEZ11OOUz865g63en7U50yQMAoDm561X151z4l6ucDrnIk9rTTEbYU0Kr0Mg0FiruCNsGcMgEo4kSfjM4hJs+vqncPlc72viq3vdXXQbP2mBLEcWmqT53g6zOLTKMzUhy9qAsECUqQ+z0RBWQVAvvt048dDBsVZKcOJrWTD7Ux1OF7Y3uG/85KZZUJWbGvFzkCRJPd+p7xzAqNN93ItWwBvFTsjFuZtuugkNDQ24++67sWrVKixevBhLlixR/0sUbSMOFw60ursgKnNTkZGcpI7l9Q470B/HQIP23mEc9XQ1LZyRoelIE2lCISboguro954gRetEJV1zATfVOuciG2s1GCTML3HfBW/pGdYUSyOljLUaDRJm5o+/s+wy4UJEj9FW8WIgOwoJwAoluQ4A1q8sj9rniYXsFLPapSt2ftVM8P+OvMQE30ChEN2DoxhxupMCg903p1D2znX2j2BoxLvof7p2zmmKc9HaORdkATXZbITFc6c/ouKcp1MhkuTybE3nnPffstNTnDMaJCwuzQz741N05adb8bNbluIn/7pEHTE7MzCC//PiLtz1m48jep3uHBB3zoX3PbbKE+IEBDfaqtxYLsywxnXtgzjW2hbnnXMGKfzOWKJoMpsM6k37YLrA97f0YkDdN5cd8b45RYEnyV5ZfQQwDGIqCLk419DQMOZXfX29+l+iaDtyuk+NeFf2gYk7Olrj2D23td57h9TfvjlFdZ73rsnxicZa+6I/1mpLnsqdc94OmpIwo8sXzshU3/aXEhwOh9OFY56uyYqclAk7QMpzUtVdWbubuiO+q60U5woyLFG9GPg/F9dgbpEN31pTO+kTTQ0GCQUZY38GGQYRPE0oRIDiXLtwYR1K5xygLcCLP/tKITw5yTit9gOmRW3nXHiJikpBrXsovLFWl0tWOxXCLZz4vq/SOdczNIojnpCXOUXp0yY0ZLKSJAnXLirGpq9fgCvne3cP/2N/G6556v0J9/kG0hXGPkVf51Vmq/s1txwbv3NuwO5Qu1rjOdIKaBMg4zfWqqw0sHDnIyUsZbQ+mBtN4kjrch1GWhUFfm5ecqx18gu5OFdeXj7uL6JoE5fyLyjxFOfExNY4hkKIJ2Erq3MDPq4sOwVJRvdJx4RjreJy3Gh1zlmi012RCJTOuZxUM1LM4V1sKd9ngH6hECe6BtUic7CdPJcL4SeRjLYOjjjQ4/n/HO0X8lUzc/HaV1fjKxfNjOrniZUi29iv12QvOsbSDOFYHWjvnBgGEWpxrjR7bGLrgN2Bxi53oa62MH3SBpKEw2iQ1Dv8+u6cC6+AoVzQnB0cDWv8sHd4VO0SiKRzTjPW6vm3fHzyrBrmxH1zk0deugXPfGEp/t/nzlE7rdp6h8N+rY505xwApFpMaudlfeeAJh3dlxhkFu+RtDSLST1etOs4JRAsWZbVY0s4YRxEsaLeaBocgcs1/muZGAZRV6nfa0u+bexrb7QC3ih2wtpg/d///d9YtWoViouL0djYCAB44okn8Morr4T0cZ544gksWrQImZmZsFgsmDFjBm644QbN7rq+vj587Wtfw4wZM2A2m1FdXY0HH3wQo6Pak8wdO3ZgzZo1sNlsSElJwapVq/DGG28E9Tw2bdqEVatWISUlBTabDWvWrMGOHTtC+rdQ7IhL+Rd5Tn7ENt547p3bUu8eXzCbDFhaHnhfjcloQEWOu3uuvnNA05LsKxY75zSJfnEcC9bbiMOljmaEM9KqEBNb9zZ3R/q0AIS2b04h7tjZFEFxrjUGSa1TlW9nQ5JRQkXO9OnEipSmcy7AsVpMCfR3Z3g8msRWT+fc4dPTc9+cQtkpGo3OuTSLKaS9b0pxbsThUtNzQ3FGhzAIwCcQwjPGuOOEEAbBfXOTztULi/C1S2vU35/oHH8qIRClk9IgAZkRFIBXiqOt43TPtWr2v8a/60XZY9XWMxzx/r5Q9Q451JUGTGqlRKa8lrnk8a+bnC5Z3TeXk2qecIVNKNg5NzWFXJx75pln8I1vfANXXXUVuru74XS6T64yMzPxxBNPhPSxNm/ejI6ODlRWVqK6uhqtra14+eWXcdFFF2FgYABOpxNXXXUVnnzySbS3t6OqqgonTpzA9773PXzxi19UP87u3bvxqU99Cps2bYLFYkF2dja2bNmCK6+8Ev/4xz/GfQ5///vfcdVVV2HLli3Izs6GxWLBpk2b8KlPfQqffPJJqF8eigHlbqhBAuYVuzuOxM65eI21Np0ZRNMZ9+deWpY14QWLsnduxOEas7xcpCnORalzzpY8NdNaW3uG1E6IGRGMspVlp6gXuJ+c6tHlhPWwsANrvKRW0bxim7pQf+vxzrA7YdpikNQ6Vfnu86jKTWNSawhKMoMZa42gcy5rbOfcISEMonYahncoO0X17IpWus1CHS2NNBRC3O8TSedcRnKSOjKn/Ft2iGEQ7JyblJSbngDQ0BVmcc7z/ZCdao5orHKVsNpky7HAe+cSqXMO8N6AGhp16hoiE4xYTIoQ6UEs3I+X2HqgpVct3i3Xcd8coA1wURRz59ykF/IVxVNPPYXnnnsO9913H4xGb/Fh2bJl2Lt3b0gf68UXX0RLSwt27dqFAwcO4N577wUAnDlzBocOHcL//M//4P333wcA/PnPf8ahQ4fUAuDvfvc77Ny5EwDw3e9+F0NDQ6ioqEB9fT1OnDiB5cuXw+l04lvf+ta4z+Hb3/42nE4n6urqcOLECdTX16OiogJDQ0O4//77Q/r3UPQNjzrVLoia/HR1TFHcOdfcHZ+xVjGRa7x9c4rqfHHvXODRVqVDwWw0aHbD6UnsnOsdmjqdc5GGQSgkSVL3znX02TWdPeE6JHTOzQ6yOCdJkpraOuqU8fah9rA+t9hdys650BT5nAzVcN9cSMTi5qlAY63Cz5e/sY3xiInMTWfcNz00YRBF0ycMQqG8btgdLtgdoXer+RpxuNSx+FB3cmWlem8EBbNI25c2STP84pzBIKnFvTMDIxh1uvCJpyt/RlZy3Hd/UXjE4lxjZ+CbnoG4xyrdx59gU4gDWVKWhWTPTdoPjncGvKnXKpyzFibAzTJlyTwQ+8RW8WZ0sEEzRPGgBNEA4ye2ivvm6nTcNwf4Pz/ia9fkF1YghL9UVovFgoGB0O5SWa1W/PWvf0VdXR3mzp2LRx99FACQl5eHWbNmqV1vycnJuOqqqwAA1113nfr+r7/+OhwOB9566y0AwOWXX4709HSYTCZce+21AIB9+/ahpaXF7+dvbm7Gvn37AADXXnstTCYT0tPTcdlllwEA3nrrLbUz0Jfdbkdvb6/mF0Xf/pZedQRUHDUUL/jG2+0RTVuERK6VM4MozmkSWwP/7CgnK3npFl3vuIjEzrmplNYqdiSKF+3hEL/fxNHqcB3xFJmtSYaQFtRfPte7dy7c0Vaxc44v5KHxvXiq4b65kFhMRrUbLrjOudC+P4syrVCaXfx1zgVbCJ9KxDRuPUZbxdHSUHdyid0GPXHsnAO8O606++3Y19yD4VH3ON2ycVZSUGIrzrSq+3xPhNE5NzDihN2zCzaS4i/gXm9yrme/1Olee8DwL81YawK8HouJrbEuzoUbNEMUa+Jr2Xg3msR9c8sr9S3O+Y615qaZYTEFv2aCElPIxbnKykrs3r17zJ///e9/x9y5c0N+Au3t7di2bRsOHjwIl8uFyspKvP3220hPT0dTUxMAICcnBwaD+6kWFHh3Lp08eRKdnZ0YGnK/sOXn56t/5/s4f5SPH+h9h4aG0NHR4fd9H3vsMWRkZKi/SktLQ/p3U3j2CkURsVhisyYh3bPEtlWHQIgfvXEE//LTD7D5iP///75kWcYHns65FLNRk+4ZiKY4F6BzzuF04cxg9JfjpplNUOp+UymtVa/OOcB371xkoRCDIw40erp6ZhWEtqD+3Ios9Y7dO4faw+qEae0Vx2jif6d+MvG9eGJSa+iUvXOd/XYM+9k7JnbOhbp3KMloUEe1m84OQpZlHPR0zhVlWCPaITVZ2XRObNVcQIf4/yczObhug0DODHjfJ1vowguHsrPO7nBpXuuXVnCkdbIyGQ1qKMyJroGQV1BowiB0GKvUjLYe9z/aKoaYFSfAzrnCOCa2iscW7pyjRCa+lgW60eR0yfjI0zmXnWpGjY775oCxxTmuqZkaQi7Ofetb38JXvvIVvPTSS5BlGR999BEeeeQR3HvvvROOkPpz++23w+VyobGxETfddBMaGhpw0003oa+vz++LqvhnkiQFfOH1fdxEjwn1fe+55x709PSov8RCH0WPmL7lWwBTuudauoci2gnW3D2En7x1FLtOduO2Ddvxh+0T/7893tGvdridV5mNpCB2UFXnT1ycOzMwou5Mi+aJisEgIc2sf6JfvInFudIIi3MLhO+3SBNbj57uV/+/hroDy2Q04JI57hsIAyNOTUJwsMS9jOycC41vcY5jraET9875C/A57emcy0xJCilsQKEU4rsHR3HkdL9akJqOXXOAtnNOj71zHZrulhDHWoPsNgjkzID3c2dHOHYoFl827fd2IbNzbnJTRluHR10hr6AQU4jDTWoVrRJCId4/6r841+bpnLOYDJpRuXgRL/jj2znH4hwlrmBWNBxq61X3Np5Xka17UnyaxYRUs/ccKRE6bylyIRfnbr31Vjz44IP49re/jcHBQXzuc5/Ds88+iyeffBI333xzWE9CkiSUlZWpO+f279+PF198EWVlZQCAzs5OuFzuNvP2du+OpdLSUuTl5SE52X0ifvq09+TK93H+KB8/0PsmJycjNzd3zPsB7jFem82m+UUT6xkcjaj4s8fTsZRklDDbJ3VPueNod7g0YzehOiok+zldMr79pz148s2j4xb8toS4bw5wH1SVO5SBxh3aY5DUqlBGW6dW55x3rLUkM7Kx1uIMq3qyvrc5slAIMak12DAIkTa1tS3k91e6S81Ggy4XINNJTpoFJs8JVpJRQrmw44iCM15iqyzLaudcqGEQilJhTPzNg97X9um4bw6AZlepHsd3ce9bqB3dmULxoSeMQqGenXPise9Aq7u7Mt1qCjo9mxKTJhQixMTWLp3HKucW2dTv+Q/ru9S1LCJl51xRhjVqq0tCId6wa4vnzjkW5yiBacda/b+WaUZaq6LTkS0W0xOh85YiF1bE3B133IHGxka0t7ejra0NTU1N+NKXvhTSx+jq6sJ///d/Y2TEe5L32muvqW8PDAzgiiuuAAAMDw/jb3/7GwDgj3/8o/qYK664AiaTCZdccgkAYNOmTejr68Po6CheeeUVAMCCBQtQXFwMAFi3bh1mz56NdevWAQBKSkowf/58AMArr7wCh8OB3t5ebNq0CQBw6aWXakIvKDINnQOoe+wtLH/kLXXfVij67Q61w2x2oW3MXL3YztsSQSiEv5O5H795BPf+ZR8cnoh3X2L30spq/wVdf5RQiDMDI34LirFMrlJCIfRM9Is3pXMuN82MZHNkP8uSJGGBZ7T1zMDImKJCKA6fFndghV4wWF2TB4vJffh+90jgRdOBKCfcBRkW3e/kTXVGg/f7YGl5VlBdsqQ1Y5zE1t5hh7rzKdR9c+rHF4p/4l5Gds7p0xkdSXeL5oImjJto0dg5JzqnLCuihE6Kv8pcb3G+McS9c13iPkUdzrkMBgkrPEvge4cd2OezEqNveFRNckyUkbQCYcl8W0/k4VehEDsXOdZKiSwriLTWbfXRC4NQiMU5ds5NDWFfVbS3t+PgwYM4cuRIwL1s4+nr68O6deuQmZmJBQsWoKysDPfccw8AID09HWvXrsVnP/tZnH/++QCA66+/HrNnz8Y3vvENAMDnPvc5nHPOOQCAH/zgB0hOTkZjYyOqqqpQUVGBjz76CEajET/84Q/Vz3ny5EkcPnxYs4Puhz/8IQwGAz766CNUVFSguroajY2NSE5Oxve///1wvzzkxyu7mzE06sTQqBO/fK8h5Pffe6pHHQUU938pxAj6lghCIcTi3LWLitW3X/zoJO78zU4MjWh3JLlcMrZ6DsAZyUmYE0J3xkR752KZXGXzXMDZHS6MOPwXISeTEYdLLUKVRBgGoVhYIoZChD/aKnbOzSoMfSwy2WzEsgr36FVz9xCazgT//T404kS35y5fkS0xLgYmm6f+dQkevGYufnTj4ng/lUlpvM65dqFTI9SkVkWp8PP+SVO3+nYox+apxKYJhIi8OKfZyxVi522wCXcBP7eneCJJiHh/oL+xWI60Tn5iN3NDqMW5CL63A1kpjLZ+4LN3TtzpJgabxVNemkUN1RHDeWJBKfwbpMiL70TRNNFrmcsl46MT7s65zJSkkFfYBEssphexc25KCLk419vbi1tuuQXFxcW44IIL8KlPfQrFxcX4whe+gJ6e4C9WMzMzcfPNN6OoqAjHjx9Ha2srSktL8YUvfAHbtm1DeXk5jEYjXn31Vdx9993Iy8tDfX09ysrK8MADD2DDhg3qx1q0aBE2b96Myy67DMPDwzhz5gxWrlyJ1157Te2+C+TKK6/Ea6+9hpUrV6KrqwvDw8O47LLLsHnzZixatCjULw+NY2fjWfXtv+1pwYA9tPGavc3d6tuL/AQuiO28rRF0NYnFuQeumYsnb16spn+9ebAd//rch5outwOtvep4Tl1Vdkh33bWJrWOLc51x6JwD9LmAi7fWniG1mBtpGIRioU575w55inPZqeaw/7+KHZqBFk37o0mGS5CLgclmRlYKbl1VyRGCMIkj5r6dc+Iovx6dcwqz0YDK3Ok5gpyueyCEMNYa4k2jDM1Yaxidc57X3szkpIg73PylcS6tYHFushN/zhs7B8d55FianXM6nXOdLxTnfHfEimEQidL1YjIa1I7YWAdCKDeks1Mt7GClhJaZPH7n3OHTfeqN8Gjsm1NU5nqvI6vzpuc5zlRjmvghWrfffjt2796NV199FStWrIAkSdiyZQu++tWv4o477sAf/vCHoD5OZmYmXnzxxQkfZ7PZ8OSTT+LJJ58c93HnnnuuOo4ayDvvvOP3z9esWYM1a9ZM+FwofE6XjF0nu9XfD4w48dreVtywLPiU20+EYsgCP51zYqGhJYITinrP/rd0qwk5qWZ8ZnEJ8tIs+F//vRN9dgd2N3Xjume24Ne3noeynBRsFfbNict/gzFzglCIjhjunBMv4HqHHbqdmMaLnkmtigWaxNbusD5GV79dLbrWFqSHvWNGbJHfWt+Fm88rG+fRXmKaMcMgKB7EzrlTvp1zQqeGHjvnFDPz06btCLItWd9ACM1Ya4ihDOIFTTidc0pxLkuHribfsVaTQcLi0syIPy7FV1GGFUlGCaNOGSciGGvVY+ccAFTkpKA4w4qWnmFsP3EGw6NONehGvJGcKGOtgPvcoL3Pfa7icLpgisGxU5ZldZ+lXl97omhJt5pgkACXDLUIJxJHWpdHaaQVAL5QV4aTZwZRlZeKecVjr41p8gn5aPvqq6/iV7/6FdasWQObzYb09HSsWbMGzz33HF599dVoPEeaAg619aLfp1PujztOhfQx9pzqBgBYkwx+46gnSgAMxvCoUx2JrcpLUwsnK2fm4qX/tUK9WGzoHMDaZ7ZgX3OPpmsp2DAIhXasdexJZCyX44oXcFOhc04Mg5ih01hrgc2qtpDvORVeKIS4by6cMAjFwhkZakrTluNdQT8XsThXZGNxjmIvzWJChud443usFtMVC8L8/iywWdVuZ4VvgNB04nvjJVJKd5HZaNCETQTDbDIgzeJ+n0B7egIZcbjU/Vx6jBz6jrXOK7YhxRzyPWtKMCajQS3Qn+gagMtPCEMgmrFWnc65JElSR1vtDhc+PumdIhFvJBcnUCe70rXskrW7j6Opd8iBEc9eZ+6bo0RnMEjqagV/aa1iGERdlMIgAPdx6vEbF+ErF82M2ueg2Aq5OJeTk4OMjLGV2YyMDGRlcRyA/BNHWhUfnTiDej/dYv6cHRhR92rNK87wexdP7AIKtzh3omtAHYWs8hmBmltsw5+/vFLtduvst+Omn21V983lpVs0xbZgFNgsaoHl2ERjrbHsnBua/Imt0eicA4AFJZkA3ONhjV2hjcwAkSe1KpKMBpxX6X7B7+iz++289KdNM9aaOHfqaXpRbqa09QxrEgzbheJcuDvnjAZpzMjxnDCCV6YKW5QCIXLSzGF1/iqFWX/dBuPRMwwCGDvWurQ8ehdQFFuVnr1zw6Muzaj8RJTOLYvJoJ6b6WHVTO+NW3G0VfN6nFCdc2IoRGxGWzv6vZ8n2mtciPSgJDH7vpbJsnffnM1qCiv4jaavkItz999/P77xjW+gtbVV/bO2tjZ861vfwne/+11dnxxNHTtOeItzn15YpL79x53Bdc/tERKu/IVBAIDFZFRb4VvDPJloELrX/O0nmpGVgpfvXKEujR4YcWJ41H2nb2V1TsgXKpIkodpT7Gs6O4jhUW3YhNI5l2I2ItUS3Tv66TovDY83sThXqmNxTvz+29Mc+t45vYpzALBC6NQUx6vHk4g7bmj6UUZbHS4Zp4UQiNM6jLUCYwvy07lzzqbjzjmXS1Z3rvrb2RaMrFTPBc3QaEjdx+Ku12wdOufSLSaYhRt953Lf3JShCYXoDH60tWvAfc6Vm2YJe+WEP+KOWDEUojVBX48Lha5lsZs5mjr6wt9lSRQPyk2ifrtDE6R3tL1ffb06rzK0XeREIRfnnnnmGXz44YcoLy/HzJkzMXPmTJSVlWHLli342c9+hnPOOUf9RaRQOueSk4y4/+q5MHkOVH/aeQoO58TJoHuExD1/YRAKpVvidO9wUB/XV33n+MU5wJ0Q95vbl2PNvALNn4c60qpQuu1kGWP2oyjFuVi0+GsT/aZC55y3q01cQB8pzd45z6h1KA6JSa0RpjdpQyGCK85p0uES6E49TS/iGgIxsbVD7JwLMxAC0Ca2ApjWd67FGy+R7pzrHhpVOx3DXbWg7J1zumR1TDUYZ4XinB475yRJ0hQYGQYxdVTmen/+g90759Sh8BxIgc2qTl3sOdWj3gBVpjySk4xqR2kiKNAU52LTORfLADQiPWQmiwFH3tfWD4V9c3VR3DdHU1PIrTif/exno/A0aCpr7RlSL74Wl2aiMMOKi2fnY9OB02jvs+Pdox24eHbBuB9D7FDyFwahKMqwYs+pHrhk4HSfXXMBGIyGIIpzAGBNMuKnn1+KhzfuxwtbG5GRnIRL5oz/bwhETNc53j6gXkQOjzrV/UDR3jcH+O4lmjqdc7lpZiTrOJ6ysMT7/fdJiImtLpeMo56dczOyktXdS+GaU2RDRnISeoZGsbW+Cy6XPGEilHIxkGSUdNnbRBQOsbOt+ewQzq1wv60EQqRbTRH93IofPzfNPK13GFmTDOqC/EhvvGh2coUYBqHIFBJbuwdGNTeGxv3cQnFOr2PXOeVZeHVPK5aWZ0VUDKbEInbOBVuc6x4cgTJhH43XxlXVOTjW3g+nS8a2+jO4ZE6+2jlXlGnVtVMvUuKamLY4FOdy03luQokvM0Wb2KqcZ2wT9s0tr2RxjkIT8pXhgw8+GI3nQVOYONK6zHNn+qZzS7HpwGkAwB+2n5q4OOfpUEq3mNRdIv6InUCt3UNRK84B7r1G3/vMfHxueRlyUi1hF9ACJbaKFyKxuIuoSfSb5J1zIw6XekJZolMYhCInzYKSzGQ0dw9hf3MPnC456Jb15u4hDIy4R5dnRzjSCri/B5dXZmPTgdPoHhzFwbbeCdOalK9Lgc0atWh3oon465yTZVkdoQo3DEIhJrZO5645wN0hlm5NwpmBkYhvvHTocAEt7ovrHhpBGYI7Ruu9cw4AfnjdQlyzsFjd30lTg3j+diLIsVZN8TcK51wrZ+bi11sbAbhHW8+tzMag53wgkUZaAZ/OuVjtnIthABqRHrKEG01K+rgsy9jW4O6cS7eYMLd4ep9/UOgiysbu7+9Hb2+v5heRLzEMYqlnV9sFs/LUOwxvHjytuWPm63TvsHrBtmBGxrgFhUCjUsFSAioKbdagd7zNLrRF1JUhhkiIoRDiiUosuj60gRCTu3OutWdIDfbQMwxCoeydGxhxoqEzuCAGQDvSGum+OcXKEPbODY041cW1xRxppTgqEX4ulS7XfrsDQ569m5HsmwO0Nz3G67aeLpS9c5F3zgl7oXTonDsbQiiE3jvnACDVYsIV8wt1+3iUGIozk9XE5mCDmzo1Sa36fz/UVeVAOX3dcqwLrQkaBgH4FOf64jDWOo07nWnyENcrKDePjnf0q4nm53LfHIUh5OJcQ0MDrr76aqSmpqoJrVlZWcjMzGRaK/m1o9Hd3itJ7hESwB11f905MwC4F4L/z67mgO+/51RwI62AezRAEWooxNmBEfVCYaKuOT2V5aSoB2+xcy7WdxH1XBoeb9FKalWI34d7QhhtPdzmvYFRq1M3z8qZ3r1zExXnxIuBwgS7U0/Ti78bKWKqYqTFuXnFGfjWmlr8y5IS3H5+ZUQfaypQ9s71DYcWwuBLj9Ez31GgYEWjOEdTk9Egqd2zJ7oG4HJN/D2vR+F5PBnJSVjgWYtx+HSf5tyhOMFej21WE5KT3GsFYpXW2il+/dk5R5OAZkWD57XsQ2Gkta6KHdkUupDHWj//+c8DAH71q1+hoKAgoXYkUOIZsDtwsNXdLVRbkK7ZLXPDshl4dvNxAMBL25vwpfMr/X4/7RGW7o8XBgF4AyEA91hrKBqEvSSVebErzllMRpRlp6ChcwD1HQPq3rBY30W0TaG0VjEMYobOY60AsLAkU317z6kerPUUmidy+LS3+FobYRiEoiY/DblpZnT2j2Bbwxk4nC6YjP7vu2jCIDIT62KAppfsVDOsSQYMj7rQ7Pl5FRePRzrWCgBfuWhmxB9jqrAlu0/3XLK74zfcfZea4lyYF9BZmgua+HbO0dRVmZOK+o4BDI+6cLpveMLutK4od84B7ptpyq7aP398Sv3zohBXsESbJEkozLCioXMghmmt7s9jkPQbWyeKJiXcCPC+lolhENw3R+EI+exsz5492LlzJ2pra6PxfGiK2d3UrSa7KSOtiuq8NJxbkYXtJ87iaHs/PjnVg8WlmWM+hnh3ceEEnXPiqF5zd2h3+xo6vMW5qhh2zgHuUIiGzgEMjTrR2juMkszkOIy1ijvnJntxLsqdc0IoxN7m0DvnkowSqnQqAEuShLqqHPxtTyv67Q7sa+n1+3MEAC1icU6H4gdRuCRJQklmMo53DKC5ewiyLMf8mDedpFu0ia3hFufE7iI9AiHOhtA5p9k5x+IcTaBCs3ducOLiXJR3zgHAqupcPPOO+6a02GGTiJ3sBTYLGjoH0G93oN/uiDjAaiJK4T871cJRQJoUfHfOuffNuX+u0ywmzOO+OQpDyGOt5557LpqamqLxXGgK8hcGIbphWan69kvbx35fybKsds5lp5onDHjIS7fA5HlRF0f4giGGQehVOAlWtRgK4dk7F+sLVSXRD5haY62lUSjOZaQkoTzH3ZG3t7lH3VU4nhGHC/WeAnB1XhqSAnS3hWNltXe0dcvxzoCPa9OMtSbWnXqafpSwluFRF84MjGg65/JZPNaV0jkHRHZ813+sNZTOOfdjzSYDUnVM4KapqSLH2zUfTGJrZ7/+acC+llVkwWwa+9qfiDtgxe7laI+2yrKsHlt4Y4YmC98VDfWdA+q127KKrIBTLETjCfm75he/+AX+4z/+A7/+9a+xc+dO7NmzR/OLSKTsmwOAZeVjZ++vXlCEFM9J9sZPWjDkSa5SnDo7pO6BWzgjY8IxaqNBUk8oWkIca60XFvtX5qaN80j9+QuF0O6ci36XgJLoB0yFzjnvWGtJpv5jrYA71ARwF93WP/+R5v+XP8c7+uHwdJHO0mmkVbEiyFAIcQ9jMcdaKc589861C+NTBbxA05VendFKAUOSgOwwR88yk8fu6QnGmQFPZ02KmStVaEIVISa2dukwsj0Ra5IRS8vG3qhOxDUThUJxrr03usW5nqFRjDrd50exON8l0kNWqrYLfJvQDcuRVgpXyMW5jo4OHD9+HLfeeivOPfdcLF68GEuWLFH/S6RwumTsOtkNwL3c2994YarFhE8vLALgTur7+75Wzd9rRlpLgkvcU4oOZwdHxxT7xqN0NZkMUlRGIccjFueUUAg9dvuEKl2nRL94UzrnctPMSI5Sh8U319RitidxtenMEL706+0YHAn8dTtyWv+kVkVFTgqKPGMx20+cwYjD5fdxYnEuEcdoaHoRj7PNZ4e0gRDsnNOVXjtFldelrBRz2F0B4j6pYNNaB+wOdaSW++YoGBU5QnEuiM65rhjtNFw1U3vRnmo2Ij3KI6Ph0HTORbk4p9mxzDAImiR8X8u2NXhvjjMMgsIV8pnVbbfdhiVLlmDr1q2or69HQ0OD5r9EisNtfei3u4sVyyqyAt7pvulc72jrH3ZoR1vFMIiFE4RBKDShEEGOtrpcsnryVpadouvIYTCqhTFapTjX4TlZsVlNsCbFZoTHpib6OSJK9IunEYdLPZEsiUIYhMJmTcKGW89Ti2J7TvXgf/9uFxxO/4WxQ23e4txsnYtzkiSp3XPDoy7sbur2+zilOJdklKKSRkcUCt/OOc1YKzvndJUupHH3DoV/80UpkEUy9mdLToJyOtA9FFxx7r2jnWrn8ZKyzLA/N00fxZnJMHvO5U50Dk7waG/nnM1q8jt6qhcxYR1wh0EkYieoeAMv2sW5jj5vYZRjrTRZWJOMsHiOFd2DI2oYRIrZiPlBNpQQ+Qr51aexsRH/8R//geXLl6OiogLl5eWaX0SKncJI61I/I62Kc8qy1B1vH9afQaNwh/MTTXEuuAOduPS3JchQiLbeYQyPuosqlTEOgwDcewuUVv7jng4+ZUwyN4YnKsoFnNMlYzCErsNE0tozBKWuGO0OyMIMKzbcep76dfvnoXZ895V9fgubh9ui1zkHACuqvHfjA+2dU4rVBTYrDFy4THFWIvx8njo7pB7z0iwmpCZgJ8lkZkuOvHNuwO7A0Kj7dSGSbm6jQVJvBAU71vrmwdPq25fNLQj7c9P0YTRIKM12H2MazwzA5Rr/hqNSeI72pMLCkgxNp1xRgnaxF9i8X4fTQeyck2UZ7x/txN5TwYdkKeIxKUKkB6V7Tkw2XlaRHfMmD5o6Qv7Oufjii/HJJ59E47nQFLOjUQiDKB+7Y0MhSRJuFIIh/rjDHS/vcsnY1+xOtyy0WYMecxJ3abUE2TkXzzAIhTLa2tFnR1vPsFoci2WLv3b0aXKOtkY7qdVXbWE6fn7LMvUO/YsfNeHpfx4b8zilOJdmMU0YbBIOce/cFj9754ZGnOry9US9GKDpZczOOU9xjl1z+tN0zoV5bBeTWiO9aaSk3J0dmLg453TJ+OehdgDuEUDxWEc0HmW0dXjUhdN9gQtMw6NO9HkmPXKivPPMZDRguTDylohhEIB2rPV07/g7dR1OF7798h584Zfb8C8//QDH2vvGfbwvzY7lMINmiOJBSR9XdiYCwPJKjrRS+EIuzl1zzTX4+te/joceegh/+tOf8Ne//lXzi0ihJLUmJxkxd4I46bXnlKjR6S/vPAWnS0a9J8IdCL5rDtCe6AQbClEvFOdiHQahEBNbldZoILYt/uIFXCR7ieKp6Yx3fGVGFMdaRSuqc/BfNy5Sf//4G0fwR2FEu294FM2e78VZBWlRGWGZkZWiJsjuPtk9Zt+iOJZSlKAXAzS9FNisarr20dPeNQj5Nhbn9GbTIRCiQ+huiTTNMsPTbdA77IBzgo6mXSfP4oyniPepWXmwmJjUSsERQyEaxgmFODMgJrVG//gjJqwn6v7X/PTgxlqHR52467cf44873TfWHS4Zbx/qCOlzaXfOJebXg8ifLD/BSNw3R5EIeW7kzjvvBAB873vfG/N3kiTB6Zyco3Ckr7aeYbUYsag0Y8L23vx0Ky6qzcebB0+jrXcY7x3t0JwsLSrNDPpzi6lXrUGOtdZ3iEmt8e2cA+JZnNMn0S+eYt05p7h2UTHaeobw6GuHAAD3/HkvCmxWfGpWnk8YxPiF6kisqMpBY9cgRpwu7Gw8i/NrvBcArUKhmp1zlAiMBgmFGVacOjuEE13eorp4UUj60N54Ca9zTnMBrVPnHOBOahxvAf8bwkjrpXM40krBq8jx3qBr7BrEymr/jxO7QqPdOQcA1y4uxrObj2NoxImrPaFoicZsMiA3zYzO/hHNPlBR7/Ao7vj1DmxrOKP5811NZ/0+PhDNWCs752gSERNbAXdDyoKSzPg8GZoSQu6cc7lcAX+xMEeKHcK+uWXj7JsT3bhshvr2H3ec0iS1LghhsaY4KjW5xlq9n1cszsVy/4YtOfLRp3g7ddZ7kV8a49TdO1ZX4YsrKwC47x7f9Zud2NfcE9UwCJF2tFW7d05MamVxjhKFvxFvjrXqL0PYOdcbZAiDL00BI8LOObHbYKK9c28ccBfnDBJw0ez8iD4vTS9i59yJcTrnOgeErtAYnHPlplmw5f9ejG33XYJZBdE7J4iUMtra3mcf0+Ha0WfHzT/7UC3MpZi9y/F3n+wO6fNoxlq5c44mkYxk7Wvh0vKsqAbK0NQX0XfP8HB003to8lJGWgFgaUXgfXOii2bnq6EImw604f1j3uJCKGOtGclJSPakmwY71qoU51LNxrhdGIqdc2IXSdw658K8gIs3sXOuJDM2Y60KSZLw3U/PxZp57u6OgREnbt2wXTPiEc0TcbE4t7Veu3dOHEsp5FgrJYgSPwX0giD3i1Lw9O6ci/QCWiwWnh0M/FpzvKMf9Z6QpGXl2eN22BH5UnbOAeOPtWr2Kcagcw5w755LMSd28I1yLHa6ZDXNFnCvD7nh2S040OreC52VkoQX76hTk5RbeoYDdtv50+n5+hsk/2OCRIlK7AIHONJKkQu5OOd0OvH9738fJSUlSEtLQ319PQDgu9/9Ln75y1/q/gRpctrpCYOQJHcaazCSjAasPcfdPTfqlHGs3T1qWpadgswQXqwlSVJHW1t7hv0mZ4pGHC51T1llXmrcIu1LMpNhTRr7Ixm/nXOTtXPOXZzLTTMj2Rz73URGg4Qnb16CczwnqR19dk3SYDQ75/LTrZjp2V2451SPZm9gC8daKQHN8Nc5x51zukuziF3R4XbOid1Fsemce0scaZ3LrjkKTXFmshrW1Cjc9PSl+d6Owc65ycJfKMThtj5c/+wW9SZycYYVf7xzJRaVZmKJcL6/K4TuOaXwn5NmUfdPE00GvsXk5VUMLKLIhFyce+SRR7Bhwwb88Ic/hNns/YZcsGABfvGLX+j65GhyGrA71Ltps/LTNXfIJyKOtipC6ZpTKKNSgyNO9EzQAXbyzCCUbv14hUEAgMEgocrP52daa/DsDqeayFYSozAIf6xJRvxy/bmo8tlfmJ9uQVaUOz9WerrnnC4Z2094x8vbxLHWTBbnKDH465yL5Q2J6cJkNCDVc7Mi/M45sbsowp1zwp6e7nE659480K6+fdncwog+J00/RoOE0mz3MeZE1wBcAcJHugZiu3Nusii0aUMhdjaewY0/26oW6qrzUvHyXSvVm4KLhf3Qwe6dk2VZLc5xpJUmm0yhc86aZAjrmpVIFHJx7oUXXsDPf/5zfP7zn4fR6O1KWbhwIQ4dOqTrk6PJ6ZOmbnU3RbAjrYqZ+elqx5Fi0YxMv48dj9gZ1DJBKEQihEEoxMRWRSwvVG3WyLsr4qm1exhKo2QswyD8yUo149e3nacZkamNYtecYqU42nrcO9ra4inOmQwSctkZQAnC3+g5x1qjQ1lbEO7KglZhh2uk3Y3asVb/nXNnBkbU/bXVealxf32myUn5vrE7XOrNO1/akW0W5xSFGd6f87/sOoXP/2KbesN70YwM/PHOlSgWup+XCMW5YPfO9QyNYtTpPnHj154mG3Gy65yyLKaJU8RCLs41Nzdj5syZY/7c5XJhdHTyXcyT/nY0eu+WLSsPrTgHADcuK9X8fkEYdyHEk4XWCUIhNGEQ8S7O+YRRSBJiumPHlix2zk2+n2dx31xpHDvn1OeQnYLnv3ieOlJ2+dzoJw0ur8yBMpm9RSjOtXl+DgpsVhg4NkIJwl/nHAMhokMJ/Am3c04JlclNM0d8ASKOAgXqbn/7ULva1X5pDI6dNDWVB7F3Tht2wuOPQrxR8treNgyPugAA58/MxW/vqBtzfppvs6qTK3tO9cDhdE34OfRMgSaKtVkF3qaKixlYRDoIuTg3b948vPfee2P+/I9//COWLFmiy5OiyU0cpQs2qVV09cIiNdBBkoD5ISS1KoqFhfcThUKIJ2vxvjMvhkIAQHaKGUnG2KX+iDvneocm31irmNQa7845xYIZGXj7mxfij3euwOeWl0f982WlmjGn0AYAONDai7MDIxgedapL14s50koJxHf/YYrZqNmPRvpROueGRp0YDeKiWeRwutQF70U6BMqIo0CBOueUlFYAuGwOi3MUHm1iq/+9c12etFajQQppFctU56+L+eoFRfjlF5cFPE4v9ky/DI06ceR0v9/HiDr6vD//sVzjQqSH8pxUPLduGR68Zi7Wr6yI99OhKSDoM+DbbrsNTz75JB588EHccsstaG5uhsvlwp///GccPnwYL7zwAv72t79F87nSJOB0yeoS2Lx0i7rrIxTp1iTcdWE1fvTGEdywdEZYF2riTq2WngnGWsXiXF58i3MzfcZaY71/I906dTrnEqU4B7h/FmJ5R3hldQ4OtPZCloFtDV2o9RTrACa1UmKxJhmRl25BR5/74jg/3RK3UJ6pzuYT+BNKV3ZHv13tYtMjUEbsnPOX1jo86sS7R90p19mpZs2ieaJQVOR4u+gbu8bvnMtONbOzXOD7s/755WX43mfmjxvasKQ0E6/uaQXg3js3t9gW8LGA+9ii4M45mowuY2c36Sjolpxf//rXGBoawjXXXIOXXnoJr732GiRJwgMPPICDBw9i48aNuOyyy6L5XGkSONzWh367u+NqWXlW2BdZd19Sg30Pr8EPr18U1vuLY63Bds7lplk0gQjxUJmbCvFLFusW/0RIa/2wvgsPb9yPEwHGT8aj7ZyL/1hrvKzw2TsnjnYXM6mVEox4vM5P5/dntIg3X0LdOyfubtWjOCd2zvX4Kc5tre/C4IgTgHtUiAmOFK6KCcZaZVlWi3M5MVwjMhlkpphx3TkzkJxkxNcvnYUffHb8whwALBH2Rgezd66zTyjOpfPrT0TTW9AtSbLsTThas2YN1qxZE5UnRJPbzkbvSOvSMPbNiSIZbRLHWlvHCYToGx5VOzbivW8OcHeRzMhKRtMZdzEl1sW5JKMByUlGDI064xIIMep04c7f7ET34CgOtfbhxX+rC+n9E7VzLtbOq8yG0SDB6ZKx5XgXFgqhKoUszlGCmZGZjE+augFEHjRAgSk754DQb76IBf6izMiPrWkWE0wGCQ6X7Hes9U1hpPVSjrRSBIozk2E2GjDidOGEn865PrsDI54xb3ZujfX4jYvw/123IOgVK/OKM9Sf7V2e4/p4NDvn0nh+QkTTW0jLrDhqQhPRhEFUhL5vTi/JZiOyPHfmW8YJhEikfXMKce9cPJKrIl0aHonDbX3o9nRRbGvo8ttRMR6lOJebZoE1afomJqVbk7DAs6vxaHs/9jb3qH+nR9cLkZ7EUAh2zkWPpnMuxJsvrTp3zkmSpHbPdfsc52VZxpsH3cU5s8mA1TW5EX8+mr6MBkldsdLYNQiXS9b8vSYMgmmhfoWy+9iaZFRHWY+19wcMfFF0sHOOiEgVUnFu1qxZyM7OHvcXTR29w6MYcYS2NHrHCXdxzppkwLwJ9kxEm7K0uq1nGE6fkzFFQwLtm1OIxbl4JFcpF3Chjj3pQbzL6pKB9451BP2+docTp/vcF5DTuWtOIY62bvykRX1bj2XuRHoqEcda2TkXNbYIdoqKN7mKdeicA9wjcwDQ7dM5t6+5F6d73Rfs58/MRSoDQihCys1Xu8OFtl7tNEWX0LnFpFZ9LC7NVN/ec6p73Md2cuccEZEqpDOehx9+GBkZoSdn0uTT0WfHul99hOq8VDx585Kg9r209Qyj2bPfbdGMzJimjPpTnGnFgdZeOFwyOvvtflOn6ju8xblEGGsFgIUzvD9jVblp4zwyOpS9cwMjTjhdckx3/fjuJ3nncAc+vbA4qPdt7R6GMn3P4pw7FOKZd44DALoGvBe/7JyjRHNRbT4eMR2EyyXjotr8eD+dKSuSNO42IVip0M9raTgyPamYAyNOjDhcMJvc5wxvHGhTH8ORVtJDubB37kTXgKbA3MnOOd0tKcvEC1sbAbjP61bX5AV8rPL1NxokTVAMEdF0FFJx7uabb0Z+Pk+cpzqnS8Ytv9yGQ219ONjaC1tyEh757PwJx5p3CPvmzo3jSKtCPPlq7h7yW5wTO+eqEqRz7uoFRTjW3g+jQcJFs2P/85aR7O2uODMwEtPuvd1NZzW/33ykAy6XHFR6mnbf3PQNg1AsK89GklHCqNPbNWoySLwzTQmnLCcFW//vxXDKMsdao8iWHP5Yq5J6Lkn67a3MFC7Eu4dG1P/3bxxsV//8kjk856TIVQg3X090DmJltffvugbEzi0Wh/SwuNS7c3qivXPKWGt2qpnBL0Q07QXd2sR9c9OH0SDh21fUwuR5kfzdtpP44euHJ3w/ZaQVAJZWRBYGoYeiIEIh6jv7AQAGCSjNToyCjslowL9fXouvXTorLicqYrLZ4ba+mH3ensFRHO/QLmvu6LPjYFtvUO+vTWpl51yy2YglpdqfwwKbNahCJ1Gs5aRZWJiLMk3nXKiBEJ6u+Lw0i25d8WJiq7J37tTZQRxsdR/zF83I8HtTjShUlT6dcyLNzjmOteqiIidF/fne3dStCRUUybKsFkd545CIKITiXKADK01NF88uwOM3LoJSk33mneN4dvPxcd9npycMQpKAc8riX5wrzvSe1Lf6CYWQZRkNnmLQjKwUWEzTN0BAJO4KPNDaM84j9fWJsJdE7N5753Bwe+eY1DqWuHcO4Egr0XQW7s65EYcLHZ69UHoktSqyhOLcWc/o/VtC1xxHWkkv5Tnem68nOn2Lc8LOOXbO6UKSJHXv3JmBETSd8R/M1jM0qnb3x2PHMhFRogm6OOdyuTjSOs18ZnEJvveZ+erv/7+/H8KLH530+9gBuwMHPHe7Z+Wna4or8eI71uqro8+OgREngMRJak0E84q9O+/2twTXtaaH3cLow+3nV6pvbw66OCd2ziVGF2S8rfQtzul4YU1Ek4stzJ1zp3u9+zyLdSzwa8da3cVCJaUVAC6dy+Ic6aM4MxlmT8enb+dcp7CTld1b+hFDIXb5rCxRaMMgWBglIorvxn5KeLfUleNba2rV39/7l734256WMY/7pKlbTURNhJFWQNsl5G+stT4B980lgpqCNPUkNl7FuWsWFasBHTtPnkVPEMmx7Jwba3FZJiwm72GenXNE05e4cy6Uzjkx3VKvfXOA71jrCHqHR/FhfRcAd4Lv7MJ03T4XTW9Gg4QyT/dcY9cgXC7vNBA756JjiTBBs8sn7EvR3uf92uexMEpExOIcTezLF1bj3z5VBQCQZeDrL+3GO4fbNY/Z0ei9K7asPDGKcwU2K5T1Wi1+xlo1YRDsnFMlGQ2YVehOia3v6MeQp7swmmRZVotzWSlJKM9JwQW17nQvp0vGB8c6J/wYSnEuN80CaxJHlAHAYjJqwllYnCOavsSdc30h7JxrETrPizP0HGsVOucGR/HukQ51xO2yuQXcdUy6qvAU5+wOl6bgrOycS04yIsUcUk4ejWPxjEz17UChEGJSLrsWiYhYnKMgSJKEe66cjZuWlQIARp0y7vzNTmw/4U1n1Rbn4p/UCriLTMqC8RY/nXNica4yNy1mz2symFfkHm11yQg6kCESTWeGcMYzWrKoNBOSJOHCWu8YvW8x2Jfd4cTpPvf/Y3bNaZ1fk6u+zfFtoukrOcmoBj2Fktba2uN9/SzK1LFzTujkOzs4ijcOeEdaL+NIK+lMDLsS9851ec492DWnr4yUJHUq5WBLL+yOsTd6O8XOOe6cIyJicY6CI0kSHl27AFctKAQADI+6cNuG7djf0gOnS8YuT3EuL92C0uzEKY4oFxKd/fYxJwb1Hf3q25Uca9WYV+INhYjFaKu4j0TZU7K8MhvWJPchavORjnFDaVq7vTuRWJzTWreiHDcsnYFbV1VgdU1evJ8OEcWJJElq91wonXOtQudckY6dc+LOuc5+O94+5L4Jk2414bzKxLjJR1NHea6Y2OreUetwunB2UCnOsTikN+V8bsTp8nsu2aHZOcevPxERi3MUNKNBwo9vWozVnk6cvmEH1v3yI2za34Y+u/tEf1l5VkKNooihEG092u45ZeecNcmAIhvH/URzi4TE1pboJ7aK++aUPSXWJCPqqtyBBqd77TjU1hfw/bX75hgGIUoxm/CfNyzCg9fMg9GQOD+bRBR7yt65cDvninXsnMtK9XbOvX2oHb2eguGFtflIMvL0lPRVKXbOeUIhzg6Oqjf2clPZOac3ce/cbj9758TOudx0fv2JiHj2QyGxmIz42S1LcU5ZJgD3OMBXfvex+vdLE2TfnEJMlhNHWx1OF0567pxW5KTCwKKFxpwiG5Qa64FYdM4JJ23inpILZ3k7vd4ZJ7VVm9TKzjkiIn/EzrnxupFFSnHOIOm7tD0z2Xsx3iUkZl46J9/fw4kiUpHrvXGnrDXpGmAYRDQt0SS2do/5ezGtlYEQREQszlEYUswmPP/F89QkNSH0CssqEmsUReycE5danzo7BIfniTOpdaxUi0m9y3yorQ8Opytqn8vucKoFwKrcVGQICX7B7p1jUisR0cTSLe7jq9MlYzDIsJ9WT6BSgc0Kk44dbclmoyZNGgBMBgkXzmJxjvRXlJGsJtE3ejrnuoRAAo616q+2MF1dT7JbWF+iUMZajQZJExBDRDRdxbU49/jjj+PCCy9EUVERLBYLysvLsX79etTX16uP2bt3L6677jqUlJTAarVi4cKFeP755zUfR5ZlbNiwAcuWLYPNZkNmZiauvfZaHDhwYMLn4HQ68eijj2L+/Pmw2WxITU3FrFmz8J3vfAdDQ2MTPsktIyUJL3zpPJTneO9EWpMMmFdsG+e9Yk/cj9MqJLZqwyBYnPNnruf/pd3hwvGOgQkeHb6DrX0Y8RT/Fgt3WQGgIjdVTVjb2XgWfQFGsbSdcxxrJSLyx5YcWmKr3eFUExWjkfbse0F+XmW25gYNkV6MBgllnvOJxq5BuFyypnMrh2OtuksyGrCgxB0w1nRmSPP1BoDOPvexJTvVzAkWIiLEuTj31FNPYfPmzTCbzSgpKcHJkyfxwgsvYNWqVejt7cWBAwdQV1eHP//5zxgaGkJNTQ327t2L2267DU888YT6cR5++GHceuut2LlzJwoLC5GSkoKNGzdi1apVOHHixLjP4fvf/z7uu+8+7N+/HwUFBSgpKcHRo0fxwx/+EN/85jej+wWY5PLTrfjNl5aj0LOv7dI5BQm3J0bcj9MsjLUeF8MgmNTq17ziDPXt/VHcO7f7pBAG4RmXFindcw6XjA+Odfr9GOycIyKaWLrVW/gKZu9cmyapVf9ja6ZPIe7SOUxppehRbvbZHS609Q5rOucYSBAdgfbOybKsjhXza09E5BbXSsodd9yBxsZGNDY2or6+Hl/72tcAAG1tbXjrrbewYcMGDA4Owmw24+jRo9i7dy/uu+8+AMBDDz2kdrb99Kc/BQBcd911OHLkCBobG1FZWYnu7m48+uij4z6H999/HwBQW1uLo0eP4siRI6itrQUANDY2RuOfPaWUZqfg9a99Cs9+YSkeW7sg3k9nDHGslZ1zoRG7IKOZ2CqGQfh2zgHABbUT751TinO5aRZYk4y6Pj8ioqnCJhTnAnUii8QwiGgEJ/kW5y6by+IcRU+FGArROcCdczGwWLN3znsztmdoFKNO93qZvHQW54iIgDgX5+677z6UlZWpv1+9erX6tsVigcvlHnWTJElNAFX+29PTg+3btwOA5nG+3nzzzXGfg/I5Dx8+jJqaGsyaNQuHDx/GvHnzxi3s2e129Pb2JjHA8AAAIydJREFUan5NVxkpSbhifqHmjnyiyEk1w+zZadMqdM6Jxblq7pzza66mOBfFzjlPcc5sMmB24dix6BVVOepeoncOd4xZYm53OHG6z/3/ll1zRESBKYEQANA7NPFYq3hTKyqdc0IoxOzCdJRmcy0BRU+FcDO2oWtAu3MulQWiaFgiTESIN2M7xKRWFkaJiAAkUCCEw+HA008/DQCoqqrCJZdcguuvvx5GoxF2ux01NTVYuHAhHnnkEfV9mpubAQA333wzAODll19GbW0tKioq0NDQoHlMIN/97ndxzz33AACOHTuGo0ePQpIkLFiwAKWlpQHf77HHHkNGRob6a7zHUvxIkqQmtoqBEEpxLislCZlcQutXbpoFBTb3yeqBlt6gk/1CcXZgBCc8qbkLSjLUQqrImmTE8qocAEBb7zCOnO7X/H1r9zCUp8biHBFRYLbk0MZaxZTz4mjsnEv1Ph+OtFK0iZ1zjV2D6j5FgAWiaCnKSFbPJT9p6oHTE8bWwaRWIqIxEqI4NzAwgLVr1+Ltt99GYWEhNm7cCIvFgrq6OmzcuBF1dXUYGRlBV1cX1q1bp75fUpL7pO7xxx/H/fffj6qqKjQ1NaGoqAgXX3yx5jGB/O53v8N//dd/oaamBidOnEBjYyNqamrw+9//HrfeemvA97vnnnvQ09Oj/mpqatLhK0HRoIRC9Nkd6B0exeCIQx3V4Ujr+JS9c73DDs1eN71MNNKquHCWONqqTW3V7ptj1wURUSCazrkgAiGi3TlXnefe+SpJwBXzC3X/+ESiilzvOUKDz1hrFgMhomZJqXvvXL/doe58FgujHGslInKLe3Gura0NF1xwATZu3IhZs2bhgw8+wNy5c9W/v/LKK7F161b09fWhubkZa9asUf9O2Q1nsVjw/e9/H8ePH8fg4CB27NgBk8mkeUwg3/nOdzA6Ooorr7wS5eXlKCsrwxVXXAFg/JFYi8UCm82m+UWJqUgIhWjtHvbZN8cwiPFEe+/crmCLc+PsndMmtbJzjogokJB3zkW5c+5zy8vwnStm4/997hzML8mY+B2IIlCckax26J/o9I61ZqYkJVyg2VQihn0poRDasVYW54iIgDgX5/bv34+6ujrs3LkTq1evxtatW1FVVaV5zObNm9W3m5qa8NBDDwEA5s2bh/nz5wMAGhoaNOENL730EjZt2gTAO/IKAOvWrcPs2bM13Xc9Pe5dWrt374bT6YTL5cLu3bsBAKmp7KqaCkqEu/0tPUOa4lwV982NSyzOHYjC3rlgO+cqc1NR5tlFtKPxDPrt3o4PJrUSEQXHFvLOOXdxzmSQkBOFC+gUswl3XViNqxYU6f6xiXwZDJJ6LtF4ZhCdntHKHHbNRdUSP6EQnf0szhER+YprcW7t2rVqUa2vrw9XXXUV6urqUFdXh1/84hcAgKuvvhr5+flYsGABampqcOTIEaSkpOC5555TAyB27tyJqqoqzJo1C5WVlWpBbvny5bj77rvVz3fy5EkcPnwYJ0+eVP/suuuuAwC8++67qKysRGVlJd59910AwPr166P/RaCoU8ZaAU/nXIdQnONY67iUsVZA/845WZbxiac4l5tmHrewJkmS2j036pTxwbFO9e+0nXMcayUiCkTcORdcWqv75keBzQqjYWzoFtFko+ydG3G4MDjiBICoFJ7Ja8GMDPX4scvTOdcpdM5xrJWIyC2uxTm73Xtg3r17N7Zt26b+OnXqFADgmmuugclkwuHDh5Gamoq1a9di69atWLFihfq+VVVVOO+889De3o7m5mZUV1fj3nvvxVtvvQWLZfwD/s9+9jM88sgjmDdvHrq7u9Hd3Y1FixbhJz/5CR577LHo/MMppoqFsdaWbm3nXCU758Y1IytZ7bTQuzjX0DmAniH3xeHi0ky/acuiQKOt7JwjIgpOKDvnhkacODvoPkaLr6NEk1lFztibeAyDiK4Uswm1BekAgCOn+zBgd2gCIfj1JyJyM038kOg5ceLEhI958cUXJ3zMOeecg61bt074uHfeeWfMn1mtVtx777249957J3x/mpyKfcZa64XinJjcRWNJkoS5xTZ8WH8Gbb3D6Oq363aHOdiRVkVdVQ7MRgNGnC5sPtwOWZYhSZJanMtNs8CaZNTluRERTUWh7JzThEFk8MYHTQ0VfiYmclLZuRVti8sycaC1Fy4Z2HOqRx1rNRokZKWwOEdEBCRAIARRtBVlaDvn6j1JUSWZySzmBCFao63a4lzWhI9PMZuwvCobANDSM4xj7f2wO5w43efeicSuOSKi8aVpds5NVJzzhkEUsXOOpohKf8U5dm5Fne/euc4+dxhHdqoZBo7MExEBYHGOpoF0a5I6ynOwtU8d5fF3gkZjzS2KTmKrUpyTJGBhaXApfRfM0o62tnYPQ5bdv2dxjohofElGA1LM7ptSfROMtWqKczYW52hqKPcz1sqdc9G3REhs/bixG10D7s65PH7tiYhULM7RtFDsGcnpEToFWJwLzrwSIbG1VZ/i3PCoEwc8hb6ZeWmaUavxXFibr779zpF2n31zDIMgIpqIcrNqwuJctzDWmsmbHzQ1FGckw2zSXv7kMq016qpy09Rjz9bjnRh1uu+s5jIMgohIxeIcTQv+lllXMQwiKNV5aeqJ7P6WHl0+5v6WHjhc7hOzYPbNeZ9Lqtoht73hLA6f7lP/jp1zREQTU26G9E6wc65F6Jwr5s45miIMBgnl2dqbeeyciz6DQVLP9wY8KbkAwyCIiEQsztG04O+uPzvngpNkNGB2oTtlq6FzAAP28bstgrHrZLf69mJh1GEikiSpqa0jThf+uKNJ/bvSbHbOERFNROleGRxxwuF0BXycJhCCO+doCin3CQPjzrnY8HczNo+dc0REKhbnaFoozvDTOZebFodnMjnNK3aPtsoycKgt8tHWUJNaRRfO8o62Hmpj5xwRUShsyWJia+CbLa3d7s45s9GAbKYp0hRSmau9mZfLtNaYWOLnZix3zhERebE4R9NCsU/nXJJRQgmLOUGbq3Niq1KcS04yorYgPaT3XVGdA7Nx7KGrhDuRiIgmlG4Nsjjn6ZwrzLAyTZGmFLFzzmSQYEs2jfNo0suiGZlj/iyXxTkiIhWLczQtFPnsyynPSYWRFxtBUzrnAGB/c2TFuc5+uxrksKAkAyY/hbbxpFpMOLcyS/NneekWWJOMET0vIqLpQBlrBQLvnRuwO9Rk8yI/nedEk5m41iQnzQxJ4vlgLOSkWcak5XKslYjIi8U5mhZ8u6qquG8uJLML06Gcu+5vjSwUYneY++ZE4mgrwJFWIqJgienYgYpz4r45385zosmuQizOcaQ1pnxXmbBzjojIi8U5mhYKMrQv/pVMag1JitmkFjSPtPVjdJwl4hMR980tCXHfnEIJhVDMyGIYBBFRMDSdc0P+x1pbur1Jreyco6mmyGZVu+f87UGj6PE972NaKxGRF5cs0LRgMRmRm2ZBZ78dADvnwjGvOAPHOwYw4nThWHs/5hTZJn4nP3Y1nVXfDrdzbmZ+Gkoyk9Hc7e7uYOccEVFwtIEQE3fOsThHU43BIOE3ty/HzsazuHRO/sTvQLpZXOZdS2I0SMhi2AwRkYqdczRtlGR6LzAqmdQaMs3euTBDIVwuGXua3GOxBTbLmF2AwZIkCRcI3XMszhERBcem2Tnnv3OutUfsnOPxlaaeksxkXLuoGClm9inE0twiG8wm9+VnTqqZYTNERAIW52jamJnvTgVNMkqoyWdxLlTzNImt4e2dO97Rjz67+2LQd+9IqG5cVgqDBJiNBqyemTfxOxARkWbnXMDOOXGsNZOdc0SkD7PJgPUryiFJwM3nlcX76RARJRTeLqJp46uX1AAAzq/JQVYq2+hDpUfn3C5h39zi0qzADwzC4tJMvP+di2EySMi38eKRiCgYQe2cEwMh2DlHRDq67+q5+Nqls5Bq4WUoEZGIR0WaNspyUvD4jYvi/TQmraxUM4ozrGjpGcbBll64XHLI4wi7NcW5zIifE1MEiYhCE9zOOXfnnDXJgMyUJL+PISIKFwtzRERjcayViII219M912d3oOnsYMjvv/tkNwDAIAELZ2SM/2AiItKdpnPOT3FOlmW0esJ2ijKSIUncCUVEREQUbSzOEVHQ5mr2zoU22jo04sTh030AgFkF6bxrSkQUB9qdc2PHWvvsDgyMOAEwqZWIiIgoVlicI6KgaffOhRYKsbe5B06XDABYUpap59MiIqIgpZiNMHpWEvjrnNOEQXDfHBEREVFMsDhHREETi3MHQuyc23XyrPq2HvvmiIgodJIkqaOt/jrnNGEQTGolIiIiigkW54goaCWZycjwLBMPdax1t45JrUREFD6lONc7NH7nXCHHWomIiIhigsU5IgqaJElq91x7nx0dffag31cpzqWajZiZnxaNp0dEREFQ9s71DTsgy7Lm71rFzjmOtRIRERHFBItzRBSScPbOne4dRmuPuxtj4YxMdd8RERHFntI553DJGB51af5OOVYDQBHHWomIiIhigsU5IgrJXE1xLrjR1l0nu9W3FzMMgogorsTEVt9QCLFzjoEQRERERLHB4hwRhWRecYb6djChED2Do3jmnWPq7xkGQUQUX+lCca7Ptzjn2TmXajbC5umwIyIiIqLoYnGOiEJSlZsKi8l96JhorLWr345/fe5DfHLK/bi8dAtWzcyN+nMkIqLAbMneolvPkDexVZZlNa21MMMKSeIKAiIiIqJYYHGOiEJiMhowu8g92nqiaxD9doffx7X3DuPmn3+IA63u7rrcNAt+86XlSLOwE4OIKJ4Cdc51D46qO+iKMznSSkRERBQrLM4RUcjEUIiDrWNHW5u7h3Djz7biaHs/AKAow4o//K861Bamx+w5EhGRf+K4au+w9waLJgwig2EQRERERLHC4hwRhUyT2NqsHW092TWIG5/dihNdgwCAGVnJ+MP/WoGqvLSYPkciIvLPFqBzjmEQRERERPHB+TIiCpkYCiEmth5r78fnf/EhTvfaAQCVuan47e3LOR5FRJRA0sXOOWHnXIvQOVecyc45IiIiolhhcY6IQlZbkA6DBLhkb3HuUFsvvvCLbejsHwEA1OSn4be3L0e+jRd4RESJxJYcoHOu29s5V8jOOSIiIqKY4VgrEYUs2WxEtWdM9Wh7Hz4+eRY3//xDtTA3t8iG3/9bHQtzREQJSNM5JxTn2sTOOe6cIyIiIooZFueIKCzK3rlRp4ybf/YhugfdF3iLSjPx4h11yEmzxPPpERFRANqdc+JYq7BzjusIiIiIiGKGxTkiCou4d27E6QIAnFuRhd986TxkpCQFejciIooz7c45MRBiWP37NAs3nxARERHFCs+8iCgsYmIrAKyamYPn1i1DipmHFSKiRJbup3NOlmW1OFfEkVYiIiKimGLnHBGFZVFpJnI9o6sX1ebhl+vPZWGOiGgSMJsMsCa5TwGVnXNdAyMYcbi7oIsYBkFEREQUU7ySJqKwpFpMeOV/r8Lx9n6smpkLo0GK91MiIqIg2axJGB61q51zmjCITHbOEREREcUSi3NEFLaSzGSUcGk4EdGkk241ob3Pru6ca+kWwiDYOUdEREQUUxxrJSIiIppmbMnuvXMDI044nC513xzAnXNEREREscbiHBEREdE0I4ZC9NsdaOlh5xwRERFRvLA4R0RERDTN2KzezSZ9ww60dgudc9w5R0RERBRTLM4RERERTTNi51zv8Kg2EIKdc0REREQxFdfi3OOPP44LL7wQRUVFsFgsKC8vx/r161FfX68+Zu/evbjuuutQUlICq9WKhQsX4vnnn9d8HFmWsWHDBixbtgw2mw2ZmZm49tprceDAgaCex8DAAO6//37MmjULFosFWVlZWLlyJT766CNd/71EREREicCW7O2c6x3yjrVmpiQh2WyM19MiIiIimpbimtb61FNPobGxEWVlZSgpKUFDQwNeeOEFbNq0CYcPH8apU6dQV1eHwcFBZGVloaamBnv37sVtt92Gnp4efO1rXwMAPPzww3j44YcBADU1Nejv78fGjRvx3nvvYdeuXaioqAj4HIaHh3HRRRdh+/btMBgMqKmpgdlsxr59+3DkyBGcd955MfhKEBEREcWOTeic6xkaxeled+cc980RERERxV5cO+fuuOMONDY2orGxEfX19Wqxra2tDW+99RY2bNiAwcFBmM1mHD16FHv37sV9990HAHjooYcwNOS+y/vTn/4UAHDdddfhyJEjaGxsRGVlJbq7u/Hoo4+O+xyeeOIJbN++HUVFRThw4AAOHTqEPXv24OzZs1i7dm30/vFEREREcSLunGvoHMCoUwbApFYiIiKieIhrce6+++5DWVmZ+vvVq1erb1ssFrhcLgCAJEmQJEl9GwB6enqwfft2ANA8ztebb7457nN46aWXAABVVVW45ZZbkJqaijlz5uCnP/0prNbAJ6h2ux29vb2aX0RERESTgbhz7nCb9xyGxTkiIiKi2EuYQAiHw4Gnn34agLtQdskll+D666+H0WiE3W5HTU0NFi5ciEceeUR9n+bmZgDAzTffDAB4+eWXUVtbi4qKCjQ0NGgeE8jhw4cBAB988AEaGhpQUFCAQ4cO4e6778aPfvSjgO/32GOPISMjQ/1VWloa/j+eiIiIKIbShc65w6f71beLMznWSkRERBRrCVGcGxgYwNq1a/H222+jsLAQGzduhMViQV1dHTZu3Ii6ujqMjIygq6sL69atU98vKcl91/fxxx/H/fffj6qqKjQ1NaGoqAgXX3yx5jGBOBwOAEB2djaOHTuG48eP49JLLwUAtVjozz333IOenh71V1NTU0RfAyIiIqJYsSV7z4+Od3iLc+ycIyIiIoq9uBfn2tracMEFF2Djxo2YNWsWPvjgA8ydO1f9+yuvvBJbt25FX18fmpubsWbNGvXvamtrAbhHYL///e/j+PHjGBwcxI4dO2AymTSPCaSkpAQAMGvWLGRkZECSJCxbtgwAcPLkSXVk1pfFYoHNZtP8IiIiIpoMxM65EYf3XKeQxTkiIiKimItrcW7//v2oq6vDzp07sXr1amzduhVVVVWax2zevFl9u6mpCQ899BAAYN68eZg/fz4AoKGhAY2NjerjXnrpJWzatAmAd+QVANatW4fZs2druu+ULrkjR46gt7cXsixj586dAIDq6moYDHGvXxIRERHpSkxrFRUzrZWIiIgo5kwTPyR61q5dqxbV+vr6cNVVV6l/d/vtt+P222/H1VdfjZSUFBQUFODo0aOw2+1ISUnBc889pwZA7Ny5EzfddBOqq6sxOjqKEydOAACWL1+Ou+++W/2YJ0+exOHDh1FYWKj+2b333ouXX34ZZ86cwcyZM5Geno76+noAwAMPPBDtLwERERFRzImdcyJ2zhERERHFXlzbwux2u/r27t27sW3bNvXXqVOnAADXXHMNTCYTDh8+jNTUVKxduxZbt27FihUr1PetqqrCeeedh/b2djQ3N6O6uhr33nsv3nrrLVgslnGfQ2VlJd5//318+tOfht1uR2dnJ1auXIm///3vuOWWW6LzDyciIiKKo1SzCQafkPucVDOsScb4PCEiIiKiaUySZVmO95OYCnp7e5GRkYGenh7unyMiIqKEt/Ch19E77FB/P7/Ehr/9n9VxfEZEREREU0uwtSIuVCMiIiKahsTEVgAotHHfHBEREVE8sDhHRERENA2l+4RCFGdy3xwRERFRPLA4R0RERDQN2XxCIYqY1EpEREQUFyzOEREREU1D7JwjIiIiSgwszhERERFNQ7ZkbedcoY3FOSIiIqJ4YHGOiIiIaBqyjemc41grERERUTywOEdEREQ0DYk75yQJKGDnHBEREVFcsDhHRERENA2JO+dy0ywwm3haSERERBQPPAsjIiIimobEnXPFGeyaIyIiIooXFueIiIiIpiGxc66QxTkiIiKiuGFxjoiIiGgaykj2FucYBkFEREQUPyzOEREREU1DS8uzMKsgDekWE9YumRHvp0NEREQ0bZkmfggRERERTTXWJCP+8dVPYdTlgsVkjPfTISIiIpq2WJwjIiIimqYMBgkWAwtzRERERPHEsVYiIiIiIiIiIqI4YXGOiIiIiIiIiIgoTlicIyIiIiIiIiIiihMW54iIiIiIiIiIiOKExTkiIiIiIiIiIqI4YXGOiIiIiIiIiIgoTlicIyIiIiIiIiIiihMW54iIiIiIiIiIiOKExTkiIiIiIiIiIqI4YXGOiIiIiIiIiIgoTkzxfgJThSzLAIDe3t44PxMiIiIiIiIiIoo3pUak1IwCYXFOJ319fQCA0tLSOD8TIiIiIiIiIiJKFH19fcjIyAj495I8UfmOguJyudDS0oL09HRIkhTvp0NEMdDb24vS0lI0NTXBZrPF++kQEUUVj3lENJ3wmEdEepBlGX19fSguLobBEHizHDvndGIwGDBjxox4Pw0iigObzcaTNiKaNnjMI6LphMc8IorUeB1zCgZCEBERERERERERxQmLc0RERERERERERHHC4hwRUZgsFgsefPBBWCyWeD8VIqKo4zGPiKYTHvOIKJYYCEFERERERERERBQn7JwjIiIiIiIiIiKKExbniIiIiIiIiIiI4oTFOSIiIiIiIiIiojhhcY6IiIiIiIiIiChOWJwjomnp3XffxVVXXYW8vDxIkgRJkvDss89qHrN3715cd911KCkpgdVqxcKFC/H8889rHrNx40Z89rOfRUVFBZKTk1FQUIDLL78cmzdvHvM5f/KTn2Du3LmwWCzIz8/Hrbfeira2tqj+O4mIAP2Oee+88476/r6/3nzzTc1jecwjonjR65gHAM8++yyWLl2KrKwsJCcno7KyEnfddRe6uro0j+Mxj4giYYr3EyAiioePP/4Yb7zxBqqqqtDZ2Tnm7w8cOIC6ujoMDg4iKysLNTU12Lt3L2677Tb09PTga1/7GgDgT3/6E1555RXk5OSguroaBw4cwBtvvIF//vOfeO+997BixQoAwL333ovHHnsMAFBTU4NTp05hw4YN2LJlCz7++GOkpqbG7N9ORNOPXsc8hdlsxpIlSzR/lpGRob7NYx4RxZNex7wNGzbgrrvuAgCUlpaipKQE+/fvx7PPPouTJ0/i1VdfBcBjHhFFjp1zRDQt3XLLLejt7cXrr7/u9+83bNiAwcFBmM1mHD16FHv37sV9990HAHjooYcwNDQEAFi9ejW2bduGzs5O7Nu3D3/5y18AAE6nE7///e8BAG1tbfjP//xPAMC///u/48iRI/jwww8hSRKOHDky5k4uEZHe9DrmKYqKivDhhx9qfp177rkAeMwjovjT65j3/vvvAwDS09Nx7Ngx7Nu3D5dffjkAoLGxEQCPeUSkDxbniGhaysnJQXJycsC/d7lcAKCOQihvA0BPTw+2b98OAPjSl76E8847T32/1atXq29bLBYAwFtvvQWHwwEAuO666wAACxcuxMyZMwEg4IkjEZFe9DrmKVpaWpCZmYnMzEwsX74cL7/8svp3POYRUbzpdcxTzuv6+vowc+ZMzJ8/H5s2bUJ5eTmeeuopADzmEZE+WJwjIvLj+uuvh9FohN1uR01NDRYuXIhHHnlE/fvm5ma/7/fjH/8YgLswt27dOgBAU1OT+vf5+fnq2wUFBQCAkydP6v78iYhCEeoxr6ioCOXl5RgeHsZHH32EG264Ac888wwAHvOIKPEFe8xbv349nnrqKZhMJjQ1NWH//v0AgNmzZ6O6uhoAj3lEpA8W54iI/Kirq8PGjRtRV1eHkZERdHV1qcU2AEhKShrzPt/73vfwgx/8AElJSXjhhRcwf/58AIAsy34/h/Lnyp1aIqJ4CfaYN2/ePNTX16OxsRGffPIJjhw5ol6APv744wB4zCOixBfsMe+tt97CPffcA5vNhn379qGjowPnn38+Xn/9dXzmM58BwGMeEemDxTkiogCuvPJKbN26FX19fWhubsaaNWvUv6utrVXfHh0dxa233ooHH3wQaWlpeOWVV3DjjTeqf19WVqa+ffr0afXt9vZ2AO4Fw0RE8RbMMS8vLw+VlZXqn5eVleH8888H4O0O4TGPiCaDYI55DzzwAPr7+3H++edj3rx5yM3Nxdq1awEAu3fvRmdnJ495RKQLFueIiALYvHmz+nZTUxMeeughAO7OEaUrrqenB1deeSU2bNiAkpISvPfee7jyyis1H+eSSy6ByeQOx1b2Mu3evRvHjh0DAFxxxRXR/qcQEU0omGPeCy+8gG3btqmPO3XqlLowvaKiAgCPeUQ0OQR7ngcA+/fvx/DwMABg586dAACDwQCr1cpjHhHpQyYimob+9Kc/ydXV1XJ5ebkMQAYg5+XlydXV1fLnPvc5WZZlOTU1Vc7Ly5Pnz58vWywWGYCckpIib9myRf04//Zv/6a+f1VVlbx8+XL111133aU+7p577lEfV1NTIycnJ6tv9/f3x/zfT0TTi17HvPXr18sA5NzcXHnhwoWy1WpVP96GDRvUx/GYR0TxpNcx74EHHlDfPz8/X545c6b6+xtuuEF9HI95RBQpds4R0bTU29uL48ePo7GxUf2zjo4OHD9+XF0CfM0118BkMuHw4cNITU3F2rVrsXXrVqxYsUJ9H7vdrr5dX1+Pbdu2qb8OHDig/t0jjzyCJ554ArNnz8aJEyeQmpqK9evX491330VqamoM/sVENJ3pdcy75ZZbcMMNNyAtLQ1HjhxBRkYGLr30UrzxxhtYv369+jge84gonvQ65j344IN4+umncc4552BkZAQtLS2YM2cOvve972HDhg3q43jMI6JISbIcYIMlERERERERERERRRU754iIiIiIiIiIiOKExTkiIiIiIiIiIqI4YXGOiIiIiIiIiIgoTlicIyIiIiIiIiIiihMW54iIiIiIiIiIiOKExTkiIiIiIiIiIqI4YXGOiIiIiIiIiIgoTlicIyIiIiIiIiIiihMW54iIiIgoJA899BAWL14c76dBRERENCVIsizL8X4SRERERJQYJEka9+/Xr1+Pp59+Gna7HTk5OTF6VkRERERTF4tzRERERKRqa2tT337ppZfwwAMP4PDhw+qfJScnIyMjIx5PjYiIiGhK4lgrEREREakKCwvVXxkZGZAkacyf+Y61fvGLX8RnP/tZPProoygoKEBmZiYefvhhOBwOfOtb30J2djZmzJiBX/3qV5rP1dzcjJtuuglZWVnIycnBZz7zGZw4cSK2/2AiIiKiOGNxjoiIiIgi9s9//hMtLS1499138aMf/QgPPfQQPv3pTyMrKwvbtm3DnXfeiTvvvBNNTU0AgMHBQVx00UVIS0vDu+++i/fffx9paWm44oorMDIyEud/DREREVHssDhHRERERBHLzs7GT37yE9TW1uK2225DbW0tBgcHce+996Kmpgb33HMPzGYzPvjgAwDA73//exgMBvziF7/AggULMGfOHDz//PM4efIk3nnnnfj+Y4iIiIhiyBTvJ0BEREREk9+8efNgMHjv+xYUFGD+/Pnq741GI3JyctDe3g4A2LlzJ44dO4b09HTNxxkeHsbx48dj86SJiIiIEgCLc0REREQUsaSkJM3vJUny+2culwsA4HK5sHTpUvz2t78d87Hy8vKi90SJiIiIEgyLc0REREQUc+eccw5eeukl5Ofnw2azxfvpEBEREcUNd84RERERUcx9/vOfR25uLj7zmc/gvffeQ0NDAzZv3oyvfvWrOHXqVLyfHhEREVHMsDhHRERERDGXkpKCd999F2VlZVi7di3mzJmD2267DUNDQ+ykIyIiomlFkmVZjveTICIiIiIiIiIimo7YOUdERERERERERBQnLM4RERERERERERHFCYtzREREREREREREccLiHBERERERERERUZywOEdERERERERERBQnLM4RERERERERERHFCYtzREREREREREREccLiHBERERERERERUZywOEdERERERERERBQnLM4RERERERERERHFCYtzREREREREREREcfL/A8j1VybVGPbKAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "for key, anmn in annual_mean.items():\n", - " source_id = key.split('.')[2]\n", - " anmn.plot(label=source_id)\n", - " plt.title(f\"Mean Annual Surface Air Temperature for {source_id}\")\n", - " plt.xlabel('Time')\n", - " plt.ylabel('Temperature (K)')\n", - " plt.legend()\n", - " plt.show()" - ] - }, - { - "cell_type": "markdown", - "id": "62aa4cd6-568c-4ce3-aef3-20b6c9884532", - "metadata": {}, - "source": [ - "#### Visualizing the regional annual mean for each dataset in a single panel\n" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "id": "4da2ebf8-f904-4c39-94a6-999e15e6a354", - "metadata": { - "tags": [] - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/8AAAIhCAYAAAAYQQq9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gU5fbHv9uy6b1BCgmhd1GkKE1EEOyCcC2IioKKys/eC5Zr5eoV6xXECiiIhaqioHSQXhNIQhLSe91ky/z+mJ2Zd7Zld7ObXZLzeZ48eXd3ZvbdzWZ2vu8553sUHMdxIAiCIAiCIAiCIAiiw6L09QQIgiAIgiAIgiAIgvAuJP4JgiAIgiAIgiAIooND4p8gCIIgCIIgCIIgOjgk/gmCIAiCIAiCIAiig0PinyAIgiAIgiAIgiA6OCT+CYIgCIIgCIIgCKKDQ+KfIAiCIAiCIAiCIDo4JP4JgiAIgiAIgiAIooND4p8gCIIgCIIgCIIgOjgk/gmCINqR//73v1AoFBgwYICvp9ImtmzZAoVCgS1btji1nUKhwLJly2xuc9lll0GhUCAtLc3j8/QkHMdhxYoVGD16NOLj4xEYGIjk5GRMmjQJn332mVee89lnn0VqairUajUiIyO98hyeQK/XIzExEQqFAqtWrbK5zYsvvgiFQuHW8dnPUWs/nZkPP/zQ7v+ZvzBhwgTMmzdPvG35t1WpVIiLi8PVV1+Nffv2eX0+s2fP9qtzj0KhwIsvvije3rx5M0JDQ3Hu3DnfTYogiA4DiX+CIIh2ZOnSpQCAY8eOYffu3T6eTfsRFhaGJUuWWN2fk5ODLVu2IDw83Aezco2nnnoK//rXv9C3b1989tln2LBhA1555RUkJCTgp59+8vjz/fTTT3j11Vcxa9YsbN26Fb///rvHn8NTrF27FiUlJQBg8+8MAHPmzMHOnTvdOv7QoUOxc+dO2U9iYiIuueQSq/s7M/4u/n/66Sds374dzz33nNVjr732Gnbu3IktW7bgueeew44dOzB27FhkZWV5dU7PPfcc1qxZ49XnaAsTJkzAxRdfjKefftrXUyEIogOg9vUECIIgOgv79u3DoUOHMHXqVKxbtw5LlizB8OHDfT2tdmHGjBn47LPPkJWVhZ49e4r3L126FElJSRg4cCCOHz/uwxk6pqmpCe+++y5mzZqFTz/9VPbY7NmzYTKZPPZcjY2NCA4OxtGjRwEADz74IOLj4z12fG+wZMkSBAQEYOzYsfj1119RUFCA5ORk2TbJyclW99miqakJQUFBsvvCw8MxYsQI2X1arRaRkZFW93cUOI6DTqezei98gfCZbCuvvfYarr/+eiQlJVk91rNnT/FvOXr0aERGRuL222/H119/jZdeeqnNz22PjIwMrx3bU9x///2YMWMGXnnlFaSkpPh6OgRBnMdQ5J8gCKKdECKir7/+OkaNGoUVK1agsbFRtk1ubi4UCgXefvttLFq0COnp6QgNDcXIkSOxa9cu2bazZ89GaGgoTp8+jSlTpiA0NBQpKSl45JFH0NzcLG5nL0VfeC42Urhv3z7MnDkTaWlpCAoKQlpaGv71r3/h7NmzbXrtEydOREpKipj5AAAmkwlffPEFbr/9diiV1l9HHMfhww8/xJAhQxAUFISoqChMmzYN2dnZsu1+++03XHvttUhOTkZgYCB69OiBuXPnory8XLadkHZ+7Ngx/Otf/0JERAQSEhJw5513oqamxuH8Gxoa0NzcjC5duth8nJ2/K++38Dc8cuQIrrjiCoSFhWHChAlIS0vDs88+CwBISEiQpQKvXLkSV1xxBbp06YKgoCD07dsXTz75JBoaGqzmtXv3blx99dWIiYlBYGAgMjIysGDBAtk2WVlZuPnmmxEfHw+tVou+ffvigw8+cPh+sBQWFmLjxo24+uqr8dhjj8FkMtmMPttK+09LS8NVV12FH374ARdccAECAwPbJPSKi4sxd+5cJCcnIyAgAOnp6XjppZdgMBjEbYS/w1tvvYU33nhD/KyPGzcOmZmZ0Ov1ePLJJ9G1a1dERETg+uuvR2lpqc15r1mzBoMGDUJgYCC6d++O//73v1Zzqq2txaOPPor09HQEBAQgKSkJCxYssPp7KRQKzJ8/Hx9//DH69u0LrVaLL774AgDw0ksvYfjw4YiOjkZ4eDiGDh2KJUuWgOM42ZyOHTuGrVu3iin0Qjr7smXLoFAokJubK3tOW5/VcePGYcCAAfjrr78watQoBAcH484773TptdjiwIED2LNnD2677bZWtwWAiy66CADEjBIBZz+vx44dwxVXXIHg4GDExcXh/vvvx7p166xer620f51Oh6eeekr2Ou+//35UV1fLthM+Bxs3bsTQoUMRFBSEPn36yM5zAFBWVob77rsP/fr1Q2hoKOLj43HZZZfh77//duq9uPrqqxEaGor//e9/Tm1PEARhD4r8EwRBtANNTU1Yvnw5hg0bhgEDBuDOO+/EnDlz8P333+P222+32v6DDz5Anz598O677wLgU1OnTJmCnJwcREREiNvp9Xpcc801uOuuu/DII4/gr7/+wssvv4yIiAg8//zzLs8zNzcXvXv3xsyZMxEdHY2ioiJ89NFHGDZsGI4fP47Y2Fi3Xr9SqcTs2bOxZMkSvPLKK1CpVGKE+I477sBDDz1ktc/cuXOxbNkyPPjgg3jjjTdQWVmJhQsXYtSoUTh06BASEhIAAGfOnMHIkSMxZ84cREREIDc3F4sWLcKll16KI0eOQKPRyI574403YsaMGbjrrrtw5MgRPPXUUwBgdcHOEhsbix49euDDDz9EfHw8pkyZgt69e3ukxrylpQXXXHMN5s6diyeffBIGgwFxcXH44IMPsGTJEmzcuBERERFi1DwrKwtTpkzBggULEBISgpMnT+KNN97Anj178Mcff4jH3bRpE66++mr07dsXixYtQmpqKnJzc/Hrr7+K2xw/fhyjRo1Camoq3nnnHSQmJmLTpk148MEHUV5ejhdeeKHV+S9btgxGoxF33nknLr/8cnTr1g1Lly7FM88849T7s3//fpw4cQLPPvss0tPTERIS4sa7yAv/iy++GEqlEs8//zwyMjKwc+dOvPLKK8jNzcXnn38u2/6DDz7AoEGD8MEHH6C6uhqPPPIIrr76agwfPhwajQZLly7F2bNn8eijj2LOnDn4+eefZfsfPHgQCxYswIsvvojExER88803eOihh9DS0oJHH30UAB8xHzt2LAoKCvD0009j0KBBOHbsGJ5//nkcOXIEv//+u+w9+vHHH/H333/j+eefR2JiopjxkZubi7lz5yI1NRUAsGvXLjzwwAM4d+6c+H++Zs0aTJs2DREREfjwww8B8NkR7lBUVIRbb70Vjz/+OF577TUolUqXX4sla9euhUqlwpgxY5yaQ05ODgCgV69e4n3Ofl6LioowduxYhISE4KOPPkJ8fDyWL1+O+fPnt/q8HMfhuuuuw+bNm/HUU09h9OjROHz4MF544QWxtIR9Xw8dOoRHHnkETz75JBISEvDZZ5/hrrvuQo8ePcTXWllZCQB44YUXkJiYiPr6eqxZswbjxo3D5s2bMW7cOIdzCggIwKhRo7Bu3TosXLjQqfePIAjCJhxBEAThdb788ksOAPfxxx9zHMdxdXV1XGhoKDd69GjZdjk5ORwAbuDAgZzBYBDv37NnDweAW758uXjf7bffzgHgvvvuO9kxpkyZwvXu3Vu8/eeff3IAuD///NPmc33++ed2520wGLj6+nouJCSEe++991o9piXCdt9//z2XnZ3NKRQKbu3atRzHcdz06dO5cePGcRzHcVOnTuW6desm7rdz504OAPfOO+/Ijpefn88FBQVxjz/+uM3nM5lMnF6v586ePcsB4H766SfxsRdeeIEDwL355puyfe677z4uMDCQM5lMDl/Lnj17uNTUVA4AB4ALCwvjrrrqKu7LL7+U7evK+y38DZcuXWr1fMJ8y8rK7M5JeL1bt27lAHCHDh0SH8vIyOAyMjK4pqYmu/tPmjSJS05O5mpqamT3z58/nwsMDOQqKyvt7is8f48ePbikpCTx8yrMe/PmzTZfD0u3bt04lUrFnTp1yuHz2KJbt27c1KlTxdtz587lQkNDubNnz8q2e/vttzkA3LFjxziOk/4OgwcP5oxGo7jdu+++ywHgrrnmGtn+CxYs4ADI3qNu3bpxCoWCO3jwoGzbiRMncuHh4VxDQwPHcRz373//m1MqldzevXtl261atYoDwK1fv168DwAXERHR6ntuNBo5vV7PLVy4kIuJiZF99vr378+NHTvWap/PP/+cA8Dl5OTI7rf1WR07dqzNv58rr8UWV155JdenTx+r+4U5rFy5ktPr9VxjYyO3fft2rnfv3ly/fv24qqoqcVtnP6+PPfYYp1AoxL85u7/l67399ttl556NGzfaPE+sXLmSA8B9+umn4n3dunXjAgMDZZ+5pqYmLjo6mps7d67d98JgMHB6vZ6bMGECd/3118seA8C98MILVvs888wznFKp5Orr6+0elyAIojUo7Z8gCKIdWLJkCYKCgjBz5kwAQGhoKKZPn46///7bpqHV1KlToVKpxNuDBg0CAKv0e4VCgauvvlp236BBg9xO06+vr8cTTzyBHj16QK1WQ61WIzQ0FA0NDThx4oRbxxRIT0/HuHHjsHTpUlRUVOCnn34S04ktWbt2LRQKBW699VYYDAbxJzExEYMHD5al7ZaWlmLevHlISUmBWq2GRqNBt27dAMDmnK+55hrZ7UGDBkGn01mldlsybNgwnD59Ghs3bsTTTz+NkSNHYvPmzZg1axauueYaWQq2q9x4441Ob5udnY2bb74ZiYmJUKlU0Gg0GDt2LADp9WZmZuLMmTO46667EBgYaPM4Op0OmzdvxvXXX4/g4GDZ+zxlyhTodDqrUhNLtm7ditOnT+P2228XP6933HEHFAqFw0wKlkGDBsmiu+6ydu1ajB8/Hl27dpW9liuvvFKcK8uUKVNk5Rp9+/YFwP/vsQj35+Xlye7v378/Bg8eLLvv5ptvRm1tLfbv3y/OacCAARgyZIhsTpMmTbJZGnLZZZchKirK6rX98ccfuPzyyxERESH+zZ9//nlUVFS0+rl1h6ioKFx22WWy+1x9LZYUFhY69K6YMWMGNBoNgoODcckll6C2thbr1q0Tu1y48nndunUrBgwYgH79+sme41//+lerr13Inpk9e7bs/unTpyMkJASbN2+W3T9kyBAxIwMAAgMD0atXL6tz8Mcff4yhQ4ciMDBQPE9t3rzZ6fNqfHw8TCYTiouLndqeIAjCFiT+CYIgvMzp06fx119/YerUqeA4DtXV1aiursa0adMA2E43j4mJkd0W0kybmppk9wcHB1uJO61WC51O59Zcb775ZixevBhz5szBpk2bsGfPHuzduxdxcXFWz+0Od911F3755RcsWrQIQUFB4ntgSUlJCTiOQ0JCAjQajexn165dYj2/yWTCFVdcgR9++AGPP/44Nm/ejD179ogiwNacnX1vbaHRaDBp0iS8+uqr2LRpE/Lz8zFu3DisXbsWGzZscOm9EAgODna620F9fT1Gjx6N3bt345VXXsGWLVuwd+9e/PDDD7LXUFZWBgAODfYqKipgMBjw/vvvW73HU6ZMAQAr3wRLBB+L66+/XvxcR0RE4NJLL8Xq1autaqRtYc9HwVVKSkrwyy+/WL2W/v37A7B+LdHR0bLbAQEBDu+3/J9KTEy0moNwX0VFhTinw4cPW80pLCwMHMdZzcnWe7Fnzx5cccUVAID//e9/2L59O/bu3YtnnnkGgHOfW1exNQ9XX4slTU1NdheiAOCNN97A3r17sXXrVjzzzDMoKSnBddddJ/qXuPJ5raioEMuCWGzdZ0lFRQXUajXi4uJk9ysUCiQmJop/WwHL8wnAn1PYv8uiRYtw7733Yvjw4Vi9ejV27dqFvXv3YvLkyU7//YT3zht/b4IgOg9U808QBOFlli5dCo7jsGrVKps90L/44guxDt4bCBeNrAkgYC2GampqsHbtWrzwwgt48sknxfubm5vFmtW2csMNN+D+++/H66+/jrvvvtuuk3lsbCwUCgX+/vtvm3XLwn1Hjx7FoUOHsGzZMpl3wunTpz0y39aIiYnBggULsGXLFhw9ehRTpkxx+v0WcMU34I8//kBhYSG2bNkiRvsBWIlsQbgUFBTYPVZUVBRUKhVuu+023H///Ta3SU9Pt7t/TU0NVq9eDYDPirDFt99+i/vuu8/uMQDXXr8jYmNjMWjQILz66qs2H+/atatHnkfAVgRWuE8QhLGxsQgKCrKbBWHpoWHrvVixYgU0Gg3Wrl0rE88//vij03P1xGfS1ddi63FH55Hu3buLJn9jxoxBUFAQnn32Wbz//vt49NFHXfq8xsTEWBkFArb/ZpbExMTAYDCgrKxMtgDAcRyKi4vtftYd8fXXX2PcuHH46KOPZPfX1dU5fQzhvXPXd4UgCAIg8U8QBOFVjEYjvvjiC2RkZOCzzz6zenzt2rV45513sGHDBlx11VVemYPgZH348GFMmjRJvN/SwEyhUIDjOCux/dlnn8FoNHpkLkFBQXj++efx119/4d5777W73VVXXYXXX38d586dw0033WR3O0GkWM75k08+8ch8BfR6PWpra21G+YS0XUFcOvt+u4Ozr7dXr17IyMjA0qVL8fDDD9tcQAkODsb48eNx4MABDBo0SIxwO8u3336LpqYmvPzyy7j00kutHp8+fTqWLl3aqvj3FFdddRXWr1+PjIwMm6nznubYsWM4dOiQLPX/22+/RVhYGIYOHSrO6bXXXkNMTIzDhRRHKBQKqNVq2eJgU1MTvvrqK6ttLSPOAuxnsnfv3uL9rnwm2/pa+vTp49KCxeOPP45ly5bh9ddfx9y5cxEWFub053Xs2LF4++23cfz4cVnq/4oVK1p93gkTJuDNN9/E119/jf/7v/8T71+9ejUaGhowYcIEp1+DgEKhsPofPHz4MHbu3Ol0677s7GzExMQ4lb1AEARhDxL/BEEQXmTDhg0oLCzEG2+8YdPRecCAAVi8eDGWLFniNfGfmJiIyy+/HP/+978RFRWFbt26YfPmzWKquEB4eDjGjBmDt956C7GxsUhLS8PWrVuxZMkSse7WEzz88MN4+OGHHW5zySWX4J577sEdd9yBffv2YcyYMQgJCUFRURG2bduGgQMH4t5770WfPn2QkZGBJ598EhzHITo6Gr/88gt+++03j80X4KPcaWlpmD59Oi6//HKkpKSgvr4eW7ZswXvvvYe+ffvihhtuAOD8++0Oo0aNQlRUFObNm4cXXngBGo0G33zzDQ4dOmS17QcffICrr74aI0aMwP/93/8hNTUVeXl52LRpE7755hsAwHvvvYdLL70Uo0ePxr333ou0tDTU1dXh9OnT+OWXX2TdAyxZsmQJoqKi8Oijj9pM5541axYWLVpkJZC9xcKFC/Hbb79h1KhRePDBB9G7d2/odDrk5uZi/fr1+Pjjjx2WQbhK165dcc011+DFF19Ely5d8PXXX+O3337DG2+8geDgYADAggULsHr1aowZMwb/93//h0GDBsFkMiEvLw+//vorHnnkEQwfPtzh80ydOhWLFi3CzTffjHvuuQcVFRV4++23bS7oDBw4ECtWrMDKlSvRvXt3BAYGYuDAgRg2bBh69+6NRx99FAaDAVFRUVizZg22bdvm9Ott62sR/D4yMzOd8njQaDR47bXXcNNNN+G9997Ds88+6/TndcGCBVi6dCmuvPJKLFy4EAkJCfj2229x8uRJALDZWlRg4sSJmDRpEp544gnU1tbikksuEd3+L7jgAqdbFbJcddVVePnll/HCCy9g7NixOHXqFBYuXIj09HRZG0pH7Nq1C2PHjvVYpgxBEJ0TqvknCILwIkuWLEFAQADuuOMOm4/Hxsbi+uuvx9q1a22mqXqKr776ChMmTMATTzyB6dOn49y5c1i+fLnVdt9++y3Gjx+Pxx9/HDfccAP27duH3377TdZesL345JNPsHjxYvz111+YOXMmpk6diueffx4NDQ24+OKLAfAC4ZdffkGvXr0wd+5c/Otf/0JpaSl+//13j84lPDwcL730EkpKSvD000/jiiuuwI033oi1a9diwYIF2LZtmyj4AOffb1eJiYnBunXrEBwcjFtvvRV33nknQkNDsXLlSqttJ02ahL/++gtdunTBgw8+iMmTJ4tCSKBfv37Yv38/BgwYgGeffRZXXHEF7rrrLqxatcphhPPw4cP4559/cPvtt9ut477nnnsASL4A3qZLly7Yt28frrjiCrz11luYPHkybrvtNixduhRDhgzxeDbAkCFDsGjRIrzzzju49tprsX37dixatAiPP/64uE1ISAj+/vtvzJ49G59++immTp2Km266Cf/973+RnJxs1V/eFpdddhmWLl2KI0eO4Oqrr8YzzzyDadOmyUpzBF566SWMHTsWd999Ny6++GLRDFSlUuGXX35Bnz59MG/ePMyaNQtarRaLFy92+vW29bVce+21CA0NxU8//eT0c06fPh3Dhw/HokWLUFNT4/TntWvXrti6dSt69eqFefPm4ZZbbkFAQIDYJs/RYqZCocCPP/6Ihx9+GJ9//jmmTJmCt99+G7fddhv++OMPt9onPvPMM3jkkUewZMkSTJ06FZ999hk+/vhjmxkztjhz5gyOHDmCW265xeXnJgiCYFFwbbEnJgiCIAiC6GSkpaVhwIABWLt2ra+ncl7xwAMPYPPmzTh27JhPItj33HMPli9fjoqKCpfLXHzJc889hy+//BJnzpyBWk1JuwRBuA+dQQiCIAiCIAiv8+yzz+LLL7/E6tWr7Xb68BQLFy5E165d0b17d9TX12Pt2rX47LPP8Oyzz55Xwr+6uhoffPAB3n//fRL+BEG0GTqLEARBEARBEF4nISEB33zzDaqqqrz+XBqNBm+99RYKCgpgMBjQs2dPLFq0CA899JDXn9uT5OTk4KmnnsLNN9/s66kQBNEBoLR/giAIgiAIgiAIgujgkOEfQRAEQRAEQRAEQXRwSPwTBEEQBEEQBEEQRAeHxD9BEARBEARBEARBdHDI8M9DmEwmFBYWIiwszCftawiCIAiCIAiCIIjOBcdxqKurQ9euXaFUOo7tk/j3EIWFhUhJSfH1NAiCIAiCIAiCIIhORn5+PpKTkx1uQ+LfQ4SFhQHg3/Tw8HAfz4YgCIIgCIIgCILo6NTW1iIlJUXUo44g8e8hhFT/8PBwEv8EQRAEQRAEQRBEu+FM6TkZ/hEEQRAEQRAEQRBEB4fEP0EQBEEQBEEQBEF0cEj8EwRBEARBEARBEEQHh2r+2xGO42AwGGA0Gn09FeI8QaPRQKVS+XoaBEEQBEEQBEGc55D4bydaWlpQVFSExsZGX0+FOI9QKBRITk5GaGior6dCEARBEARBEMR5DIn/dsBkMiEnJwcqlQpdu3ZFQECAU26MROeG4ziUlZWhoKAAPXv2pAwAgiAIgiAIgiDchsR/O9DS0gKTyYSUlBQEBwf7ejrEeURcXBxyc3Oh1+tJ/BMEQRAEQRAE4TZk+NeOKJX0dhOuQRkiBEEQBEEQBEF4AlKjBEEQBEEQBEEQBNHBIfFPEARBEARBEARBEB0cEv8EQRAEQRAEQRAE0cEh8U+0ik6nw6JFizB8+HCEh4cjODgYvXr1wrx585CdnY0XX3wRCoUCCoUCWq0WxcXFsv0vvvhi8fERI0a4dGyWH374AZMnT0ZcXBy0Wi1SU1Nxww03YMuWLQ7nn5ubKz6/5U9kZKRs248++ghDhgxBeHg4QkNDkZ6ejqlTp+KPP/4Qt5k9e7a4f3x8PJqbm8XHDAYDkpKSxMdnzpwpPvbkk09i5MiRSEhIQGBgILp3744HHngApaWlzvwZCIIgCIIgCIIg3Ibc/gmHVFVVYcKECThw4AAAICwsDBkZGcjLy8Mnn3xiJeZbWlrw6aef4vnnnwcA7N69G3v37nX72N27dwfHcbjrrrvw+eefAwACAgLQo0cPVFZWYs2aNQgPD8e4ceOcej1JSUlITk4Wb4eFhYnj//znP3j44YcBAN26dUNkZCTy8vKwfv16jB8/HpdddpnV8crKyrBy5UrMmjULALB69WoUFhbafO433ngDCoUCGRkZUKvVyMnJweLFi7FlyxYcOnSIDCEJgiAIgiAIgvAapDYIh8yfP18U54899hgqKytx5MgR1NTUYMOGDejVq5dse41Gg48//hh6vR4A8P7774v3u3vszz77TBT+EydOxLlz53Ds2DEUFRXh2LFjmDx5stOvZ86cOdi1a5f489tvv4mPrVy5EgAwa9Ys5Obm4uDBg6isrMT+/fsxYcIEq2Op1WrZa2zt9T7zzDMoKSlBVlYW8vLycOONNwIAjh49ikOHDjn9GgiCIAiCIAiCIFyFIv8+5Or3t6Gsrrn1DT1IXJgWvzxwqVPb1tTU4LvvvgMADB48WIxcCwii+9dffxXvu/HGG7FixQqsXr0a48ePx/fff4/k5GR069YN27dvd/nYAPDpp58CALRaLb788kvExsaKj/Xr1w/9+vVz+vU7wmQyAeCzFb777juMHDkSKSkpuOCCC2xuHxMTg759+2LLli3YtWsXtFottm/fjpEjR6KwsBBnz56Vbf/KK6+IY5VKhVGjRmH16tXiayMIgiAIgiAIgvAWFPn3IWV1zSiu1bXrjyuLDZmZmTAYDACA0aNHO9Vz/oEHHgDAR8A/+eQTtLS04L777hOj5O4c+/jx4wCAnj17IjEx0en52+Kll16S1fxfd9114mP33XcfAODUqVOYMWMGUlNTkZaWhkcffRTV1dU2j8e+XiHqL9zniLq6OixduhQAMGrUKI8tYBAEQRAEQRAE0UZMJoDjfD0Lj0ORfx8SF9b+0V5XnpNjPvDOCH8AGDp0KEaNGoUdO3bg6NGj0Gq1uPvuu7Fp0ya3jy1s29p269atw8svvyze7tKlC9asWSPbxrLmv3fv3uJ49uzZ6NatGz755BP8/vvvqKiowNmzZ/HOO+9g3759No0Fr732WqSmpuL777+HSqVCYmIipk2bhqeeesruPMvKynD11Vfj2LFj6NOnD1atWuXwdREEQRAEQRAE0Y6c2QxsfBIYNAMYcgsQkeTrGXkEEv8+xNn0e1/Ru3dvqNVqGAwGbNu2DRzHOR3937FjB2prazF79mxZmr47x+7fvz/27duHzMxMlJSUICEhweZ2ZWVl2L17t3i7W7duVtvMmTMHL774ot25jx8/HuPHjwfAZxzMnz8ff/75J7Zu3Yrq6mqr7gAqlQr33nsvnnrqKej1esybN89mvb/AqVOnMGXKFGRnZ2PEiBH45ZdfbL4/BEEQBEEQBEH4iMMrgYrTwJ+vAgn9O4z4p7R/wi4RERG46aabAAAHDhzA008/LabqA8Dvv/+OHTt2WO134403okuXLgDsp8C7cux77rkHANDc3Izbb78dFRUV4nanTp0Sjfpmz54NjuPEn9zcXJde7yuvvILff/9drP3v16+fWO+v0WgQHBxsc7+7774bgYGB0Gg0mDt3rt3j//XXXxg1ahSys7Nx44034o8//iDhTxAEQRAEQRD+RHMdcGItPw6KAnpM9O18PAiJf8IhixcvFgXw66+/jpiYGAwePBjR0dGYOHEiMjMzrfbRaDQ4deoUysvLMXTo0DYfe86cOZg9ezYAYNOmTejatSsGDBiApKQk9OnTBxs2bHD69Xz22WcYMWKE7Ke+vh4AsHbtWkycOBEhISEYMGAAevTogUWLFgHgFzQCAgJsHjMmJgZFRUUoLS116EkwceJEVFZWQqFQID8/H+PHjxfnsG7dOqdfA0EQBEEQBEEQXuLkOsDQxI/7Xw+obWuA8xFK+yccEhUVhR07duCDDz7AypUrceLECZw6dQpJSUm44YYbMHr0aJsR9rCwMI8cG+Br/T///HNcddVV+PTTT/HPP/8gMzMTcXFxuOaaa3D77bc7/XrOnTuHc+fOye4TMg4ee+wxfP/99/jnn39w9uxZNDc3Iz09Hddee63MS8AWluUAtmhpaQHAexjs2bNH9lhZWZnTr4EgCIIgCIIgCC9xaIU0HjTTd/PwAgqO64A2hj6gtrYWERERqKmpQXh4uOwxnU6HnJwcpKenIzAw0EczJM5H6LNDEARBEARBEO1EbRHwn34AZwIiuwEPHQKcND73FY50qCWU9k8QBEEQBEEQBEEQR1fzwh/gnf79XPi7Col/giAIgiAIgiAIgji8UhoPusl38/ASJP4JgiAIgiAIgiCIzk3pCaD4MD/uOhSI7enb+XgBEv8EQRAEQRAEQRBE54aN+g/uWEZ/AiT+CYIgCIIgCIIgiM6LyQQc/p4fK1RA/xt8Ox8vQeKfIAiCIAiCIAiC6Lzk7QBqC/hxjwlAaJxv5+MlSPwTBEEQBEEQBEEQnZdDK6TxoBm+m4eXIfFPEARBEARBEARBdE70OuD4T/w4IBToPcW38/EiJP4JgiAIgiAIgiCI84NTG4Ef5gLFRz1zvMyNQHMtP+57DRAQ7Jnj+iFqX0+AIAiCIAiCIAiCIFrF0AL8cDcv1uuKgNt/bvsxD38njQfd1Pbj+TEU+SdaRafTYdGiRRg+fDjCw8MRHByMXr16Yd68ecjOzvboc+Xm5kKhUNj8iYyMlG370UcfYciQIQgPD0doaCjS09MxdepU/PHHH+I2s2fPFvePj49Hc3Oz+JjBYEBSUpL4+MyZM23ux/4kJyd79PUSBEEQBEEQBOEk5ZlSlL7oEMBxbTteYyWQ9Ss/Dk0E0se07Xh+DkX+CYdUVVVhwoQJOHDgAAAgLCwMGRkZyMvLwyeffIIRI0age/fuXnnupKQkmdgOCwsTx//5z3/w8MMPAwC6deuGyMhI5OXlYf369Rg/fjwuu+wyq+OVlZVh5cqVmDVrFgBg9erVKCwsdGkO8fHxbXpNBEEQBEEQBEG4SQmT6q+rBhrKgNA2XJ8f+wEw6fnxwGmAUtWm6fk7FPknHDJ//nxR+D/22GOorKzEkSNHUFNTgw0bNqBXr17YuHEjRo8ejfj4eAQEBCA8PBxjxozBxo0bxeOwEf1ly5bhqquuQnBwMNLT07FkyRKbzz1nzhzs2rVL/Pntt9/Ex1auXAkAmDVrFnJzc3Hw4EFUVlZi//79mDBhgtWx1Gp+nev9998X7xPGGo3G7uu3nMPPP3sgtYggCIIgCIIgCNcpsajzL89s2/HYlP/BM+1v10GgyL8v+WQsUF/avs8ZGg/M3erUpjU1NfjuO/4fYvDgwXjjjTegUCjExydPngwAePvtt7F7926kpKQgOTkZWVlZ+Pvvv3H11Vdj3759GDx4sOy499xzD5KSkqDRaJCbm4t77rkHl1xyCfr06eP0yzCZTACA3bt347vvvsPIkSORkpKCCy64wOb2MTEx6Nu3L7Zs2YJdu3ZBq9Vi+/btGDlyJAoLC3H27Fmb+7377rv497//jfj4eFxyySV49dVXkZGR4fQ8CYIgCIIgCILwEJYmf2WngLRL3TtWZQ6Qv5sfx/cDEga0bW7nART59yX1pUBdYfv+uLDYkJmZCYPBAAAYPXq0TPizTJs2DaWlpThz5gz279+PvLw8hIWFwWAwYNWqVVbbX3PNNcjOzsbff/8NgBfyW7ZssdrupZdektXbX3fddeJj9913HwDg1KlTmDFjBlJTU5GWloZHH30U1dXVNuf5wAMPAOAj/kLUX7jPFoGBgWLaf0FBAVauXIlhw4bh3LlzdvchCIIgCIIgCMJLeDLyf+R7aTzoJsCO1ulIUOTfl7SlPqUdnpNjDDTsCX8AaGlpwezZs7Fjxw5UVFSIUXkANmvqb731VigUCvTr10+8r6SkxGo7y3r73r17i+PZs2ejW7du+OSTT/D777+joqICZ8+exTvvvIN9+/bZXEy49tprkZqaiu+//x4qlQqJiYmYNm0annrqKattH3vsMXzwwQcICQkBAHzyySeYN28eqqqq8Pnnn+PZZ5+1+34QBEEQBEEQBOFh6kr4Gn8Wd8U/xwGHVki3B053f17nEST+fYmT6fe+onfv3lCr1TAYDNi2bRs4jrO5CHDVVVchKysLarUaAwcORGBgIA4cOICWlhYYjUar7QXXfqEOH5AvNAjMmTMHL774ot35jR8/HuPHjwcAHD9+HPPnz8eff/6JrVu3orq62qo7gEqlwr333ounnnoKer0e8+bNs1vv379/f9ntW265BfPmzQMA5OXl2Z0TQRAEQRAEQRBewDLqDwBlbor/c/uByjP8OG00ENE5OnpR2j9hl4iICNx0E9/r8sCBA3j66afFMgAA+P3337F9+3ZkZWUBABYuXIiDBw9ixYoVDjMFPMErr7yC33//Xcwy6Nevn1jvr9FoEBwcbHO/u+++G4GBgdBoNJg7d67d47/wwgsoLy8Xb69YIa0MpqWleeAVEARBEARBEAThNLbEf20B0Fzv+rEOr5TGg2a4P6fzDBL/hEMWL14siurXX38dMTExGDx4MKKjozFx4kRkZmaKqfkvvPACBg4ciKFDh0KlanubjM8++wwjRoyQ/dTX8//ca9euxcSJExESEoIBAwagR48eWLRoEQDgxhtvREBAgM1jxsTEoKioCKWlpUhMTLT73AsXLkRCQgJ69uyJHj164O677wYAJCYmYs6cOW1+bQRBEARBEARBuABr9tdliDSuyHLtOEYDcHQ1P1ZpgX7XtHlq5wsk/gmHREVFYceOHXj77bcxbNgwmEwmnDp1ClFRUbjrrrswZswYrF69GhdddBFUKhWMRiO++eYbxMXFtfm5z507h927d8t+hMyDxx57DDNmzEBycjLOnj2LvLw8pKenY8GCBfjf//7n8LiRkZFWJQGWvPrqqxg5ciRqampQUFCAHj16YN68edi3bx/i433g1UAQBEEQBEEQnRkh8q9UA32vku53NfW//BTQaM7w7TkRCIzwzPzOAxScrWJrwmVqa2sRERGBmpoahIeHyx7T6XTIyclBeno6AgMDfTRD4nyEPjsEQRAEQRBEp8fQDLzWFTAZ+LZ8E14AlpvT9Uc/Akx43vljHfwW+PFefnz5S8ClCzw+3fbEkQ61hCL/BEEQBEEQBEEQhP9SdooX/gCQMACI6yU95qrjf9FhadxlUNvndh5B4p8gCIIgCIIgCILwX1izv8QBQGQ3vl4fcD3tv+gQc6zBbZ/beQSJf4IgCIIgCIIgCMJ/Yc3+EgYAShUQ04O/XXkGMOqdO47JBBQf4cfhyUBIjGfn6eeQ+CcIgiAIgiAIgiD8l5Ij0jhxIP9bSP03GYCqXOeOU5UDtNTx4y6dK+oPkPgnCIIgCIIgCIIg/BWOkyL/IXFAqLnzVmxvaZuyU84di03572T1/gCJf4IgCIIgCIIgCMJfqSsGmir5ccIA6f7YntK43B3xT5F/giAIgiAIgiAIgvAPLM3+BOKYyH95lnPHKmad/kn8tyvvvvsuBg8ejMjISGi1WiQnJ2P69Ok4fFj6o9TV1WHBggVITk5GQEAAMjIy8MILL0Cvl0wdioqKMGPGDKSnp0OhUEChUGDmzJlOz+PXX3/FJZdcguDgYISHh2PSpEnYt2+fR18rQRAEQRAEQRAE4SLFTL1/wkBpHNMDgIIfO5P2z3FS5D84Fgjr4rEpni/4VPxv3boVZWVlSE9PR0ZGBoqKirBq1SqMHz8eDQ0NMBqNmDJlCt577z2Ulpaie/fuyM3NxcKFCzF79mzxOCUlJfjuu++gUCgQGBjo0hw2bNiAKVOmYMeOHYiOjoZWq8Wvv/6KMWPG4NChQ60fgCAIgiAIgiAIgvAObOQ/ob801gQBkan8uDyLF/eOqC0EGiv4cZfBgELh2XmeB/hU/C9fvhyFhYU4cOAAjh8/jqeffhoAUFlZiZMnT+LHH3/Etm3bAAA//PADTp48iXfffRcA8O233+Kff/4BAPTu3Rvl5eXIzs5GQkKCS3N4/PHHYTQaMWLECOTm5iI7OxtpaWloamrCs88+a3e/5uZm1NbWyn4IgiAIgiAIgiAID1JyjP+t1ACxveSPCan/LXVAXZHj43Rysz/Ax+I/MDAQP//8M0aMGIF+/frhtddeAwDExcWhV69e2LhxIwAgKCgIU6ZMAQDceOON4v6bNm0SH4+Jcb1H47lz53D0KL+SdM0110CtViMsLAwTJ04EAGzevBlGo9Hmvv/+978REREh/qSkpLj8/OcLOp0OixYtwvDhwxEeHo7g4GD06tUL8+bNQ3Z2Nl588UWx3MLyZ8GCBeJxioqKMHfuXKSnp0Or1SImJgaDBg3CbbfdhsbGRnE7dv+HHnpINpd169bJHhc+I8eOHcPs2bPRp08fhIeHIyIiAhdeeCGWLFni1GtMS0uz+xoOHjyIzz//XLz9119/We0/fvx4KBQKdO/eHRzHYdmyZZg8eTKSk5MRGBiIpKQk3HDDDZRNQhAEQRAEQRDOotdJ9fxxfQB1gPxxdjGgtdT/Tm72B/iB4V9paSl2796NEydOwGQyIT09HX/++SfCwsKQn58PAIiJiYFSyU+Vjezn5eW16bmF4wNAfHy8OBaeo6mpCWVlZTb3feqpp1BTUyP+sMfqSFRVVWHUqFF45JFHsGfPHgBARkYGSkpK8Mknn1gJ4SFDhmD48OHiT1paGgDAZDJh6tSp+PTTT1FQUIA+ffogJiYGmZmZ+Prrr2Xin2XZsmWoq6sTby9evNjmdnv37sUXX3yB/Px8dOvWDQaDAfv378ecOXPw5ptvOv16w8LCZPMfPnw4QkJCMH36dISEhAAAvvrqK9k++fn52Lp1KwDg9ttvh0KhwLJly7Bp0yYYjUakpaWhsLAQa9aswSWXXIKcnByn50MQBEEQBEEQnZayEwBnDsayZn8CrPgvz3R8LNbsL5Ei/z5hzpw5MJlMOHv2LGbMmIGcnBzMmDEDdXV14GzUbbD3KdpYp2Hr+M4+h1arRXh4uOynIzJ//nwcOHAAAPDYY4+hsrISR44cQU1NDTZs2IBeveSpN2vWrMGuXbvEHyHyn5mZKR7n119/xaFDh5CZmYnq6mqsWbNGFNYsGo0GtbW1+PLLLwEAWVlZ2LRpEzQajdW2qamp+P7771FbW4sjR47gxIkTiIiIAAB88803Tr/eoUOHyua/a9cu9OzZE6GhoWLWyffffw+dTifu8/XXX4PjOCgUCsyaNQsAcN111+H48eMoKiqSlas0NDTgxx9/dHo+BEEQBEEQBNFpKWbr/W2If5njfyviX4j8a8OBqPS2z+08RO3rCQC8wE5NTcXTTz+NlStX4tixY1i+fDlSU3kDh/LycphMJiiVSpSWlor7tTXVXjg+wJsGCgjPERQUhNjY2DY9hyNmrJ2B8qZyrx3fFrFBsVh51Uqntq2pqcF3330HABg8eDDeeOMN2WLI5MmTAfBivjVMJpM4XrZsGVQqFYYOHYrQ0FBcd911Nve5/vrrsWrVKixevBj33XcfFi9eDI7jMG3aNCxfvly27WWXXSa7nZqaitTUVBw5cgRardap19sas2fPxpdffomamhr8/PPPuOmmmwBImQBjx45Fejp/ImHLHQBg9OjR4thT8yEIgiAIgiCIDo1Q7w/Izf4EnE37bygHas/x48SBgNLnMXCf4LNXXVFRga+++gotLS3ifevXrxfHDQ0NorjU6XRYu3YtAD7qKiA87iyzZs1Cnz59xOhsUlISBgzgV5B++uknGAwG1NbWimL28ssvh0qlcuPVOUd5UzlKG0vb9ceVxYbMzEwYDAYAvHh1JtOCbbeoUCjEKHffvn0xfvx4AMCXX36JsWPHIjIyEqNGjcK3335r91hTp07FyZMnsWbNGixbtgyRkZG49dZbW53H77//jmPH+JPF3Xff7czLBcB3oGDnHxkZKT42btw4sYxBEPz79u3DiRMnAEDWgcISIfIfHR0t860gCIIgCIIgCMIOrNN/4kDrx4Oj+bZ9gOPIP9X7A/Bh5L+urg6zZs3C3LlzkZGRIaubDwsLww033IDk5GRceuml2LZtG6ZNm4bu3bsjK4s3fLj55psxdOhQALxx39ixY8UxwBvD9ejRAwBw+vRpALxHwKlTp5CYmCjO480338RVV12FPXv2IC0tDc3NzSgvL0dQUBBefvllr74HsUHeyyrwxHO6U2IxZMgQWWQ7Ojpa3H/jxo348MMPsWrVKuzZswd6vR47d+7Ezp070dLSYlM8P/DAA/jll19wxx13oLa2Fo888giCg4MdzmH9+vWYMWMGTCYTHnzwQVH8FxUV4frrr5dtu2bNGnTpIvX4DAsLQ79+/WS32fdg1qxZWLhwITZu3IiysjJxESA0NBTTpk2zmovBYMB9992Hr776CqGhoVizZo3LHSkIgiAIgiAIotPBcUDxEX4cmgiE2NExcb2Bs+VAfQnQVA0ERVpvQ/X+AHwo/iMjIzFz5kzs2bMHZ86cgV6vR0pKCsaOHYunn34a3bp1A8CL+Oeeew6rVq1CdnY2UlNTMWvWLFkbPr1ejzNnzsiOX19fj/r6+lbnceWVV2L9+vVYuHAh9u/fD7VajYkTJ+LVV1/F4MHeXRVyNv3eV/Tu3RtqtRoGgwHbtm0T69odsWbNGjE6bklAQAAWLFiABQsWQKfT4bfffsPNN9+M+vp6/PTTTzbF/+WXX44+ffrg5MmTUCqVuO+++xwaPX788ceYP38+jEYjFi5ciOeee058rLm5Gbt375Zt39zcLLs9dOhQbNmyxe7xZ8+ejZdffhkGgwFfffUVVqxYAQCYNm2alW9BXV0dbrrpJmzcuBEJCQlYu3YtLrroIrvHJgiCIAiCIAjCTO05QFfNj22Z/QnE9gTObufH5VlAyjDrbSjyD8DH4t+ybtsW4eHheO+99/Dee+/Z3SYtLc2ueR+LPVE3adIkTJo0qdX9OxsRERG46aab8O233+LAgQN4+umn8fLLL0Ot5j82v//+e6tReIH8/Hx88sknmDNnDtLS0hAYGIgJEyYgKioK9fX1dg0TFQoF5s+fj/nz52Pq1Kno3r27TfHPcRyeeOIJvPXWWwgICMAXX3yBW265RbaNs58TR6Snp2P06NH466+/8MILL4gLTJYLF+fOncPUqVNx6NAh9OvXD+vXrxcXtAiCIAiCIAiCaAVZvb8j8c+a/p2yI/7NkX91oNwnoJPROZ0OCKdZvHgxLrjgAgDA66+/jpiYGAwePBjR0dGYOHEiMjPltTXXX389RowYIf488cQTAHgPh1dffRXp6emIj4/H0KFDkZSUhPz8fCgUCsycOdPuHObNm4eysjKsXGk/U2LFihV46623APALRu+//75sHp5EEPqC8E9PT8eYMWNk29x55504dIhfYeQ4DjNmzBDn4u1yEoIgCIIgCII47xFS/gHH4j+ulXZ/ulqg0pwlntAfUPmF571P6LyvnHCKqKgo7NixAx988AFWrlyJEydO4NSpU0hKSsINN9yA0aNHIzc3V9z+4MGDsv0Ff4WkpCQsXLgQf/zxB7KysnDs2DFoNBpcfPHFWLBgAa688kq7c1CpVK12XWDT98vLy1Fe7r0uCtOnT8cDDzyAhoYGAMDtt99uVQ7BzkcwBBTo06eP1+ZGEARBEARBEB0Cmdmfo8g/6/hvQ/zLjtN56/0BQMG1NQ+aAADU1tYiIiICNTU1VinsOp0OOTk5SE9PR2BgoI9mSJyP0GeHIAiCIAgRkwlQKPgfgujovH8RUJEFqLTA04X2I/YmE/DvJEDfCER3Bx48IH9810fAxif58VXvAhfd4dVptzeOdKgllPZPEARBEARBEP5OdR7w3iDgo0uA5jpfz4YgvEtLo5SqH9/Hcaq+Usmb/gFAVS5gkBt6i/X+ANClc0f+SfwTBEEQBEEQhL9zeCVQkw+UHgNObfT1bAjCu5SdADgTP04Y2Pr2Quo/ZwIq5F3gRKd/hQqI7++5OZ6HkPgnCIIgCIIgCH+n6iwzzvXZNAiiXShm6vQTnBDslo7/AnodUHaSH8f1ATSdu4yWxD9BEARBEARB+Ds1+dK4+qz97QiiI+Cs2Z+AkPYPAOVZ0rj0GMAZ+XGXwZ6Z23kMiX+CIAiCIAiC8Heq82yPCaIjIov8OyH+45jIfxkT+RdS/oFOX+8PkPgnCIIgCM+iqwFW3AKsmQcY9b6eDUEQHQGTCagpkG6T+Cc6MhwHlBzjx+FJQHB06/tEd+dr+gF52r/M7I8i/yT+CYIgCMKT7PoYOLkWOLQcOPOnr2dDEERHoL4EMLZIt2sKAJPRd/MhCG9Skw801/BjZ6L+AKDWAlFp/Lj8NL9gBsgj/84eqwND4p8gCIIgPEnmBmlcW2B/O4IgCGdh6/0BwKQH6op8MxeC8Daumv0JCKn/hib+f8aolzIIojOAwHDPzfE8hcQ/QRAEQXiKuhKg8IB0u7HSd3MhCKLjYCvNn1L/iY6Kq2Z/AkK7PwAoz+R/jM38bUr5B0DinyAIgiA8x+nf5LdJ/BME4QlI/BOdieIj0jhhoPP7WYp/Wb0/mf0BJP4JJ9DpdFi0aBGGDx+O8PBwBAcHo1evXpg3bx6ys7Px4osvQqFQ2PxZsGCBeJyioiLMnTsX6enp0Gq1iImJwaBBg3DbbbehsbFR3I7d/6GHHpLNZd26dbLHN27cCAA4duwYZs+ejT59+iA8PBwRERG48MILsWTJknZ5jwiCIAAAmRvlt5tI/BME4QFsCf0qavdHdFCEVH11EBCT4fx+lo7/Mqd/ivwDgNrXEyD8m6qqKkyYMAEHDvBprGFhYcjIyEBeXh4++eQTjBgxQrb9kCFDoNVqxdtpaWkAAJPJhKlTp+LAgQNQq9Xo168fmpqakJmZiSNHjuA///kPgoODrZ5/2bJleOWVVxAWFgYAWLx4sc157t27F1988QWCg4PRvXt3ZGdnY//+/ZgzZw4qKirw+OOPe+LtIAiCsI+hBTizRX5fY4VPpkIQRAfDsuYfoMg/0TFpaQAqs/lxfF9AqXJ+39ie0rg8E1Awce5EEv8ARf6JVpg/f74o/B977DFUVlbiyJEjqKmpwYYNG9CrVy/Z9mvWrMGuXbvEHyHyn5mZKR7n119/xaFDh5CZmYnq6mqsWbMGISEhVs+t0WhQW1uLL7/8EgCQlZWFTZs2QaPRWG2bmpqK77//HrW1tThy5AhOnDiBiIgIAMA333zjsfeDIAjCLnk7gJY6+X0k/gmC8ASC0FcycbtqivwTHZCS4wA4fuyK2R8ABEYAoYn8uOyUlPYfngyExHhsiuczFPn3ITk3ToOhvLxdn1MdG4v01auc2rampgbfffcdAGDw4MF44403oFAoxMcnT54MgBfzrWES2m2Aj+arVCoMHToUoaGhuO6662zuc/3112PVqlVYvHgx7rvvPixevBgcx2HatGlYvny5bNvLLrtMdjs1NRWpqak4cuSILBOBIAjCa2TaOBdSzT9BEG2F44Bqc+Q/ujvf9k9XQ5F/Qsay7Tk4cq4Wj0/ujYTwQF9Px32KmTr9RBfq/QXiegH1xfKyO6r3FyHx70MM5eUwlJT4ehp2yczMhMFgAACMHj1aJvztkZ6eLru9Zs0aXHfddejbty/Gjx+PP//8E19++SW+/PJLqFQqXHzxxZg/fz5uvvlmm8eaOnUqfvnlF6xZswbLli1DZGQkbr31Vivxb8nvv/+OY8f4eqG7777b2ZdMEAThPlmb+N8KFRAcAzSUkvgnCKLtNJTzrcsAIDKV72defASoKQCMBkBFl/OdnZzyBrz4y3EAQGxoAJ6a0tfHM2oDudukcdehru8f2xvI+Ut+H9X7i9DZwoeoY2P9+jk5jhPHzgh/wLrmPzo6Wtx/48aN+PDDD7Fq1Srs2bMHer0eO3fuxM6dO9HS0oLZs2dbHe+BBx7AL7/8gjvuuAO1tbV45JFHbHoDsKxfvx4zZsyAyWTCgw8+SOKfIAjvU3EGqDjNj1OGAyYDL/6ba/g+wyrrcqVOQ94uYNt/gCG3AP2u8fVsCOL8o4aJ8EekAOpAXvxzRqCukF8QIDo1xwtrxXF+VaODLf0ckwnI2cqPtRFA1wtcP0ZsL+v7EinyL0Di34c4m37vK3r37g21Wg2DwYBt27aB47hWFwHWrFkjmvxZEhAQgAULFmDBggXQ6XT47bffcPPNN6O+vh4//fSTTfF/+eWXo0+fPjh58iSUSiXuu+8+5OXZT3P7+OOPMX/+fBiNRixcuBDPPfecKy+ZIAjCPbKYlP9eVwB5u6XbTVVAaHz7z8lf+OUhoOwkH83peQWgOY/TUQnCF7Dp/ZGpgCZY/hiJ/05Pdlm9OK6ob/HhTNpIyRHJKyd9tHtZLXE2xD9F/kXI8I+wS0REBG666SYAwIEDB/D000+LZQAAn1q/Y8cOp46Vn5+PZ599Frm5uQCAwMBATJgwAVFRUQCA8PBwm/spFArMnz8fADB16lR0797d5nYcx+Hxxx/HvffeC5VKha+//pqEP0EQ7Qfb4q/XZD7tX6Azm/5VnOGFPwC01MvTOQmCcI5qxuk/MlUu9qnuv03sz6vC02uO4EhBja+n0iayyxvEcVXjeSz+s7dI4+7j3DuGZeQ/OAYI7+rujDocJP4JhyxevBgXXMCn3Lz++uuIiYnB4MGDER0djYkTJyIzM1O2/fXXX48RI0aIP0888QQAoKGhAa+++irS09MRHx+PoUOHIikpCfn5+VAoFJg5c6bdOcybNw9lZWVYuXKl3W1WrFiBt956CwC/kPD+++/L5kEQBOE1muuA3O38OCIViOsDBEdJj3fmuv8sCxNEwReBIAjnsYz8s+K/ihz/3YXjOCxYcRDf7s7DMz8e8fV02gQb+a9ssCP+m6qBvUuA0hPtMyl38IT4D+sCBIRJt7sMBpwsX+4MUNo/4ZCoqCjs2LEDH3zwAVauXIkTJ07g1KlTSEpKwg033IDRo0eL0XwAOHjwoGz/xES+3UZSUhIWLlyIP/74A1lZWTh27Bg0Gg0uvvhiLFiwAFdeeaXdOahUKsS24lXQ3NwsjsvLy1Hezl0UCILoxGRvAUx6ftzrCv4igyL/PJmbrG9f+SZdiBGEK9Qwkf+IFCCAaY9MkX+3Ka7VIa+Sr4/PKWtoZWv/heM4ZJexkX89TCYOSqXFefb3F4B/lgGhCcCCo4A6oH0n2hp6HXB2Jz8OTwJierh3HIWCT/0/9w9/m+r9ZZD4J1olMDAQjzzyCB555BGbj7/44ot48cUXHR4jLCwMzz33nFOp+KzRoC3GjRtntc3s2bNtegYQBEF4HVbg9pzE/w6Klu5r6qSR/+Y66zT/6rNAeSYQ19s3cyKI8xFB4KsCeOFG4t8jHMqXUv3rmg1oNhihVat8OCP3KKtvRl2zVJZrNHGo0xkQEWxhNHvmT/53fQlvUJvQrx1n6QT5u6WuFt3Ht22ROJYR/1TvL4PS/gmCIAjCXTgOyPqNH6uDeIMigCL/gDwjQsv4ulhmAxAEYR+Ok2r+I5IBpRIIDAeCzKVF1ZT27y6HCqplt6sa9L6ZSBvJtpG1UNHQLL+jqVr+WRG8WPwJT6T8C/S9mv8dFNX2Y3UwSPwTBEEQhLsUHQLqi/lx+hhAEwQAqAJTb9hZa/5ZE8RxT0ljSx8AgiDs01QFtNTxY7bWXxjXnuPbiRIuc9hC/JfXN9vesK3odcDuT4BM75z7bIl/K9O/kmPy2+Vyzy6/QCb+x7btWH2mAvP/AR7YDwRHt759J4LEP0EQBEG4i2WLPwBHCmpw01enpPs7o/g3meQZERfdAUSl87fzdgK689tZmyDaDct6f4HIbvxvzsQvABAuYTJxOJwvPw/ZNcprK/u/ADY8DiyfwXdA8TCs2Z9ApWUWQ7GFoaG/Rf6bqoDCA/w4vr9n2uPG9iDhbwMS/wRBEAThLmx021zvv/ZIISpMbOS/E6b9Fx/i60oBPuVSEwT0MvshmAzAmT98NjWCOK+QOf13Y8bU7q8t5FQ0yOrkAS+K/6JD/G/OxC9+ehi2zZ9ApWXaf/Fh+e2yU/Arcv4CYPbzyhjv06l0dEj8tyOtGdkRhCX0mSEIP6a+DDi3nx/H9wci+ajcqeI61IAx5OqMhn9sXb85IwI9r2Aep9R/gnCKaibyL0v7ZxYCqN2fyxzKr7a6r8Jb4r+uWBqXHPf44Z2L/FuI//IswChf/PApnqz3JxxC4r8d0Gh4t83GxkYfz4Q432hp4b+IVKrzz32W6DgYjCZsPFqEIwWUqi3j9G8QIxW9JGGbWVwHI1So5swLAJ0x8i/rgGB+b9IuBTTm9+T0b3xpAEEQjpFF/tm0f4r8t4XDNr7PrKLlnoIV/6XH7G/nBi0GE/KreId81hxf9loMLUCpRZq/SQ9U5Xh0Lm1CEP9KDZA60qdT6ehQq792QKVSITIyEqWlpQCA4OBgKKjHMdEKJpMJZWVlCA4OhlpN/6qE71i9vwBPrD6CAJUSfz8xHgnhgb6ekn9go8VfTZMehTU6AEAlF4ZIRUPnE/91JUChOSMiYSDvUA4Aai0f0Tm1Dmgo4+s7ky/02TQ7PU1V/AJMSEzr2xK+o8ZO5D+KifyT+HeZgzYi/15L+68rksaWxnttJK+yAUYTvwjdOyEMJ4t5c0hZ5L/8lNR5haXsJBDb06PzcYuqs0BlNj9OuRjQhvp2Ph0cUhTtRGJiIgCICwAE4QxKpRKpqam0WET4lN3ZfNp6i9GEIwU1SOhH4h9GvVS3HhgJJA8DAGSV1ImbVMN8AaOr4dMrVZ3kK/f0b9KYyYgQb59ax4+zNpH49xWVOcCHI3n/hbl/+V+/b0JCaM+mVANhXaT7WfM/Ev8u0WIw4XhRLQAgLFCNOh2f/l5R7wXxb2iWl341lAH1pZ4xtANwhnH6vygtShT/Mrf/Iiblv+tQaXG27KTUEs+X5GyVxpTy73U6yZWI71EoFOjSpQvi4+Oh11NLFsI5AgICoFRSdQ7hW/IqpZKlkjqdD2fiR+TtApr5i0f0uFwU9sKFF8BH/kWaqoDQuPacoe9gTRB7TZY/Jqv73wSMf7p95kTIOfEzYOBThXH8JxL//oxQ8x+eBCiZEkBtKBAcw2cWVVPNvyucKq5Di4EvOxrdMxbrj/Bp+V6J/AvGpywlxzwm/tk2f0NTo/DN7jxwnIV/Aev0P3A6I/79pN3fmT+lcXcy+/M2JP7bGZVKRfXbBEGcV5xlxX8NiX8AfNRaQHCxB5Api/yz4r+yc4h/Q4t0IRccAyRZRPbDuwKJA/mL0aKDfC1sWGK7T7PTU3hQGpcc9dk0iFbQ1QK6an7MpvwLRKby4r+2kP/fUwe06/R8TlUucOAboO9VQJfBTu92sKBaHA9Li8bfmeWoazZ4R/yz9f4Cpcc95mjPmv31jA9DZJAGVY16VNkT//2vA359hu884A/t/kwmKfKvDQe6XuDb+XQCKKRIEARB2KWpxYiyOsk4qKTWS4ZI5xtCvb9CyUf+zdiN/HeWuv+z24EW88Voj8vlkUqBntJiCbJ+s36c8D5FB6UxiX//xV69v3ifUPfPAbUF7TIlv2Ltw8BfbwLfznTJuf4wU+8/KDkS0aH8okl5vRe+32yJfw/W/bNt/rrHhSAqhH8tovjnOEn8hyfxC7DR3fnb5ZmAyeixubhFyVHp+zFtdOcpj/MhJP4JgiAIu+RXybuUFNdS5B+VOfxFE8DX+gdHA+Bbc7KR/6rOKP6zmBZ+TEaEDPZ+NoOCaB90NZK5FsBHT5vr7G5O+BC2lp+t8Rfo7I7/gqitKwTydzu92yFz5F+tVKB/13BEmwVzrc4AvdHDXUi8Lf7Nkf/E8ECEaNWIDuZfS12zAc0GI/+5aDZ3NkgcyP+O68P/Nuh8/7mhFn/tDol/giAIwi55FXLxX0Li367ALatrRnWj5OlSBcaxuJExfOrIiBkRKiBjgu1tki7kSwIA4MwWPl2ZaD+KDlvf54Xe44QHqG4t8s/cV9XJ6v4NLUADY6J9ar1Tu9U3G5BVygvm3olhCNSoEBMilUtUeTr1n3X6Fyg76ZGIe1VDC6rM3znd4/g2qtHMa6lu1APFzP+7KP57M3M51eZ5tIlspt7fQ6UQhGNI/BMEQRB2Yc3+ABL/AGy2+APkKf9AJ4z8l58GKs/w49SRQFCk7e2UKqlUoqUOyNvRLtMjzLAp/wKU+u+fsEZ+kbYi/5243Z+lqD61nk9xb4Wj52rEzQanRAKQC+YKT4t/1vAvthf/26CTZ9+4SXa5VO9vS/xXNrTI6/0TB/G/hcg/4Nu6f70OOLuTH4cnATE9fDeXTgSJf4IgCMIuluK/qlHPpxJ2VkwmKb00rCuQ0F98iE35B4Aqjon8N3WCyL/MBPEK+9sBFq7/v9rfjvA8RYes7yPx75+0VvMf1YnFf22h/HZlNlCe1epuhxmzv8HJEQCA6BCtdBhvRv7ZbCgP/M+dKWXq/WP57xvH4t/PIv8Fe6SuI93HAdTWul0g8U8Qfg7Hcbj/2/0Y/eYfOFJQ4+vpEJ2MfAvxDwClndn0rypHMrRLGiq7WGEj/woFUMm6/XeGtH9HLf4s6TGBLw0AqO6/vRGc/pUa6T4P1iATHkQQ9AolHxm1hPUB6HTi/5z1fU6k/h/Kl66jhMh/jDcj/0LNv0oLpF0i3e+BUpszrkT+teFSpkhMTwDm7y5fRv6p3t8nkPgnCD/nZHEd1h0uQn5lE1bs7WRf7oTPsYz8A5089Z+N1jBRf0CK/CsUQEZcaOdK+9fVAmfN6fuR3aT0VnsERQEpw/lxxWmg4ox350fwNNfx7zcAJA4AIszR5JLjfFYL4V8INf9hXQGVxvrxgGAgxNxCtLqT1fxbRv4B4NSGVncTzP6CNCr0iLMRLfe0478Q+Q9LkH9neGDBLbtMivxnmF9LVLD0WhqqSqXskYQBgNIs+wKCpUyS8kynyiW8whmm3j99rG/m0Akh8U8Qfg4rtKoayRiLaD84jrMp/ju1438xK/4HiEOjSXL6T4sJQUxIAKo7k+HfmT8Ak7nVVq9JzqVvsqUBWZT63y4UHwFgvtDvMoRfAAB474XOJh79nZYGoLGcH9uq9xcQRFxdEWDoRFlZrPgXsljydwMN5XZ3qahvRkEVn2Y+MCkCahUvg4RWf4CH0/4NzUBTFT8O6wJEpgEaPkKPUk+Ifz7yH6BWomtkEAD5a1GXMc/RZZB8Z6Huv6XedhaFt2mqAgoP8OP4/vziCNEukPgnCD+H/SKqbXK+jy1BtJXSumY0G6yjgSWdOe2fjfwnSuI/v7IROj3/XvVKCEWIVg0jVKjhgvkNOnrk35kWf5b0ZFv+kfhvF4SUfwDoMtjjkUjCg9QUSGNb9f7iY0zdP7tPR4cVrP2uMQ84efmRBYcL2JT/CHEcy9T8ezTtn23zF5bIR97j+/K329hi02A0iYvz6TEhUCn5BddoJvIfWn1C2kGo9xeQ1f37IPU/52+IC5GU8t+ukPgnCD+nop4R/zq9gy0JwrOwUf/eCVIKO6X9AwgI5aM4Zth6/96J4QjRqgEwjv8d2fDPZJLEuyYY6Hapc/vF95VqlnO3Ac31jrcn2g5r9td1iCx7hUz//Ay2hj/Cicg/0LmyN1jxf9Fd0thB6v/B/GpxPCg5Uhyz0XL2mqvNsOI/NJH/ndBPuq/UfdGdX9UEvZEXz0K9PyAvYYiqZY5vJf5Zx38fmP5Rvb/PIPFPEH4Ouwpdp6PIP9F+5FVI4n9YepQ47rTiX1cjXZAn9JfqJyF3+u+dEIaQAN7Mrkow/WuqBowd9P+38ADQUMaPu48HNIHO7adQSK7/xhYgZ6t35kdICG3+lBogvh+Jf3+GFf8OI//MY1WdSfyb0/5D4vnWooL3wZk/AH2TzV1Yp/8hZrM/QG7459G0/3qLyD/gsf85IeUfsC/+uzSZux8o1XKxD/i+3V+2ud5fqQG6jWr/5+/EkPgnCD+ngjGfqW2iyD/RfrCR/2Fp0eK4uKaTin82LZq9gANwShb5DxMj/5Wi6R8H6Kq9PEEf4UqLP0vYEoFMcv33Ki0NvLkXwGddqLVAdDqg5muFZX4WhO+RiX9Hkf9O2O7PqJei6uFd+YVYocOIvhHI+ctqF47jcMic9h8VrEFyVJD4WKBGhWDzgm1FgwfL2mRp/1343/Fs5N99x3/W7E9o8wcAwQEqBKiV0KIFSQbz5yGuD///zhLHmLK2d+S/6izfmhEAUi4GtKGOtyc8Col/gvBzKi0i/5yvXFmJTgfb5q9vl3CEmQVtaV0nrfkvtu/0f8oc+Q9QK5EWEyxG/juF6R9bY9vTRfGfNhpQmzMFsn7znet0Z6D4KMCZPTy6DuF/K1VSGnJVDpVe+BOCSzsgF/iWRHVC8V9fArFePCKZ/917ivS4jZZ/BVVN4vXU4JRIKCxMSYWIuUcj/4LTPyAZ2nnIZyPbRps/AFAoFIgODkBPRQFUMP+/Jw6y3B3QhgHh5veu7GT7nnvZLC9K+W93SPwThJ/Dpv23GE02DdgIwhuwkf+UqGDEh/ORg+IaXedchCo5Io2Z+slmgxE55XwUpkdcKNQqpY3IPzqm6V9dsVRHnjiIj8K5QkAwkD7GfKxCoHC/e/PgOCB/j0d6Z3dYhJR/gDf7E2DFSCljEEb4FlbIhyfZ304Qv5b7tIV1jwL/GShvxeZPsE7/wjmn+zhpIfHURqvWlYeYlH+23l9ASP2vbtLDaPLQ91tdiTQWIv/B0dK45JjbovsMG/mPk0fOo0MC0E/JlIBY1vsLCNF/XQ1QX+rWPNyC6v19Col/gvBzLFPQKPWfaC8E8R8XpkVQgAqJEfyFVZPeiLrmDlq/7ggx8q+QpW6eKW0QLxZ7J/JiP1g0/GMuyjqi6V/+bmnc43L3jsGm/q+6U54q6wwcB/z+ArBkIvDxJUDFGffm0dGROf1fII0TGGHALnARvqXaHPkPTXTso6EJAkLNUWVPGP5VnAH2/g+oyQPWP2olov0C1uxPEP8BwbznCMDX2gtt5MwcYsz+hjBO/wJC5J/jPNhWWRb5T5TGwoKbrlq+kOECQtp/bGgAIoI0sseiQwLQX5Er3WFX/Puo7j93O/87IAzoOrT9npcAQOKfIPyeSgvn2Voy/SPagaYWo5jenxrNt6tLCJMuQEs6W92/yShFRaPTZTWKp0pqxbEg/kO1FoZ/QMeM/JdlSmN7F5itMWgmEGtuO1WVC3x5nfMlEoLw3/6e+bYJKNjr3jw6OkKGhkIlj/ZTuz//Q6+TzOIc1fsLCKZ/9SV2ze6cJn+PNK44Lff08BdkkX8mK6L3ldLYIvX/ENPmz1bkP5pp9+ex1H9hIVMdCAQyz9nGuv9anR7lZj8ott5fwDryP8BqGwAW7f7aqe6/vkz6bHcdAqjU7fO8hAiJf4LwY3R6IxpajLL7qN0f0R7kV0kp/6L4j2DEf20nq/uvzAYM5otqK7M/qfZSaIkYHNBJ0v7LmQtGSzdpZ9GGArN+lARM2Qng6xtb74HNccDvL0rCX6Cjeiu0BX2TFNmL7yuPJLPin0z//AM2su3I6V/chqn7rylo23Oz2TwAsGNx247nDWyl/QNm8W+u5Wda/hlNHI6e48V/UmQQYkMtzO8AxHij3Z8gckMT+O4mAm10/JeZ/TH1/gIxwWr0VfAlIM2hSUBQlNU2AHwT+S+1b5xLtA8k/gnCj6mwsfpMaf9Ee8C2+UsRI//SBVNxZ2v3V8ykQ1uJf1uRf178V8vEfwcUpUK0SKEEYjLcP054V2DWT1L6cuF+YPm/7EcxOQ7Y/BKw/V3rxzpieUVbKT4KcOaF5C5D5I8FRUp95NtQg0x4EDZ9P8KFyL/lvu7ARv4B4Ow2qxR6n2Mr7R8AQuOB5Iv4cekxPpMIwOnSejSaAymDbaT8A15o96fXAU1V/Fio8RdIYCL/bviU2GvzJ9BNWYZQBf8dXRPR1/6BYn3g+M++XvZ9INoNEv8E4cdYpvwDvOM/QXgb1uxPiPwnyiL/nUz8s9EZixTKzBL+QixMq0YX83skGv6hA4t/kwkoN/eRjkq3biXlKtHdgdt+lNJjc/8Gvp/Nt/Vi4Thg80Jg23+k+y6cLY072vvsCVizP8Hpn0WI/rfUeaZunGgbsjZ/zkT+mW2q2vD309VIaegKRiLs/MD9Y3qDGkb8h1mYjMpS//lOJGy9/2AbKf+AVPMPeKjdXz3jXcLW+wO86Faa093dKLVhI/8ZcdZp/+lGyfekLKSX1eMiwdHSgqsvIv/x/e1vR3gNEv8E4ceU2/gCorR/oj2wJf7jwzux+Je1+ZPEf61Oj3PVfHS6V2KY2D5KbPXXkQ3/avKkUgi2drQtJPQDbv0BCDC/b5kbgTXzeM8FgBf+f7wMbFsk7TP1HeDSh6XbHe199gT2nP4FZGnIVPfvc6rZNn8uiv+2OP4X7IPYQm/ILUBwDD8++kPbywk8iZD2HxxjbYZoo+Vfa07/gBfS/usciH+1FojpyY/LMwGDa88nb/NnLf6TmrLEcYG2h+ODCefuxnKgoR1K08TziwKId7NUjGgTJP4Jwo+hyD/hK/IZ8d8txhz578ziX4j8ayNkF9pZJVJdupDyD0iR/yowF2YdreafNfuLdRBdcpXkC4F/LQdU5kyCo6t413FB+P/9jrTtlLeBYXP4CJYARf6tEc3+lLbrbKnu379wNfIflWZ7X1dhU/67j+P/twC+ZGT3x+4f15OYjJKLvq3WonF9pPfj7HagqVoU/woFMDDZdtq/xw3/HIl/QPqfM+mBiizrxx0gRP41KgVSooKsHo+pl1L4T6vSHR+Mrfsv93Lqv8kIlJozDKLTgQDrkgVPUlHfDJ3e2PqGnQwS/wThx9hKPaOaf6I9ECL/WrUScWZzpLgwrehZVNyZDP8aK6Ua04T+MuOmk8WM+E9gxL/Z8M8ANRoU5gucjib+ZWZ/Hor8C6SPAW76gnemB4B9S4HPLrcW/hffzY8DQgGlud0VRf7l6HVSp4q4PnxLNEvYTg1uGJARHqaGifw7U/MfkSyN21K2wZr9pVzMi39hEe6fLwBdre392pP6Usm/IjzZ+nGFQor+mwxoOfUrThbx5+kecaGiH4slHq/5l4n/LtaPu1n3bzJxyCnnxX9qdDDUKmspF1rF/79XcyE4q4+2elyGrO7fy6n/VblStli8d+v9/84qw0Wv/o7xb29BfWdsTewAEv8E4cfYNPyjtH/Cy3AcJ4r/lOhgKJW82NWolIgxR0dKO1Pkn02DTpDXKGYW2478B5tb/QFAndJ8f0eLSJd5UfwDfO3u9Z9AdO8+t096jBX+AH/BL0T/G6s8P5fzmdJjgMl88Wsr5R/g/RbU5ggipf37HiF6Hxxre7HGErVWEpjuRv5NRnPaP/hjRaTwBnqDbuLva64FDnzt3rE9iT2nfxam7r/+0M8wmPhShsEpkXYP6/GafyE7AZDq6lnYDJxS5//nzlU3odlgAmA75R/1ZdA0lgAAjpu6obKxFeErc/z3cuTfwXepp/ly51lwHFBUo8OuMx1s4b2NkPgnCD+G0v4JX1BW1yxeXAj1/gIJ4WbxX9cMo6mTuII7MPuzF/nXqJQIUPNfsdUI5+9sqpJq1zsC5V5K+2cZNJ2v6WexFP4CQWbxT5F/OULKP2Dt9C+gVPEtAAG+rWVLg+3tCO9jaJGEozMp/wLCtg1lQEuj421tUXqCN3wE+Ki/kOE0cr60za6PAKOPr0HsOf2zpI4EAvn0/tD8P6EBP2dH4j84QAWt+Zztkch/fYk0thX5ZyPfLiy4ZZc7bvOH4sPi8DjXDZWtLWS0Z7u/dhL/LQYTdpwuF29nlrbSNraTQeKfIPwYavVH+AJbZn8CQt2/0cR5JjpyPiAz+5PSozmOQ6a55j8+TIsoJnIEsO3+hOgMx7tpdwQ4TooShScB2jDH27eFYXcB134IpI4Crv/UtvAHpMi/vpFPdSd4Cg9KY1tO/wLixTgnlQkQ7U/tOYDjF18R6UTKv0BkN2nMlg04iyzlf7g0ju8D9JhoPm4ecOJn14/tSWSR/yTb26g0QM9JAIAAQz2GKXlRO9hOvT8AKBQKMfXfM2n/TOTfVs1/RDLvIQO4lPbPtvnLiLUR+Wfa0h43dUNVYyvXjCGx0sKptyP/7eT0vy+3Eg0t0kL76ZJ6B1t3Pkj8E4QfYzvtnyL/hHc5WyGJ/xQL8c86/pd2lrr/EvPFlEIpRUfBZ0gIF1Zsyr9AsNnxv5zrgKZ/DWWArpofeyvqz3LBLcCdG4DBM+xvExQljSn6LyE6/Stsm/0JsHX/jIAg2pkaF53+bW3rTrs/1uyPFf8AMPJ+abxzMb/45yucifwDstT/icp/EKBSok9iuMNDR4dK4t/U1sw2oeZfHSRmIchQKKS6/9oCPjPMCdg2f7Yj/4z459JaX8hQKKTof10R0FTt1DzcQljkUAfxhn9eYmtmmew2Rf7lkPgnCD+mop4XV9EhAQjS8EKijmr+CS/jTOQfAIprOkF01Whg3IkzZPW3p0psp/wLCJH/cmMHFP9seqg36v3dQSb+qe4fAJ9CLlxwx/YCtDYihQJsGi7V/fsOtmY/wk3x747pnxD5V2mBxEHyx7qPkxaOzv0jzxJob5yJ/ANAjwngzCaglyv3o2+XMLEUyx6Cp42JA6rbmmUpiP+wBJlJrAz2f87JbJvW2vwJ4l8PNU5zXVHTpIfeaHJ8UPYczpZzeZKWBr6kSHg+pcrx9m1gyym5+D9dWt/2xZwOBIl/gvBjhBXb6JAAhAXyQqK2iSL/hHfJdyD+hZp/ACip6wTiv+I0YDRnOFjUKJ5i6v17OYj8l8nEfweJSLPpoe0R+XcGavdnTelxvpUYYN/sT0Am/snx32dUeyDy76rpX30ZUJXDj5OGAmp5CRMUCnnt/473XTu+J5GJfxu19AKBEaiO5zMYUpRlmBxT2uqh5Y7/bchs0zdJmVG26v0F3Kj7FyL/kcEamUkhAN7rwdw2sDAgHQaYS89aS/1vD9O/spMAzALcUQZSGymsbpItzAOATm9CQVWT157zfIPEP0H4KU0tRjSaa5aiQwIQHsSvYFPkn/A2bOQ/JVreQzghQor8l3SGyL8Dsz9W/PexIf5DzJH/KjCPdZTIPxsdYi8cfUkQI/4p7Z9HTPmH43p/gM+cEFqnlRzzbWp3Z4YV7q7U/EcxNf+uiv8CNuX/YtvbDLhRErIn1wEVZ1x7Dk9RW8D/DoxstU/8weCR4nhGyTuteoHIHP9tGC47jazNn416fwFWBDsh/htbDCgyf+92j7Xx2kuPi34RJcE9xbtbTf2Pa4d2f6yvAdvm0MOwKf/CAjwAZFHqvwiJf4LwU1gztdjQAISbI/8NLUYYWkvhIog2IIj/uDAtggPkPZETwhjx3xlq/tnaZ8bsD5DS/hUKoGe8/bT/Krbmv6OIUm+3+XMHivxb44zTP4sQ/W+udc80jmg77Pse4YL4D0+G2BbT1bR/e2Z/LOoA4OJ7zDc43vm/vTGZgFqzkZ6jlH8z3+pGIc8UBwCIrj4KrHvY4aKWUPMPtNH0jxX/oQ7EP+Mh44z4l9f720r5l5z+qyOkRdnWxX87RP5LGfEf7z3xv+WUlOExY5j0/5NJpn8iJP4Jwk9hT9Z82r9GvE3t/ghv0dRiRGkdL+otU/4BIJGJ/BfXdt7Iv8kkOf13iw5GUIB1/aKwcOK1yP/R1cBP9wNVuZ47prMIkf+gaN4t2h+gyL81rNN/4kC7m0nbMJHIYkr99wmCcA+MBAIdG9TJUAdIBniuRv5Zs79kO5F/ALhwNqAxfy8c/Kb9F9kay6UylgjH4t9gNGF7QQvm6h+GDmZRf/AbYO9ndvdh0/5tGS47Tb2Tkf/AcKlco/QEv7jhgNbb/EmL1U3RUhlPVWMrryWsC6A1f9a8Jf7Z71Ivpf3rjSZsP81/x0aHBODGocniYxT5lyDxTxB+CptyFh2iFdP+ARL/hPcoqLJf7w8AUcEaBKj4r46SziD+BQEUGCmLNOVXNUKn5y/Uetkw+wOAUC2/IFDJeUH862qBNfcCB74G/njFM8d0+rlrpDZW/hL1Byjyb4lRL0UTY3o4JyTJ9M+3GA1STbsr9f4Cwj6NFUCzk5FOQwtwbj8/jkoHQuPsbxscDVxwKz/WNwL/fO76HNuCs07/AI4V1qKxxYgTXDcs7/KE9MDGJ4GzO2zuEx0iedp4LPLvqOYfkFretdTxrRQdcKaUMfuz1eavSIr8G5lWeq0uZCgU0rm8Js/5z44rCGn/IXGOP2Nt4J+zVahv5q+Px/SMRY/4UCjNyTBZFPkXIfFPEH4Ke7KODZUM/wCglur+CS8hr/e3Fv8KhQLxZtO/Di/+G8qlCE7CAJlj88lW6v0BINhW2n+jh1zoa89JRoTt7bxdxtT7+4vZH2AR+Se3f5SdlD4jzqT8A/LSlhJq99fu1BUBJvPivlvin6n7d7Zso/iw9Dmxl/LPMuJeiOUFuz/lF5naC2ed/gHszZUWANWDpgGjHuBvmAzAd7OAmnNW+0SHeCrtv0gahyU43patf2fr4m3ARv4zLCP/LY3Sgl1UOiIipfNhlTOvxZuO//WlfNYG4OWUf6nef2zvOARqVGIQgxz/JUj8E4SfIrT5A8yGf0zaf21bW9AQhB3OVjiO/ANAgrndX1WjHs0GY7vMyyc4MPvLbMXpH5Bq/qu9kfbfwLQyqs5rX7Fb7of1/gBF/i1hU/5bc/oXiO4OqM2lPRT5b39q3HT6t7VPlZN1/7J6fwcp/wLR3YFek/lxfTFQnuX8/NqKTPw7jvzvyZHOAcPSo4EJL/ItCwH+/PndbVYGgB5L+68rkcatRf5dyLbJLuOj10oFkBpj/n5uaQB2LAbeGwwYzI72iQMR5epChjfr/mUp//3tb9dGhHp/hQIY05PPLuhh9uNp0htxrpoc/wES/wTht7An65gQLcKD2Mg/pf0T3iHPQZs/gcRwqe6/tCOb/hXbr1E8WeJE5N/sA6CHGnq1OUrjqVp0VvwD7Vuf7Y9mfwDvVi9ANf9ys7/WnP4FVGpJBFSc4YWFr+E4vnVaZ4Ct1XfF7E/AnXZ/zpj9WcIKOFaQexsn0/45jsO+s/yCaESQBr3iw/jP9rTPpffo3D/A+kdkBoByw782fLfJIv8Oav4BKe0fAErti3+O45BjjvynRAdDa9IB29/jRf+vzwANgtGdAhg0A9HBbRD/5Z4W/6zTv3fEf3GNTszIG5QUgZhQPkOxV4KUeUd1/zwk/gnCT2FXnWNC5YZ/lPZPeIt8J8S/kPYPdPDUfyci/wEqJbrF2G43JbT6AwCdJpIfeCryX28p/g/b3s4bsCmhsX4k/lUaIMC8EEORf3mbv8RBzu8nftY5oNRLbb+cxWQCvpkG/DsFOLLKt3NpD6o9GPl3xvGf4ySzv4Awufu8I8KZaHZde4p/59L+z5Q1iIL3om5RUAqF38HRwIxvALW5he2Br4F9S8T9wrRq0dPGI63+1EGSkZ49YnoAKrNQdxD5L67VobHFiGDoMF/zC/DuQOC355mFYAXQ7zrg3u1A36tkCxmtGv4B8hIuT0f+28Hpf2um5PI/tne8OO7Jin+q+wdA4p8g/BbrtH8m8k9p/wSDsbbWY8cSIv8BaiXiw7Q2t0kI7ySO/0I0XaEC4qSL4maDUay9zIgPhUZl+6s0hGmT2KSONA+qWnV0dgrLyH9RO4p/4cJQEwJEJDvetr0JNkf/O3vk32iQPr9R6UBQpPP7ynqP+7juv/gwcPp33uF998e+nUt7wAr2SDci/1FMzb8z4r8mX4pSJ18EKK27ltiEFd61Rfa38zROpv2z9f7D0qPlD3YZBFy7WLq94Qng7E4AvKeNUPfvEbf/sESZV4xNVGopg6ritFUpgsC5nJO4T/UjtmkfxPTqJcxCsgLofwNw307gpi/EyHqYVg21edHDqch/RIrUyaHMw4t+4qKGQp5h4EG2ZkrfieN6S4aCbBteavfHQ+KfIPwU4WStUABRwQHk9t+ecBzw8wPAR5e2asDja4pfew2ZFw9H6TuL2nwsjuNE8Z8aHSxFSyxg0/5LOmrav6FFugCK7QlopNecXdYAo9k4qHeCDcdlMyFa6UK6QWWO/nAmQFfd9vlZpf23k/jX6yRREduz9Qvb9kYw/fPUIsv5SnmmVP/rbMq/gEz8+7juP+cvaVx4kDc168i0teY/PAlQmRdtz/wpd523Bdviz9mUf0Bex15rbZznNWoK+N/acEBru9wKAPay9f5pUdYbDJwGjJzPjwUDQPPCgiD+qxpawHFuGMS1NPIdUYDW6/0FhP85ziR97xhagOytwKZngMXDcNGP4/C45jtEKwQBqwAGTAPu2wVM/9wqa0OhUIh1/06Jf6VSiv5X5Xqu1MZklF5TTAYQYDujsC0YjCb8ncUbCkYGazA4OVJ8LCMuVPyaOk1p/wBI/BOE31JuTjmLCg6ASqmQR/4p7d+7lJ0C9n/JR732/s/Xs7ELZzKh+rvvAQBVK1a4d6HCUFbXjGYDL5jspfwDnSTtvyJL6idtUaN4ijH7651oP6WTTfuvV0ZID3giJd1S/Jedap+66IrT/AUq4F/1/gKC6R9nApo9lxFz3sGm/Dvr9C/gT+3+crZKY5MeKNzvu7m0B0KdfkAY317UVVQa4IJb+HFLPfDbC463d9XsT4CN/Ne1U+Sf46TIf2tmf+bIv1atxMCkSNsbXf4SkD6WHzeUAusfA8CXWQKAwcShtsmNQEs9s+DSWr2/AJsKv/tjYMUtwJvpwJfXADsXy0qtjJwCZd2vA+7fA0xbAsTbj6THMOLfqesDISrPmfhzvSeozAYM5usEL6X878+rFoNio3vGQcUELoICJMf/LHL8B0DinyD8FmGlVjh5s27/FPn3MuyXtxBp8EP0BQXgdPyXqqmuDobS0lb2cIwzZn+AZeS/g4p/B2Z/p0pY8e8g8s+k/dcqmSiVJ1LSLcU/ZwRKT7T9uK3BpoP6U5s/AVm7v06c+s+a/Tnr9C8QHC2Ju+KjMkO0dsXQYt2PPW+nb+bSXggu8eFd3c+qGf+stHBweAWQ56AVqCj+FXzav7MExwBK8zVJe6X9N1ZKLQkd1PsX1TShoIpfCB2SEokAtR2pIxgACu9V3i4A8nZ/Fe6Y/smc/p0U/+yC26HlwMm1/OKNgEKJUwED8KZ+Bi5reQfc9Z8Aca2ff6PMpn/NBhMaW5zozMMu6Hqq7p9dQPSS2Z/g8g8A43rFWT3eM57/nm5sMaKwppOYhzqAxD9B+CGNLQY06fkTtfBFxKb9U82/l2Ejs/Ul9rfzMc2n5SvzzZlt683Liv8UB+JfVvNf00HFP1vrnDhQ9pCzkf9QJvJf5el2f5biH2if1H/W7M9LtZttQtburx3bH/obbRH/gHSR3lzjuwXQc/8Aeos0f7NA65DomwC9ubtCSKz7xwmJAS57Vrq9/lE+9dqSlgZpkTO+HxAYYb2NPZRKKaW9vdL+nXT6Z1v8XWxZ729JSAzfuhDgz8tGg0z8O5Uub4krTv8CiQMBWCz2BMcAg2YCNy4BHjuD27iX8KHxWtQGpSAu1LYfjyXy7gXOOP57Wfx7KfK/5ZT0fTjGhvjvwdT9k+kfiX+C8EtYl1khBS2M0v7bDzZiWOfP4v+M/HZm2/otOxv5D9GqEWYWtqV1HbTm307kn+M4HCvk6znDtGp0jQi03FMkmKn5r+I8Lf7Lre9rD9M/f23zJ0CRf54K87khNFG+IOIsstT/dmwjycKm/Avk77EtZDsC7P90cEzbjnXhHdJ5q/gwX8Zmybn9fMYQ4FrKv4AgwJsq7ZrUeRQnnf5lZn9pTnz2QwVneA5orBCzLQE3Tf9YnwVna/5D44FJrwLdxwFjnwDmbAYezQJu+AQYOA01CBO/a3smhEHhZFYI2+7PKcd/YSEEcL5VZGuwTv9eiPyX1upwvIgv8RqYFIE4G0bF1O5PDol/gvBD2BXamBD+RBakUYnOrZT272WamIhhQ5nfXmw2n5aL/easNor/CufEPyDV/RfX6NrsNeCXCIInOEYWvTlUUCOaHA7tFuXwIoyN/JebmHaAba35b2mUUkLZrIT2jPwrNbyLvL8hi/x3UvGvb5J6frPu764gM/3zkfjPZsR/0oX87+ZauZjoSDQy4r8tkX+AT2m/8k3p9uaF1v8Psnp/F8z+BNq73Z+Tkf99ufz3t1LBn6NbJYSJFDeUITpEEo9tjvyHJji/38j7gVk/AeOftuq8kMkI1l4OTGYtiXJ1ISOC6TDhKfEvRP41wV75zmBd/sfaiPoD5PhvCYl/gvBD2DozIQVNoVCI0X+K/HsZNl2YM3quN7uHsUr7b6v4l6X9BzncNtEc8W7SG1HX3MEWo+pLpbT6hP6y2tv1R6QLu6kDHUd1tGolBN+hciNzwdbWzxOb8h+dAUSl8eOSY95dqDIaJBOomAxeYPgbFPmXX7RHekD8F/tA/Lc0AAV7+XF0d2DgdOmxjpr63yCdF3YU8S1F20TaJbwbPMD/L/z5mvxxmdO/G5H/MEaAt0fdvxOR/5pGvejJ0r9rhGwB1i4y8V8qZlsCbop/tlTQ2ch/K2SWsOLffpcDS9gshipnXos2VMo68YT4b67nOwcAfJmY0vOyc4udFn8sPeIlx/+sUhL/JP4Jwg9h0/5jmS8ioe7fLQdawnksRYMf1v1zRiNazmTL7ms+cwac0f0LRkH8x4ZqERzg+KIpIYwx/etodf/FTL1/ghRZ5zgO6w7zF7kqpQIT+zmO6igUCtHxv8TARP7bKkrZ9ODQeCn6r2+U0r29QfVZwGg+N/mj2R8ABDGRvs4a+a9ie8W70S4OAGJ6SC3jfBFpz9spddtIHwukjpAeszQB7Cgwi4Kbco247oMdMn8Rt7jiZUBjPvfsWyKd20wmoMAs/oNj5enezsJG39vD8V8m/m1H/vedrRT9KS+y1eLPFmLaP4CGcplgLq93x/DPjZr/VmDr1NkodmtEueNfICwY1p7jTTfbQtlJAOY/SILn6/0NRhP+Nov/8EA1hqRE2twuKECF5Cg+oHG6pK5jZiu6AIl/gvBD2JM0m4ImOP7X6fSd/uTlVZosjML8sO5ff+4cuGb5hQmn00Ff4J45V1OLUawp7BbTeh/ehAjW8b+D1f2zac6JUgT0yLkanKvmnYJHZcTILqzsITj+F+s9mPYvpHQDfNQqkTF082bqv7/X+wNAMHPB32kj/4z4dzftX6UGIszRVV8sfrIp/+lj+EU4QcTm7XSpAwHHcXjux6O47oPtyCrx33pfjsnoqeTCcKKoFle/vw2f/Z3tfnuy8K7AmEfMT2AC1j/Ov3cVp6XvuZTh7nUWYNP+28P0z4m0/z1Mvf/FztT7A/LIf32pBwz/zDX/mmBA67xQd4Q88u982j9b8++8+BcWDDmgto1mnzKn/wH2t3OTg/nVqBVa/PWKg1plX9b2Mi+aNLQYUdjRAhYuQuKfIPyQCpn4l07eQtq/ieNPYISXsBRnfhj5Z1P+FQHSZ8Td1P+CKufr/QEggTHVKT6f2v3t+xx4tSuw5Argny8AnY1e8HbM/ta5kPIvEGI2/StsYcooPJn2HxILdBkk3WZd3j0N2+bPH53+AXnaf2eN/LPi3920f0BK/9XVAMZ2LjXL+Usap4/hFyNShvG364pcSkk+eq4WX+06i4P51fhiZ65n5+lBDPWM+Dd3B2kxmvDKuhO4dcluFFa72aJs5Hwpsp+3Azi62qLe342Uf8AHaf9m8a8JsduZYC/j9H+RO+K/oVT0WQLcFf/m64WwRPfbNVog1KnHhAQgxkmnf0B+/eiU4R8gzxZqa+o/mzXkBad/tt7fVos/lh7MokmmHy8Ctgck/gnCD7Gb9h8otfuro7p/72GV9l9sezsfwjr9h4wZLY51brb7c7bNn0CiLPJ/Hon/XR/x7bTydwO/PAi80xtYcy+Qu12KJgqRf6VajHBzHCfW+6uUClzR37l0TiHtv7pFAS7AfPHR5sg/K/7jgURG/Hsz8s+2+fPXtP9gqvmX1/y7mfYP8OngAu25kNJYKS1iJQyUzO9SR0rbuFD3f+RcjTgW+r/7I/pa6f86o1s3zLlUMkfbcaYCk9/9Cz8ddCPCrtYCk1+Xbv/6HHDmD+m2O2Z/gEXav5cN/zhOSvsP72pTVOv0RvFv3T02xKbru00s0v7Dg9SiuTJ7LeYULQ18e0zAY/X+VQ0tYvlBTxei/gDcy2Jgs4XYEiJ3kEX+Pe/0z7b4s2f2J9CLKZc43clN/0j8E4QfYsvwDwDCg5h2f1T37z0s0/7rS21v50NYp//wK6+U7ncz8u9smz+B+PDzUPxznHUkQ98IHPoWWDYFeH8osPUtSeTG9uIvnAEcK6xFfiUvHEZ2j5H9XzpCSPs3cQAnRKXbHPlnXcHj+AiTINSKj7iUEu0SYtq/Aojt6Z3naCvacH7RBrD+P+4sCBfsCiUQkez+cdh2c402Wkt6i9xtEOuE08dI97N1/3k7nT6c0JoT4LuT+CvGeuk9DgiPx7NX9cO3c4aL7URrdQY8tOIgHlh+ADWNLi7+95oE9JzEj+sKgWM/8GOlGug6xL0Js+K21sviX1fNn6sBqRzFggN51dAb+c+NUy3+BCzS/hUKhVjS5XLkX9bmzzP1/u6a/QFAVIgUMHK55h9oW+Sf4yTxH5rQ9g4WFpTVNYuLPf26hMuuSWzRk9r9iZD4Jwg/RDhJKxVAZDCb9i+dyMnx30uYTDZq/v0x8m9O+1cqETZuHKDhPxvtJf4Tz0fx31AOGMyRvy6DgYvuArRM+mhlNvDnK4DJvLBmJ+X/yoHOX9QJaf8AYAw016M3VfGfM3dhF6NCYvkomJD631jhnQtxjgPKzZ+tyFRA47gbhM9QKCTTv8ZOKv6FC/bwJEClcbytI0IY8d/QjuI/h6n37z5WGicPAxTm/ycXIv9CD3DAz89VzHusCuWF0qgesdiwYAyuHSJF2X85VIgp//3bdWE6+d+AymLRsstg9/+X1QHSoqO30/6dcPrfy9T7D0t3QfwHRUufK3NWVQwj/l3yV2JLBEN9L/61apXY8cD1mn+0TfzXl0jZV15I+f/LCZd/low4Nu2fIv8EQfgZQqpZVHAAVEopvY3S/tuB5hreGInFzyL/rNN/QGoqlCEh0Hbnazpbcs/C1OJ6nWJehWviPy5MK2ZeFp8vhn81+dK461DgqkXAo6eAGz7jHcUtMbvocxyHDWbxr1QAk5xM+QektH8AMGjNopQzSqmh7iBL+zdf9LiZ+l/y1ls4O+t2tOTmOt6wthBoMV+E+qvZn4CQYdEZ0/6b66TX3ZZ6f8Ai7b8d250K9f4KFdBtlHR/QAgvVgGg7IRTpQhGE4eTRZJ4qmrUQ6f3T78cZRP/HtdywQgNls7BEUEavDfzAvz3Xxcg3Oz7c666CdtPu7ggE5PB95JncTflX0BI/a8v9m6bUSec/ve6Y/YH8O3nhKi0+dwqZHa1GE2od6WVrRec/lmh6qr4B6Tov9PiPyJFGle3Ie3f2yn/MvEf72BLnhCtWnL8L63v1KbZJP4Jwg8R0v4tU4sp7b8dsJUq7Gc1/6zTv7ZnD/Nvcxq2wYCWnFyXjylE/gPUSsQ7USupUSlFY6RSf46msbDiP9J8gaMJAgZNB27/GXjoMDDuKb7NWXx/YNBNAPjIYa55cWRE9xjEumC4xLZMbA7wUBs6IUKoDpTcpGWmf86Jf93Jk6hcshSNe/ag8ssvHW9czjj9+2u9v4BQ999S3/ZWVecbnmjzJyBL+28n8V9bKJXdJF1o7ZbO1v2zfertkFPegCYLsV/qp4uVmmb+nFDBhSEi2Dpj45rBXfH81ZKIcqsN3ehH5UZ97pr9CQhC3GSQL0p6mlac/g1GE/af5b+748O0SIl2MZtBWERtKAM4zn3Hf1nav2dq/t11+hcQOkZVN+lhdKZrREAw7yUDtC3yz4p/D0f+OY7Dtiz+8xYWqMbQ1Ein9usZz79/9c0GFPlxCZC3IfFPEF6masUK5N93v8yd3RGNLQbo9HzkOSZULv4p7b8dsJUq7Get/tjPUkAPC/EP11P/OY4TxX9KVBCUSuccihPCzeK/rtm5iwpfU82I/wgbwiiqGzDuSeCBf4D7doiRm/WylH/XLuhCmbT/Zg1TYtAm8W/ORAmJk4yv3Gj3pzshufe3GvmXtfnzU6d/gaCOb/pnqKpCS56NC3P2Yt3dNn8CIT6I/LMu/91tZOO4WPfPpvwL+GV3EqMeAXp+rpUIl2X5sbALsy6b0QGANhS4+j1AHcR3AOgx0a3pirRX3X8raf8niurEDkjD0qOhcNVlXxD/xhZAVyNb4K1wW/wnuDYHO2SV8pH/uDCtrAzUWaLNC0kcB9Q0OXndKCwc1hUBBjcXy1infw9H/mua9Kgy+14MSYl02OKPhc2cEN7XzgiJf4LwIobychQvfBn1f/yB8k8+dWof9gudbTkDQEz5A4A6HUX+vYItsaBvAJr954uCdfrXZrRd/JfVNaPZwC84dYsJaWVrCaHu32jiZCaVfgsb+XfSCI13+ecv6JQKYLILKf+APO2/Qc2KfzfFlMko7cuKs+juUh90J8U/+zlpOdeKi7hM/Pt52n+whzIs/BRDZSXOXD4RZ66YhPrt2+UPeqrNHyCP/LdXzb+sxV9r4r/1un/W7E/AL8U/cz6o5MIREWRb/LMBAbfPub2u4Mud5u/jFwPaAivE6+R1/2sPF+LNjSddS5u3RyuR/z3upvwLyNr9lcki/y4tsng48l9e3yxmHrgT9QcgmhcCQKWznxk2a6imwK3nFSP/CqXHvzPY/+HEVoz+WHrEM6Z/nbjdH4l/gvAiuuPHRWMvQ7FzqePsKrPDyL+zK7iEa9hzCK/3n+g/6/Qvpv33cl/8u2r2JyBz/K85H8Q/cxETmWJ/O4aTxXXIKW8AAFycHu18+ygzIUzaf6OSEf/uRqSbqiRPihCmzlGpBBLNBoXVeU453bOfE31hETijg5rd86HNn0AQI/47YOS/cc9emBr4z2Ttz7/IH/RUmz+g/dP+OQ7INpv9qQNtp6SHxgPRGfy4cD+gdyzkjxdaR/5L/DHdl1lcqeDCZCV+LHFMRLqsrg0lLYERgFLV+natEW478l9U04QHlx/Ah1vO4LX1J9r+PK1E/vfmMGZ/7oh/tt1ffalF2r8L320ervlnU/57xrte7w9I5oUAUNng5HWjrN1frutPajRIC8bRGR43iGVT9rtEOC/+ZZH/Tmz651Px/+6772Lw4MGIjIyEVqtFcnIypk+fjsOHpahFXV0dFixYgOTkZAQEBCAjIwMvvPAC9Hr5B3jfvn2YNGkSwsPDERwcjEsuuQS//fZbq3NYtmwZFAqFzZ/TTqZpE4Q9dCelaJmxzrlVxko7bf4Ai5p/ivx7BzZSKGsB5E/iX3L6D0jne0FrunaFwmwS1ZyZaW9Xm7DiP8UF8X/eOf4Lwkipdjoqw6b8T3Ex5R+QR/5rleHSA+6KKVtmfwIy078jrR5Ktkik18NQ5qBmV7iQC00AgiJbn6cvYdP+O2DkX18oCaGmgwflD7I1/21N+2/vVn+V2UCteYEudYTYZtMKoe7f2MIvANiB4zib4t/vI/+wH/lno7h+kW1lJ+3/TGkDhEqwHw+ca7tBsXBsdaB8cQ/831kw+wsLVKN3ohsi2SLyHyN7n92I/GtCrP0q3CCrjWZ/gGXkv50c/yvPAEbz59MLZn/sAl6CC+KfjfxnduJ2fz4V/1u3bkVZWRnS09ORkZGBoqIirFq1CuPHj0dDQwOMRiOmTJmC9957D6WlpejevTtyc3OxcOFCzJ49WzzOwYMHMWbMGPz666/QarWIjo7Gjh07cOWVV2Ljxo1OzSUsLAzDhw+X/QQGOv+BIjopTdXAhieBPf+z+XDzSamm1lRrfRFii3JZ2r+F+Keaf+/DRgrZ2mY/afdn5fQfwH9GFEqlmAWgLygQI4PO4G7kX6j5B/z0gtoSIe0/vKtTUS+O48QWfwo3Uv4Beas/j4h/yzZ/LC6Y/hlraqyykfQFdtI7Gysl8efvUX9AMvwDOmTkX18kLUi1nD0LQyXzGoW0f6Wm7WnH2jCpNVxDO0T+2RZ/tlL+BZys+y+taxaFG3te88tzVaNl5N+2+NeolIg013C7VfPvaeyk/bOLwY0tRvx4sI1+ADXmtP/wrpLPiZns8gbx73xRtyhZhySncZD2X+nK+ywECTzm9N82sz8AiA72gfj3stO/u2n/IVo1kiLNjv8lndfx36fif/ny5SgsLMSBAwdw/PhxPP300wCAyspKnDx5Ej/++CO2bdsGAPjhhx9w8uRJvPvuuwCAb7/9Fv/88w8A4LnnnkNTUxPS0tKQnZ2N3NxcDB8+HEajEY899phTcxk6dCh27dol+0lOtl8T2tzcjNraWtkP0QnZ/Qmw+yNg/aNSuiKD7pQ7kX827d+y5p/S/r0Omy4d31ca+0m7P1tO/wKyuv8zZ+Asbot/ZsW9rY7/pqYmlH3wAQqfeBL6Ei+818310t82wrmU/8ySemSX8Ysow7pFy8ocnIVN+6/imIs3dyPSDiP/A6VxK5F/Wwakent1/+dTvT/QqSL/ANB08BA/4DjpQj0iue1p3QqF1O6vPdL+2e9QW2Z/Amz7Pwd1/2zU/7I+Ulq3f6b9y2v+7Rn+AVJQoMIdt39PI0v7l84fJXXy9/ibXWfdF1q6WqnNqI2U/31Mvf+wdDdS/gF52n9Dmazk0mnB3FwPNJs/cx5y+mcj/z3djPyzCxlVjc6K/zRp7E67P9bsz8NO/wBQzPwPJ7oQ+QeAnuZFlLpmg38uBLYDPhX/gYGB+PnnnzFixAj069cPr732GgAgLi4OvXr1EqP2QUFBmDJlCgDgxhtvFPfftGkTDAYDNm/eDAC44oorEBYWBrVajWuuuQYAcPToURQWtr7iuGfPHoSGhiI2Nhbjx4/Hn3/+6XD7f//734iIiBB/UlKcu5gkOhjn9knjvfLov0mnQ0tOjnS7vh6cyaJ/vA3YL3TLtP9QMvzzPo12Iv9+0u7PltO/QKCbpn/5srR/52vzEsKkL922fIk27NmD7GuvQ/n7i1Hz00+o+Owzt49lF7be30nxL0/5dy+SE8xE/is45uLN7bR/Jv2avWAF+Isspfkc0Yrpn63Ph13TP7bNn787/QOdIPJvIf4PHDAPqiTx0daUfwEh9b+xgl9c8BYmk2T2p40Augyxv210d2nhK2+36KtjCWv2d0FqpBgx98sLfibyX68KR6DG/sKN4ETf0GJEU4sDn472QBsuGY3WMpF/iwWWk8V1OJBf7d5ztFLvvydHWrB3y+wPsCjxKxXb4wEupP2zpYE2nP4NRpNLCyAcx+GUOfKfEK61WwrSGm6ZF7KGuG2O/HtB/LsZ+Qekdn9A563797nhX2lpKXbv3o0TJ07AZDIhPT0df/75J8LCwpCfz6doxsTEQKnkp5qQIP1D5eXloby8HE1NTQCA+HjpQshyO0colUp06dIFaWlpqK6uxpYtWzBhwgSsW7fO7j5PPfUUampqxB9hrkQno4RZ3Ty5XkpNA9CcdVp+UcJxMNW3fqJhv2hiLQz/VEoFwsw1xH6Z9l+VC+z8QN5S7XyDFQt+GPm35fQv3mbFf6bz4v+suYd9bKhW1pe+NdgV9xI3emcb6xtQvHAh8mbdDj1zntYddixc3YJ1+nfS7K8tLf4EQpma/0oT00nBCUM+mzQ4SPtXayVxXnYK0DfZPYytz4e+wInI//mQ9i9r9efm++zHGM5ZRv4P8gNPmv0JhJjFv0kvLSx4g9Jj0rk37VLHWQsKhZT631wDlNk2lGPb/PXvGi6KhNLaZv9L92UW9ZoDHAtYtg1dua+j/wqF5L5fWyguENn6Pvhml5s941tx+hfq/QPUSgxMjrB63Cks0v4jgzQQqgecjvzbcfrnOA5f7czF0Jd/w7UfbHd6waasrllszeduvT8gr/l3OvKvCQRCzQvebRH/mhB5FoGHECL/ASqlVZCsNdgMisxO6vjvc/E/Z84cmEwmnD17FjNmzEBOTg5mzJiBuro6mydn9j6FQmH3BG65nT0uu+wynDt3DmfOnMHRo0exb98+BAUFgeM4/Oc//7G7n1arRXh4uOyH6GToaiRzIgDgjMD+L8SbzadOWu1idKI8hP2iiQ6xNjwKM0f/a5v8MPK/6k5g09PAD/f4eibuI4gFhVIudPyk5t+W07902/XIf7PBiNI6/kLNlag/AEQFaxBg7q/rquFf/bbtyL7malR9u9zqMV1WllNZMi7BXsA4EfnPKqkT+wBf1C0KCW6k/AOQLaZU61VSlMwbhn+AZPrHGeWplxbY+nx0mLR/NvLf2LHEv6mhAcYaefu6piNHwOn1nm3zJ9Be7f6cTfkXEEz/ALt1/8fMaf+BGiXSY0PF/+EWo8l5QddeMJF/Q1CMgw0t2/35wesQUv/1DeICEZv2L1yzrD1ciJpGN4IWssi/XPyX1OrEsrUhyZHQqt0sdbEQ/0qlAlHmWnnnxb+1039Nkx73fbMf/171D27atwZJ2zbhtxPOmQdnesDsD7B0+3fh8yJkD9WXOFxItqK5TjoXxfflO9F4GCHynxChdajxbMFG/k+XUuTfZygUCqSmpoo1/8eOHcPy5cuRmsqvXJeXl8NkvhAsLZWiHikpKYiLi0NQEH/BWlIi/UNZbmeP1NRUJCZK6ZxDhgxBv358ikprGQNEJ6fURrThny8AI//lxjr9Czhj+iekZSkVQKSNNC/BCKjN7rmextAMFJrTT/N38fVv5yNC2n9gJH/hqzT/Dfwm8m/t9C+gio2FKjKS385J8V/KRGhcaZkD8OfueLPpn7Pi31hbi8JnnkH+nDkwFJrN9IKCkPD00wgdPx4AwDU2Qu/pbCo28h9h389FYP0RabHHHZd/ATby39hslKdRuwMrwELirR93ou6f4zjx86GOi4Mygo+W2RX/Qps/bQTv9u/vBHXctH/W7E+A0+mgO5Upd/r3mPhnsku86Z8gM/sb0/r2MtM/67r/Op1ezGjqkxgOlVIhSw/2t9R/E/N/bQpyHPmPYVPSfR35B4AwRpCbU/+F75XY0ADcOJQ/3zYbTFi9342e8Q7S/vewLf7S5V0AXEIdwLc/BMTvemGRpaLByUwRi8j//rwqTHnvb2w4WozrT2/Fjae34sGDq3D09x1OTckTZn8A7xUlmCC6JP5lpn8ufB+z18ZeSPnX6Y2oNi8idQl3vYUgG/nPIvHfvlRUVOCrr75CS4v0QVy/fr04bmhowOTJkwEAOp0Oa9euBQB8//334jaTJ0+GWq3GhAkTAAC//vor6urqoNfr8dNPPwEABg4ciK5d+RPTrFmz0KdPH8yaNUs8xgcffIDjx6XoyOHDh8XbaWlpnnzJREeDrWlSmb+M64uBk3y5COv0L2CsbT3FSDg5R4cEQGnDtVYwAmo2mNBs8HG9H0t1ntR/nDMBRYd8Ox93ESL/wdF8SqMgdvyg5t+e07+AQqEQo/+GsjIYqlqPerKi3Z3otrBPVaMeOr3jz2Pdn38i+6qrUbP6B/G+4OHD0f3nnxA96zYE9pXKLFizTI/A1vw7kRItT/l337mZrflvaDEAweYL1MZK92qo2ch/sI0IoROO/8bychirqwHw2SKaJP47Ul9UBM5gkVHUXC8tnMT1snLa9kvUAUCA+WK5gxn+seJfFSGlODcdOCDPbvF0zT/gvXZ/Rj1w1iyIQhOc85VIHARozOakNsT/yWLpu7Z/Vz4zk+1O4m+tSU31/HvbyGkRFOw4yhsbJp33fZ72D8ij8XWFMJk48f2NDwvELcOl8+03u90w/rOT9q83mvA7E0Uf5m69v4CwmGpeiBHSyXV6ExqdSdVnrhF+PmPETR/vxLlqPmJ+YWW2tN2Ov2E0tf4eZDGt6Nw1+wNgzmLgrxvdF/8uBENLjkrjeC84/bvZ5k8gVKtGV/N+mSW2s8w7Oj4T/3V1dZg1axYiIyMxcOBApKam4qmnngLAt9274YYbcN111+HSSy8FAEybNg19+vTBww8/DAC4+eabMXToUADAK6+8gqCgIJw9exbdu3dHWloa9uzZA5VKhTfffFN8zry8PJw6dUoW0f/+++/Rv39/dO3aFQMHDsSFF16IpqYmqNVqPPnkk+31dhDnI+zq5qULpPHez8BxnE3xYqxzHPnnOE78MrdXxxTmr6Z/lTny2+f+8c082oKRqWsVegmHMhcERt++346c/gW0vaRSBWei/8VtFP9sNK2szv6FaPUPa1Bw730wmLOylCEhSHzpJaQu+xwB5uwsbW8ppbz5VKbLc3FItfOR/9Ol9aLR0tDUSHSJcD26IMC6/Tc0GyQxxRn50iFXETJQgqIBlQ1/Blnk37b4Zz8X2p49EZBkfj+MRhhKLFJSK5jPUOx5kPIvIERPO1rkn6n3D5s0SRw3HTxokfbv4Zp/wHtp/+f2Ay3mCFz6GOcWmFQaIPkiflyTbxWZPHZO+t/qJ4h/RigU1/iBaGZQmBdWKhHWqrEbG/kv94t2f2zkvxCVjS0wmMVtQrgWPRPCcLHZhf9MWYMsWu8UFpH/phYjlm3Pwbi3tuAncwtBpQK4sFsbIv+A9F3fUgfom2Tvs1OimYn8/2d3nfgeDE8OQ1+mRHRAwTEcdML8kE37Z1PV3UEoYXC65h+wEP+5zu9XzIh/9vvIQxQx4t/VbEUBYTGlTmcQyx47Ez4T/5GRkZg5cya6dOmCM2fOoKioCCkpKbj11luxe/dudOvWDSqVCuvWrcODDz6IuLg4ZGdnIzU1Fc8//zyWLVsmHmvw4MHYunUrJk6cCJ1Oh8rKSowaNQrr168XswfsMX/+fFx11VVQqVTIyspCQkICrrnmGuzYsQOXXXaZl98F4ryGracdPg+IMYux3L9hOLoNJhut/UytRP4bW4xoNvDR8xgb9f4AZP1//ardH7uyDZyf4r+pWhoL4kHs18vJo64+gDX7C8jIsLmNq3X/rDGTq665AMS0f8BxKm2duSsLAISMGY3ua39B1IybZPV6gb2lhQudDc+MNiFEr4NjAY1jMb9B5vLftpZNKqUCQWbn7oZmY9tT0gUBZqveH+BTV6PS+HHJMcBkHbGSif9ePaFJklJpWyxN/8qYRZjzod5fICiS/91U5V2X+naGjfyHjh8HhbnsURb5Vwd6rjxDlvbvpXZ/rqb8C8jq/uXRf9bsr18XXvz7bdq/yQSljs/SquDCZd/xtmCNgJ12b/cmbFu72iKb2WTy6L+LJbVm8c+pAvDezkpc8sYfePGX42JUHQBmXpyKMAftEZ2CNVCtL5W75Dsh/mtKpddVykVCoQDuH5+BJZeEA83S92zPmnPYucfx9xvHcWLaf9eIwDa/NsH0r7HF2GqGnghbOuRK5J8tN0sc4Px+TtLWbEVAvpjijOlfR8sOcN7W2cNERkZi+XJroydLwsPD8d577+G9995zuN2wYcPw66+/Otxmy5YtVvdNmzYN06ZNa3UeBCGD46S0/7AufIr4RXcBm/jsFd0Gqe2fJiVFrF9uLfLPfpFHh7Ye+a/1q8i/pfjf75t5tAVWjAmmYWw7tfoSeV/jdoZt86ft0dPmNtperop/z0X+HaXSCm7+Co0GKR99BIXK2phJk5oKRVAQuKYmz0b+jXrJjMkJp/91HnD5ZwnRqtCkN5rT/tk06kq+bZmztDTwplqAdZs/lsRBfOcNfSNQcdpKtOssIv+mRuki2qruv4y5SD2fxL/w/2sy8Nk8gRGOtz9PYNv8BaSkIGjgQDTu2QN9YSH0hTXQaMBH7DxVntEeaf+s2V+6E2Z/Apamf4OmizcFsz+lgq/5B+Tnt1J/Ev9NVVCYS+YqOSci/4zbf0WDH0QtLdL+bX2nTB6QiOiQAFQ2tGDj0WJU1DfLXocjTDUFUAIoMETiP5tPyx4b3zsO947rgWFpbYz6A3IPlYZyRIdIqfaVrbzPy7bnYHRRHiKUQD0XiKDQSHwyYwgu7RmLCiZYKVD+x1Zg+kjrA5kpqW0WMzvbkvIvYGn61zXSiWw2d9L+TUbp2jiym1fOu21p8yfAGihmldRjdE/bi+kNzQY89+NRDEiKwJ2Xptvc5nzELwz/COK8o64Y0FXz43izocmQfwFq/oSq279N3DR42DBx3JrhH/tFHmMn7T+cWQH2K9O/Kou0/5o8oN63kXKXYduCiWn/TL13vUVKdDvjyOlfvL+HdH9z1mmb27DIL9ScuxhjYS+oi2tsX1BzHIeWAj7tUZOUZFP4A4BCqRQXL/T5+TA60RrTKWoLJT+KVpz+s8vqxXrhISmRSHLmIqkVQsymf7K0f8D1SKrM6T/W/naJTN2/DdM/WeQ/IwOaZCnybyX+C/ZK4/OhzZ8Am2HRger+9YWS+Nd06YKgCy4QbzcVmyN6nkr5B+SfM2+8jy2NQMEefhyV5ppXQfJFgMJ8LmEi/y0Gk9i/u3tcKIIC+G3Y1qR+FflnzgOVCJd9x9uCjfz7Xc1/baEsm0z4ftCqVZh2IV9e1GI0YdU/rRv/6fRGLFy9G8pmvoSjkOP/p1VKBa4b0hUbHhqNz++4GBenR7vs+G4TmeN/qbyrgoMMi4r6Zryy7gTiFdUAgDpNLNY/dCku7cn/7zQdOGi1T5dTBxwulnvK7E8gyh3H/4hkAOb31VnxX5kjLVB7IeUfkF9nJLqZ9t+DeU9ZbwWW44W1uHrxNvxw4Bz+veEEDhdUu/Vc/giJf4Jwh1LG7E/oBR8UBQzks0iay6U2Zaz4b83wjz0p20/7ZyL//tTuzzLyDwCF51n0n724DbIT+fchLULav1KJADuGpKrwcKjNHUyas7JaTVeTmee0wfAPgN3aOWNFBbgmPrqsSXUsvgN7S2ZftnrRuwXr9N+KMGLrUScPcN/oj0Vo99fQYrRoQ+eimJI5/dtJ+wcsTP/kxpucySQuCmmSk6EMCZGl/esLmIvy7K1A7t/8OCLVcw7y7UFwG8sr/BShQ4YqIgLKkBAEDRksPtZUbr7A9+Tfydut/vJ3AUbz954rKf8AoA2TBEbpcXHx9nRpPVqM/HewYPYHANHBAdCoeDFjb6HSJzAZFRVceKuR/1CtGgFq/vLdL9L+Q+KkRZhai8g/Y074r4ulc+/yPXkwOTC9a2wxYM4X+7Bln+RbUooYzBrZDVseHYd3Z16Avl083GI7VN7uL9pJwbz2cBG0pkaEKfjvuMSkNMSH8d+LHMfxJTngfW5azGaOQ0sz8ecx684dAqz490TkPzrYDfGv1koLO2wnEUewPjPsIrQH8Yj4Z9L+s0rkQQaO4/D1rrO47sPtyC7jFzICVEr/Ome0ERL/BOEOJUy9fwLjZjrsLgCArpr/8lYEBiJooFTzZPJI2j9T8+8vkX+T0faXw/lW9y9L+zdH/sMYAVjnO/HPmUxozmac/rX2o/RC3b+ptlY02LOHcKEWplWLEWpXYLMF7H05tuRJ4jsg2bH41zJ1/82ZHnL8d8HsL7+qURz3Tmz7RRcAhJod/1sMJhgCmfTUNkX+HYh/WeRfbvqnLywE18i/RuFzEpBkI/JvMgG/PS/teNkzXunX7DVkkf/Wu16cD3AGA/RmQ0a1uYtR0JAh4uOS+Pdg5F/2Pnqh5v/sTmnsSsq/gJj6zwH5fJaKrXp/gHc9F0SZX7n9M4sqlVyYbIHfFgqFArFmYeoXhn9KlVT3X1eEktpmKDgTXty5BF3mTEPTIX4BMj02BJf04BeTcisaseOM7c9TrU6PWUv2YNvpciQqpO/kCcMvwMJrByAlOtg7r4NN+7eo+XckmNccOCdG/QFAwVwzGAoLxe/goMGDobx4OAAg1KDDqT/st/xjxX9vT4h/5rW4ZfrXWM6XnbWGrN7fO5H/IvP/rkIBxIe5nq0I8Bm0XWw4/tfq9Jj/7QE8++NRtBikBcS1D47GFf09EwzwB86jb3KC8CNYp38h7R8Aul4AU9wF0NfzF/vabl3EvutA65F/1lQm9nxK+68pAEzmubDC47wT/7bS/hnjLB9G/vUFBeB0/JeevZR/AVndf6b92nmO48QUTXda5gDyyL+9C2p9gSS+NSmtRf6lunKdjXaZbsG2+Wsl7b+gSqp/T4lqe8o/IEX+AUCnZmogXY1IOyv+wxKlx4sOywzv2GwKoTOEMiQEqij+895SaBb/x34Aig7y44SBwMCbXJurr+mAkX9DWRlg5FP7NWbxr46KErOAdFUa3t/RydR5Q1UVf0xHqNRAYCQ/9kbNf6VkYoouQ1zfP3WENM7jFxKOF0riv39Xec2xECl0pjVpu8G8r5UIa9XwD5Dq/isbmp1qG+d1BC+chjJU1NSiR/U5DC85AUVlBaq++07c7Jbh0mfz2z3WAYPKhhbc8r/d2HeW/y5OD6gWHwuO9eCili1C5JF/NvvSnuFfbnkDDuZXIx7V0p2M+G9kUv6DLrgAyZMvF2+r9+60266Zdfrv0Uanf0Au/itccbeX1f3n299OoB3Ef4k5yBAbqoVG5b6MFd7XWp0BZXXNOJRfjav+u03m+TN7VBp+uG8U0mND2jZpP4PEP0G4g5D2r1Bam2nFTYFQJxUY1gRlmLRq27rhn3RSttfqzy/T/tmU//QxkkP0uX/OL6dtm2n/rPgvhq9wxulfQOb47yB1vlZnQJP5Athd45wQrRph5owBe+K/JZ+J/LeS9u+Vdn81TL1iK4Z/rPhPjvJMhCmUyahoVEdKD7gaSa1nsjgciX+FQrrwaqqUtcqybPMnIKT+G4pLwDXVA5sXSseb+NL5FfUHLLoq8EKi8utvkHPjNDTssB9x82cs6/0FhLp/zqSArkrjVNp/c1YWTl82AVnjL4PuxAnHGwt1/w1eiPyzGWNOmHFaIRP/fN3/sUKpzV/fLvKoaaLM9M8P6uUB2ftaybVe8w9Idf8mDqh2JZLrLZi6f311ERKZc5uB6VAxsV8CYs0LF78eK5EZL5bW6jDz0504Ym7TGB0SgAcvYkQX6y3gDSzS/tmaf3uR/x8P8oulCQomcMB0P2jaL5U+Bl1wAcJGXwrO7E8wpPA49uZYZyVxHIfTpbz4T44KcisjzxKh5n9k4VFc+NBMFC9c2MoeZmSO/06k/gviPzCy1Sw7dzAYTSit4z8z7rb5E2BN/15bfwLTPt6BvEo+Ky48UI2Pbx2KF6/pD63atkfR+cx59m1OEH6AyQiUmdORo7tbtQ1r1ksnfi1OQ2moh8Kcot1aqz9Zzb8Taf9+E/lnzf6iuwNJF/Ljpiredfx8oVW3f8cp9N7EGad/8XEn2/2xYj3eDbM/ASFroKS22abHgJ5J+9e0kvavCgsTo5rNmZngTCaH2zuFLO3f8fPnm7/8Y0O1CNR45ks/OEA6Tr2KqVN1IP45oxF1mzdDd5wpMXK25h+wm/pvV/wnmy/UTCbof31futDrPh7oMcHxc/kjFt4KnMGA0rfegu7YMZR9+KHv5uUslTl8lwoGfaEkooT/EcBG6r8T4r9i6ee8D4fBgJoff7K5zcniWry58SR0AeYsqJY6wOBhwSwYiYV14WuMXSUsEYgyu3Cf+wecXiem/SeGB1o5yif4Y7u/Rnnaf2s1/4Cl478fiP8w6fOorC9GAlNqoy+WMuY0KiVmDOPPNQYTh+/28efmgqpGTP9kpxjxjg/TYuU9I5AA5hzpbfFvkfYfFRwgNs2osGGsyHEcfjrIL8glKFnxz0T+D/L1/lAoEDR4ENQxMWjuzmdcda8two7d1gtvhTU61DfzgZ1eHkj5ByQD6RmZmxHQWIeqb5fD2IoBNQDXHP/rS6UASeJAz3UcYSivb4GQ6OJumz8Btt3fjwcLoTfyBx6SEol1D47G5AG+6+zkbUj8E4SrVOYABvNFA5vyb0aXJUVoA8N1wIGvoAznT+CtnWwrnDH888dWf2zknxX/wPmV+m8r7V+tlcZ1voz8t+70Lz6ekSF+8Tor/t2N/ANS3X+T3mjzM9nCmMgFMM7y9hCi/6aGBmv3eXcQDP80IdLf0gY6vVE0LUz2UMo/AFnkplbBin/7teg1a9ag4P75yJ35L+k9YNP+Q1sR/zLTPxviX62GNj1NvF+TxETu/hBalSr4qP/5SJA87d9YXQ3O3GvbwIhov8PQDKyeA/x3CLB0Eu+9YEYW+e/KRv6HiOOmymD5wocNjNXVqF2/XrzdsHOnze3+b+UhfLjlDHaxpz1P1v23NAIN5gXVtpgUJl/E/zY2ozj3hNgijTX7E0iMYDxK/EX8M4t6FQhHRLAz4t/fHP+Zz6OuGAlMFp2+uFi2KDxzWKqoC5fvycfp0nrc9PFOnK3gF16To4Kwat4o3uiOyVpCeOvfHW0iIETs2ISGcqiUCkSaF2JsLbAcKqhBTjlfBz84gvksmcW/qaEBzSf5QJG2Z0+ozFmgsRPGi5vWbmHaXJqRm/21PeUf4CP/WkMLMmqk71NjpRPlUDLx30rkX5by7x2zv6IaKTMvw1CL6lWr3O4KZMtIce6Y7vh+3kjv+Ur4CST+CcJVZE7/1uJfONkDgDZSD+xbClUYfxHibKs/lVJhd/WfrQesbfKTyH+lncg/AJw7jxz/baX9A1K7v/pSn5UxOOP0L6AMDERAKv+l3XzmDDij7bpCT7jmAq33z9ab0/5VsbFQhrReO6ftw6b+t9H0j+Okmv/IFIfRiHPVTL2/B7/8Q7RM5N+oATTmYzsQUkJqOtfSgvq//jLf6WTaPwAkSi7wQuSf0+vRIphGpnWDIkASEDLH/0rz+zDoJqALc5zziWBmkaexEgbmQtdQWdlqFwyfoKsFvpkGHPmev33uH97F3oy+iBX/0mKNtnt3KDX8IkFjeQBae2XVP/4oLoQAfIaNoVxez6/TG3HCHEEv0jMCxJPi34UuHA5hSrPyCiRx08+G+Jd5lPiLezcT+a9COEIDWk/zjmWCA35h+scI8wRUyiL/XGMjTIxAS4kOxthe/PnrXHUTrn5/GwrNf4vucSH4ft5IpMaYz5G15r/n/7P33mFunXX2+LlXXZrRjKZX2+PeW3rvpAEJkIS+YWlZ2oYFFsjvyy4LLOzS+y6hw1JCQiCNhPSQ6sR23LvHHs94elPv997fH++9b5GupCuNxrHNnOfxY83oqox0y3s+53zOR7aXPufNFJLEiqr6udZovzSz/d+3je1ra+pYUKxh+0/s2kWLd56NbCRn0xWX0tsLenegb0IM0jvEj/lrqY7y3+B1YklwAHaNFROz0xaCUPn8kFKJ/yei319fX7izKVxz579h+HP/huE7/r+KnmtZWy1tWQx4HfjFe87CHdetmFGOwKmC0/8vnMMcqg0+7K9VJP+aqiKpB6w56h2wOTUgeAw2JznhqvE4tGxhtX5Kv4gHvE7IsjlJqeWU/8hJo/zr5F92kD6vDnahOyWVf5uTqAAGDOt/NgGkLFjlqoxykv4NGKF/WjIpjm/jwI/mM1KwK0ExK62aTNK0Y2eXtR5AMfRvhuQ/NsGcOmWE/c2W8h9LZ1lhqUgQnTGODwDim7foD9ZJgt0NOEsoQg0LidMBoMp/ur8fWoYUDHnLPyB+N+mYjRwDl3+u+GuczOAdHokpKFMcGUkmocbiJg96DREZBX55HXD0WfH3x16gNzNc7zTf8y/Fx+BpJNcOJa4hM8ippTnQVBXB39+V9/vYppeFn43eVwCYBkdAqjnujycTFkMKTcF91yOj7G83Vf5PRtu/3vOf1myQXP6C134eTdwIPTNL+gkH1+feJk0Lyj8AZEdE19w7uLF/Ru7M8rZa3H3beWiv4869hvJf206mCsw2jAJDfApQstSBGU8rQkBkVlHx0E7y3px2GZ02ljNhFKOMEX8A4N3A1kTu1auRriH75obxQ3h6t+hu48P+qmX79zhtWBsSbfvKdLD0A/2dJNsKKG37PwHk3xAsXn/0RbhCZB+LPPkkMiWmGpmhxmXHL/7xLPzr1cvwyO0X47LlLaUfdJpgjvzPYQ7lYpRX/lcJd2X6+9kYLY7AyFmmligR875/TdMwoVeXGwuE/QGAy26DS5/xe1KM+tM0ZvsPzCcXaF8jEFhAfje8A1BOkiJFKRjk39MgKsT8uL/XoO+/nKR/A1b6/qul/LcJif/iQpQvPJRK+jcghv7NkPyXFfbHCE9VyT+n5MVSWWbLjk+aOkm0TAapvj76c3zzZqJUG7Z/X3PpfkpZBtr0MaOhfmDbbwr2+wM5yn/MBpxzW3VHxp1ouOrYojU+BWVKVKyVyVlIrq8Uk73Az65ii2cH5zrpe57ezOq2f8nphK2xkW0zfQyeJqZMJrZvL/hS8U2bkD5GSLcx4QEAYi+JIYi8GjmpMQKSDJeYDlAOeBvxTGz/XvZZBCdYgWRle13epvx57qQh/7ryPwU//BYs/4DYFjh5Uij/jPy3YxItOS1NfN8/AFy+vEW4bqzvrsddHzyXhgGSByWY02S2Lf8GaN+/BsQnxZR8Tv1//vAEdVxcsbwF9ri+LnDWAi5SmI1z5N/DkX/JZoPzvAsAAN5sCr1Pi8eeofxLUnWS/g2sziHvSjBY+kE2B/vsrZJ/mxNoWlp82woxHE7ClU3hLYeeYb9UVaGNqRycuaABH7ls8YzWP6ci5sj/HOZQLgwbpt0NNPQId/EqpfuMi6jSaEszwqgWIP+xtELnihZK+jdghP6dFLb/yAhRxAGiNhowrP/ZBDBeIk36ZIGhVuT2hfOhf69B3385Sf8GjDFuAKgbJRcjVe75B/IT/4Wkf4vk3zlvHiQ3eT/JgzMk/0LYX3HnwcAUZ/uvUtI/kKv8K4ysqFlTJ0m6vx/IsGM7Oz6OTF8fWwhbtb8ueR27ff9HkHrgO/THPPJvD9LbmYQLuOiT1l7jZIUss+M4MYXslEhGspOzkFxvIBXNC+sriMGthPgbRLhuHvCBp0nxAiDKv6ZB05iib29vg8RPXwj2w9PIXo9XHHMxzan+rZ/9DA2jjb34ktAKYfRfA0Dcxkj0U1u5AMqZQiD/Myg0cRkHsWlyra112U0LeCed7V/ToOluiinNbynsDxB7/o12wdcUXOBfW3oS7pz9PzsqXjftNhl3XLccHocNV65oxW/efw7qvdy6JzIK7Pkz+3m2w/4MCIn/Y2jgE/+5Igtv+b9xfQdbF+hCgaaqSGzfAQCwNTbmFb7bX8f6/r2vvkyKwgBUVaPKf3fAC4+zOm4HTdOwZPyo8DvFiu0fYMdmYgpIFQitziSASb243LwcsBdfw1aK0VAS1x99CfVpsVUi/OBDs/J6ob/8BUdvvgVj3/kOuS6fJpgj/3OYQznIJJjK3bwsz4aWPMDmkrtWrADOuBUAIDtZn5VSIPGfv7AUSvo3YIz7Oyls/3zSf4ArhpxqoX+ZBCti5AZm1fDKv6hgnAiUk/RPt7Og/Bv9+bLERkdVAmFBnUP+Mxz5t6r8SzYbff+Z/gGosViJRxRBiGt5qCtOMGZL+a/hev4F5R8QcyZ08JZ/utkLzwBGv6ZV8n/+x4CNt7LnPcjOT+4c8i8/9xXY3MTWmkn7iwYjnjIw2ivi03nhVrk97lXDvgeBr84HvtoD3P0PwPbfFbbKH34C+OUbWFGnZRXwvseAluXA/PP19z4JjO+HGg5D1V1ljvYcIhQ8ptv+CXkvpPxnRkcReeopAICtuQn+666D94yNAMg4tswxRsb7Jtkx94bzWXjX4b4+bD1mISjMCqpm+2fHk5wKAgBWdJjb590OG+p1df2kUP5TEUgqIcqTWq2lMX8A0Mwp5OORk0D5d7jp99AcD+Xdnav8A8AN6zux5wtX46dvmY+aY08Bf/sa8Pu3A99cDnxzKXDfh9jGJ4r88+fW2LjgwjSKLLFUFo/uIX+P323HpfNsQDoqvM90by/NePJsWA8px6lVcyEb+bdhZB9eOEzOEYPBBG2DWFqlsD+AuFJrkmIwnhK0Sv75cX8FCPDYXnZ9mqWwPwCYmAjhLYf1kERJgl0PPk3u2YNUb2+RR1aG2LPPIblrFyZ/dKcwbeVUxxz5n8McysH4AXaCKxH2516+nCy8bS7YHIz8qxHznvEJrnpfzPYPgC4QIqksFDXfNnxCkZv0b+BUI/9mSf8GuECpE0n+o6ksbvu/LXjm0U30d1Zt/8558yA5yH5S0PavL36balywzyDkhrfMDXJ98wCQHuCS/rutz/11G6F/mlZ0YkFJCKFi1nv+O6tI/r2c7T+eygo2ZVPyf9iE/G9+hf1glfzbXcAbvwe8+aeAswapENkfJJsGx8QzrOWg92ng8BNw+MiiMxuMQU2fBIRipjCKLOkIshOiXd1S0rUJJqMpbOmbglrovLv998TRkY4Ae+8nBObri4GfXgU8+w1gZDf53Hf8AfjdW4GMTrLnXwD848PMPr3gAvacfc+L/f4dOURo+hhsTg2uOlIMTu7fTwsFPIJ33wPo4Z/1N90EyeGA97zz6P186j+v/K9ewtxGAUTw6T/uFPqfK4ZBJCR5ZrZurpgWACE4K9vz+/0NGC6nsQKjSU8o+DF/sK78B0xI6WsOnfjWmhRrc5V/AEDf85C/vwH4xmLgdzcDT38ZOPAwEMkhWTYnsPz1s/GO8yGM+xsXXJhG6N/je0cpQb9+bQdcoT72mEZyfY4X6Pc3YA8EkFmyAgCwIDKKV14mjho+6b9a/f6578eAJds/YG3c3wno9weApZufRIPuPqi9+mo03sqK26EHH6zqa2mahuiLJHNF8niE0MZTHWWv9lKpFJ577jn83//9H+6880786U9/wtGjR0s/cA6nD1QFSOZXdv8uwCUvm47505V/2ecjPbQ1LcA1X6GBfwCgHNuV9zggV/kvHujGh/5FX2v1Pzfp30DbWkDSFc9yEv+VTOlU2dmAkPSfQ/5rOfJ/Am3/P3vuKB7dMwrncf3zsJD0b0ByOOBcSL6PdN+xPDKXVVSM64F/M52X21rrpqm5RkK4AVH5t27tdS2tUuifYPu31vPf6nfBZa9euBRv+4+mlLwxdLkwJf/b2Li+kmP+crH2Zqi3PoZ0hLwPlz8D6aHbgT99kCTMP/7vAACnj51LstxYuVMW3OesTIhFu+xE+bb/ZEbBm/7nRdz0o5fwP8/kf0cAgCkz9UkDjr8CPPUl4EcXAN9aAfz5g6RIAAAr3gC860+Ap549ZH4O+efH/HFhfwCofZ72/SsKErt3i+8gk0HwHn2KgCwjcMstAADfeefTbWIvMvJvKP9+tx21DYwQNUhh9I7H8MOnC/z95cCw/fu7SG9xpeC+54BEiIFZ2J8B43yXVlTTFPcTihjbD6e0Wsvk32GTqYPhpOj5Byj5V+P51MJM+ceTXxKdgwZcdUDPxcD5/wzc9Avg9p3A/PPyt4MehnvoUNEg5bLga2K3Y2PCWszYV+7bnmP5n+SOBZ38J7Ztp7/ybNho+lItV11Ob0effQ6aps1K2B9g7gaylPYPVED+V1t/Y2VASSRwxY5H6c9NH/oQ/NddR1q8QKz/GjcadaZIHTwEZZwU57xnnwXZOTutDK8FLJP/F198EW9/+9tRX1+PSy+9FB//+MfxpS99Ce9617uwePFiLFmyBF//+tcRKdDPPIfTBNk08KMLiaXx4GOv9bs58eDJf07SvxIK0fnRrmXLWE/mme+DvOgctt1T3xUu+Ab46n2pnn9h3N9rHfonKP+c7d/pZQWSsb1A2oJ1W9OA37wF+O5a4JmvVvd9lgJPwvJs/7zyf2IC/9JZFb95+RgkTUW3/pr2bmtJ/wao9T+bRfpon3DfZCwNQ7ycKfmXZYmO1RoKJYX06fRxQr4llwv25ibTx5vBtYxlFqRm0vdvBP7JdjG4MQeJtEIDnLqq2O8PiKP+YnnKf/65IN1LFpOSwwHPGcRBkxmbIkF8QEUjr3Q3NABQhRi77ibz5PVRgI4Wtt+nuZFppyy44zg34C9bQeDfK0enaAr+piMmzgFVZcXQxsXAex8FLvwXoHmFuB2vbJ75PuDmXxHbNI+2tYBLJ7DHXhDJf67yb5D/NlZk4skHAESefppO3ai57DJaQHCvWA5bHenpj738MjRFQSqrYEgfe7mgyQeJ298aJUJO/veZXuwdmsHkk2SYua1mYvkHROVfJ/9mY/4MzFbif+jBB3H4iisx8eOfWH8Qp/xPan7h2l4KhkPwpEj7B2jiPz1PcchN+0cqCgzqU0w8DcB5HwXe8jPgY68Cn+kDbn0QeN2XgNVvFsIEczH6X/+NI294IwY+/OHq/A18vk+O7X8imsZENIXnDpHvrLPeg7MWNJDATgONxCVj5G5IDgfcq/KFIgCov+xSentp3y7sG44IY/6WVNH2b5wPFLD2A0tp/4C1cX88+W+dHfI/8vs/oCFJPp/9S86Ae9lS2Jub4TufFDAzg4NF807KRewFNmml5oILimx56sES+b/hhhtw0003obOzE48++igikQgmJydx/PhxxONxHDp0CJ/73Ofw5JNPYunSpXj88cdn+33P4bXC0Kt6b48CbP3Fa/1uTjxGCyv/yQO85Z+plpAk2M5/L/1RDU8Df/zHvAR8PknWqu0fOInIvyTnhzZ16hVvTaXjxori6LPAUb2fa191LVwlIdj+i5H/E6P8P7J7GOORFNriUzQ8abyxvL7HYn3/YtK/9YJCIazqYKFge3RSoKkqMrrt39HVJYaUlYAw7u+AeWChJRg9//6OoqOiBoPM5txdRcs/kJP2n87t+RfJP0n6JwssZ08PfOeeyzYd088LlZB/Pun/ojeTVOqc13ec+yZ6OzN4GpB/zsGTG/inVKD8P32AFf4mzAhXeBBQ9N83LgHmnQtc+R/ARzYBt+8Arv06sOgKYmOWZOCyzwHXf9N8v7TZyeMBIDaOzGE2ZcbRwZEhJQuEyHflWcyKW7lKX/AuFvQXeNvb6G3JZoNX38fUcBjJvXtxfDpBC4PzG31k+oCdEObFNeS8kVU1fPreHcgqFSptvII406kSdhcdfRlAFA6bhCVF5qO3cm1KuRkllULLZDD6lf9CZnAQ49/9LrJW20q4PIhpWFf+AdBk/FhaQSJdhTaMmUJX/nnyL9eS7yEzmqP8929izpfVbwau/jKw5iZCni1eJzRNQ/ghEvQWe/Y5KKEqOFKL2v5TeGjHEG21fOP6DpIrkaP8Z6enkdantbhXrSpYsHevXIGMvx4AsH78EJ7ZPYiDY4TcyhKwqLk65F+JRun5v8/fjridvJ+yA/8AMaTTgKqSdiZjW97BVCWoqRTCP/85/Xn/VTfT23VvfAO9HXqgeutGnvz7/h7J/+te9zr09fXhG9/4Bi6++GJ4vaIqsnDhQtx6663461//iieeeGJW3ugcThJM97HbAy+bjqk6rWEo/+56Ya4tIPb7u5YtF+6TA5wClZYJwX3i88I25dj+/Zzt/zUN/dM0pnT5u8gijEe5ff+v/JjdNlFEZxXFbP/uOsCm/20nSPn/xQt9AIB5YbZoelmrK6tH1bWUI/97dgj38YpXa+3Mx9ys7mRK2+4hsgjLjk9ASxEyZDXp34Ctrg52XZ1MHThQWW9uKsqKOiXC/vik/+or/wVG/QF5Pf/pY8do0r9r8WJ4zzqTbTpukH/rDgoDAvm/+M3AbX8Tg5kWXQHH+ivoj6cF+eeV/6BIDCpJ+//bAZYbMGlmF5/KVwApAguAcz4IvPtPRNn81CHgkn8tPrKRs/5njrKJKYLyHx4kxXiQYpGtvh4AUR6NYyZ19Ci19DvmzYPvAmb1BwDfeazAFHtpE45xYX8LGr3kPXrJPtcoRbFEHz+2ezCMnz5fYdtntcb86dD0c3a9FMWSllo47YWXt4LyH6qOah597nlGphQFkccsOiNzlX/u2l4K/Fg802LUCUbaS4pPBvmX3G5axFXDYTG41SjyA8CCiyp6vezwsEBgk/v2F9naIoTAvzFBiJmKpfHn7cyB86YNek6FcdxLNqB+nqA+e0z6/Q1IsgzPhReS7ZQ0jjz1PA6PEWfN/EYf3I7qtJ4ld+4kBB3Avsb5CDvJ9c1yz39tB2vhNLP9Tx9l2SVta6FEozh608048sYbrBfBSiB4772AntvyYtsquJazNXbtFVdA8pCCffivf4VWhbwaNZlEfAtxptjb2mgL5ekCS+T/Ix/5CJwWeh0GBwexatUqXHXVVTN+Y3M4ScH3d8cnRcv36Y74FLNrtq7KW7TxSf+C8g/A5mfESM3oJ9GXfgDs+iP9Pb+YLMv2/1qO+0tMAyl9UZ0z9hAAU/6B0uQ/2E/CfgwUmIE+ayhm+5ck1vd/Anr+t/VPY/tAEABwJoL099ttDXjhsHXS4lrCWecf/5lw4R7jyX8VZtyu7sxX/jPHy0/650EXjtEoHXNWFsoK++OU/4YqK/+87Z8f9QfkFbmEyQ5LFsOzbh2gBzfGx/XFPq9OWYRA/pcsIeT0/U8Al3wGWHkj8Mbvw9HJSGXm+HGTZznFoDt4NBVQomIAnlIm+e+fjOPIBCMvU7F0fugfb/9tKLJYdPqKFnD2DYfx/l9twRMJdvxmh1gxxt7Gta9wx7QUWADP+vUAyMLeUB+Dd/2BbhN461vzHDg+IfTvRfRNsM9qfqOP3NDPiVJ8El97y2p6+fv24wdxZFxMEbeEair/ABJ2cv6pRxQr24v3SvOjSatl+w/df7/wc/gvFueOc8r/lFZbnu1fGPf32vf9T9uboGlAJkYKGI7OTlrABXLU/6PPstsVkv/Enj3Cz8l9VRgp7AkwohsbF4IVdx4PYYd+XV7R7ic9+ZrGjvvAAsDmyCH/64u+XOuVbORfYNcWJDOEpBsFtmogzrmA9gUWIOwkx7QSDFrrkbfZ2ZhcM+V/hHN1tq1B5NHHkNy9G6mDB60fB0WgptOY5Fppfr/8KmHNIvt8qL2CFK7VUAjR556b8WvGt26lwoXvgvPzpjWc6rDswbz99tuL3j84OIjLLrus6DZzOA3AK/8AMPCK6WanJca4C0vLiry7qfIvSXkztG21bDGiNHOE+P6PUjs8f/EuNXaND/wLv5bKf6GkfwPNKwC7TqRKkf/NP2OTFABin7WSE1AtFLP9A8z6n5gi2ReziF+92EdvX2BnfbX9ta345YvWlTZHRztkJznNp6Zl4CALy+EXvW0z7PkHgIVNPrgd5LX2DJKCULqfkW9LSf+qKswRdnHW/4r6/oWwv+KvPzA9e8q/0ybDro8di6WyRQP/+DF/zsWLIXs88KwmPZTpiB2ZhFyh7Z88r1xbC3urvi/bXcBl/x9wy6+Auk4SUqrjtFD+dTVYScvGFDyKcpX/Zw6Kjh9F1RDKLbzy58Nc5b8MfPOxg3hi3yg+9jcVmr5Qz0yS48LW3CTaiHMUdF5pTGzfATWRQPC++wAAktOJujez1g4DjnnzqJsgsfVVHB9h++SCRv1YMIoVmoINzRLeewEp9qayKj57767C0w8KoVpj/nSEJHKNtUsqNrQUX6gLo0lDMyf/SiiEqD5C0UB8y5Z8q7sZuOLfJMrt+Wf7wcnQ9z+GBihJGZpCPn9HVyccbaxljvb9J6aBYd2J1roG8DXmPpUlJHPJ/969BbYsAzJ3fo2Ow2GTqRtjLMI+4zdt0AulkWEgoxfL9GOeT9Y3inGF4LvgAmgSuW6eNcrWmFUN++PyP4jyrxf0VJWOIywJo0CXDAGJoHhfTtJ/up8V9vgpJZUi9Kc/033n5dYVOFzfhfYcwaLa1v/YCy/S26dbvz9QBvn/9a9/jS9+8Yum9w0NDeGyyy5DG1+NnsPpiTzy//Jr8jZeExRJ+teyWaqsOefPh5zTGiPXMVVUsbcAG95FfsgmgD+8E4hP0Yu3TZZKzvrl74+8lj3/QtK/ifJvswMd68nt4LHC864zCeDVX+X//kRa/+NFRv0BYt9/bAzp48cx/IUvIPL001V9G2PhJP6yi1wwA14HWqfIbVWScLymGU/uHxNsucUgZeJw+kmhIhOzQ+1n1v/RMFvIzDTwDwDsW3+GX3u+jSXScfRNxhFOZnKS/kso/9k08OOLga8tAg4/CQBwc6F/yf0VWDp55d9i0j8AdFW551+SJGr9j+cq/7Eiyv8ikhztPess+rvEuEt8vAUokQiy+iLMtWRJQRVDdjphbyGugvTpQP51tTqbzF/qqNEo1JR1wvQMZ/k3kDdiTVD+Kyf/vbqSnshKSLSdBVUBsnGdULXnj/mjqJ8nkI3Etm0IP/wIVL0X2n/tNbAH8s9tkiTBez5R/7V0GtmdTMljyj/nVIhP4ZOvW0odMq/0TeHlo2Xae6ts+x/L+ujtVYHi/e/8aNJqKP/hRx6BprfqGD3u0DRE/vrX0g/OUf7L6vmv5cPoXnvyf1wJCP3+zs5O2FsZL6CJ/30vgFbjeipT/QEguUck+8l9VSD/ACP/sXFA0/LaMCUJeOM6vVAqhP0thpZOI7mL9L87urrgaCnu0rLV1UFZSYq73dFxtOnXg2qF/WmqisQOct2XGhow7G1k5B/lJP5zxyh/XQXyyD/vGssLeiwTWjqNiR/fSX/+3XLiLM9ds/jOPx+2BnK+jz79NBSrRY0CoP3+kiSMQz1dYJn8P/DAA/jqV7+KH/7wh8Lvh4eHcdlll6G5uRmPPPJI1d/gHE4y/F0r/3zS/yrhrnRfH+0z4nuRDNhq2IlcjUSA677J+uGD/cA970EoSpTHgNdJQmSKwO/hlP/ESaz8A2Lf/1CBJNbd94rKu4F4gWLBbKCY7R/ICf0bxehX/gvB39+FoU9+Cmoikb99hfjty/3IKGRh9PYzu5A5Sj7jZEsHMjYHNA349UsWRyEeeAQuP1sUpvaxi/RoNZX/kd3Aw5/C2emX8Sn73QCAvUNhmvQPWOj5P/YCWUQoKWDH7wGIx1KqktC/smz/5DuUJaC9rrrkHwB8TrIojqayZBKGof5PHBDaWwzyLzkccM4j71no+5/yk6JaGeDdBLmupFwY6r8yMQE1Wb0k9NlGKJHBbf+3BbfftY3Z0PXPWEmZL3WUCWvnl2RGwYu9+dtO5I5YM3p/ba6K59arqoZBzoUy2XQ2snFGqPKT/jn7fGA+PGtWAzayfWL7dkxzQX/1XNBfLnjrf8P+7eR3ThtzoQmtKhPwOu14/4XsnD8wJbZVlITxvmVH0SkcVjGYYsfsktrizqwGrxMOG7nGViPwL3Qfs/y3fZ5l+YQetmB51q9xiiYhiJqShX8evPKfty++BhhMOBGNsffk6OyEo519t9lRnQj2cbbsnosrei1N0/KU//SRo1DjZe6HZjBGqaoZIBnMa8M8b2EjKyDxYX8NC5Hcv5/axa3OhW/hrP9njpIid7WU//SRI1Td965fD0mWBPJvue+fd+fk9v0b5N9dB9R1C+Q/M2bB/VIEwfvvp1O0eheuxcEAcSDkXqMlux3+668HQAoGljM3TJAZG0NKD/B2r1plWjA91WGZ/F900UW4++678clPfhK//z1ZmI2MjOCyyy5DQ0MDHn30Ufh8vhLPModTGul4ftL52F5iA/p7AJ/03ywSfH4OeW6/P0AW8pLuBlAiYTLW6Zb/YxXmo3/DrclfAyht+QeA2pMl7Z+f0VuQ/Jfo+9c04GVW2cUiFjqWG4Y2q0iUUP65Bao2NYjYSyRAS43Hq2aRTmUV/PZlcmG1yRLePs8OTSdggRVL4dJDrO7ePEBIZCnsvhcuP9su3XeMBv8Yaf9uhywUkyrCpv+hN8+QDwLQsHswhAxn+3d0lbD98/uG7ihxzpsHSbc4pypR/oPWlX+DvLT53UXDwioFVf6N7619Hfk/Nk6zRLR0mgT+AXAuXAjJTh7j2bARkEiBID5W/jz01EFWOClJ/rnviR8vN5vQFAVj3/4ORr/6tYrDmn6z6Rge3TOK+7cP4ervPIuvP7ofCQfJWhHIP+d6sBpG9crRKdqLa+MKs8J8dVVhxfGGHsuJ5bkYj6aQ5hL0j9WuR4Yn/1wPNQBRQa/rhuz10qyM1MGDSO4iC3PXihVFLcj8VImF/eRaN7/Rx1wivDVbd2Q113Iz0ONlfG+axhwL9d1Fp3BYgaJqOMKRTl+2uOonyxJa9JDTmZL/dF8fnazgWroU/uuvo0XL5I6dSJfKztCV3mnUQoNcZto/1/N/EpD/0UgKwSgTOhyFlH+j31+Sgfli+KRVZEdHoeQev6oqTF2qGHxbVU7iPwDcuIEr7E2Jyj/f7+8tEvbHo+7SS+jts0b3wSZLWNhcHT7FT/3wbdyAeo+DBv4BZYz743M5eLdRlF2/0LYWkCTBNZYdqZz8a5kMJn/E1oYPrrsWAOC0ywh484+Tuje8nt4OPfhQxa8b19d2wOmX8m+grKvT9ddfj5///Od473vfi1/+8pe47LLL4Pf78eijj6KmpjoWlTmcxDAL+oAGHN9ywt/KCYemsZ5/f1feKJMUF/bH9ynzMPr+1bDe01zXCdzyazJ/HMB7pYfQhFDJsD/gZLL9c8p/YIH5Nh0lyP/AKywwpmMjsPRqdt8Jtf3rCwmHL39qASDM/03s2A6NU/tLLvAs4uFdw9S+ec2qNtSPsYtozfKluHE9WXREUln86dUSrxmfAg4/AYePWWAz4QwQ7APAFr2tfvfMwmwio8Cue+iPTVIYXdK4rvyT92hvaYHsLuEuGHyV3db3K8lup2Q13d9fvqoT4j6jIj3/0VQW03FyHHU1VLff34BB/mNphfRHG+QfAIa2AwBSfX1AlhQHXIsX07ttTsAdIO8vNaVat2rqyAv7K4LXIvQv+uyzmLzzTkz94hcIP1bZqODnDzFlPqNo+OHTvbj2TqIM8rZ/vv0ka1H55y3/lyxlxECw/YeOA4pOwGZg+efbTwDgsH0JMim2T/JKKgCmwnmbABdZh5kljAfe9raix7m9sZGS1kXBQdSmY1jQxB0LQqsK+dwCXnatmi6H/CemgbR+HaxC2F/fZAzjCkeWEqWLOoZyOx3PIJmpfExe6IEH6O26G2+EJEnwX3cd/V344RKOWP0aN6WR9UE5hVjejp7XgvIaYCScQizGzvOO5kB+z390jLkoOzYQtbgC8Kq/jVNmqxL6JyT+jwtFFqddxjWruWNQsP0vQvxVa0n/PFzLlyNTT1xKayd6saTODpe9Okn/ufkDAZ8TYRen/Fc07o9T/kdFy78ajwuOquzoaGWTekB69w1hxXfBBdjkJtemVr/L9FzmXrMGzvnEoRB/5ZWK8waiwoi/yopTJzvKLk2/4x3vwDe/+U28733vQ01NDR5//HH4uSTzOZzG4C3//OLm78H6Hx5kqfYmYX+i8p9v+wcAm59c3JUICzTD/POBM95D7pc0LJKGSo75A05C239NG0mwNkNgAbM4D27NT/B/hVP9z7nNdJHJ49hkDLfc+RLu+NPOii8qpjAWjGaWf4D8jcbb2i72FlZD+dc0jY73A4D3XLBACLlzLVmC91ywgP78yxf7iods7X8IUDNweDnyn7ABo3uQSCs0KHLG/f6bf8pIj471Ui8OHhuji4CS/f6aBgxyRcTEFHUUuYy+f00T+uEtwbD9+5oBR2Er/6AQ9ld9yz8gJv4nMgrLwgBo+FW6ly0kXUsY+UdsHN5m9hkbI4isQiD/S63Z/oETF/qXPtrHXnPAZJRUCSQzCrb2k0Wsz2mjlu6+sIq45oKSYp89X/ywmvhvhP3ZZAk3rGfFEcFqLSiAlY+FOj4tthCNxlRkbOz4cfg5UpBNAWHdncHZcnMVftnnQ93rry/52ob1X4aGdeOHWb8/kNPzTz43vlA9XU7afJX7/fcOhTGtcQKUBccY3+o0Fq6MOGuqitD9OvmXZfj1z9h/3bV0m3Ax638mQUekTcEPt0Mui/TxpPRk6PkfDSeFnn9HrUz6sPVpJZnRUdHyX2HKPyCS/7obbmC/r0boH1foR2xM2M+vWtEqtmZMslYfrbaTKv+y11uy0GpAkiTUXEzaH9xKBldnZx6SZ4CG/dntcK9ejQavE6FKbP+FyH9uv3/ONUPLZKwXGPjHZbOYuJOtDWtv+ycasNruN79GS5IEvxH8p2kI/+Uv5b+uqtKxqLLXC2+JwMZTFZbJ/4YNG7Bx40Zs3LgRP/3pT+FwOBAMBnHZZZfR32/cuLH0E83h1AVP/te+ld0+/ndA/nnLf+vKvLsNS7JcVyeOYeIg15IimZZIiNbWRnaB6JLGhbmyhcDb/iOp10j5T0WIZRkoPtZKkljff3xSXPiFh4G9er+ktwlY9aaiY9A0TcO//nEnXjk6hd+/MoAXe6vkDNA0Zvs3s/wDwoIgtkckKJnjMydJ2waC2HmcEN5VHX6cOT8gzC12r1iBFe1+nLuQFCeOjMfw3OEiyqU+RlJQ/mOE/PMhVzMi/5kEsOVneb9eLx9GrI99Rs5Slv/wEBDNsQfq1n8356QpK/RPyTA7okXLP1D9pH8DPicr2MVSWVH5H94OIKc3fzFP/ifgbWGL+0QZ5F/TNGr7tzU3lexf5L+rE0X+s5OcUlTBQvHVY9NIZ4lV/vq17Xj04xfjoiWErE6jBlnO9i9z85qzE6XPHwNTcRwZJwRt47x6LGxiJFNIWK9S2F8u+R+PpJBRWUHSoXKtGKHjoMFp3OI8V3Gsu+EGyBbaMn3ns77/9eOHWdI/II4m1M/LvPV2KlbGdSgnpHCm2DMUxjS4HmkLyj9/3qs09C++ZYugTBrhbs6uLrjXrQVA1gYprqgngCtuT5YZ9gcANS47bVE6GWz/Y+Ek5Bg5DiWbCpstCkmW6eeSHRkBjs683x8Qx/zVvflNtJ0ntbfayv8ElrSwfeumM7lrmaqw1seGhciOjCA7RgqFnvXrINnKKORcwfr+35iymOlTAkowiPQRItC4V6yA7HajK+DJ6fm3eL6tbSf5HIC4hstN+jdxi2WtTL3IQeSJJ5HRpwZ4zzsXwYVMdCs2mrjuDTNL/U8dPEhFC+8550CyMOb+VIRlf9GNN94o/HwDV2mbw98JePLfcxGwpY1kABzfQk6CM+zbO6kxxgXLtIhhf9mpKWTHCQl2L1tW0FopjPuLRGBv1Ekut/jplCZgt0D+fU4bZAlQtddQ+S+V9M+j8wzgsG7nHXyVtQhs/SWg6u//jPcQu30R8v/U/jG8wqVKbx8I4oLFhedlW0Yqwt5HIfKv9/yrWQmJY0HhrmrYo3/Jq/7nL4AkSUjuJwsZye2mdrb3nN+DTUem9MccFWzIFBGmsNjauiE5NGiZLAkOG92N0Xl82F9pp0lB7PwD+44WXQ70knFX6+VePBFjBMQxr4TyP2hCZqePAh3r4VpWYehfeJCNjiwx5o+3WnfPmvLPLrfRVBYtTT2Aq444igzb/+EC5D86piv/GgAJsc2bLb+uMjlJ1R23BSWKV/7TVShqWQFvE7WsRHHgi4DnL2rCwuYa/Pq9Z+Ovu0cQ+5Mf3iR7zq8fyOA2/baVcX/PHGAj/i5d1iLOVheU/+qM+cu1/Y9HUsjGGSl0xDlyU0BBd3R2wNbcBGVct+e/vXDQHw/vGWdAtdkhK1msHz+EGkH5z3dk1XO2/2A5tn8hpHCB9ccVQP9ULEf5L/29ttWx816l5D90Pwv6q8tZE9dddx2SO0g7W/jhR9D8sY/mPwEXaDul+csK+wOI0tnkc2IolHzNA/80TcNYKAGX3j7lrFEgRUhGlL2tDZnBQSjBINRDfyOqo+wA5p1b+AlLvJaR9C/X1cG1ZAmcCxci3duL5KFD0NLpmZE2H6f8R8dw3cXtmIylUedx4LJl3H2hAeZ6a1yEODdSz7PemuWfvuR57LOwHajO1AIj5R8APBvWAwBWd9ZhO9fzb7nYKtvIdXT6KDl+NY0UXAzyLzuApmXIHN+R99DM6CjcK/Ids8XAOzga3vUu7OZGcuaO+ePhnEcmniS2byeZJwcOCAJCKcQEy//p2e8PlEH+P88lmM7h7xQ82Qv0AN1nA/seAFJhYHx/XgL+aYUxbsGVY/vng8hcJmF/BuQ61h6jhMMc+WfEqEsaR8ZC4J8kSfB7HAjGM69d4N90meTfwOBWYPWbyWi3rb8gv5NswJnvJbcLkP+souK/HxGV3x0DwQreuAlKJf0DuhogIT7uJFUXDjNVSEfDSTysj/dr8DnxhnUdUKIxZI6RRbJr2VKqIly5ogWd9R4MBhN4+sA4jk7E0NOUo+rtvZ8SX2nNTbC3PY/MwAAJDhvdI4RcVaz8axrwEgv6w+X/RgjQdB9WS0fRGWN90iWT/s2yIPTzDW9TTx4oQ/nn+/1LqIsDgu1/tnr+WXE0nlbIwql9LSnSREeAyAhL+nc6xVaJ2DhsTg2u+ixSQQdS+/ZDiUSEgmIhlNPvDwCOtjYSVqeqJ075H+fIv9UAKg58Ev95i8j5Q5IkXLumHcrWbhx/ggXAbbOz84sV239uvz9vARb6rGdJ+R+LpJCZJs4Dya5CHuPG6xZQ0CVJQuN73oOxb34LdW+60bL9WPZ6MdixCN0DB9AZm4A/FQKgf14mtn+nXUaty45IKlte4F+Vbf+T0TSCvPJvwfbPn/dGQ+WTfzWRQOSvjwIgbRW1V1wu3F97zTUY/e+vEvvxww+j6aMfyRcGuDGfUyhf+QdI3/9QKImpWAqqqpWcFDRbCCezcEVDsOmBsg6fQgqwABytrTD26uzgMThrAXSdVbhVsASyY+O0YOhZtRKSJMG9YgVpm8pkkDp8GO6V+Q5Ny6jhlf8xOO0y3nehyRqHT/pvXITEJq6/vkwntM3vh6O7G5mBAVLAUFVIFYaGGohzYX+GfX1NZ52o/Jdzvq2fR9Z9qTCQDAJ2NzChF+RblgN2p6kQUknoH9+v7+zpwUiInRdLrVn8b3g9DToMP/jgDMj/6dnvD1TQ8z+Hv2MYyr/dTcaedZ/D7ht42fQhpw0M279kA5rFE4nQ78+plLmw1TLyr/J9/3Ui+bdi+weAWjep3UWSr5Xyz4f9lSL/fOifHuy2935m9V7xehKACBQk//e+ehyHxqLC0+44HizzTRcAv1j0FCD/NgfgbUR8NP/7melM9N9uOoasXlB4x9nz4HbYhH5/93JWcLLbZPzDeWzB/KsX+/KfcPcf2e3VN9GEcDUjQxntwySXklwx+T/8JBlTBwDzziffcScZSeeWMlgRZ+qeo6sU+X81/3d6cckeCMDeSkKjUgcOWs95KCPpn1dbZ63n3ykq/wCEvn+1f6uY9M9bRvVCirdZJ5uahvhWk4KJCcol/5LTST/vExX4Fx9lBDsxUd6Ej2gqS9tlFjX78vZnm6+R2v7TdidGueJeKeWfjPgj27TUurCqww+3w4Za3cUxYaL8J0I1OPIPH8bIl/6zokySPNt/OInMMFFQHV4FUvg4I/05Y/54NL7vfVj26lZ0fPnLZb3+jpal9LZnN3dceuoB6MSSU6zrfYSwltfzz73vKtj+p+NpUfm3Evg3Q9t/5MmnoMZIUab2mqshe8TzhqO1Fd4zyfkwffSo+bSSXOW/AvJv9P2rWpmhi1XGWDiJVu466vAptO2Kb4Wkkyt6qtPv715FRCee7M849C/H9l8Qk7zbh0v6lyR49LaPcmDk22jxeFXOvQneiaC3Aq3qrEPEVUHPPyCeY6aPkeBGw13XRv5eU9t/BeP++EkzjrY2jIRYobWY8g8A/muvBfRJOaEHH4KmqkW3N6AmEohvIddVR0cHnAsWlPmuTx1YIv/XXHMNXnzxxZLbRSIRfPWrX8UPf/jDGb+xOZxkUFVWrQ8sIMqQQP5P475/JcNITuPivCR4w5oNlFD+/ZztP8yRf089EjZyX6c0YSnwD2CJ/+FEprrBd1bBk/9iPf8A6Rc1FnnD2wElC7zyY3b/2bex2w434NQXcjr5T6QVfOtxZvlu1a3qo+FUVeY0lxzzZ6CmFbEx9v0YoWxqKCQGOZaB3PF+7zqXXGD5BUzu+Mi3ntUNt4Ocvv+49bg48SHYz4pxzSuA1pXCeLBsXIY2yp67rcSFtCBe+gG7fd6Hyf+cw2NBjKvcF7P9qwowpC+a+M+ecxoZx5UaiSBrNcE3xJH/+lLknxAumyyVXFhUCt72H08b4/7W09+ldzwHKCSfQbD8A4z8t7DFvdW+/3LJP8AS/5XpaUpwZgvJjILwEBshG+EKAVawuW+KFs7OX2TSAuQJQNHT/h0BP5I2J5I2cu4slfa/uW+KhDOCqP6Gctukj7ijIWtKlhbHJw82InXgIKZ/+1tqTbYKVdWE8EkAyE5P0rnhNL+j73nyv6CgL8h7vpITNnKgqBqerWWF3AQ38gqyjbmiuKJsg279DyYyUIoFkPIwihd2txiuViGmYmnE4EbGMLPGS1uZ+fNeJeS/mOXfgP96PvXfJPgvxpP/ypV/A5PlFGCqjNFwCq3c5+7wZUmmDyAm/icM8l95v39J8l/mcZcH3uUSHSu8Haf8q55OOmbQtWSJJVdWLtxLuXybGY4s1LJZJHeSthN7WxtdA9S47JjXWoe4vo61Ou4UQH7oX06/P2BeMM5UpPwT8m+rr4fs9ZblVrQ3NKDmwgsBkLyB+CvW2uTiW7bSPC7fBRfMbArSSQ5L5P/mm2/GLbfcghUrVuAzn/kM7rnnHrzwwgvYunUrnnjiCXzve9/DLbfcgvb2dmzbtg1vfOMbZ/t9z+FEIzoKZPWDz+jRa19LZlABp7fyP3WE9XWZJP2nDOXfZstftHMQlX9xDvGUnSyAOqRJNHisZScYyn9W1egC9YSinJ5/gBHDTBzYeRcLimxZlT/rN2eR+fMXjmJUT2S+amWrMGe3KtZ/nvwXsv0DUOxNSE6RBZpryWK4V6+h91VqkX5oxzBdtF27uo0uSlOco8SVM0Gi3uvEmzaQPvZoKos/buUuuLv/xG6veQsAwM6NB8vEbPBMc+S/EuV/dC9w5GlyO7AAWKYvcrvOpJs0xYkaK3k8sDU2oiAmDgJp3dGx4CJWAOAyRoRF0X6LiyJeXSzR828E/rXXuWG3zY4hzutkx3U0pR+vHPlP7WG9kgXJP5f4b7XvP3WQkX/nosLnJx7OTi70j1NgZgNffmAXfAnm6JEi4bKKmS9x/f6G5Z+H5qqHkibfqSfgw3mLmhDUR+LFSxQaeMv/pVyvr+HOiiSzSGUVUmhSM9A0ID7K3jtvIbWC8WgKaUVUqVpiHKEyJncc05+Xt/2X2MetYDiUwB5/JyUGsU2bRNXMcGVxdvWA/lloGilEl4SmsWOzfh4NaqsUqqrpYzolhCX9Gltm4F+5tv/M6Bj9bh2dnVThz0Xt614H6A6e8F8ezt+vOeV/En743dbH/BloPEkS/0fNlH/d9m9vzVH+7W5i+68QpuR/BbtGzlj5tzsBdz25HStyjuAmfCSG07R4a3XEXy74MdFl5duYIHXoEB2Nmzv9g1j/SXtbeqqMgFW+RSfYD4zsZj+3rYGmaZT82+rYCMdyA/+0bBbZUVJ0cXSQQvQwZ/u3UqCvM1L/AYQefKDIlgyx55+nt0/nfn/AIvl/3/vehyNHjuDf/u3fsH//ftx222246KKLcNZZZ+Hqq6/GT37yE8ybNw9bt27FXXfdhe5S/Z1zOPXAh/0Z5N/uInNaAUKQi9mjTmWMcmF/ObkGajqNlJ6m6lrYA9lVWLW3FVL+AYzIZGHpkBQ0wdrJmA8Hek2s/wb59wSKq+UG+L7/xz7Hbp/zwfwFoLHITExjMhzH/z5DLrKyBHzmmmVY11VPNzUsvzOCFds/gPiYE4b11bd+xYzHommahl9ytv1/5Eb50WR7SYJ76VLk4j3ns21/xY/9230v22jVmwEAjnZudnvchkCEEcLm2goC/zZx7q5zP8zCPtvWArIdmgq49PRvta2jeAWd7/fvPIO1kISOk1FmEB01fDtEUfA9/0Vs/6FEho497J6lfn+AKC4G4obtv2EhSAMskDrSR+8XxvwBdAFqd6twLiSfT3LP3pKqvKZpVPl3dHbCVmOtx1YM/Zs96/9fdg7joef2QQYjRd5MEnuOWZ/iwff7n7swn/wrqhfGMWuvceH2K5cg6CKfuT0aRjZVWC19+gAb8XfhEqYG8oRrKpamJCATs0GJsnNxzIJjkkdu2B8ANMeD9LajRj+OqPKvk+jaduKYmiGOTcahyjbsaCL7nzI1RSdFAGCKaCZGJn2AKf8ArPX9x8aBrL6Qr0K/f4hzHMTtOvm3EPjndthQr08rKFf5Dz/0EHFDAqi74Y0Fe7PtDQ10fGJmaAhJLoANQI7y769I+W/yccr/axj6NxJO5ij/zPafp/x3n5PnoCwHBvmX/X449Okktro6eju5fz80ZYaCiOFIKUb+DeXfWYPE/j76ayNcr1y4l7HrfGqGyn+C7/fPeT9ruupZ3384bNkWL5L/Y6Ly37qaBDrq1yT3qpWQ9PVwZnQE5SA7NkYLKfYO4lgY0cUfSbK2Zqm57DI64STy6GO0EFIMsRf1oqosw3fuOcU3PsVhWeJwOp14xzvegfvvvx9TU1OYnp7G0NAQkskkdu3ahW984xtYVkaowhxOMfDhbnw6b/fZ7Pbpav0Xwv7EEJl0by+QJYs91/J8VwAPmVP+lbBIWAdU1mNWm7CmtPH9gZYUl2oik6RV/ZKWfwM8+TeUdncdsObm/G0N8q+p+NkT22iP9FvPmofFLbVY111PN61K379F23+snykr3pXdcHRx5L8CkvRq/zR2DZJ9YU1nHTbOI6+tZbN00e2cP990TNeytlpcsJh8Tn2Tcfzt4DgwcQgYIVY/dGygqeOOdlF5aU8RshLwOuB2lDmlIzoG7LyH3HbVAevfye5zuIHW1cgmZEBfT4QDJWy9xzn7eteZnIuEKYTiuD+r5F+3/Ttrin6ng0LY3+z0+wOANyftHwBpn2rXeyXH2fvIV/51kmD3wHuWrphls0Kgkxkyg0N00WPV8g8gp6g1O8p//2Qcn713JwLJ/HaZp16xpnoF42nsGSIuqhXtfiGMz0A2zX5n8zlIgSDACnyPvGAeIpk74o8nZoLVOpqmvb+JCfH146++amnRaYDv9zeKRS3cucnRvYDcCB4Dxg8CMd2SXIW+eQDomyR/7/Zmtq8YM68BAL78PBY+8d9S3z/vVgjMnPzzVveUo57cyCaBdOnP3XA9jYVTlt0mmqYhdN999Oe6Ek5X/3XM+h/Ktf5zRYpJrbaynv/ak0P5N+35j44BSian51+ekeU/MzbGpiutXCkUlo1EeS2RQLqvr+LXAMAS/9NR830pm2bFt8ZFiG9nYX/eCpV/R3c3JD07Imm1yF0A8W3s/Zgp/yGd/EuaCjUsOlELgjvPHNi/C8rwLvZ7T70w8tjR1Q27XvQxVHyr4MP+DOXfCPxrqnHBYcGdJ3s8xHkDQI1GMfKVrxR/zdFROmrXvWY1bPX1Zb3nUw0V+xvr6urQ1tYGh6P8k9UcTkGYKf/A30fo3xjXP5Zj+xfC/or0+wOAjUv7V3OU/74sW1TJfK9yEdRyFsHwiVb+g8dA50tbJf/t6wAp55Sz4d3mib9cz90TW8jn73HY8C9XkkVpR52bBh3tPB6aeeaBlbR/ALHD+naSBm9PHZwzHIv265fYQtgY7wcA6b4+2ufrWrHc9LHkMazd4lcv9Ymq/+qb6E2x59+GhUofAK2ysL/NPwMUfZF5xq2Aq0a8v+tMpGNs3xwu8nkCYMq/JBMbPB8eqedKOBcsoKObLCkimsaU/7ruotbiASHsbzaV/5y0fwO69T8VIp+Z5HJRBYvC6Dv1NcN7Fiu4xkv0/acOMRJdFvnnXn82Qv/SWRUf/f2riKSyCKTyyf/LO45aOqY3HZmCsdn5JpZ/AFBS7HO3e8h+0LOEOUHueWKHaa967og/Hk2+HMKlK//xHPKPTKbkd8SDJ//r9QJnC6/8L+VIxY7fs9tVUNABoG+CkP9tLRz55/v+Tcb9NfjYGnA6bqEILeQUzLxoMcWR/4yznt1RhvU/rajC8xRDav9+6qbxrF9fMhSs9sorIOnr5MgjfxUVaU75n0Zl5L9xlpT/9MAAwo8+BjVlraAwGk6hNUY+c8kpw+ZUAWhAZAT2pibKNrJxG9BzScXvS7T8i2IM/3Ny70xD/7i+fzP1f7qPht1p9QuR2E5cHbaGBjjmVbZfSzYbPU9n+gdmlLdivB/J6cwbs7eqwy+E/lke91fTCtjI/tYR2g5bVn9/ethf5jhbuzq6uuBoIeRfjUTK+luEsL/2DmQVFeMRsh+Wk8nT+IH302JK6I/3Ivjn+wpuG3uBubRqTnPLPzCX9j8HqxDIP7c47/o7UP4N27/dk5dqn+7l5nIvLU7+ZS4ARuF6/jVNw6EUp0yG+mEFvO3/hI/7Kyfp34DTRwLoKCTgrPebb8stMv0a+aw+cFEPWvTFmiRJWKtb/0OJDI5NWlfXTGHB9p8dH0d6aErfJAObEhRJUgW2/+16XoHXacPr1zGCntzH1MhiEyQuX95C1auXj0xCo+RfAla9iW5n58h/Jm6DX4qjExPlk/9MEtj8U/0lbMA5t+Vv03kmMlFGuA7Z6vK3oc+XYMdX83JSSODzI/TWEslup2p4+tgxqIlE7jOJiI2zjJISvdA84epumD3ln0/7j6W4Yl37OqgKkI6S+52LcpL+VYUphL4meM9i/cXxEn3/fKGEH5lYCjNtZymFr/51P23XWWLPJxfhkQkczpnsYYZNR5hyWpD8c45um4ss1jsWsDaY6PA4HtqZ727IHfHHI0/5nzJX/oHy+v552//GefUAcpT/tRxp2nEXu1015Z+8/kBNC6Qm8jfHt2yhIVhm4/4CvjKV/yqP+eNJu8o7fCyM+6sk8T90Hxf0d6N50B8Pm98P38VE6c6Oj9M0cfIeyWcY0rzIwl5h4F+B0ZMzgBKNoe/t78Dg7bdj4vvft/SYsXAcrfq+6mjwsXprZBiSLMPuIQW2TMLO2kUrAD//3bNKbMMUQv+47SoCH0RpRv65fv90tpmq554NG2YUFEet/5pGR7+Wi+zkJDL9umtu9WpaODfgc9kh1dXTn5MTFtusZBmKn1xPayXuGqyH/fEtYs6uTjo1BiA5GVaRGeKU//Z2jEdTdLpyOWsW18KFaPv8v9OfR77wBSQPmrvKxBF/c+R/DnMg4Mk/v9CobWVOgKFXiRXqdEI6xv72luXEpsuBP6HxC2Yz2Pzmyn8klUWfwi1cgxbJ/2tp+xfC/iwq/4A48m/p1YWDAjm1uEGKoNHnxAcvEWdnr+1ipHLG1n8Ltv/YJuZs8bamgOgo7C0tgK7qlKuQapqGMb2PraPeA5edEb4UN8/eXUT5t8kSNs6vBwD0ZI9AMmbuzj+fjU4EYKupocUnY9TScrm//LC/XXezkKpVN5oT664zKZEFgO2Kr3AK+PBOQNOVMGPf4ItJXLsRDUNS1dKLorKS/k+M8s+n/cfSHPnvWI90xA5oZMGYZ/mPT4G6bHzNcLS2UmUpuWNnQWUu9Je/YOJ/f0R/dpnkRhSCo62VBpVVm/w/vncUP3uefK9Om4x3L8tPxfan43hkd+k+UaPf3yZLOLunQNEuxj5rm5OcJ+1NjMQGUhF8/6nDwj7Kj/hr1kf88cgjXJO9UDISdW84urvptaKcvv+BKbag3qC3ADUbfdSyDPu6K1nIboQrWFTBPg8Ax3Tbv9NuQ835pFddSySQMHrVTcawBsrt+Z+ePeVf4t+fFeWfUxGtTI3RMhmEHnqIvJbDAf8111h6j/7rrqW3hdR//Vw6qZH9iy/oW0UTV4iaqJLyH33qSSj6JIzIk09ZekxyZAwOlZzLnS3cNTQ8BIwfgMNNjj0lKUPNCbUsB3ySvzuX/HMKd3XH/ZmQfy7pPz7KyH5uf325cFUh8Z/v9y+UP1Dbwo6V/j6LE3QATDvb839Jk/5523+XmPVQRt+/oPx3dmCEC+QsdxpP/Y03ov5m4oLUkkkMfvxf8lwImqrS87Ts88Gztvwxjaca5sj/HKzBIHs1bYAzZ4FsqP/ZpBgAcjpgfD/owrtlVd7dRu8ZANhbmvPu52ETlH9G/qeiaRzXuMdaJP+87f+EB/6VM+aPx+Ir2e3zPlpwM41TmBqkCG6/cokQmAaguqF/dKEo6fOs8xF7eRO97Wsh5F+y2ailPjM4WFb7QTSVpVMaWnICbHjlv1SWxOpOUgR5g42z565+c952xvvMxm3QNGC5NEBHJlqCpgEv/Q/7+dyPmG/XsAiZBFPQj7nqcWS8gIqbG/YHmCr/AJuBDFiw/gc58l8k7A8QCdesKv88+U9x1t/GxUhFWeuEa3GOQh/jFJMacp4w0sW1TIYRMx2aqmLsO9/B0Cc/RVtHfBdfVBb5l+x2OPQ+3XQVyf9gMIFP3cPe7+devwJNmfx9w5+OlST/45EUDo6Sx67urENtAeKkcITIbieLSHsTW/jWpyI4PBbFX3axBXChEX8GeKv1VCQOBI8hOemgBZyaiy6EZw1ZEKcOHUbGYtq1UYiqcdmxuIXsEy2JIHnPra2QPLVAp0myfBUUdFXVqIOqu8FDyT8ABO+7D4mdO5GOSFBSEnE7m5B/a8o/d33jWwgrxBSndttMMgmKQVD+Q6VV8+gLL0CZJM9bc/nllvuCay+7jNqPI48+Ci2TISOEk+S6NQVC/itR/htyW1CqgNBf/kJvp48eLWkLV1UN8hg7XvmMGYSHgKPPwu5l57zsWHk94Dxo2F9NDSmycbA3N8PeTM6Ryb17Z9YOyJN/s3F/k1zS/zG2/qg06d+AeJ2rLPE/UaTf30BDB3M2HO+zTswFocpA62oAogDi6OqCvYVX/q0n/htj/gCybuHJfyWtiq3/7/9R8SB95AiGP/8fwr6R3LcPir6Pe889l7bpnM6YI/9zKI10jC1AzS7WfOjf8dPM+j/KWcdaV+bdbZB/yeMxDWXjIdewBT4fsDIZSyEEHyKaTjyC1nr+Txrbv5UxfwZW3gDc9AvgXX8Cei4quNmuIFPBF/lSePvZ+QoRr/zvnKnyb1hE3XUsuT53k5cI+ZdkDZ6mNBl/CWJvAwA1FoMStP4+xiJsocaTf03TqGpha2goWVRa01kHQGPkX7IBK2/M284Y96epEpSUjBVyv6B8lUTvU8C4rqZ0nwt0nWG+nSwjnTL2dQ02r0ZD2fIwyPVDG6Smpo2MggIE5d/NjTtMlloUCcp/cXXRIFwOm4SW2pknpheCTxj1xxXrZBtSWbZYdnXnBCTyqpO+IKWhfxD7/tVYDMf/+Z8x+aM76e/q3vxmdP3gB2VbUQ0nkxoKCcXKSpFRVPzz77chpLuUrlnVhnefOx/Z8fwpMf50HPuGw1SJNsNLFiz/AJCNMGeHzUaejx89WZ8iBYTvP3mITswQR/zlH39NnPKvTvcDalbo9/ds2ADfBWx8qRCaVwCqqmEwSApRXQEPmmtdcGVTqEuT92wEX2GBiSW1Cgr6aCSJVJYosgsafTSlHgBC9/4Jfbe8Fb3//D0c/HM79t/djgMf+l8cvup1qP/EB/D+3Q9C0lRMW1H+Ddu/s9balJgS4AP/XH6+LcGC7b+OnXet2P5D93OW/xtKW/4NyF4vai+7FACgBIOIbdokFCemNCIM+D3lj/pz2GQ6taAaPf/Z6Wmh/xkQyaQZpuJpNEW5sL9ubn+MDAF9z8Lh4cj/SHnp7/RxExN0bJx75UrTKQuulaRYrobDM3MtCbZ/M/LPlP/EgT5yw+HIcyOUC36yT6WJ/3wQrLcA+W+fx645E4PWifnOiNjGF5d99PxjkH/Z64UtEKCBf0B5oX9ZPfBPcjpha2wUjs1ylX8AkN1udH7n23SNHn7oIQTvvofez+/v/Hn7dEZF5D8YDOKnP/0p7rjjDkxNkQP+1VdfxeAs9AbO4SSAkM67IP/+0zn0T0j6z1dgDfJvb85Xh3Ih2e305MMvpskFW8Kgpi9cQgN0jFAx8AuFcOIEK/8GKXPWiBXyUpAkokovvqLgJoqq4Zfb2OdzxXybabprY42LprPvHgwjOwMrIbX9F1iMpo8fpwsJT3MWsh1AhFwwK01GNyz/AGiWAUD2KUU/r7qXLy+5X63uqMNG6RC6JJ1ELbxUDCvSwYf+ZWI2LJfKtP1v4lT/8wqo/sbzhwmJsnsVrHIcw+7BAs4MQ/m3e9jxJcvM+j99jB4Lwgzk/ftRFILyX7jnX9M02vPfUe+BTbZGkLMTEwjedx+yU6UJhgFe+Y+nxeM1FWNuKldtjnrHj1Cl5D+/7z99fBB973gnok88Se6QZbR89jNo//J/Qs7p+bQCIc9iyPp+XQjffvwgth4jx1lnvQdfvWktJElCdjJfofXrhLeY+v8SN+KvGPlXuDnWdpmcV+wc+V9kJ4Tp0FgUD+8mi04j7E+WgIsW55/f+J5/V5icCxMC+d8o9I1a6fsfi6SQUchx0xXwwO2woUdlrgh6/C64UHygJJfMtbCCvglWJJnf6IOjtbWIiilBTWSQGRgADuzDWw7/DWeN7sdUrEQRWlXZsVk/r2gQp1Xwtn93HfddJYqr1YCoIo6GipN/JRxGVLfA2wIB1Fx0YdHtc8Gn/of/8rBwXBu2/0qUfwBo1NX/ySoo/5FHH6MTjAwkXn216GNGc8f8LeDcS6FB4OhzgvKfGSlv7rsBMezPnGRXre9fsP2bjLHWBZCs1IB0n95fv3IFZPfMCsi2+no6HSF58GDZ7gUtnUZy124ApP3IcELkYn4Pyz2JjFob0z0ZTWFbRGyBOiT1AJIETVGQ1q8Tjq4uSJIER2v5tn9N0+g6ytHeDkmSBPJfdquiDldPD9q//J/059Evf5nuH/z5+e8h7A+ogPzv3LkTS5cuxVe/+lV84xvfQFBXuv785z/jjjvuqPb7m8PJAL7f30zlbVlJSCBw+oX+jbGLTa7tX00mqYLP95AWg6z3/Suc8m8sXo4b5F9Jm1eac8Ar/5ETqfwrGWbdDPRUZQHH496tx7FjihGlHk/hcDfD+p/IKDhcyFpeCqpC7ZeFkv7jmzjL/3z94hM1yH9lyehjEXZB45V/nti6OLW7EAI+J97uZcFv6qp8yz8AONrE0L8eaRhtVlvcx/YDh58gt+vnA8uvL7ipEo1C0RehTp+C9fJh7B4yIf+xSXZuaV8H2LiFr3GeUVK0t9keCJCMBRCbXlFCGuK+hyK2/1AiQ1X47jL6/Qc/8UkMf/YODH3ms5Yf43Hwyr84gzo9Ts4Bkk2FQ83ZhwTln/z9js5OGuKY2LYdsU2b0HfzzVQpkmtr0X3nj9D4nvdUHD7l6GSLw5km/j97cBz/8wyxydplCd9/xwZKdLITZsp/afJv9OQ7bBLOnF94ooTCFWhsWpC8B478r/IwovO9Jw+hfzKOXjriL4A6bz4hq/c4YNSJaqP90FQgMUkImL25GY7ODnjWrqXF3thLL5WcpW2WPbFY48i/Pu8aXWcDMvee/J3isVMheJdFTxN5/a4ffB+t//5vaPrwhxF45zvhv/py+NqTcDem4Wx0CSG2y6b7Syv/kWFA1a9VVcop4Ml/TT2n1lpQ/lvLCPxLbNtGgw/9115btjXYd/HF9POKPPEE1CBrM5lGLWQJea1tVmEUo2JpBYm0UmLr4ghzln8D8VeLK/+juWP+FnNrpSNPA8kgHLztv8y57wYSrxX5z7X9p2N01HEiyYr/3vUzs/wbMKz/ajhctksiuX8/bfcqZPkHAF8LW7NmpqeRzJTeb14+OiW2qAJ4Nd2FZEYhrRwZcmwbhWNhxKNF5V8Nh+l4VLt+zhNs/xUo/wb811yDwLveBYAUSY5//F+QGR1DXC9uObq6Kp7UcKqhbPL/iU98Au95z3tw6NAhuLkK17XXXotnn322qm9uDicJCo35M2Czs37d8KC48D7VYdj+vY2iDQziorVQdTUXRuifaPsnCwqq/AOW+v5F2/8JVP5DA4Cqv145ln8L0DQN333yELVBAoBUZBEnWP8HKuz7TwRBcx0KJP3HXmLk37tY/56SQSCTrDjxf5yz/Tdz5F8YH1kk7I9CVfA6EFtxSrPjaNOlpptR8gDS92+TNHSk+6y92a2/YLfP/VDB1ggARA00XrNGwXq5F3sGw9RSTTHEqUmdOS0Ewrg/Zv03FjNqNIqjb7mpcJiaMTFDtgO1bebbQEz6N1wkpaBpGrXBxrdssazMyLJErf9xzvavplJIjwUBAC5/FtLoTvGB/MJTd3RIksT6/pNJ9L/nH2nPonP+fCz4wx9Qc1HhthorqGbi/zcfY/v0p69Zho3zmMPGOI/ybVMdEjk2dgwEMRTML/4NBhO0P33DvAA8zsL7o9GvLNlVyEoIULKQ6+poUGdtIowNerL+wdEo/t99LLfGzPIPkO+yQe/7D6QGkArboWbIcspI+5YcDnjPIa44ZXKypIXXbF+cl2EOKLVZ34+dXjE4tVpj/iZF5R8gRZKGd7wDzf/8MbT92+fQ+Y1vYN4lU+i5agKL3teOnj//iT5mYWioNPmv8pg/gJF/uyzBV88r/6XJf4PXCYeNVHFKBf7xxcZi41cLQXY6UXslybxRo1HEXmTXlEmNjPmrtFDXLIT+Va7+Z0ZHaRuRc8ECOObrwaK7d0NNF/5uR8Mpgfw7FywC3PXkB92BURXlnyPzuWP+6O9XcOR/JqF/xdL+ubbHxDQ7bxUK1ysX7hmE/lkJ+wMg5FXUJGM4MFK6teul3sk88r9HnY/DY9Gcfn9y7bA3NtLgU6tFDCHsT2914sl/pcq/gZZP/yvceh5Lpr8fx/7h3bRo4bvgghlNajiVUDb537x5M267LX+8U2dnJ0Yq7OOZw0kOru+2YEDP6Wj9j4wwBb5lZZ7CnR3jwv6skn+98q+l0zSl2+jTKzf0Twz8O4HKf6VJ/xZwbDKOwWACIdRAhf55FwluWsuF/m2vtO+/RNK/pmmIvUz2adnrhWcJZ7GNjooK6WA5yj/f888uaKn9bMHitqD8o+951Clk4fWMuh47Cjj4HDnj/gCgLmxhYaGqwF6919XmBNa/o+jmaY78O2uyWCMdRTyVwgCnbALICfvbKN7HF5W480/LJz9Biy3K9DT63/8BTPzoznxV1bAW+zuLFioGpth76m6wpvwrwSAJ7AJJQldMbOuF4NWVPX7UX/roUdbaUJcFhraLDzLp+QdE6z+9+/zzsODuP8C1cOZFOSdX1PrjQ6/gh09XNnYqmspil972sbilBu+/kJ0z1HQaaojc51zEpnl0yIxoPLonf13xUq+1fn8A9Pux62P+kJiGJEmwNzTo90/h9iuYTfm5Q+wAunRZTv4CB6PvvzUzmGP5Z+qf73y+77946r+o/BPy35EK0t9F6rm/k7f+V4lE88r/gsYC+TUOD+DQ74tPwtHZSbNsekJDpQP/+OtalYoWBvkP+JyQ+HYnC4F/ssxyPkop/8L4sY6OIlsWRs0lF9PbqSN99PaU5q/Y8g/kTp+ovO8//PAjJNgVgP/66+HdQM7LWjqN5O49BR/H2/5Vj5cU1/ziZ+TwsHN0pT3/RtK/7PPBOd98/3F0dpDXxwyVf6cPcOjXhFzyz4f9DbHPu5jSXg6EFrcyQ//iXD5DoX5/ALAF6untunSMnqOL4aUjkxhHHZIa21f3qvOxfySCNJf07+wibjvJbqdr48yYtYJPZpgf86eTf/3YrHXbhfa5SiA7nej89repCzdzjJ2T/l76/YEKyL/b7UaYUy0NHDhwAM0WCdAcTjGUUv4BMfTvdLH+D/LK5Ma8u4Wkf4v7viyM+yPHkTGbdybk/4SO+qs07M8CjJF9KmSk7PpnVWQRt6arjtZkKg794xUiE9t/+vBhOvbIe9ZZkOq4UTfRMYEkpcux/XOLzRYudd9I+pecTjh7LHy+u++lNx9Uzit4EbebkH95zMLiaOBlYtcFgEVXkFDEIsgMcApAjQKvlMJS6Xh+6N9xLuyvK4fIFlD+nfPno+eP98BnLKJVFePf+Q6Of/RjrJUmFSGuDKBk0n8lyn82J7U43W8toBNgtt4YZ81NHWKk2lmXJcUOPeGdbJzf8w+IoX8AEHj3u9H94x/DVlf8+7ECVdXwZJAtD2xjI/j6oweEVhWr2N4fpDOaz13YAJnLVeALJ47WVrpor88wImxm/X+R6/c/b2Fh8q8pChS9uGCj5J8c74b1Pzs1hYsXN2Jdd73wWLMRfzwMwjUPIwL550d9CaF/Jfr+xX2RkI4mro86WMOdmxZexm6bBNFWAkP5t8sSOuqLqGvGOL34BCRJgms5ISqtiSCyoVDhsZ5A1cf8aZpGyW6jz6mfm4yisbU8jjbdRhyMZ4panwVFsrWytS5fNMhwfdZT8Fc05s8AP31iJn3/vOXff/31QiErsa1w3/9oMIEWfV+V2kifNmrFkXD2pkYqoJST/G4gOzVFg+DcK1aYhv0BxBXl1kP/lPEJZGYwWYCeb3Nt/3rYn6YCiWN6cbGjnU5ImSnc5Uy2yUFiO5mmInm9RSe8yE4nNC85z/jTMewqMTFpLJLE4bEoAAljdrIfpzQ7Dmud2D8czkv6N2DX+/6ViUlaNC+G3CKbpmlU+a8k7M8Mzq5OdPz3f4u/lGX4zj23Ks9/KqBs8n/DDTfgi1/8IjL6lyhJEvr7+/HZz34Wb3nLW6r+BudwEsAg/3YPUNNqvg2/eD9dlH/eltxRHfJvNu7PsOmVa/u322RqIz6htn8hA6K6yv/2gSC9rdFFZmHyX+OyY3EzUZ72D0cs9a3lgV8kmtj+Y5vY/uw991zxGIiOwNbUBMlFFl/lBP6NcoF/Ru+pGo8j3dcHgMxll+wlqtwTh4GdfyDvU3PhSXVDwXA9R0sLW3zFdDV8dHfpN7rnz+z2qjeV3Dw9wPZdZw3ZL9fLh8X3pWlM+fc25quAwri/I8Jdtvp6dP/v/6LpYx+lf0/0qadw9OabiUWSbzuqL0X+89XWUsgl/5nj1sm/Vz9eY6ksbRdIHWbk3+XXF0cjnPWf5n9Iwpx1V08PAu94BxydnWj70hfR9v/+v9L7iwU8e3Acr//+87j98UFkJPJ+DVVv89HSIWq5MEL+AOCM+aKzhm+dsjU1wlZPyL8cDmFhM1GYN/dNCS0ymqZR5d/tkLFet+wns0l89ZWv4ofbf0g/WyUYpEqm3a2Tf/14p4n/igI1HMbHOfUfMB/xx6PR54IdWXRJ4zTpX3I64eJ6jp0LFtC+1fiWrVCThYsnZoWoujA79415uc9uwYXAVV8Ezv4gsPHWgs9pFZqmUeW/u8ELu0nAKoUxTi8xDagK3Nwo0p7gUPFCNG/7r0LPfyytIK1PKGjwOYnLxxjVasH2D4g24mLW/8x+lqvi6Luv7PcKiD3Q2Ul2XExqtVVT/iu1/af7+pDcTa4HrpUr4FrYA+9GRv6L9f3Hhkfg0Mi115h+k6v8S4suotlIlSj/VsL+6P2c9T81E+u/Qf4TU4DCrbH0a1Iy6ICWIvt7tfr9AXLeMDIlkgetk//M8DAtkHjWrCl5PXAEyDnFn46XVP43HWHH0/ae90Op7cK3sjcjDQcOjEaE66Bh+wfAQv80TVgzF/wbBNt/O4LxDJ1CUsmYv0KovfwyNL7/ffRnz5o1tC337wFlk/9vfOMbGB8fR0tLCxKJBC655BIsXrwYtbW1+PKXvzwb73EOryVUlVXrAwsKh7t5AkCzblEe2QWk4+bbnUoopfxPVEf5n4gQ5WLUxpHKkDVCYcy2PrG2f175ry7538GRf6df/0zTUSBTeFFmWP+zqoZ9wwVGyhVDCdt/7GUu7O/cc3LI/yhJtdX7ozODg5Z7wA0V1eu0UUU4dfAgJSuGolYQqgLc/xEgS57nQfvrkIAbe4bCpuqb5HRC0glPKq4vCkZ309czf40cy/+ya0r+XbnKPwCsk3qxm1f+p/vY4rzzjPzzSl03STEHxLYj42+RZTR/5CPo/vGdVOnOHOtH31vfhhDXh1xK+R/gCJfVwL9cJYlvcygFw7KYVTWk9ekUAvmv0xeYvPXfsJx6G0i+Coe2f/83LH7yCQRuvtnyeyiEXcdDeNdPX8Y//PwV7B0OQ5VkjHvryevEpwBNw+Y+69MNDGw5xh6TG8wn5KY0NcFeT44/NRLBdSsIUdA04LG9jCz0TcYxrCtBZy1ogMtOChQPH30Yv9n3G/xox4+wZZS4SoSwvwLKPwAoExO4dFmzkCFSqN/fQGONE93SOJACMlHyvbhXrxYmK0iSRNOjtXQa8S1bTZ8LYIWoGpedEkFvkHw+EYcHoxmufUWSgAtuB677OuCe+YJ1PJpCXHejzG8scRwYBShNBRJBuLnz1MLQEKaK9f0Ltv+ZK/9T3Gg7Ou/eKODGrRWqhNC/Qon/W39FZ4/bXArkfXcXP28WgL2xEdAJWWaKhTlOaf6KxvwZaBJ6/iuz/YcefpjerrueBLo6Fy2ia5bEtm0Fr20KR9h88/Rzbg75R8/FtPiRHR+3pALzEMj/6hLkv1qhf3zff5xzYOnKf2KCFWwKT8YoH5LDAefixQCA9NE+2iJaCry7yHtGgVG8HOw6+a9Jx3F4JFRUPOFbrQLnvB3yJ3bjHjcRfPcN59j+ubwYO5f4byXrwTjOANKqONMxf8XQfPvt8L/xDbA3N6Ppnz9W1ec+2VE2+ff7/Xj++edx77334r//+7/x0Y9+FA8//DD+9re/wVdizvkcTkFEhkniNlDY8m/AsP6rWWCoeDrsSQ9NY8q/t8mURAjKf4lZ7AYE5d8g/3ql3u5rYj1mFpR/gI37O6Gj/gzyb3MBtZX1Ppoho6iUIC5o9MJeYy28aV03F/pXwrpmiiK2f01REH+FKD62+nrSi8cHyBnj/vRKt5ZMWu4BN3r+WwqF/XGKmilevhMY0AsTgR68OO+fAADxtIKjE+aTD7JN5EKsJmVoCkjhIzJsui0A8vzREWgqEE6dgcT+fCKei7SuAMg+H2QXIfUk9C/EFo9Cv7/JIsXuZOPLpvoKLrRrLroIC+69lypBWjKJoW//BiNb6sjfZ1H5d9plYQFdDLnzivliRyn4uGC6mJ74nzp8CAAguV1w+PTF1/AO9iDD9l/OSM0yMDAVxz//fhve8IPn8fxhtsBd3elH8+IF5KWzSdRkEnj5aHnkX1E1bO8PAiA2+lx3hUj+m4UQqmu6GQn9K2f9Fyz/XL9/X6iP3h6Jke2zk+z92l36Z6sr//Ym9tjs5CQkScJ/3rgazbUunNPTgCtXFHC56WiqcWGBNJLT778+bzsrff+qqmFQDzbsCngg6aOzHFPkGjPmCWC8CmPcCuEYF/ZXsN/fgFfsq3dx56mFpfr+DSHBXV+yfcgKjJY5gCP/xjk8FRLV2gJoq2PH/WjE5DM+8Ai0Bz6ObIIcuw6vAkweEo9Ri5BsNrpWyIbYa01iZj3/TXzPfwXkX9M0Mn5Qh//aawGQIquxTytTU9SVlgvbGDs+aRtcju0fPRfD0capwCZTPoqhLOV/Jdsnk3uroPwDYt+/3vOfCLF9uJrkHwDchmVfUZDu7S2+sY7o31joOp8vUQg2nfzboMGVimN/kdC/TUfE6SqSJGF5G1nPTkRTSOlFcFtDgxDeSr9zAFkLff+88m9vb69q2F8uJIcDnV/7GpY89+zfzYg/A2WR/2w2C7vdjt27d+Pyyy/Hpz71KXz605/GlXqC6RxOQ1jp9zdwOoX+TfcxRbhjg6njoSLbfx1TaZRwBFlFpUpJU62LFRmCA5aUBaNPMJFRkJnJnHurUFW2TwQW0CTXamD/cIRaONd314tE3GLo345K+v4F27+o/Cf37qMODe8555A+Q14NoOP+uGR0C33/yYyCiN6qwYf9Jfmwv2KJ0pO9wJNfZD/f8EMsm8eKEoUsfEk9NEwCkEkY1v/CQU7Ycx8AINjrxeAfj6HvXe9GYlfhVgEtm2UzZ2JHGgABAABJREFUeru7IbeRRdpS6TiSsRCr4guumgIKhdH3nwoVndnt7OrE/N/9FvU330R/N33Yh4HnG6C6Ch+XmqZhYIoRLr4XvRjyev7LsP3zYUWxVBZqMomMnhngWrQIkl0nIsPb9SePAUb/+yyQ/1A8g1vufAkP7GALru4GD7739g144CMXonkpa79ojU9j/0gYoTLyRQ6ORhDRww3PnB/Is9ErAvlvpItRAFjsVmix4KXeSQT18+SLQtgfI6ITCfZccf0zU6Y55d8tKv+2RvbYrF6wW9tVj83/70r84bbz4OZGM5qh0efUyT8jbd6N+Q4x77nn0utHob7/sUgKGYWc742/OTs+DkkhBYsxbwBj4dkj/30TLOyvpPIvhOpNwLVkMVT9OrAwNCSM3hOgZOl4tGqN+eOnCzDyz2VAFDlvGOCV/9Fc5X9gM3DPPyIblwCNfIc0tX7XPRW9Z0crOU8rCRWqQtq1UnDOrOefK1zyBRGrSB04QAmm54wzhGwCI/QPIGNFc5FRVHinWUGUBuD62TUR/i4g0AN7Kzf6rdwRdkbYn9cL54IFRbd1zp8PSe9nr/q4v0SQugAS4+Q7k9xuoU+/GuBD/5IWQv+0dJoWF22BANyrV5d8DB/6V8z6PxJK4qh+jljfXU+nqyzTyb9DyUDR18OO7i7hsaLyX/o7z+o9/7bmJshOp6D8t9VZa82bQ2mUtXK32+2YP38+FGVmc0TncAqhYvJ/iof+CWPI8hd0AJAd1xebdrugWBWDXMvZ/iNhTMXTlOM31biYFTKbEIO+CkBM/D8B6n9kmNrMqx32x6f1r+uuFxWmIp/FivZaOq6JbxuwDH6BmKP8xza9RG/7ztX37xpO+dfJvxD6Z2EsGr+Qb+bC/lJ62B8gXvwFqApw34fJPgIAZ98GLLgAqzuZCrHruHn7Q8jPFsZG6F/Bvn/O8h8b1y+62SzGvva1gvbPzMgokCX7obO7m2aByJKGNfJR7BnU31cp5R/I6fsv7jiQXS60f+lLaP/yf0Ky60Rr2I3+z/+Y9H2bYCqWRkK3OXZZtPwDIPOMOZSj/PNzvGPpLNJHjrA2j8VLgFZd0Zo8DCTDOWP+qk/+H9k9TC30DT4nPv+GlXjyE5fijes6IMuSUNRqjU9B04Ctx6yr/8X6/QHuHApi++fJvxoM4ppVuk1Y1fD43lFomoZNOvmvddmxmgvkm0yyokBCPzayZrZ/Q/lvZMd6ORMbDDTqyn+cV/5N0rXtgQBVKlMHDpj2vYrZE2Rf5IOvxj31J5Hyz50jYxOQXS6k2knRel5kFKFwgZa/8HFA7wuv1oQCXuVuzLX9A5YS/3k1UUj8Hz8I/O5mIJtg50oAjhr93Lf7XnIuLhN2XgmN2zClkX3Y/xr2/ItBf9cJ93m4vn+z0L/xSAqtMW7Mn3Et5FsCF14KSJKoApcR+pednqaKsKtI2J8ByWajk3Iyg4M09LNsmI37myJFkkxcRiZMrnWeNWtoj3614OJD//bvL7IlQfzVV6HGCEH3XXQhJFvx4iXAbP8A4E/FsKuAePLSEfOA1RVtZN9tiU9D0q9jzs4c8t/Cf+fFwxfVdJqeH40C1DCv/NdZc+fNoTTKlu0+97nP4Y477sDUVHn2vzmcohDC3UqQvcbFTDkdeLminriTBrwyaRL2BzDl397UVPJiZMDm523/EdrvDxjkn7MpW7D+8wuGE5L4f4L6/Qn55xScIos4l92GFe3kInRkIlZ+/kGisPIfzw37A4jyZfSjmyr/Fsg/l5pu2P41RUHyIKnwO+bNg00foZWHV37M2f0XAFd+HgAEIlQo9G+CCw3Lxkoo/7rlHwBSMfbc8c2bEX36GdOHCKE/3d0CsV8vHcbuoRCgZJiyHegxnbAAQNy/uL5/TdMKFh/q3/IWzLu5GbKDEL3E7v049u53m6ZLV5L0D+T3/GdHR4sGufHwOkXlX+j3X7IYaF/HNh7ZVTDpv1p4mLPT//w9Z+EfL+iB087OZbnkHwBeKSP0ryT550i3valJKKJmg0Fcu4YV2h7dM4KDo1Ga7n52T4MQTCco/1ld+Rds/7nKP2f7n6iE/DvRow4jOUWIl6O7U8gR4OHjLKWxl17Ku99sX+Ttr2PegBB6WG30TZah/OfY/gFAWUjCEh2agmQhi7KQ9F/dMX8A0GAk3vPnEwuhf211JuQ/PAz85i20MJzxMZu5Yz7pxUZkGDhWfIKDGRy8+p2wYRJkTTAT23+ty06P23Jt/4Ll32aD/xox18WzZg3NKTAL/ePH/AHcOaNpMXDJZ4ElVwOXfhYAKlb+DdUfANyrrE23cK/grP+Vhv7xLheD/BuW/0nz8Z7VgptX/i2E/gmW/4svsfQa/PnWn45h16C5aMD3+5/Lkf/l7WTfbePck3zSP4CyCj58EKQx5o9341Qz8O/vHWWT/+9973t47rnn0NHRgWXLlmHjxo3CvzmcZihH+ZckoEvv+09MCbNQTznwmQUmyr+WzbL50U1NefcXQq7yz1fpm2qdoiLCJyMXAG8VPCHKPx++Nkvk3y5LWNnuzyH/xRdxRlCXphW2vBdEgbR/LZ1GfCtRqO2trcxqKNsYETN6/rlqtxXb/xi3kDds/+lj/dAShAS4C6n+k73AE19gP9/wQzKPGESJ7NAXsnuGQlBNQv9GnGz/Syf1xUsh8q+n/KsKkJ4SF5Rj3/gGtGz+/pbu55L+u7uATjYFZL3ci92DYWBsL3OPFFL9AdNxf4/uGcG6LzyGM/7zCbz9x5vwHw/swV2v9GNb/zRiur3cWzOG+ZdPwObR0/QPHcaxt78DqaOie2CAU1uthv0B5guYjAW3BwDUuMSef2HM3+LFQMd6tvHwdrHPtMrkPxhP40W9x7+z3oN1XNidAX6/bosZ5N86UTbIv8suY1VH/vOLaf9Ngg1VmZ7Ghu4AWnVnzLOHJvA4F/zH9/sDIvmnyr+p7Z+8J/68nZ0sr/8YAJp8LnSHxqCpxGni3XhmwW2Fvv8X8vv+TZX/YZ7812O8gjGLVmEo/7JkwQUjnJfJ52ZbwlRKqfeQ+eP4YnaptYRFiOTfUP65IpOFcX95tv9kCPjtzUBIf79ta5CZ/2a6jWMN10tdgfV/NpR/SZLQpP/95Qb+JbZtp4Um33nnwd4gFmNlj4cG6KV7e/OcVKPhFC0MZt1eIdQYl90BvPNuKmoIRNBC+JsBvt/fU6Lf34AQ+renQuu/j2/x04u+BvkvkfUxU9ibmmiBMrX/QMkg4eizOvmXZdRcaK1/nXda1aVjODRqPjHpJb3f32mTsZEr4i5pqYUk5ZL/TuGxgu2/BPkXxvzpo4nFwL8523+1UHa86I033jgLb2MOJy14smfFqtd9NnDoUXL7+Cuk+nuqQVVY2ra/S7R+6chOTrERUhb7/QET5Z8n/zUuoI77jC0k/vO2//CJSPznlf9A9Wz/kWQGh8dJSN2Kdj/pt7Wo/ANG3z9ZrO08HhJ6gUvCsP3LdsDFvp/Ejh3QdEXXd+65Yr9yTQtR/WNjgKoKFzwrRHAsnK/8p7h+f5dZv7+qAvd/lLP7f5CM/OKwurMOQ6EkYmkFRyZiWNwiugeO2dnCLKMEAISAiYNANgXYOUudqgB7HwAApKPePBdP+sgRBP/4RwTe9jbh90LSf/c8oGkpNGctpHQE6+RefGEoBAxyRa1i5J93Gunnof95ppeOtXzpyCRdlBhYEHDgqcQw3AEN897ejOOPe5AZGEBmaAjH3vkudP/4x/DoSdGVKP9aOi0kyBtIDwzAtWhRycd7c3r+U5xK6lq8BJDr2cbDO2hhBwBQU13y/9jeUWT1AtF1a9pMx9rxyn9PlqhCuwZDSKQV2vdZCGORJPqnCKlc11UvOAoMGBNT5NpayC6XoEQpwRBkWcLVq9rw65eOIZ1Vceff2PmHP8azahbTSaY+0p7/KfY7qvzrKqWY9l+B8u8BEpNxJEGOqWLqn2fDekheL7R4HLEXX4SmacLnXVL59wQwGUsjq6jFx/BVAE3TqPLfGfCYfk8ChJ5/cix4V66AcYZwHStQ9OeL2dWy/evkX9ZUNOzegrRzJZxlKv9uhw31XgeC8QwmQxHgrncCo7vY+3znH5H55o/o9o6N1wJjdwKZGGmLuu4b4rmzBPhZ8JmEDVP6/jMT5R8gxd+hUBJTsRRUVbOcYSJa/q833ca7YQOSO8n40fi2bai97DJ632gwhg3xIAAg02J+HjHAjzrMjJaj/FsP+6PbrayC8m9m+6dJ/8XbfaoB97KliL34EpTpaSgTEwXXmunjx1lmw/r1lttQbfWMyNemY3Ri0oZ57PfHp+M0G2fDvHohC8XjtKGn0YfWXSZtHzpktxu2ujoooVBJ5V8c80eUfyPwz2mXEfBWt7Xi7xllX0U+//nPF/03h9MMhvJf2w44LCyQT4fQv4mD5MIOAJ3mC7pKwv4AUflXwmHByplH/k9K2z+v/FeP/O8aDFF+SdP7ffkKUyGs40L/dpYb+meQf09ACHaMmVn+DRh9/2oWSEzBVl8PWQ8YSg+WqfzrymbJpP9Xfgz066ph/Xzgivzz7Rqu79/M+t8LRiazGR/7G8ZzbIX9nOXfxazotVexcNfx7/8ASjQmPIwPv3N2dwGyDEk/htqlKaihIST72Lzs4sr/AnZ76ijSWRX7hsxtifRvCg5C1mnIgKcZ83/7G5qdoExNof/WW+n3Kqqt1si/0K/N7StW+/6FwL+0Qm3/ktcLR0c70LICkPVjemj7rCr/j+xiKsu1a9pNt7E3N0HSR9d1pYMAgIyiYdtAaev/q5zlf6OJ5R9gpNtQ4fkeVGWaPP6a1YwwGOGBAa+DJk0DQDAVhAZWoGK2f0bqbT79czVs/wF2vGcraGP0xgaQtDjqS3Y64T2LOAOy4+NIHRLV8eMmIyeznAo25g1A0xjZrSam4xnqGivZ7w+IRVm9LaV+DVNZ/YMF8jmEMX9VCvzTP483Hf4b1M98HH23vBWKyh3LFpR/gPT9S1Dxqfi3gb7nyC89DcC7/gzUtiEzzCmS83qAFa8nPyRDwOEnynrPvBKajcuY0sh+7HeXrcUJMPr+VU0MQiwGLZtF+K9/BUBGwfLndx4eztWbyLH+h44Pw6FnOcht5ucRA/YWRqYrUf4lrxfOHmvrDteiRbQPv+LQP7O0/6leqAqQmCbP7ezpEc5b1YSLc9QUC/2jqj+AmotLp/wb4IsEdWlyLc9dN/CW/1y3FUCs/4Ly350/YcfY57Ojo0UdDMKYvw5R+W/zu4sWluZQHqpbQp7D6YVUlJ3wrNr0OjcCkl4ZPFVD/yz1+7O+30qVfzUczlf+Bdt/ecr/CbH9G8q/ZKuaegMAOwbYBYcS+TKU/8UtNfDqSiT/XJZgXLg8ot0xtmkTvU3D/gzUcGPAoqOQJIn2umWGhqGpxScvmNn+iyb9T/YCT/wH+/mGHwKu/EyA1V0lyH/GjrSsz5qPchfSXOv/3vvozaTKKvn1t9yC2te9DgAhVlM//5nwMEqCZZna9kTr/2EoA1v0bexA+9q890jhqmWLr+mjODASQVqfaHHj+g5s/dyV+N37z8G/v34l3npmN9Z312OZg5HlFyc9SPoDmP9/v4ZHn3msxmIY+MAHEH78capmAEB3gzXbP9/vzwcyZiwm/vOj/hLhKDIDXNK/LBMFsVUnUhMHxT7pKpL/UCJDx/p11LmxobvedDtJlqkCUxccpw6QzRb6/rf0sW3ONCH/ajxOA6oM8i8q/0EAwNkLGpilW8d5ixoFZZO3/AO87Z+8B8nrhVxrzH8nx7tks1HbayW2f0z20rC/rMMG1+Lizg9+lFSu9d8oRNW67HR8q6GCKTY7gvqxPht9/2X1+wOm5+WGzjZMuklhu2m033yBL/T8Fx/BaRVGMWTVZB8AUjCK7uKcVxYC/wBi/X+f7RFcL+t5DHYP8M57qHPRKMRIDgexYq+5mT24TOs/PS+ChK4a5H+myn+TkPhvjfzHXn6ZFshqLrmkYM6Mlwv9i+eE/iUH2Oftzkl6z4XscsGmtxVY7flXgkHqpnMvX24pyA4gxQyXPi4vffQo1HiBIMpicNeT6xRAbP+aBkz2kpwPvd1ntlR/QLzGpA4U7vuPlTniz4BNCPwjn0/uuGTeXceH/RlY1upHW4xso0my4GwxYLS6aJkMLeqaIVf5T6QVOl2m2mP+/t5RNvmXZRk2m63gvzmcRuBtelYt3k4f0KaPGBnbR0ZVnWoo0e8PzED5r6mhapMSiQj9ec21TrLAt+kXcSvKP9fzP+u2f01jyn99N2CrngVrO6ckbphXT26UQf5tsoTVek/xYDBhPfE4m2IuD84uqsbjSOwgc5yd8+cLCzYAQC1H/iNkEUMt0plMXiJ8LkY527/R02wk/dvq6gR7JFQVeOBjzO5/1geAnotMn5dX/nOzDyLJDKIZDRMesk0myMivkPivKjTlHzYXUpOskOFasgQtn/wEDYCa/MUvkeESfNM6mXW0t1PF2Ej8B4AL5D3whnTVs3VVaTeRcd6JDGNPP1Pf1nbVo7HGhfMXN+G9F/bgqzetxX0fuQA/vYgt8F5Nz8OvXzoGm9+PeT/9CWouvRQAWYAM3v5xtG1+BgDgcdhYUngJ8GnF3jOYayFdgfKvDfSxpH++ZYCG/mlA79Pcg6tH/p/YO0pHy12zur2oomIoMHIqCV+G7Lev9JUmVVv7iyv/fNifrYkc6zYT5d9uk/G6la3CY8/LaevJJf/M9q8n+wcC7PhOcC1buvVfmZgs2VObi8yhHVCSZM0zEmiAKhVfTgl9/y8y8q+qGgb1Y7Ez4KHfhaE2JwNN0PTnng3yf4wj/5aUf3c9K/DrjiynXcaxADn/eZMxIbiLwlhP+JrFdpYZwOj5b8pE6e+iW7lkdAu2f4AQi2ttnFhx8y+F85bxXdjb20mRbuGl7Pp04BEymcMi7E1NzHGSsGESM+/5BypL/KdBfyhs+QfIGsdQdJO7dkNLs3WLyqm1tfNLCwIGEcyOjUGzMDmMV+35Pn4roNZ/TROcdZYhy+y8G5sg/1JhYbznbPT7GxAS/wuE/qnJJGIvEzebvbkZruVFRgTnQBj1p6+D+HUDP13FZZexfl49csEr/4lAo+nUAwfvdilS9MnyDpv29pwxf3Pkv5oom/z/+c9/xp/+9Cf67w9/+AM++9nPor29HT/+8Y9n4z3O4bUCb/EuJ6CnyahWakDIWhDWSQV+zF/7etNN+KAqe4v1Rbkky5BrSaXfVPmXZaaKBPtLTkw4obb/+CSQjpDbVQ/7IxecGpcdC5t09cFZA9j0BU2sNNmg7QIow/rPj/njgqJShw7RkXWes0yCvATlnxBCPuW2VN+/sYh32mXUeRzITkzQgpJrxQqRjG3+CUuVrp8PXPkfBZ+3qcaFdhr6FxZC/4yCw5inHgCgxhJQMvrr8Mp//yY6xQCLr0Sql5wHZL+fBB/On4/A298OANASCYx//3sAACUUgqqPVBKsf5y1/0225yEZ9uxiln8DXGvJ0BG2qF9rEk4HAFIvseCqmoTn1LX42fNHEU9nIXs86Pr+91B3ww1kQ1XFjS/eA2gaujjCVQrZMWZVda9eTRc6mYHShToA8HFp//b+PnrbtYTLRuHPOWGuqFBF8v8wZ/m/fm2+UsODV+N7PKQQ9OqxIDJKYXdLMqNQ58nCZh9q3RJeHn6ZknIg5xzaRP42Wx37XvlgsatXi+8xV4EyU/41RaHPYWtsZMe3kqZFaaPooKXTUKNRlIPEth309oGGeYXn2+twLlpE7a/xzZuhpsg5YCySooUYI2xPCYfp+1Ga2blmbBZC//om2Hcy3wr5l2VWSOHOy6PN7JhP5o4my6ZIOj5QNcs/wMh/IMWR/807oBm7Zrywysijtc6Nbomcf1PuZmAZS7xXIhH6XRguGNgcwCo9BDCbBPb/BVYh2e2w68FlVVX+fZzybyH0T02nEXn8cQCA7POh5tLiCfEGydVSKYGQ28fYuaS2p7Sjg047UBRLUzYSFfT70+350L+Krf96oTE2DkySwjWf9O+dhaR/A67Fi8nxhsK2//grr7BsoksuLssab+fO7a0aeY5DY1Ea+tc/FceQ3nN/5oIAXPZ8gXd5jYTaDCleTtaYZy0JUx6K9P0bgX+S1wu5rg7DISZQzJH/6qJs8n/DDTcI/2666SZ8+ctfxte+9jU88MADs/Ee5/BaoZykfx51XNpn2JoidtIgmyYjtgB9dGG9+WYVKv8AYNPJvxKJUBLosEns4m/Y6TMxkZyaQAz8m2Xb/yyN+RsJJWmFd21XHbPzShIbK2XBvrmW6/u3bP0vkPTP93g655ksVgXybyj/HezxJRL/Ddt/c40LkiSJ/f580n//phy7/w9M7f48VuvqfzSVFSy9o2HymhPcPp1V9c+XV/45y78y/xpaqXctWUIXFk0f/hBxsQAI3fsnJA8cRJr7m528/bO2DZqfnBNqJc5tYIX8c46jyDBZeNlkyTQ5HpEReuwe9yzFFPyYiqXxu5cJMZccDrT/11dob3Z9Kgp/Ol7WmD/e0eFob6MFn/TAcUvKsY9L+3cfZ84q1+IC5N+A3VM1tTSczOC5Q4Qst/nd2NBdvF+Vzyk5q4mcoxIcuTfDrsEQJbRnzAvgyy9/Ge9/7P348JMfptuI5J/sh5LDQYujvD30gkVNtCe6ze/Gombxs5hMiOeHeDZOiL+h8PPKP0AVYXsjFxo4UZ71P7G/j95+uWEFJmPF1VZJkqj6ryWTSGwjDjOz7An+/MP3Uc++8m9x6oXJeXm6fQG9ndiXQ/75FrYqtYulsgqiqSygafAnI/T3aiRK2zGsKv+dPqBFCgIAwu4O4T6zBHIAM7L+2/3k/SlJG0KKD16nDY4ZBjmWq/zHnn0WaoR8brVXXgHZLZIrTdMQT7M1hZfr++dH/nkm2TkxN+zNDMK0Awuhf5WM+aPbC+P+Zpj4r2aAwa3QNND9S66thdNC0GulkF0umnGQ6u2FlskXeIQRf5dYG/FnQHI6IfvIubRBdxYqqoa9w8TJIvT7m1j+AaA5yrY55qo33cbeymU9FCD/mqbR856jg7jReIfknO2/uqhaz/8555yDJ54oL/hkDic5KiX/fo78h04x8j+2hyhDQMF+f2Bm5N8YhaNEIpjQF3ONPher2NZx1fMS4/5OqO1/jLt4VjHpfwen0q/L7T02rJXxyZIuiIpC//jiipeRoIILPgMmyj+/8EkXIf/prEoVKyPsL3WALZZp0v/23wO/egNgqKVnvR/oKd3PV8j6b6TmjnEOh4xDL2zExsnfkWv5l9j37Fq6hN62BwJo+qfbyA+ahrFvfIP2rwN60j8HqcvEPVGm8m8P9QEAlrTUmCfN9z5Fb/pWXk1v3/nsEapkSLIM1xL2d7TFJ0uPNuPAtzjYW1rh0IscWjIJxQJ55G3/vmHmFhDIf+sq1mdKN24WAgZngqf2jdHshGtWt5VMBedzStbVs899c19hYiX0+y8I4JURYql+dfRVqLosqwjkny0sDadBllP+nXYZX7tpHc5f1IivvHl1nrplpvzzUxlsDQ1ipkfcIP/sd2ZTHIohfkw/tiQNWwPLLKmtPqHvn7h5SiX9u7ii4tis9PyT84skWc++oOflbIK6KGLdrCAczR2tJrQQVkf5N86hnmwKzqz42UdH9H3WYuDffDvbfybtosskM8RcXMK1oPtsVsg48gwbBWcBjlq29FYSsnAdrxRCz7+FfTFUJOVfUTW8+2evYM1/PIa7t5DzumcDF/qnF64SaQUNEUb++OkgheDgVWALff807M/thmtheaKDa9kyppzvrTDxn3dc9W9CJmaj7T6e9etJG8gswm1Y/zOZvHG1mqaxsD+HA77zziv7+Y1WK1+SuWeMwu4mvt/fJOwPALLc8dFrryMFuRwIEy4KkH9lagqa7oZytJNz3nBozvY/W6jKXptIJPD9738fXRaqfnM4hVCA/I9HUtg+ECysdPHk9VSz/fNhfwX6/YEc8t9oflIsBEP5RyaDWJhU3ptruVFBQuhfcTuxEQ4FAOHELCv/fP8xP9VhhtgxEKS3eQIPgKl1agZIRVAM3Q0eOgpm5/GQtR5eXhniSfEIR/47TMi/Wc+/YPsfyn0EBa/KGGP+kpxS5l62jKj99/0TK0T1XAJc9cWif4qBQon/hrti3FvP3qfGjTIa3S1a/pdchVQfK2K4l7L+QwAIvPvdsOufTey55xC8m6lfztzgpxyin7X7gCbx+UzBFZm6Qd5XIcs/n7rduO46XLOKLDjGIym6gAXE76klPo3uhjKUf27hYm9pgbOLneus9P3z5L9ulLwn2euFvYNTGx1uoDln2kMVx/z9hbP8X1cg5Z8Hr/yv4EwnrxwtTKy2ckn/Z8wPUGVeg4ao3p/NW34N5R9gi1E1HIaWZee0a1a34XcfOBeXLxf7/wET5T8TJ+NYjedvbDBV/m2C8m993J8SnERqipxf1DoZcYfHktrqO49NDTFC/0Tln5BvnvzXzmP762wq/+1+tzDGqyiESSzkc5M6u5HUc2DywslmYcyfQf7rOcu/geiQS3hvpdCusev5EMRjTUj6568FkgSsvonc1hRgz58tvRYA2L2sZcaWUGZs+QdE5b+UC0WNxRB9+hny+vX1eaRx5/Egnj88AUXV8IUH9mAskoRryWLqyolv2wZN0zAWSaJVb61Iubyw+f0oBUH5L5H4r4RCtKjsXr4ckr28iQiyxwPXIlIwSB0+DDVduiiShxqR/Isj/taZPKC6cC3lQ/9E63/6aB/9fLxnnFEwsLEYjPOtPR6FrBdmjfWTEfbnddoEZyUPftLNqLcBB0by12n2ltLfudmYv1GO/LfOKf9VRdnkPxAIoKGhgf4LBAKora3Fz3/+c3z961+fjfc4h9cKBvl3eOm801gqi6u/8yxu/OELuGdLgcXuqWz75/v9LSj/tkDANOCkGGROSfOmycmtibtwl5P4zysGkdlU/pUscEQn/+76ooWRcsEr/+tzlX9hpnRxZVWSJKzRL1CTsTQN0SqKArb/3OCZPJj1/HOqRzHbf7Gkf8nhgGvrF4Hnv80ecOZ7gXfda9n2vbqA8j9mkH/O9p/JcM85ukdcwK68URhJxivmALEktnz84/RnPsTMwZFiAELiPwAMepcDsgWiwSn/8yWD/Nfnb6cqrDjlqgO6zsJHL2dq+o+e6UU6SxY2fHtGW3yqLOXfsP3LPh9sNT4h28BK4n+N3vPvzqbgD+phaYsX5/dptucsKqvU7x9NZfG3g+Tc1VzrwhkFRvDx4Bf0LXKGFtg2900LmRIGNE3Dq3rYX73XgfZ6Gx29BwChFNkneZu9TSD/9cYTQQlbC1KbSOYE/mXjUKY55T/QIBT3mPLPSGw5if/Jl54ENPKdhRvJgtuK2mpvbIRLDyFL7t2L7NQUU/41DV1eCdmpKToCEgDqF7B9rNrkPxTPYDpOrhuW+v0NmI37q3Wjz6+fK48PiGNAhaT/6ir/AZOicDoIpCM24uyyUARuzDAFuk8VjzX+WmDPvRZUaP13uNi+4kskhSJ+peCV/4kS+2Lkqadpn3jtNVfnrWGePciOhVhawbcfPwhJlmmyvTIxgczAAEamYmjW3XOJxhZYgYNrY8mUsP3HX2XrsXLD/gy4DOt/JpM3YtMSfNzfFZ9gLSWY3X5/A8VC/6LP/o3eLmfEHw/DaSWpKvxZsk/sHgzh6ESMtgqeuaChYFsKv9YZ8TZg/0j+OdshtHoUIv/5ay4+8K99TvmvKsom/9/+9reFf9/73vfw0EMP4dixY3jjG984G+9xDq8FVIVV6wMLqOV092CIXnSfO1xgsSTY/k815V/vZZNsQNsa0000TYMyTv72ci3/AGDzM3Lm04NS+At3Ocq/yy7DqZ+UZ7Xnf3ALmWkMAIsut0bcLEBVNezU+/Nb/a58a5eQ+F/awrmeU4VzR9aYQrD9cz3/xoVIloXZxBROH+DUizh6z7+tthayHlhWLPBvjLugtdS6oCaTSB8hdj5nvQrpsJ7ALMnAtV8Drv9WWZMVmmtdtD9uzyAL/RsxIf/ZGHcJGN4J7NNzW2wuYNk1SB5kSkMu+QcA/+tfb7ooc87LIf8d62liOQBszVq0b/qaSfAjgHlSEeV/aDtzcSy8BLDZsbqzDpcvJ9/dUCiJP28jixS+PaM1PkXnqpeCpml01J8R3MY7HNIDpcm/V+/57wkN0+BDt1k6c8d68We+CDYDPLlvlBZBrl3dBlsJyz+QM540EsFZC8hxEkpkcHAsn3gdnYjRa8TGeQGE0kHh/nCaLA7Nev4BMYSKD/0rhlzbfzKbRIafJpBr+9ePe77dQClD+Y+/8hK9PdBA9rFSaquBGi71/+hbbsKb/vtDuOehz+GhBz4D23WX4tD5FyD4+7voNr55XVQZrrbt/9gU1+/fZL0IRnv+AXpeDngdOFLHCmsp7twhXMeqTP555d8YIwcA0SE3UeSTpa8Dvjg7Xx9KiQUxkZSIeQBoXQm06CF0xzeLIclFYHeyz70pEaqK8s+PwyzlQjEm2QCA/+qr8+5/9tC48PMfNg9g33BYHPn36quY7B+CXVeLs83Fg0MNOMpQ/kNcjpjvgvOLbFkY/PUpsX17+U+QU3ilyr8sw722yKjaKoHPAErmOGpihuUf5Y3448En/q+pJdekQ2NRPH2A7QOF+v0BID3IkX+fufIv+/2Q9EyJzFgB8j/MK/86+deVf0nKccfOYcYom/xffvnl+Id/+AfceuutuPXWW/Hud78b11xzDQKBAPr7rSUez+EUQGSYWY45yz+vpo6ECiirngBxCwCnVs9/OgaM631hLSsBp/liSAkGafBKReS/li2mawzyX8j2HypOKCRJoqrBrCr/nKUai6+s2tMemYgioveI5an+QFnj/oDc0L9g6TdQyPZvjHZqaSlsNTSs/1yvp6EqZ0ZGBMsyD0H597uIGqGSBZS7Rr9wuvzAO+4Bzrmtol5vQ/2PpLI4NkVUVxr4x9v+gwk2tmvfg4LlX3PWIHWIKJD21lYhid2AJMto+fSnhd/Jfn/+tk4fpBa2CHsi1CWESRWEJFHrf5c0AY9Nw/I2E2tpgf2TV/9/+HQvsooqODRaY1OWA//UaBSaPivaKAjx2QaZ/tLk32GT4bTLWMgVRd0rTMj/LCn/j+xiStu1q0tb/gHR9q+Gwzi7hxGszSbW/y05lv+ppLgNU/651imOtNnq88f9lUKu7V+DhtQEl8/QkBv4R55XsP1PWSf/iV2sp32XHn5qRfkHxL7/7PAw/JEp1GSTsGlq3ra2ujrYOzrownc8kip7JGExGP3+QJnKv4kjK+BzCuTfcDMB4Gz/EptmM0MYnzev/NdxAlR0SC8kWwj9k0Js7bo7Xi/cV9D2b2Atp/7v/mPJ14KmwSEH6Y9NiVBVev4dNhn1uiun1L7Ity0654ltGKFEBtv1a6dx6VE14D//shduTulOvLoN0T72udk6cgojBWDnxr4VU/6VUAjRJ0mOiy0QQM1F5uNtS8F3DmtRjDzy1/KfgLP9KxkJqRBZD7iWLq3IZl8u7O3ttN2Ct/0r0Rhim7cAIK5DZ5l5CPT5ufGq6/SlqaJq+OWLrJBVqN8fADLHybUsJdsx7arF/uF88i9JEg39K8f2bwgWzTWuGQdizkFE2Z9mT08PxsfH834/OTmJnp7qhYDN4TVGgX7/IZ78cwqmAEkC6nRFLDxoyXZ3UmB4J+iMoM7Cdq6ZhP0Bou3fVPmvaQNkfTFQQvkHgFp94TCro/4EcnVF1Z52O5fKnxf2B5RP/rlxfzushP6Z2P7VZJKGf5la/g3U6velwsCzXwc0Dc5Ofb9XFGQKXORybf/JJ39Hf3bXZ4gy9r7HgSWVF1nMQv+M5FxvfR0NncyMjAJNuqKf5Yp5q96E7NgYHd3nWlq4P9937jlCynDBxOeFlwIAUpoDryhLhb7wYsjUEaXQISm4sCUJp93kslVg/9w4L4ALFxOi0j8Vx4M7h2BrbETKTtSb9sQ0XTCXgpD0ry9knF2skFAs5JGHz2nDohAX6Gam/LeuJs4P+iBrltpiiKWyePoA+RuaapwCiS8GXvlXwhHhcS+bkP9XS5B/Q/k3lPbc1ileibKi/KeVNH1O4feT7Dxta2gsHfg3aY38a6qKxGHy/dncCnZ5yKK7lNXagPfss1Fz5RWA3Q65pgaTbj+O1zRjoHkevGedhZpLL4X/uutQ/9a3out//xey04lm/fqQyCimgVqV4thEBUn/gKntv8HrRC+v/POJ/8Z1rLYdsFdHwaPKP5f07z33HFrci407yShTK+P+9PenahIOJOpoQCjAyL+toSEvER8AsPot7PbOe0qvd1JhODxsX2lKBoWRvTNBo67+T5ZQ/gu13ADAi3qvPwC84+x5NBPlhcOTeNnZBthIsTix7VWkuHOeOzfnpQBkj4cWh4sp/+G/PgpN79H3v/71kJzOgtsWg2v5cprIH9+yRSjmWAJ37k1OOmi7jzH6cLYhSRK1/mdHR5HVC6LxTS8BughVc8klZY3442HjyP9SDytADkyR9UCNy47VHeZZDpqmUdv/ZG0TIEnYNxI2LVAaQY9qNCq2BOnIbbXMKiptc5oL+6s+yib/harO0WgUbrMT4xxOTRQg/4NBRvhHQynTnk8AzPqfiZccV3fSoMx+f6BS5Z+dSGsyJj3/ssyKJxbIvzECK5LKFv4+ZoLoODCkt0O0rgFqrdn7rIBX59eb9XKbLDKLoaXWTXvDdg+GS38eJrb/LJdAXJT8r38Hu/3UfwKP/zscHBks1Pc/rs/qtkHBqv3fRerJ39L7XMuWAR94GmgxIYRlYE0X28d2D4agqBotOrTVuWj6bnZkBFpzjm3f5gKWXi3Yds0s/zxa/vVTdFHoMlOyAeCST2Pvyo/jvZlPYQJ1RQPjeIzZ2XdwfoNJD3himrSlAEDzcnbs6PgYp/7/4KnDUFQNo7rLo8XiHHAgP+wP0Hv/9b7xjAXbP0BC/xYZyr8k5QUpAiCuoyZu5GMVlP+nD4whpVv+r15lzfIPsOkkAKBGwljZ7odPn7awuW8qb01gKP92WcK6rvo8VT6cIotDg4Dw1nugfOU/9/kNpDklP1/5NwL/uJ5/i7b/dG8vVL3FytuURh/IsWTV9i/ZbOj+wQ+wfNdO+J98Fu+65t/xgSs/g7vf/2XM/79fo/tH/4vOb30T7V/4D2qzNqaCANXt+69Y+TcpygZ8TvT526GC7FfUopyOkWkiQNXC/gCS6wKIyr+9sQk1l15KflAlxEZc1kL/9EyCUQSQhoN+xlo2S4/7gteC+nnAPD0wb+IAGxVcCLEJ2N0KoLf9NCVC1SP/epEollaQSCsFtzPWMHJdHWSXWIzhLf9XrmzFHdey8NEvP9VHi5WpQ4fhOMKyKfw91r9bu3H9GR2FpuY7XgAgdN999HbdjTdYfu5cSJKEutezaQbhhx8u7wm4c++J7vc34OZD/w6S3AJxxF9lln+A9fwDwAJ7voB0dk8D7AVU9+z4OE3oTzQSR0ckmRVS+g3wjo+sifWfhiTLMuytrRiPpmAs3+bG/FUflsn/Jz7xCXziE5+AJEn493//d/rzJz7xCdx+++1461vfivV6GMgcTgPwvWtc4jZv+08rKqbiBdQOIfTvFOn7ryTpv0rKf3NNjhpiLJJSYSARLPp8hvKvaUDMipW6XBhBf0BVVX+AqfOSBKw26+UuU/kHWE94NJXFkYn8JGgBPPnXCWFJm6eB9e8QE/hf/B4c05voj4X6/kfDKXRgAnc5v4SW7T9Acpq1Fbj/+W4xSbtCCKF/x0OYjKWomtPmd9OFrJbJQPHm2AWXXAW4aukiAxDH/JnBtXgxun74AzS8971o/ufbzTdy16Hh6jvwgkqyNF4+Yo3892bZMbbWa/KYI88wx45JS8o5Cxtxtt6n3jsew69eOoYRfayjU8lYGtEHgPb7A2J6seF0yI6NQU0WcENxqLVLWBAmBSbn/Pl0znIe+L7/KvT885Z/Kyn/BvjAPyUcgd0mY6MeFDgaTqF/ihHIYDyNw2PkmFvVWQeP02aq/KvRKF005iqPtjJ7/nP7/eljLYz6k51OWtzIWlT+hRnnbTZaVLBq+zcgSZLpmD8z8NeHapJ/I+kfAOZXqvwbtn+vE0m7C0P6+St14ABpfeIL2FUa8wcA05T8s3O8vakRNZddRn+ODrpL2/7TMfo3DGjkXGMUSrOjo7Qlq+i1YM1N7Hap4L/4JCQbYHOT561Wzz8gigjF+v5Z4U089jRNo2F/TruMc3sace3qNnr+PDIRQ187K6b27GbZF02LF1h+n0biv5bJmBb40n19dJyga8mSisP+DPivu47eDj30lyJbmoA79yYm+aT/9TN6T+XAxfX9pw4cEEb8SS4XvGefXfFz88XWFi0Je05RuFi/v2H5BwCZa/uoJPSPtlq2tkKy2+fG/M0yLJP/bdu2YZs+3mPXrl30523btmH//v1Yt24dfvnLX87iW53DCYUF2z/AAjny4OfUt1Ml9M9Q/m0u0vNfAMJ86pZKAv945d+k5x8Q+yLLGfc3G6F/s9Tvn8wo2DdMLhKLmmvM+x4rIP98+8AOrq3AFIbt3+4BHMaM7SLpzrm44Hbg9d8GdLXLMfUCvSszaK7890w+g4ddd+As+SA0DUgFyd/t6OyEraE6vd0ttW606mrh7qGQcJy2+N10RB8AZKQcJ8eqNwEQA7tM1ekc1F56KVo//a/UEm+Gtjo3JRnbB4KCvbYQtscYaeuRTWZpW2hJ4Xv/v/XYAYxwKrBVu352lCP/3N8oJP4XCXo0MD8+DqdKjlOaRG2G9e8EZDspBM5wtGYireCp/eT9N/icOMei5R8A7TcFQNP3DTIAiCP/jJR/ADhjHllUmvX8i2F/4j7P21CzVpT/pPl5QZ0KAgAkrxeyxwN46lkrRYwr4Orqv9UiUGLrFnrbs6TdstXaDOKYv8Lkn1f+qxn6Zyj/LbUueJ1lJM4LPf964J+PnMeMvn8tlUL62LGcsL/qKf8s8I8p/7bGRnjPPguSi3wn0WEXtGiJ75V7f8d18m8UWDLFkv55rHwTOVYBYPe9tGBgCt3B5vCSc18gGUadszr9zHz7oOGMyIUSjbHskhzy3zseowLP2Qsa4HHaIEkSPvd6dp66K8GOT38sSG/Xzree5WBYwAGSj5OL4P3309t1N95YsaXdgHP+fBrOl9q3D6neXusPtjkATwCaxsL+bIF64bw/23Bzif/JgweQOniQEmjvOWeT81uF4M+3ciSEJa21wv1F+/25NU7NAnZs7zPp++cL5rktkWo8TotAhjAxN+ZvdmH5jPP000/j6aefxq233opHHnmE/vz000/j0UcfxZ133oklJayhcziFwJN//YKtaZp18s8r/yVC604KJKaBqSPkdtuaounqM7b9m5H/POWfU0hKfH48aa5637+qAoefJLedNZZIiKaUJnQAsG84jIxC1Oh1BWbIlpv2n/tcJfv+DeWfT/ovNeYvF2e+F3jLTwHJBqeP/e3p/mPidtkU8PCn8W+R/0S9RBS3jNQNNUtOw6a93zPA6g499C+ZFQham98tjltKc6FFuuUfABuLJMsVhwmZwSCeaUXFtv5gye2fm2Dvrz6ZQ641je2fdg8wzzwR+qIlTbQoFEsrGOO/7+PWipO8WuFo4cl/eYn/C6bZ60lLihRVei4C/rUX+OjWguGjVvHMgTEk9ELL1ataC9o4zSA7nTSpWTXIf485+edzHM5cUJj8KwWS/oGZKf8Nbq6oESSFPxpoJduAWl2d4gifTe/7V+NxqInS40ETrxLyL8ka3MuXWbZam+H4FK/8F/6O+aTrain/0VSWqsMLyrH8A6btWAEvIUZHhdC//bMy5g9gbRYNuvIv+/3EyeF0omYjOZcqKRuS+w8XfA4Awr5gKP/j0Xzyn5f0z8PXCCzSC4/hQaD/pcLb6i4Du4fsKzZoCCQsTKaxgEYfR/4LFKOUicLrl2cPsvsuXsqOy7Vd9XjzBrKm21qTT3rjTq+wrikFexEVWFNVhAzyL8vwv+H1lp+3GATr/1/KVf9bkA7boWbIedOz8YwZFyTKAd92lzpwULT8X3yJ2UMsg89YyU5PYy3nGvS77VjRXvh75VsbW5axNYJZ4n+x75wvABlhf7wras72X32UXW78xS9+AX8ZB/kcTlEY5L+2A3CQAy8YzyCes7gZLhT6x/fdngq2/6Ht7HaJGfYztv1zPf++TAI2WUJ9ru2vzrryX+tmik2k2sr/yA66WMHCSwF78dCdsW9+C/vXrcfEnT8u+dRCv3+3ieUfMLWXlsKarjqaUswrkXnQNGYJFZL+udRZK+QfILbPt/0WDj8bgZjZ/hRgqFKTvcBPrwReuZPe/6LzfCQ3foH+bDrybQbgrf9P7GMX2za/W7CwZoIpEjAHkORqVy00RaHqiHP+fPOgqwpxTg/7Tl8+WtzNMRVL49WQDxmNfK5ysE/cYGwvmUwCAAsupOeqXEiShI9dxtR/Xvm3otYDQHacV/452z+f+D9Q2kXQNcm2UReWKJh76ksec1bw8O7KLP8GjIW9EiH787ruejpidHMfI/db+sSwPyCf/IfT4RzlP6fnnw/8mw6WfG88+Z9XS74LSdUghUmBjR//Rm3niSl6bNr5xP/J4gXG7OQk0sfJ/uZuyEBuXSJYra32/RuwavtvqWX7dbWU/4ot/wAJ7TNGneqOLIdNRq3LLob+7d/PJf2jqrb/XOWfLyLVXHguvR151Tr5p8q/vq4RxvyVSrNfw6X+77q78HY5yj8A1EWrk4vUyO+LBdpQCo3YBMR+/4uXimubf71mGdwOGZOeOox6xXGI4fry2pKKKf/xVzYjq3/uvgsvEAqtM0HtNdeQPCUQ639ZUzNqWsR+f27k4YmA7PPBoU9lSB06hOjTrBVzJv3+QE6xdTootF+e3dNYNBuGd811rVgEh41sa2r7LzLlQRynSa5P/NpgebvoRpjDzFGR12jz5s349Kc/jbe97W1485vfLPybw2mAVIQRrQJj/gyMni62f4thfwCQHePIf1N5Fz1ATM+uySTQ6HNCzj3B8vbIUrb/2VT+y0j5T+zajcmf/ATIZjH5k58UDPIxsJ0j/6ZJ/wAhPi69WGLR9u93O7BMt67tHQoXTsdOx9g4S478Z4ctBv7lYtm1kN/zR9rLmZmMAb++AdjyC+DOi4GRnQBI2v3nMv+In7V/AcmjXFpyoaC8CsEn/m/mSFmLnwX+AXrA4a0PAu/8I3DdNwAA6WP9tCe7VNhfuThnIZcWX6Lvf+fxIBTYcFzTj7Opo2KadhktKVesaKEqxqiPJ//WbP8Zw/YvScJx7xSU/9IBnW3jbJvk/EWWXnsmSGYUPKkXf+q9DpxbpIezEIycEkP5dztsWKcX7Pom4xgLJ5FRVOq06Qp4qFXT3PbPhfHlnEPtwmK0NCniyX93LSma1iYASd9P+DGCZudVOxf6p0wWLzDGt2yltz1NaaBhUY7aWl7f//Egs/13n2Dl/9Ao65Vf0FSm8g+wbBKuKBvwOXOU/wMi+a+S7V9RNQQTGbiyKbiz5DPnv8eaSy6lt6N7SqS7cy7H43nKf/7s8YJYdi0bcbzjLuD4FvPt9OuY3cuuj76wNVdbKfAOwvECyn8h8SKZUbDpCHlvrX4XvYYaaK/z4LaLyflqb8MC4b5kQ3kEXVCBcyzgfNBf/Y03lvW8xeBoaYH3HNIbn+nvR3JXiWBGHr4mavkHAM8JDPszYFj/tWSS5iE4e3rgnGH7Qe759qLFTbTv//q1xcOd+WK3Z/48LGomLr3e8RhSWVEotHMFH76FDgAyQ4wjODo7kFFUbNLXBo0+J1aYjfedw4xQNvm/6667cMEFF2Dv3r3485//jEwmg7179+Kpp55Cnckc6DmcguAt/w0s7C/X8g/ANNUTwCkT+KcmElBTKcthfwCXlOvzQfaWb8cVlf9kvuUfKI/8c66BSKra5P9JdntRcfI//t3v0ttqNIr00aNFtgZ2HCdWR6ddNp/dbsBQafVFk5pOY/r3v0f0+RcKPuQsvSdZ1YBthdR/k6R/gFk9Ja8XcrnntJ6L4VhAyHI2IUPt3wo89HEgTRbaqbpFuDH9RfxGuQotdW6k9rJZ2K7lRfq/K8AaroKvcFMP2urcsHMW1szwMPn7l1xFcw+o5R/Fx/xVgq6AF5315HVe7Z/OWyTw2KXvI/2avljMxIR+bWH/LEH+JUmiyf8VKf+6VdHW2CiMphN6/kso/5qmoWmEkKEpVy0StfWWXnsm+NvBcerYunplW0Xzko0JJWo8Dk0fL3UW3/ffN4W9Q2EkM4TQGKo/kJ/Gn6v85wb+SU4nDUG0Yvvnn7/bT74LP+PUovLP2851O7qNcx6UCv2Lb2GEztuSAhoWimprhcp/rcsuZLfkotkCqSsXj+xmpHh9oeJrMRiurMQ0oJACa8DnxIS7DiG9TSW5fx+z/Us2URSYAabjaWiaGPbHf4/27sVwN5CiQGokXny8m5nt36Tnv2Qh2FUDbPwHcjubBH73VjE42YDhlPCw8547aM3VVgpNVpT/cU75b2bH3pa+aXr8XrSk2dTWftslC9Hqd2FPDvlXWstzEwnFZ04FVmMxhB97DADJGqm5/PKynrcU6l7PWghCDz1k/YG+FiQm9HO+TYZ71aqqvi8rcHGJ/wb4EbuVQnI6IdcQ0q4Eg1jQ5MOfPnw+fnbrmbhxfWfRxxq2f7muDrbaWlpcV1QNvWPiOD97UyOdCJTNcXvkHmc7BoJUtLlgcVO+ODaHGaPsVcBXvvIVfPvb38ZDDz0Ep9OJ7373u9i3bx9uueUWzJtXvTCXObyGKDjmL5/8j4QL9Eg6fYC7ntw+SXv+kwcO4uD5F+Dw5Vcg26uTf2ct0Fhc6TTIfyWWfwCQfV5qP/NlEvlhfwCZhyzpFvIybP/hRBVt/4kgMPAKud20tKhlM755M2LPPy8+fMfOgtsH42kc1WdMr+rwm89uN0AXmUFAySJ4110Y+cIXMfDBDyLJhdLxMPqNAVH1Ft8gp7boyr+mafRC5Ghvr6ivz7nQIMsSsnHWBoD178TLV96LfRr5HDu1JGIvvgiAWO8cnSVspWWi1e8WFEP6+1o3CeXT/zazwKVyxvxVAkP9T2VV7DxeuN/VKBD1aUwpogvqVJT11tbPBxpLq+jXrGrD0tYaRB0eJPQWgbSFnn9NUShhzbWh2ltaaDEgc7z4uS47OgpXnNiUe+s6qjqzvRAe3sUWVteuqWxMJz+hRIkSwpXb9y/0++vkX9VUTCfF448o/8XdU0YIlaVRf1zgX1cNIZf+OCt22Ro4izJ/DqPKP2f7LxH6x8i/Bm9TGmhcSHv+AWCiDOVfUVmGTleDt+i5pt7roJbasUKtdmUgFM/g6f3kO2iudVXkBoGX+970QmqD1wFIEo7oxX9lfALZIZ38+zsBWxmhgkUwbRL2x3+PcNagppMVwqN/+1vhJ9OdCZokYwxkn6Zp/7odWXI6xSJSIVz1RWD+heR2fAL47c35WTW67d/O2f7tU9Uh/41C4F95yn8xy78Br9OOT1+9HHsbe4Tf20q1ROSAV4EznNMu8sQTNIzQf801VW03A4Daq66i5+rwI49YzifKohbpCHmcu6ctbzziiYBrWX4RfqaWfwOG9d84367tqscVK1qLnpO0TIauHZyd5Hhf1sauE7nWf8lmo/sbPzkHALJDzGFjb2/Hc4fY8XDhkplPuplDPsom/729vbj+ehKc4XK5EIvFIEkS/uVf/gU//nHpPt85nAKwmPQPFAn8A1jfeni4ePrta4Tg3XdDSySgTE4isj9IftmxnhJzM6ixGFQjKbdC8i9JEqBXWmvTCaFaT2GzM/fEa2X7P/IMoOkXxyKqqqZpGPvOd/N+n9i5o+BjeMJXMOzPAF1kakBiGrGX9YKEqiL8F/OZvbwquaWvgKWSX5TpY8CUYBCaPq6tLMs/B0cnq5annUuAmlbgTT8GbvwfDCdZMWDFy49SFbXuLW+elQAh3voPEJdFvdcByeFgF2LO2mpAVP5ngfxzxPHlI4XV1p26jXzUzn0X0zr573uetW0svpIWM4pBliX85B/OxG2XLIJLt+tnhodLLgKzk5OAvg3f7w8AkizDoY/7Sw8cL9pLmuScHkfqOhFPlRcQVy6I5Z8stPxuO85fVNlCyuZn+5Fh/T9jfgCGIJNL/o1RgJF0BFlNLHCE02EoRWz/ALcYDYdLfjeG7d/v9KPORd5nHaf82xs4Yis4qgjpszeyfZEfD5gLJRwmPewAXPVZ2OoCgCeAJl9ptdUMY5EkDTwt1u8PkGuGof4XG+FmFX/dM4y0Qq7Jb1jbUbSvtyAKjPsDgCN+drwmR/U1QuvMxrXxMJLsA0lxzB+FJKFmESOO0aefKfxk+vVV8nfBrztOxiMpUgjWSYm9vQ1SkXUBexMu4G2/IcVyAJg8BPzh3STs1YD+Wcledp6QxkUyVClm0vNvhP1JEnDR4sLniTdt6ETt8mWI2dnn6+kuz9Fhq/FRtZnv/w5ylv+6N91Y1nNael2/HzWXErVcGZ9A/JVXLD0ukVpAb3vPuajq78sK3MtE5V/2euE544yqPDcttoZClgsimZERNgZTd78tF8i/SeifPiVHmZiAlmb7Z262xvOH2T560Rz5nxWUTf4bGhoQ0UN/Ojs7sXv3bgBAMBhEPB4v9tA5nCqwoPy7HWTXGQ4lCy92DfKqZoBYdS5u1UTsBWYbT4d1RaKjeC/XTMP+DChecuHzZRKm6iwAoE5fqCaDQDI/QMWAEPhXTSXRYr9/7PnnkdhKemEd8+ZREpbcWbinTgz7qy/+PnLG/RkLcACI/PWvpvtfR72HWsu39QeRUUyKTya2/wxXgXa0V6aSOjrZQiiz/hPAJ/YD694KABgLk0WgU8mg9Wnddmi3o+Hd767otUphdQ75b/O7aZHBrv99yvgE1LS4UDSUf8nlgnMWHF1i6J854RoNJ6kCZ2vkpg0Yyn+FIyjnN/pwx3Ur4DdGE2UyyI4VPz8JY/5MAqiMxH8tmSw6Mi65nyf/HYilZ1f5f+7QBHUXvG5VW3GHTRHYhHF/5Ppf63ZgZQexeR4YjeDFXvJ3+5w22sZjNoYvkU0gYyj/NpsQOEVfz0joV1U6XrAQDPLf5GmCx06O+bJs/1yvOJ9FkIv41q00b8LbkqJOE0FtLYOYWw37M9CsZyhMxtLImp3PysB929h57sYNFTqOfOJ5GSC2fwBU+QfYKFNc9MnKXscEhcb88XB3BWiifmzTJvNJDskwuw7Uz6PX4oloCtlQGGqMuNOKJv3nwhMA3nkP4NPXB8eeB+7/KMsqiZHPKu5hLYNmc88rQa3LTo/xQkUiszXMaDhJydrazjr6PZpBliV87o2rsb+BXRf8PeUHORp9/9mRUeq4i296GQDgmD9v1vrq/deXZ/3X0mmM//Je+rPnHPOJMrMNR3c3JG6kn/f88yA7Zx4GC3Ahq5pW8nxrIMNNtnF0keOdnwxgRv75oEd+PzTclrLfj5jdRfOgFjX70F5X+RjDORRG2SuBiy66CI8//jgA4JZbbsHtt9+OD3zgA3j729+OK64o3hM8h1MEfJ+aQP5JBV+SmKIYTyuFCaefH/d3cvX9ZwYHke7roz+nQjqBnuWkf/r6PPkvdKHlVaoirRN8z3/VlH9hhJobmH9Bgc00jH/7O/Tnlk98Aq7FZFGcPHgQatLcGcKP4CsY9meA689WxgeEHu30sWNIHTxk9ihq/U9kFOwZMrmgmdj++V60onOdi4BX/jPHBwUniUFmr+jfAluEvCf/NdcIPZDVRK7y38rNC+cXtPziU00mke4naphr0SJINq51oUqY3+il72XrsWnT4gxfIKrr4FSP6RzyL9vJWLwyYSxYgNJ9/2LSfz75d3axvv90kb7/1D5WuOqt75xV2/+Lhyfw6T8y9811FVr+gRzbf5i5ds5eQAiXpgHTcXLu2TAvQJXkqYR5YSejn0dtDQHT/cvquL94Jo5EVh+X6mmCVw9c423/dt727+9g89gN2z+nfmaLBP4J/f7NJOwPyFFbC8xWN8PxaVahKDbmz4Ch/Gtaea+Ti5FQEpv0JO2eJl/eOcIyTMb9NVDyzyn/QTuw+iag++zKXscEVPkvZPsHIPmaUNNOrj9aKoXYpk35T8S76urnoUUn/xlFw1QfR27KvRYEFgBv/wMZPwqQ9P+nv0Ju68r/tM2PoJM4DXLTzyuFJEnUiVKoBcVQ/iWHg2baiCP+Sq9rzu5pwODlb0RKtmNX0yIsOHNN2e/VIIJaKgUlGETo/gdogaTuhhtmbZRezaWX0EyRyGOPk8ynIhj/n/9B6sABAIBr2TLUXnrprLyvUpBkWXDh1VxcHcs/wI1DhbUJK4CY9O/UnW8ttS7Ue8l6dP9w/prLLiT+k2uqpii0fcDR0YFNvZM0o+jCIg6UOcwMZZP/H/zgB3jb294GALjjjjvwqU99CqOjo3jzm9+Mn/3sZ1V/g3N4DWAo/w4fq16D2f5bal3obmCLlYKJ/3zo30nW9x/Ve60NpKjyX4L885a5lsrJf9JFPj8bNDTbC6g4gkXVIvlPVon8j+0DIro6tOBCGgQXTmYEwhJ57HEk9+4FALhWrkDt666Ce+1acmc2S+/joWkatg8QAuF327Gg1JgpH7sApPbtybs78uhfTR9W0vof55R/j6H8W5zrXATFSOVoOAlJU/GmXjant+E976nodawgn/wzqya/oOUDd1K9vdTOV+2wPwOSJFH1P55WsGswv++f/133Ii4MceooGZ1oFAHmnQe4yh8F5OTbM44XJuyAWBwxGz3lmMeH/hVu00nqrpWEzYlhX+Os2P41TcPPnz+Kd//8FUrIV7b7ceHiys9XNi6kVI0wwnV2TyBvWz7sLzfpHyAp/Ko+Us/eZP6erI7748P+Gt2N8Np18s9lTdl4279sY2Nog8cATRPT/osp/7nkX1f+m7i0/3Is+cenylT+OYeY4SCqBA/uGKIi9BvXdVROsvief135Nxb+dr8KSSYvkgw6gSv/o9K3a4qpqKH8F7D9A4A3gJpOtjaJPmPS98+T/8B84TOePsLuKznmzwxdZwBv+SkA/fN99mvAKz8BMqToM67WYsJTD4BMELJqty4Fw4kyFUtBVfNdcYaAYWtuot/9s1yPtRXyDwAfueNWvPCtu9Dy05+hgRtFaRVi4v+IkPJf98Ybyn4+q5DdbtReSZxiaiSC6LPPFtw2sWsXJn/yU/KD3Y6O//4vSFVS2yuB76yzABBHHj/RYqYQi63Wxk5muKwco+1NkiRq/R+LpKhDh27Hf+d6wSs7MQFkyZrS0d4uWP4vXFL5NWsOxVEW+c9ms3jwwQch60qWLMv49Kc/jQceeADf+ta3EAjkLwTmcIpBVdgFMbCAWbgzCk3A7az3oL2OnewLJ/5zI0hOssT/WA75z8btUOyNJUcRVUv5jzvZYq8ZBVSceu7zK9L3L9j+k1VSEk0s1b3jUVz69WdwzpefwOGxCDRFwfj3vkc3a/n4xyHJMjxr19HfmYX+DQYTdJG8rru+9OKTU5iSB/NnNocffcz0YTz532xG/s1s/+WkOxeA0POfM0ZuLJLCWaP70R0l+5H3rLPgWT17ycGtfpcwTaJNIP+cBY8n/5yTYjbC/gyUGvm3g8uFWL2gjYRgAsDUEaD3KbZhiRGUhWAsWIDSyj8fUJTb8w9AGLdUSPlXIhFqlTxa1w5Vkquu/CczCj55zw588aG9VD25dFkzfv/Bcyu2/AOArY6Rf94Wyh9jBgqRf7+TPIcvAZafUGBUqlXlfyLJFoqNnkZm++cc3oLyDzDrf4pYvmWvl9ppC6X9q7EYkntIIdPpz8DuVoEG0ori99jpaKxyev7Ltf238OP+opWH/t2/g+3rN6yfQcioL5/8N+g9/59x/gHOOlJ4SocdUN3VXcRP6WF2gSSv/OeQf08DfK1pWoSIPvNMfotYzhhCnvxH+jlyU2rMXyGseD1wzX+xnx/+FPsbtBpMePTibDZbtOWkHBhOFFUDgjlOQC2bpbkWRuFNUTU8r4f91brslic/1Ljs+Mg1q3Dp8vzzoRXwFvDwY49RJ6b37LPh5AroswE/l/offugvptuoqRSGPnsHPVc1ffhDcK+o7kSectH4T/+Elk9/Gt0/+TEJ7a0SbILyb5X8s+scfy3lJzflhv7ZW3jlnxTUM4N8qyUj/zZZwrkL868vc6gOyloN2O12fOhDH0KqhE1mDqcwwkOkRx8QLP98sF9HvUcgEQVD/05S27+mKIi/+FLe79OO5SVDw6pF/iNcWE4ABY4nk3AqM9Q47fRtV832b0L+v/vEIUzF0oilFfxmUz9CDz6IdG8vAMCzcSN8FxHrtWctswAmd+WT/x0DjNRtsLLQ4Mh/6ghzQNh0y2K6txepw/lFgSUtNfDrhZEtfdP5Cz8T239Zc50LQHY6aV84f2EDSJDUmw4zBarhH/+xotewCkmSsKaTXYx55d9eSPmfxTF/PMS+f3Hhq2kaDftr9DnRUecGAnrCdHwC2HMf27iMfn8eee0ZRSD2/Ocvdh1dvPJv7tLhsyqO6LPQ41Xs+R8KJnDLnS/hT6+yv+Ujly3Cz249C3WcO6gSyAWU/8YaFxY1sxnxkgRsmFdPf/7/2fvuMEnKcvtT1Tn35Dw7s3mXzbABlhx2AQUVA5gAMVyv+ENB8YoKZoxXQb0mVBQDooiCASSDwLK7bF42h8k59XROVb8/quqr76uu7q4OM7vLznmefbZnujpMd4XvvOe856XJf7tP+v78lCqfjfybDS5GlX5/ILvtPyOlXTfxX9oX01nIf3TXLqJOOWtlgi+Tf47jCOEqZNRfz0SBtn+a/AeLW4MdGQphb6+0IF/W7MNseS53UdCx/Ve4rFjP78Flpm2w++V9WxQRP5x5fi4FY7Kjhbb9a0dGwlkJ3izCWScn9w8OIr5/P7sNY/ufxRRYYlRBsNhCMABg3X8Daz+a8esx0auSf7Aj70pBtTu7EyU1Okas9cr6ZW9vgDiEzplbVdQo0GJAK//jv/s9ue1761vJbVEU8b1t38NnXvhMxtSQUuA6ex05L4Sef55MMKExfO8PyPrGfsYZqP7wh8v2+sXC5Haj6qYPwLWmfC00AGDyU+dbA+NVAUrY4DjmWsqE/vWzff90y1xqQCb/1JorWlmDY8PSBWJlix8ee2nXrRlkR8FH+dq1a7Fjx46peC8zOBlgIOm/qcKBeiqEYyDb6CHa9j/JqmGpsTGm5346Edu3H+mATECplON4Ov8FPjVUHvIf4NULtC+V5fMz2PPP8xw8NonklkX5Z0aotQJVc9E9FsE/dqsn6Wf39GLkhz8iP9d88hNEwbfNm0eUND3lv6B+f4BV/rtkEsZxDHGefOLfGQ/jeQ5nycrkaFgdLUigk/afosYOmUvow1cq4emRERI0JYoi3N1HsWJEWlBY29pI8vBUYik1TaHBTyn/9TT5V/9uZszfFCT9K5hT4yIL1dc6xpkQs57xKCbkBemyZp+0b1VS46U65bGS7jqgbklRr8+Q/3w9/5TtX6/dh1aqsrUQxOh+f/ncGCqT7X9rxxiu/tFLZIqGw2LC/71nFW7fuLC4JHcNTHTPf4BVc9ZQRZwFdR5mwaZP/ql+fK1VW3k9o8q/hvwryr9PPtQ5pxO8Q6Oq6yb+y+Q/ECATOGiEt24lt501MvmnRktWydb/0VAi57QHGory77GbDRVnastg+39sJ636l6iuaoJYAaDSweNO8+8AAHa/+jnSQZflgKL8K7Z/3uPJHL8mn9M9jer1Nfj88+w2mp5/usAiDKgF0WLzXwg23g0suJL51Ri8GFHGIUN/5GoxoDMoMsi/zojNQvv9ywU650YpKHIOBzwbNpDf7xjagfv33o/HOx7Ho0ceLdtrc2YzvFdcAUDKHAg+/TRzf2T7dozdf7+0rcUi2f0tb1wiypxvjSr/ssPNXFvLBA8upEL/DmpC/+jvPDUkk38qZPmQqBaSZ0b8TS0KJv8f+9jH8KlPfQo/+tGPsGnTJuzevZv5N4NTHEofLcAstnto8m/U9u9pBOl3C6gL4uTQEI5u2Iijl1+B0Esv6z/WAI4MhbCja5zYW42Ctvx7lqgX9fhk/tmt5VL+xyjy70ropBADknOCkw/RPOP+lAV3WXr+mRFqlwEch1/85xjoj3np7hcIYXKtX89UojmzGfYzpLFOyd7eDCvtTirIbVm+MX8A6S0VBSAuh8hYWluYUUDBf2eSf0AN/QN0rP+07Z8o/9KCz1RdXVKSLkMs5YvbRCSJqw8+T35feeMNxsZHlYh3r2lBe7ULy5p9uHihWnmnnQ109V1R/nmfTzfZvlyQ+v5l9SWewj4qIIguEJHiRQVF/hXMucTQiD89mDweEniVzNfzL9v+OatVN52ed7lI2ng25T82Bcq/KIr43audePfPXyUBXy2VDjzysXPwpmUlEhYKtPKfDmrJv3qM0ccbwJL/Nm8bAJWYAzls/7Tyn6MHlen5d1TBwltg4S0k7d+s14rob1NvK4n/dOifzri/6Fa63z8unZPsqmqrEK6UIGIymv87TQsiKagbUf0BjfJfxLg/URTx6C7pOOc44KpS9w+dUX/1R/+Mhby0/4/VqMpu/MDB0l5LA6W9QlH+Myz/1PtzN6qfVUbfv/z9gzcD3kYSqggA/DCV81Eq+edNUv8/NU2oX6xklf+B8iT+0xkU2jYUZv2ikP/DFPmfxh5rveK6d8NlMLlVAtgx2UFuD0XLOzHKK48sB1jrvxCJoO+OO4hDouYTt0xp+9vJAPp8mzJA/oVwmLSP0JZ/AJhf5yaX5Ezbv7qeSMr7O91yuDWm7rszI/6mFgWvPK+99locP34ct9xyC9avX48VK1Zg5cqV5P8ZnOIwoPw3+hyMfXggkIW8mq2SMgcwtv/QCy9AkG1WoRd1QngMYH//JDZ8/wW87cevYM3Xn8Ydj+zGC4eGkUjlH4FEj/irXKIy2vhwlr+DgnLx5KxW8F5vnq2zYwQqsRRDmSNRAAAmi1xAQV7yr4T+GVl45oXG8j8aiuOh11RCY00n8e6D6jY1n/xExlNk6/tPpQXskdXJJr8j+5hDGnI/fiJkhpiUvl/7goWw1NWRcUDxw4cRP3Ys46Fs37/moqbY/m1ewGSGSI18K3Wxx4T+ycRy8GgXzu/dCQCIOT3wvWXqQo1oNPgcePZTF+DRm9fDaVXzIUyVlSS8SHE8pAMBonLb582bssRlBdn6/vdQ/f7Lm+UFcqUO+S+y31+BEvqXHBjQVXwVKD3/5rq6rJ+JknicGhrSnXIRUyzHPI8OeQ56uMSe/+/8+yC+8Le9SMmVufVzq/DYzecyI5fKAbrnX5hkz1cbFtdjfp0bPocF71nDjvyiyXmbrw0Aa/vPsGorv6cKLLkWo1rlHwCcvB1u+VSeYfkHctr+ATbUFZB6f6OysGFxpWBxCozqD2is1gas/8fHRpA2SceZkX5/oPTAv53dE+gclaoi58ypQi11DS8Kdp86OSEyCsQC8LzyTXL375pvIrfpwlc5MBZOwJpOwpmSR4HqOUjk64bFlYatWSI3sd272e9Xua76mgHexHwm9jFlIkUleHuJnxUAWF3SBID5V2C47lz8PX02huXAP6B8if+5lH96DKm5pgaTsSS2d00AAGZXu5gg56mG3oQb2vIPAANh9TOJJMs7StyxcgUp0oc3bSL7xdD3vo9kp7RfOFasmPLWvJMBRgNWFSQop5w2n8FpNWOWvB8dHAwy4hxvt5Nzu7LOoEOWnx2TKKnbZjYmDM2gaBRM/o8fP57x79ixY+T/GZziGKYq9Dls/1UuKywmaRGcVfkHVOt/aBBISVXoGOUQoS0/heCVo6NEiR4NJ/Dglm7c8KstOOtrT+G2h3biydcHEEtmWmqFSAQRuW3F0tICh+kgeDltP9GR3VqvQCH/5urqoomRKIoYEtQLtHYxzUAJ/YuMAolw1s2U3vZEWkA0UaKVmIxQswDt5+E3mzoRk0n3xjPqcNWxl1EVkyq6nssuhWNp5pgfuu8/SvX9HxkOISp/L0aDhWD3AxyP+IRKXG0LpdFvno2qRVBP/V/W7CNBZxmJ/4rtX1H9B4dItb9U8m+lquGKDTz80B9gFqXPsevcyzPtyFMIjuMy9leO42CWQ/8UxwPb7z/1agfb969+P6zyn438c8Cci0t6feLQEAQSQKSFEItBkNuEcjkhLK2qnVzrJBATCZJLYWlvR8IkFevCJdj+x8MJ/OxF9Zr74fPa8ZsPrMk5o7tYmDyU7V+j/LtsZvz7k+fjtS9cisWNbNFBUf7dFjdqHJKq6A9Rtv8qI8r/RNb3RRcXFPJfk7SThY1Zj/zr2P5NVdQ4UY3yH9uzB2JCunap/f4s+a+iPvORPP340VQUNz71TrjmfA9m786iyH8xyv+jO9VrbcmWf0CyDyjqf3gUePE74GT7/9/T6/Aiv5Sk5McPHIAo5C/MG4EoihiPJOBnwv509iOH+p26F6r3h16Q092j40BcLjLK+4TyGZuENJxBqehUVNJ/NnjqgPf8Ec+d9VOE4Zga5d+dQ/lnyH81XjmijlWbTss/ILVqcE612GBuaIBz7Vpmm6kk/xzHqep/Oo3JJ/6N8KubMf47qW2Fs9vR8I27p2TU7ckGs8HzrQI26b8l434l9C+WFNA1xn5vSmBucmgIoiAQDiCazTguSPvuutnTlz1xuqLgT3fWrFk5/83gFIYoqr3edj+zwOmllX+/AzzPEfV/MFvPP0CF/olAUCIYtBJcLPnvGlWJMN3TOhlL4ZEdvfjIb7dh1Vefws1/2I7Dg+oiIbJ1KyArfK5Vi8ElQ7D6JPUt2dsLIZL9AiMmEuTEWIrlfzKawoRJvUBrF9MMDI77o50YvRMlXCSZEWrrEOEceGBTBwDAzHO48+JZuO7ocwAAARz4D2YGGQGAQxn3ByBGfd+vUer78haD86V5HnBUIjau9tzZFy4EAHip/kC91H+b2USU447RCIaC8r4qCEBsQrrtVPr92dTZUsD2k/dBCIdhe/wx6WfehNDl06P654MyzlAIhZAOBhFj+v2nLuxPwbxaNyrk8WBbO8YgCCIEQSShZA0+O2qVMVJa23/TmeS7KxZM4n8W63+KSvrPlbBsbaEKPhrrf/zYMXLecSxaSKJGwiXY/vsCUbJwf8uKRnz+TYthnqIFE+9Wg+H0ipUcx+ku1kZjci+4vRI+m3QcMoF/NQbS/nMoUYryz3M8KmzSArY6rhJxXeXfXQcogavjSs8/ZfvXpK5HmH5/mXRXzWa2qaIJl2a8lRb7R/cjkJBew+w6ZNj2bzObSDZAoYF/qbRAMlusZh6XLyk+z4SBMu4vNAi8+lMAQBwWfDP5boxFErDJ52khHM6bq2EUk7EUkmmRCfvTt/1T5H+u+hmT0W6asD9AUhydVhOqYgHwZSoE6yEgB/OOUq0jU6H8awMotZlFjOV//vTarDmOg4WanOK7+uqMNjia/IdT2cWPYuF9s2r9n3jkL+j//OfJz7W33Qpbu47b7A0IJTwZMNbzny3pX8HCBrVYrB3jS4Iek0mkx8eJ8BDzV0OU21xnLP9Tj6JWCr/97W+xfv16NDY2orNTunjec889ePTR8gVyzOAEYOQQCe5B6zqJdMnom5BIk9tmJiqzkvg/HknqquwA1JnKABDoQToUZtTFVG9x5L+TqiY+96kL8dP3rcJbVjTCbVPV4UgijX/u7scnH9pJfkf3+7vmSNVJm1ddgMePUZkHGjBVc53QL6MYDsUQtqhqT27l31joX1uVurg5PlIC+ddY/h/a2k2C165e3gjbX/8Ed0y6CD/XvBL/SerPVzc3NMAkL+yje/YQ1edRKnCKVn3zwlWN2ARF/hdIyr+lsRH25VKhIX7ggG6I5FmU9X+bUnyIB6QQAUBV/qnAJXNDaYtjLamc+MsjMEWUz20VKlrKqCaVANp6mezvZ8P+pqHPkec5rJH7/gPRJA4MBHFsJExG4C1rpgpEzkqmz7rYlH8aTHtGFnLChP3V5FD+mcR/tpBAh/3ZFy2GS26/KMX2P0QRwFlTbNflzGbwLqkXlx71lwvJdBLBhHRuq7RXklF/Rnr+eZuNqIJGRv35bX6YeEmhq4xSrS16Pf8cp55XJ7oAUWSCB9OjrO0/Qvf7Z1P+acKVR5WnCQ34uGHlH1BD/4aCMcPBgoDklFMyIS5ZWAtvuVK0XfLnJqbJlKBHndegFzUIRJOwyudpgGp7KRHjcnFFCfsDstj+KeXfUZkkbXrhTZsgptO65B+Q1P+ayAT5uegxfzmgZPPEzVYIcp7GVCj/PeNRZj+h1zCmqioS9mc18Vg3u4DrcZlAXyf12uAGIlOn/AOAff58cp2L79tPrgHOs85CxfveV/bXO1nBWa2kwGuE/Cd6qDZQnbGMtKvzl/85xuyDFmpaTvzwERL2OES1wMyE/U09Cib/P/nJT3DbbbfhyiuvxMTEBNLyDEy/34977rmn3O9vBtOJTip8b9Y55KYgiET5b/I7iH24ngr9yzrujyb/k72I7d1LrNWA1GMshAuv6Cq9i06rCS2VDly+pAH3XrcS2+68FPffuBrvOqsZLqu0GHy9b5JU2gn553m4/NKF0OZTe33jRw4jG8oV9jccTCBEkf90MAf591GWqhzj/tqq1ZCcztESKuQU+U/Ovhi/+I9aDPnwiiqSgJviePx+0QY8tU8/hIfjONL3LwSDSHR04NhwiPTdz6t1s8QuH5xViMvkn/d4YKasmN4NG8ntySefynjoaib0T76w6ST9071niiJeLCx1daR4lujuxtgDD5D7Hpl7PpPcfSJBL2xT/f3MSK7pCjnSjvzbTVn+M/r+aPW/xH5/gHVoZEvpT9Jj/iilSgtG+e9hC3Wx/fvIbfuihXDZFPJfvO2fVn8NZWeUCF7u+8/pVKJAh/1V2ivhsUqFQiXtn7NYcuammGX1P9tiVBRFYvtXLP8AUBmjljUVWc4xCvlPRYHwsKbnX1X+xWQSkZ07pffjtcHikr+vSlb5r2b6rHMr/4MRleRxBZJ/5XuOJQVSIDOCvzEp/2UsPDo1hNFdj2er3gtAusynZ6vnkHiZ+v4VZwWr/OvZ/v1QAoe5+DhcZ58NABAmJ6V1yDh1PaWK7DVuG2qjE+pzT6HyL72gVFBMDQ6WpTWi0mUlzqL/HB7Be3+xGUeGpM+KXsN0w0EmTpzVVsHkwUwXqj/yYdgWLUL1//s4bLNZlV0URVb5T5Zf+QcA75vfzPzMOZ2S3X8awnhPJiiFUmPKP237z1T+z59XQ0b+7eoJ4N+vUwV0asRjVD63AsBRXtq+0WfHbGo9O4OpQcF79w9/+EPcd999+PznPw8T1Qtz1llnYc+ePWV9czOYZnRuUm+3quR/NJwgQXqN1KgwOvE/67g/L1UVDPSQ4CQahVr/04KInnGJ/LdWOpleZpvZhIsW1uLb71iOd56lEudd3RNIDg4ScuNYuhSmIUnRsfnVYoQy11UPKU1YTrEYCcUZ5T89Gci+MWP7zx76R5P/jJF2RpGMAcf/I9121+MfAxWk6HPRgho0HthOCjUvzjkb/a5qvHRkOKvrg84CiO7ejYe3qeTqXWe1FJSZkIIXqah0vrHPbWMey/T9P/EEAODl3pfx/W3fx3BkGGe20qF/MiGhFneKPZROvC9V7eEsFqKqx/fvJza5bbXz0eltUK3sJxjmLMq/ub4ephICLQuBovwDUujfbirsL6NANF8u9NQuBhpXlfzadDZDVuV/iCb/OZT/luzKf5xS/m0LF8Jpk/blUpR/lvxP/f5kkhXKnE4lCgz5d1TCzJvhtriJ7d+UJzdFsf6nAwFdUjSZmERSVptp8u+LqM+Z8mVxRFBKL8Y7yaQGAMx0ktj+/RDlVjBnk0kdLJEj8E9rtdaCJjScKW7Y9g9oQv8MWv9jyTT+vVd6TY/djAsXlHGCh1NDui/9Ipxu9ZgNt6iELvDoY4hs317yS47pKP+6IyN5k1wAABAZhevc9eSu0EsvsddTKgSy1mtDbUQlQKUWgvUwSZF/paAoJpMZeRPFwGLi8f516t/zytFRXHHvf/CtJw4gKZN/k8+H/3So59np7vdX4Fy9GrP/+ghqbr45475gMohoSm03pW+XE5YNFzE/193+aVhbMvvY3+gg59vJSckZkwPKOpmzWHRzcHiew+0bVdfP/z55kLSo0a0eNPkfkF19584rPk9rBsZRVOCfXqq/zWZDuAgFdwYnEZR+f7MDaFDT2vs0/f4K2MR/Y8p/dPeujE0KJf99E1Ek09KJZFZV9oXTylY/ub2jawLhV9Tihmv1SmBECjekFc74kRzkv0zK/0gojpBF/ewM2/5z9Py3V1HjcYpV/rtekZQwAOLcS/CzF1XV/6MXzEGiU10sCeukhVQsKeDlI6xNVoFjudr3H9m1G3/Z3gNAhMVzEHNahnUfkw1xyvJva2NtZtbmZtjPOEN6P/v2YeLYAdz6/K341d5f4Se7fgKf04IFdVJV+fW+gKSYRXWU/35a+c9P/gfCA/jetu9hc/9m3ftpVVnBI3MvACAtME8G0Avb6I6dxII3HWF/ChY1eOGRW4m2dIwxYX/LmvzsxhfeAXzoWeCmJwBT6UoVHeZFqxk0aNu/JUfgn7m2lsyCTlLKvyiKJO3cXFcHc2UlaU8KJ1IF2bdpTLfyr4T+ifE4hHh+4kmT/yq7RM78Fq86hi+L5Z+8nmLZT6fJfklDL+wPALwR9fNMerOo6kzifyej/Kcp8s9Y/itlsumqBWxsu1NVjpA1LWjl32SKkz5+I6AdQ0b7/p/ZP4SwHAJ7xZJ62C1lDDCjlf+GFcCy65jAyQlfDSkwJnt70fme96L/S18y3DqihzG5uFLBBP5lsawr1v/IONznqIJG+OVXNLZ/VvmvocbAToXtn1b+bVSLWbJM1v8vv2UJfnnDWcRVkkyL+MlzRxDul57fVFODFw+r1+3pHPFnFEx7DKZO+e9yx/DyIolsvjbfBP91103J65zsIIn/opjz+EwODiIht3vblyzJGoh48cJarJLX4IeHQqTl01yn7u9ROXwbAIbk9sv1c2cs/9OBgsl/e3s7dlLVGgWPP/44Fi9eXI73NIMTgYkutae8ZbU0pk9GrybpX0GDT72dNfGfUv7FiW5Ed+mQf4p0GQGdHjqrKrs9aGWLavfe0T3OjPhztavv3bz4XNJfGs+l/A+Vj/zHTVYkOemkmdv2TxVPcij/fqeFZDF0FNvzf+QZcvN11xocGJDe18pWP9a0VzJW5iWr1WP96f361n/70qVkBvvIlu0YnIzD5DoEe/P9+MSLH8KxCePTQWIjqvJnb8kM8fJcrlr/e//xCFEJjk5I36cyf1wQgZ1dExrbv3RfSrb9c1arflCYBvduvxf3770ftz5/KxLpzAW/1g7XW9GI7TXz4bWby7sALwEWauEZeuklcts+DWF/Ckw8hzVyLsNYOIEd8uipWVVO+JwaYsRxQPOZbO9/CeCdTqL6ZlX+h43Z/jmeJ995oruHkPpkbx8hr/ZFiwBI7UqAtD8qkzQKBU3+pqONhLboCwbIm9b2DwANCSd4mZubshE2GUzon07fPz3mTykuAIArrH6eCU8W8q9J/Oe9XlK4STHknwr788qvp1H9ATbtPx/576dIjcmce1staoog/6zlvwwp/zRa10n/8xbgim8DPI9K6rMYjyTRet/PpWuBjIk/PoRjb3ozJp/4d1GFr1Gi/KvXzWwjI0noXzwAS30drHKAW3TXLqQHO+QHWwG3eh6s8bC2/7Km/cuYjKmOHwfdelWm0D8AuGRRHZ6+7QLccvFcWE08nKk4bGmp6HAoacWmo9J+XuOxYVGDJ9dTnRBoyX8kVf6efwA4NH4IP7qKx60fNuE71wAJobBj8o0CJvE/h/U/8uqr5Lbr7HVZt+M4DrdvXEh+/v7Th5BICYx7Lh1Q3SdDzhnyP50omPzffvvtuPnmm/HQQw9BFEVs2bIFX//61/G5z30Ot99++1S8xxlMB7JY/gHNmD9K+ad7/rMm/rvrpIUBgFRPN9LD0gKKo8acJQsM/aOV7VzKf0ulgyzKdnaOIbxJ+ht5pxMOh1pw4NrXwzZb6uFMdnfrzugGyqj8BxMAxyEsq/85F9JmG+CRFwc5Av84jkO7bP3vC0SzBzBmQ2wS2P0n+cl4fO+IuuD5r/PngOM4Rhlds+4M2OQRes/sH4QgZC7iTG43rHOkz5U/fgTWdBImh9pnuX/MeABUfEC98Nt0Fip06n/y6RfIbYUg0NbyrR1j0pgnBYrtXw78M9fXG+r3OzAmqbnBRJAhOgosmiCcv845H+C4gudr7x3Zix1DO/JvWATM9erCk1Y8p6vfX8Ha2ZnFluma86s4NFJDQxASmQs/puc/h/IPAJZWyS4qxmLkfBE/oO7ntkXSYogOJi028Z9MrsD0Kv9AnoKlDK3tHwDqEtS+X+XP/Xp5FqPKJAEAqHJQ5D+kfp5Rb5axhxrbP8dxpBihkH8xnUZk2zbpvfg8sCrBsJWZ5N9uMZHvdCSf7T9EB/7lmJSjA7pdyIjtPxBJ4vmDQ/JjbeUPdZtzEfDh54CPvgS0SmPaKpw0+U/ANm8e2v74IOo+9zlSZE8ND6P3k59Ez8duLrj4P67b859H+QeA6Dhc554r3U6nET4ov66vhQk3rvXYUSPb/gWzxVAhuFAoyr/LaoKNcpnRobPlgN1iwm0bFuDft56Py+rVgvPRtJ2M3D3vJLVZZ5D/ZKRol1QuHJ44jLSJQ281B5HjSEjp6QaT39i4v/Amlfw712Yn/wBw9pwqktzfPRbFQ1u7mJBhGkMOPxY3eJkWqhlMHQom/x/4wAfwxS9+EZ/5zGcQiUTwnve8Bz/96U9x77334rrT1C7zhkCXmoKPWWczd/UaIP/9gSz9WDwPeKWLW/S4amlzX3gBuV2o7b9rlFL+K7Mr/xzHEet/5UAXITfOtWvB9agnMLSeDdsceUEnikgc10/8L6ftHwAJ/cu7kFZC/0KDQDJ735vS9y+KQPdYgVXyF78NhKVF4visjXi2U1qczK5xYcNieS6rPL7MVFMNl8+Nc+UK7VAwjr19+rkFjqWS9d8kpDE70AuHQ31fhfTwxXonpBucCFtVpt3bOmsWbLKqajvUheqAtEhQCAKd+P9a51iG7T8dDBJ11ojlXxRF9IXU/XYiPpGxDW3756uq8GTDCgCFqbQHxw7i3f98N65//HpsHyy9X1YLk9ulG7o2HWP+aOhNflheSCBkCSBpxaKIlM65SLH98z4feHvuwo2VTvyXcx5i+1Tyb1+oKP8U+S+y719Rfj3T5CRRAv8AY8o/Q85lZb4mojo5Un53xmNo0Mp/Ko/yT9v+HSHVUh11Z7HUV7Spt2VHlUIg02NjENNpxA8fJucE58JWqt+fDftToCT+51L+k+kkxuLquSeNOATRuPOjUOX/X3v7SYvcVcsbmbG4ZUPTKqBWVfgqKLfOWFj6LjiTCZXXvx9z/vF3uC+8kNwfeu45HHvTmzH2wAN5+4wVqIF/UhsG73KBd2RxeNBtCdExuNZT1v8emUjSLhAANW4rUf6jFTVTQowV8u91WBj3VbkS/7Vor3bh7vPVgv64XS3kXXCC+v3zQUv+RYhT0vd/aPwQ8/NpS/4V2z9yh6yGN0ttjpzNBsfKFXmfl+79/8GzRxC3ORnxT8Gws2JmxN80oqg4yw9/+MPo7OzE0NAQBgYG0N3djQ9+8IPlfm8zmE50Kin4ZqB5NXNX77h+z3+tx0YWRFl7/gHAK1lho/3qosy78XJyu1Dy30mT/xzKPwCsbJWqmSuH1RO8a+1ZQL/cflCzEHBWwjpXVXPiR45AD4T883xJaoBC/sNW6bMUgsHcKb/MuD/9RHIAaKNaIAoK/Rs5TGY0w2TDdwV1xM1/nT8bPM9BoJRMheBcski1QD+9T3/RQvf9LxzrQkOlSnSMju4Rk0kkeqSFvtWTAp+a0N3OSwX/rT0oLezCyTCiqSia/A40ysWq7Z0TSIepWd6OioL7/ScTk4wNMRDPLH44liwht7l3XIek3KNeCPl/bVDtOd41nNkyUw5k/L0mE6yz9QnOVOGMRi+jhgPA0qbiyH9PsAevj75ueHs28Z+1/ouiSAL/cvX7k+eiEv+VYlmMSjm3y8q/i1b+i0z8V5Tf6ZocoQT+AQaV/2im7b8yoi454v4shE15PWYxOpFxfzbyb5M/l5gFiJiyfLaOCsAqFx/kKSqmKvmcLghIT0yw/f5tVKFCR/kHVOt/IJokAblaDEWHANDqZWGEhg38y+8aeHSqUv5zgOn5j7CFEEtjI5p/8mM03XMPGQUrRCIYvPsb6LzhBog6zhstSOCf3POvO+ZPgZO6TkdG4Vq9GpDbO8L98mdJ5z8AqOGTcKakfWjSOzXj75TAP5/DwoaultH2r0VqRBUvFi5ug9XEY3aNC5dS1/GTCXQ2hoJyW/9FUZwh/zIY5T8L+U92diIlr5WcZ64Cb83irKKwrNmPy8+Q9vHhYBwPvNqZcS2dsLqQMFlmRvxNI4qeZTE0NIT9+/fj0KFDGKYU0UJwzz33YPny5fD7/bDZbGhubsY73/lO7KYS4YPBID75yU+iubkZVqsVc+bMwRe/+EUkk0nmuV577TVs3LgRXq8XTqcT69evx1NPZY790sOTTz6J9evXw+l0wuv1YuPGjXjttdfyP/CNgvAIMCKfABtWAFZWTe+TVX0TzzELTYuJR41s0cma9g8APmlxHR1VFQHnmtVqr22h5F9Wtc08x0wc0MNKed7oqiF1hJ+r3SnNJQaAVsnlYJs7l9yfLfRPIb+mqsqsISdGoIyCStjkwoUoQgiFsj/AcOK/WggpKPTviTvIjOaxlR/FHw5LFZ1ajw1vXSl9d3Q/tEJwLlmknsBz9v3LWDDeBbdT3U+MLnrjx45DTElFA7s/CURGdbfzbFT7/tcdUBffSjCYov5Hk2nEj1POD08duaABxgKeaNUf0Ff+bXPnovn/foT6L30Jo296F/l9IbZ/egE0mSg+JCsXtOTfOmsWeNv0Wu/MJh5nzlIXHxwHLCmC/A+EB3DNY9fgun9ch+e7nzf0GEtT9sT/9MQEIST5LP8AmJTohJz4H5Nt/7zbTTIBlDGkQHG2/3A8hYgc4jYdln8AMHkp23+guJ7/Cuq0FPHkXjgyPf86i9FsPf/WSem8MunMcY7hONX6P9ENCGlmXFxqdJTt96+lvqPKbMq/+j2MR/RJbMdE5rUulMhx7tegkMC//kAUm49L38HsalfRxbRCQff8K0SdBsdx8F6+EXP++U/4r7uW/D762jZEtudvbxoLJ2BJJ+FOSdcS3TF/ChzqOQWRMfAuF5yrpCkhybAZiaApQ/mvDKn77ajLn/f9FIpYMo24XBzyOiwwU3PPp0r5B4A0Na1ow3lLsPtLG/DUrRcwhciTCVrlHyh/6N9wdDijcH/akn+qzSqVhfyHX1XDjZ3rztbdRg+f2jCfjJ/8yfNHAc21dMhZAauZx+q28rfYzEAfBZP/yclJvP/970djYyMuuOACnH/++WhsbMT73vc+BAL61t9seOGFFzA8PIz29nbMmTMH/f39ePjhh3HRRRchHA4jnU7jyiuvxL333ouhoSHMnj0bHR0d+MpXvoIbb7yRPM/OnTtx/vnn48knn4TNZkNlZSVeeeUVXHHFFXhCHv2VDY8//jiuvPJKvPLKK6isrITNZsOTTz6J888/H7t0wunekFBS/oEMyz8A9E1IF9l6rx1mE7vLKOR7KBhHMp1FvfY1QxSA2Li0KLC0tMBcWUmCdFJDQ4Yq/oBUqVXm2LdUOjPejxbLWvywCUksGZXC5cwNDbCmKXI/S7IBMuT/qKr8bxvchu9s/Q66xjtIL2gpln9RFDEsK/8pp6ompXMm/lNjZ3KRfybx32CF/NC/gSNykczbhO9H3wSlre6mc9thM0skJdGt5g0o49HqvHYyim1f/yTTHqLgqLseMZNU9FkW7EGYUu0Nk/+D1Jg0fyor+be1txO7+oJeoGpS+kMUkrBaDv1bwh2Dc3Sv9KDGlYCvmVH+jcx17guzi3g95R8APJdcgorrrsVQRC1WFqLUDkXUokq21ygV5ga2B2+6+/0V0H3/c2vcRS1KX+h+gexXWwe25tlaAq38K1Z9BeyYv/wKmYW2/Xd3Iz0xQYIkbQsXkCwJVvkvnPxP95g/AOAp5V8IGrf98xwPn006T7ipfvyQJ/f3ywRQ6dj+9dL+xXQa5qBK/nMqhYriKySB4AAzLi49MoKILADwHg9sVqq4mYX8V7tV0qu4u7R47sihjN8VQmh8Dgus8jUvH/n/+64+ci6/ekXjtPV1+ynbf7YiCACYvF40fOlLqKWyohLH84fAjoYS7Ji/XMGRtPIvO1Fc66mRfwM2Nv8BgHNcFbMGbP6876dQTMYoB6TdIrVeyXkaU6r8M22L1bBbTFPTBlIm6JF/o25Bo9Cq/oA0YvB0BOO0ytLzHzYY9qfFvDoP3rZSWjcGokkcF1nH7pCjAqvbKk6aIOTTAQWT/w996EPYvHkz/vnPf2JiYgKBQAD/+Mc/8Nprr+HDH/5wQc/14IMPoq+vDzt27MC+ffvwuc99DgAwNjaGAwcO4G9/+xtekhOoH3nkERw4cAD33HMPAOAPf/gDtslhPHfeeSei0Sja2tpw7NgxdHR0YO3atUin03lDCD/zmc8gnU5j3bp16OjowLFjx9DW1oZoNIovfOELBX46pygUyz+QEfYXSaRI9b5Jx6apjPsTxRyLEW8TYhMWiGnpQuNYJlnBSYquKCI5aKziPRJKEMWrtTL/fGS3zYyN6QFYBVk5Xnc2OLrYISv/lsZGcHI/b0JW/gVRwKee/xQe2PcA/u+FbwByT2Ip5D8YTxFLqOhWyX/OxbQmmToblMA/AOgwYvtPxYEnPkt+DJx7Jx7aKS2QPDYz3rNWfV16bjlNcGjL4DP7M7/DP+3sx1HZ+VE5OYLEqLoAMUr+YwcOktuS8p99FrKHCv5bc1C/7/89JnWqAc78AAAg2a8uNIzMde4PsSFV+Yh5sWPZBsPTofyzf+90jvmjcTYVRrZCduwUip3DO8nt8Vj2xGIadDCjVvlnyb8B5b+ZbiHoYS3/cr8/ALhslPJfhO1/aJqT/gHARPX85yxWylCU/wpbBXhOLnpMqsQn4MpNPIwG/pl5M7w26b2lAwFwMuOddHK5yYLmvEpPH4i89hqZue5ctQqcMpnEXQ/Y9LMKqlz5x/1t6c7MkwkljSv/HMeR80cu8p8WRPxxq1qwLXvKfw7QgX96yr8Wdqo9KtHRkXf7sXCCCfvLafunA/8iCvmn+v51yL9AEfBuS2YeSqmYpMb8KWMeLfXSdTQ1MDgloXYAkBpWlf9S1jDTAVEUdW3/5Vb+D48fzvjdaav8M06riYz7RUFARO735z0e2Auc7vbJS+fBYpLO+ZtDbOF32OnHuXNP7n3yjYaCyf8///lP/OpXvyIWe4/Hg40bN+K+++7DP//5z4Key26347HHHsO6deuwePFi3H333QCAmpoazJ8/n6j2DocDV155JQDg7W9/O3n8v//9b6RSKTzzjLSY37BhAzweD8xmM66++moAwN69e9GXxVbe29uLvXslBfDqq6+G2WyGx+PBZZddBgB45plnkM4SQhOPxzE5Ocn8O2XBkH+2mqeo/gDQ6M9UmGjbfVbrv68ZMcryr/SBMzO2DSb+d42pJ/92nyVrMj+N8ydVNWF43hlAj9zS4WshqjpnMsE6WxoDlOjqgpBIYCQ6QhaYE30d5DlKS/pXF2ycx+Bimu4x7c6uZvqdVqK6GCL/r/4EGJM/m9Zz8NPRFUjI7o33rGuF165+Z7QiSpMlmvxrrf+xZBqP7uzDgQp1kd3UrRJ+o/17cYpA2SqSUptKFqQvXENuK9Z/RSFcUOdBnT2Jt5ik/V20eoAl0vkk2a/ufxaNEq4HrfKvZ/unwZI140rtdCj/2r93usP+FKxo8eOm9e1Y3VaB/75Qv686H3YO7SS36WC1XKDPQ4lejfJPFSWN9PzzLhcZO5bs6kJsf2a/P6BR/ouw/RdbTCoFPJX2n0/5F0WR9PxXUgTMRgXDjjpzB90ZHfVXZa8ixQV6YkUgl+0fyEj8pxXkySf+TW47VywFwnLRUmfMn4IqSvkf1Un8jyXTODqWOU6yUEJTLX/fY5FEVrfdozt7cWxYet417ZVMYXiqYTHx8MhjZycox1M2WNvayO14lrBdBdFEGtFkWqP857D9awL/AGncpskpFd8igzaIbrb4SbeAHTW5y07GA1H1ePc6pM9JmX0uxuM5k9ZLQYqy/ZuzjUY8STAeH0c8nXkMlbvnX1f5P03Jf75Rf/FDh8jvnWvWFNz62lLpxHvWSGvBASs7sWnIMRP2N90omPxXVVXB58vsHfP5fKigdh6jGBoawubNm7F//34IgoD29nY899xz8Hg86JatxlVVVeBlu2QdZb3s6urCyMgIolHpAl9LLc602+mhm7Iy6z02Go1mzTP4xje+AZ/PR/61UL2epxTiQWBAzlioXcza5KBJ+q/IVP7rfervsob+eZsQHVUXRhnKP2B43I8S9lcZDeCab3wUh889D5P/+lfOx8zulMK/BHDodoiAsiBsZVscbHNk678gIHH8OPrD6nvix1TiVVrSv6qEmL0GbbQVbWoBoGtTTuV7VpUy7i+We9xfcAB48TvSbY4HrvgWHt8rKR4WE4cPrm9nNk9Q5J/ua17U4CFBeq8eHUWIsjA/tW8QgWgSBytV8j+vT11IGVb+D0rKv8kOmO1CVts/AAzWWdEtX0MW9AAVQZGQf57n8N+VO+DipEVFcN5biYqnWLMBZB1FQ0Or/Ocl/1RhrNZrjKxp1Y+pI/9sm4P9BNn+OY7DXVctxp8/eg5m1+ROgtfDSHQEPSF1PzWq/PM2G+nnT2oC/2hHkhHbP6C2xaSGhxHdofYw2xepyr+7RNs/HfY2bco/db7K1/MfTobJvGyl3x8ALBMSIY1ZgAk+9/Gfq+c/LaSJs4AO+0uNqdsZtv0DwEQXQ/4Tx9SCsXM+VfTJYvkH2J5/PeX/xUPDSPOZ+2Sh5F/J2RFF/ddJpgXc+4yqaN566fQX85S+/7Ectn8F5toa8PIIwERHdmcb/XxK2B8Apl0jA5rAPwDgeB6uZkmBFFI8okfYQm6Suhb02/yGChiFQE/5N9fTff9TY/1XbP+c1ao74eVkgp7lH5gm2/9pSv7zFVvpEX+utWuLeo2bL54Lu4XHiN3P/D5SUYPFDSf3PvlGQ8Hk/wtf+AJuu+029FNkbWBgALfffjvuvPPOgt/Ahz70IQiCgM7OTlx77bU4fvw4rr32WgSDQd2KK/07juOyVmW12+XbptDH3nHHHQgEAuQfXUg4pdC9GVBGDWnIMAD0UeRfSfoXRZHMw673qQue/mzk39dMwv44EwebbBeig9WSfZmKiB6UXvb1/XtgCU1CCIXQe9unMPzjH+t+n6mRETi6pIXcEX8TkiNUjoMm34AN/TvCkH/buLpAK8eYPwCw+dUiWk7ln+OABVdIt8U0cOTprJu2U9MPunKN+3v6S4ASNHXmjQhVLiaf7eJGX0YonZJczlksTPAZx3G4VB4FmEgL+M8htVj2p9ekxxyklP+51DrLCPlPDQ8TNc9WY5GmS0RGgSzHbm+wF68ukI5ZHpL1nx45dmVCzQB5teJq9e+Tz2cmnw+8K79KZrTnX8HgpPq91xkM/JtMTDLqx1TZ/s316nHI2e2wnKKFzF1DbEYLHTiXD0rff3p0FEJU3S9TQ1SfbK0x8k9/fiG5bQ1mM6zU+aXUUX8nQvk3Ucp/vrR/vbA/ADCNS/vwhAsI5NmfeYeDtGKlAxPMfePxcTIir8pB9eqPq6876eQQzTEaNdP2n6k8cQ4H7JWUup5D+a+mgu5GdEj5E3sHwFsyzxOF2P4BtnioZ/1/ZHsPKZKfM6cKZ8+ZmsT6XPA71ckHaSG3cs5xHFH/kz09ZG2hh7EQO+YPANOukQHG9i8XXkQRrmr1ewi9/DLzEFqIGHH4SUZPuRCIsj3/AGCpoxL/p4r8y8q/ubp62vIfigXd7lbnVM+75VT+k0ISxwLS2tDEqSr26Ur+OYsFvNyKqqf8R4rs96dR67HjA+vbMepgiX7TgjbwJ3H+xBsRBZP/n/zkJ3j11Vcxa9YszJ07F3PnzkVrayteeeUV/OxnP8OqVavIP6PgOA6tra2k5//111/Hgw8+iNZW6eI8MjICQR6FNkT1YLa0tKCmpgYOeWbkIKXSaLfTg/L82R7rcDhQncUeZbPZ4PV6mX+nJDrpsL9zMu7Wkn8xkUDHtdfh0FmrEXrpZdR7VeV/MIvtP53gkQhKFzlbNUfGgzDKv8HE/y457K85yFrMR37wQ/T9z/9kLBzCm9S/b3vtfNSMUbPSNfkGNmrcX+LoUQyE1IuwN6QuAEsh//RizVFBk/88qq5C/gHgYHanQxtl78w67q97K7DrQem23Q9c9AUc6FcX4toKrCiKxPZvaWzMsHvRI/+ekvv+eyeieOmItNiwNTWSBdrcfpH05Bqp4jP9/g2yGiymgZj+59Ub6sWrC9XT2urDopoK3rcDtSHJhr1LmI2nxuvkp0sThdfcyFpAs6HQnn9FqXVaTRkj7bJBq35Mxqeo57+uFpyc7m9bML+kSRYnEnS/PyAp/0Ytu0oKP8D2/dO2f3OtsePeSo37EyPSPm6bM4cZi8T0/CcK7/k/IbZ/yvEn5Glzo8m/ksQvJhLApETaAi5jxSyl7z+l6UHVC/sDQEJZAQPKv9b2r6MgO1euADdJqdFZxvwBWuWfJYyJlICn9w+C0yH/xSr/ADAcYq+5iZSAHzyjBtZ+asOJaeGplNvPRJElu9lgbZedZoJACs16UNop/FTPf27bf2bgH8LDcNWojw+//ArzEIX8j9vcSJgsGJosL/mnA/90lX+D+UeFQEwmSYbFyd7vDwADEfXaN9unum3K2fPfEehASs6CWliptmSdruQfUM+3WvIvJpNk+ompupopZBeKj54/B1E/e65dvOLEnKdOZxRM/t/61rfi05/+ND7/+c/j/e9/P97//vfj85//PD796U/jLW95C/MvF0ZHR/Hb3/4WCYqs/Yuyb4fDYVx+uTQLPhaL4R//+AcA4M9//jPZ5vLLL4fZbMYll1wCQBrZFwwGkUwm8eijjwIAli5dikZ5QX/99ddj4cKFuP766wEATU1NWCKHzTz66KNIpVKYnJzEk08+CQC49NJLYTpFF8KG0ZWb/PeOq+S/2e9AeMtWxHbvhphIYPjee5me/2zKf3SvOnPb4Y8S1bYY8q+M+WsJZbZjTD72d3R94CZmTAl9Yd9ZMxfLhP3yG6kAqtkTjm2OurCLHznKqLv+kEoiLGVS/l3VfnJbyBeg1bJOIuoAcOQZIKWvjuQN/RME4HEqBPOizwOuKuyjyX8jS/7T4+MQZBKjpwqvm11JRpc9d2AIaUHEI9t6iDj/jjNbSauHOwbUy2swI8o/k/TfQi3yslj/e0O96K4BRuQ/YWG3iEBA3ldeu59s94f0JXitU9pPUiOjgDxKMGPmvQ4iyQjG4+zF0WjPf7FJ/4CUQpwWipsJnwucxYK6Oz4Lx/LlqL31trI//3SB7vcHgHg6bri1xNJE549Q5F8pIptMuVPF6edqzjxG7AsXMj+7SlT+i82QKAW80wnI7Xf5lH/abaMo/6kxtSAw4eIMFbMUK2p6YoIp5NDknx7zl9bY/nN+/3avOgpuokt6LZ5dEjnOOkvNRQHy2P7pnn/2/Lzp2CgmYzFwpkyVv1BCQyv/WmL60GvdpFXvgvk1OHPWiRmdVZFn3J8WdN9/rtA/5blo5T+n7d9sAyzyNVFpl5vogsUhwOaTSHhs716yZhCTSXLMDzv80v+hLI7GIhGIZJJ/C+W+mgrlnz72TDUnf281Xfie41fXZeW0/dNhf2fWnUluTxX5F0QBT3c+jddHXs+/8QkCIf+TkxCpvLPo3r1kDehau7Yk54jPacF1G5YjLee0xEwWrFtVXMbPDIpHwbOUvvjFL5blhYPBIK6//nr813/9F+bMmcNY5z0eD6655ho0Nzfj3HPPxUsvvYR3vOMdmD17Ng4flg7Y97znPcRd8LWvfQ3PPPMMOjs7MXv2bFitVvT19cFkMuHb3/42ec2uri4cPHgQ9VRP77e//W28+c1vxpYtW9DW1oZ4PI6RkRE4HA589atfLcvfetIiFVfD7/yzAG+m6tmrUf7Dr6mBc7E9e9DYqy6MBgL6C63orp3ktqMiAkTHAWcleK8XvMsFIRwuQPmXTkCz5AAmk9+P+i9/GX3/8z8QYzFEt21Dx7uuRcvPfgprezvCsqUvZbUhUWVFBScvGlrPzljoWZqbwVmtEBMJxI8eRX9YVfsrqDVbuWz/vhpq0ZpnMQ2TGZi3AdjzJyA+CXS+DMy5KGMzdtyfzqJy5++BPrkPuXYxcNZNAID9OZR/JuyPUjUV2MwmnD+/Bo/vHcB4JIltneP48zbpMRwHvP3MJtiPLEPouecAAHP7RPRXcYaIGaP8tzcCyluJjOpacHtDvQDHYXcbh4t3i7CmAe/BXinbYs/D0kM5B/6ePhuRkTCGg3G46bA/A/3+ev2IuZT/WDKNYEwieIUQNb2042AiCL+mX64cqLjuOlRcd13Zn3e6kEgn8Ppo5qJqLDYGpyX/VBArpfzT+RZJmQiYq6sNOyKsOseIffEi5md21F/xyr+Z5+B3WPJsXR5wPA/e44EQCOR1KjHKv2zLp9PGJwwq/+YKP+IAkEpBCIVI68FITH0uWvnX2v6d+WzC/lbpejTZAw4CTBUVTGiga/VqYNdf1e1zkP8KpxUcp/Tis6T8ib394CyT4DipgOG3+UnBsFDbP6P8U0WgWDKN/3tWVf1vu+zEqWl04n+ucX8KGPKfI/SPkP+Yuu/kLco5q4BAWFX+xzsAAK6GOOIBCyCKiGzaBO+VVyI5OCQVyCGFkAH5RyoWCmbUnybtH5AS/8sNpn3pVFD+qWtsu0/NHwqnyqf80/3+q+pW4YF9DwCYOvL/l8N/wVc2fQVmzozfXPEbLKtZNiWvUwrIuD9RRHpykoQAlsPyT+PGc+fg+YomzB7rRl/NLKysnL5A0hlIKFj5pxEKhYpOvPf7/bjuuuvQ0NCAo0ePor+/Hy0tLXjf+96HzZs3Y9asWTCZTPjnP/+JW265BTU1NTh27BhaW1tx11134de//jV5ruXLl+OFF17AZZddhlgshrGxMZxzzjn417/+RdwD2XDFFVfgX//6F8455xyMjo4iFovhsssuwwsvvIDly5cX+9GcGujdDig9xbPW627SJxN6v9MCl81MZh8riPzlYZIwny3tP7p7N7ntqEoAk5KyxnEcUf9Tff0Qhdzpz8FYEqPhBBzJGCojEwAA65w58G7cgFm//S2paCe7u9Fx7XUY/93vSchNaskKrLKoCyO9fAPObCb2w0RnJ4YD+sq/qYSk3OGguhCqqFVVmXw2WgDAAmpfPvSE7iY0+c+w/ccCwDNfVn++4ltSUQHAvj7p9TkOWFjPJrEmKBsmTZJo0Kn/33x8P8kbOHduNZornET5B9TQv4KUf7MZ1jbKpptD+QeAg3NVkt1yYAzY82dAVtgO1FyBCKT7t3WOMT2edA5FNmj7/QEgkAiQHmQtaHWuxmDYH5Cp/CuvM4NM7Bvdh6SQaS82PO6viR73J32/YjJJiKDRsD9A3x1jW6gl//Sov+KV/xqPbVp7JRXync+ppCT9A5TyP6ISkICLMxRgmS2EirTygO35T42qrxtwIXfPP6Ba/0UBCPQwRJKzWGBftgwYk0a/wtMIWLMXkkw8h0qZ9NI9/2lBxJOvD4I3q+d4xsqcKND2T7mHaAfIHzZ3kWvwZYvrsLzIcZnlQGWhyn+7SvDiBpR/Je2fczrzZ7Q4ZXdHZEyqzExIAdCuevWzU/r+U1QheEh+XLlt/wHdwD+q539wCpR/6tg72ZP+AZb808dKWZX/CVX5X1S5CE6zdGxPFflXFP+UmMKXN31Z93p1omHOErIafnUzue1cVzr5d9nMWPDD7+HAFe/G/O99O/8DZlB2FKz8Hz9+HB//+Mfx/PPPI0aNWRNFERzHZR2Np4Xf78eDDz6Ydzuv14t7770X9957b87tVq9eTez62fD888/r/n7jxo3YuHFj3vfyhkMX1es2K5MMpwUR/fKov0afA0I8jtiu3cw2k//4B2Zdtx4TEWAwEIcgiMxiVBRF8hiTLQ2LOw0EeoH6pQAk63/88GHJbjcyknOclhJi1ExZ/m3yeD7H0iVo/9Of0P3fH0P8wAEIwSAGv/51sl31hedhdffD1N+b2eIASKF/8YMHJaWpuxeQ21wr5PUZ7/OBtxXfY0sr/5V1lVCWg3mVfwCYeynAmwEhJfX9X/5Nia1T8DktqHBaMB5Jks+L4IVvqyOrFr8FaD8fAJBKCzgwIL1+W5WLUSUBINlNj/nTz8+4aGEteA4QRGB71wT5/TvOlIoF9CznuTL5zxfeI8TjiB+TVCDb7NngfdS+oUP+00KahDSOL2kBHpEq+4uPJRHZdj+UZXtyxfVAl/TaW46PY/WQSv7NBmz/faFM8i+IAkLJELzWzOyPYpPZ9ZT/qer7P9Wxa1gN+6t11GIoKhVOtO0Z2cD0/MvKf2pkRG1Rqss/5k+BubaWOIgU2BcuYLYpZdRfWhAxFlbJ/3TC5PUiCel8pVzz9aAX+Ecr6hNugz3/fs34Kbmwkq3nPz1GK/8GCozaxP/qKsRlQdC+fBl4Iaqea3KE/SmoclsxGk5gNBwnn8+W42MYDSdg9qrFjjn+Odg+JOXPFB74pxY2FVU6mkjjx88fJb8/kao/wCr/E4aUf/V7SBzvyLqdavuXrleGWnGU0D8lK0Ym/87qODirBWIiifDLr0jZNlQhWLX9l1n51xn1x7vd4J1OCJGIIeV/NDoKESKz7+dCavjUUv6Va5/X6mX+xnKSf0X5d1vcaHA1wG11I5KKTBn5p4v5h8YP4ff7fo8bl9w4Ja9VLDLOtwCEWIxMrbE0N2cVgArF3DOXYO6ZS/JvOIMpQcHK/3vf+16Mj4/jV7/6FZ555hk8++yzePbZZ/Hcc8/h2WefnYr3OIOpQidF/lszyfBwMI6UnNTb6HdIvf5JuVopL/qESAQX9konhkRayBjtk+zuJoqNvTIpPWySIpNUr20qj/VfUZObQ+pJ1NquVoUtDQ2Y9bvfwX3hhRmPrb3ofJxtlk72EdGGRM1S3degQ/98ffJFQBSJ7d9cYr+cQv4rnBbYFIsVDCr/dp/q0JjoAob2626mhP71B2KIKmFiY8eAzT+VbpvtwIavke2Pj4QRT0mqtd64lWQvTf6bMu4HJKXnzFnsqE+v3YyNZ0iKhsnrxWidFA7ZNgRYUmJeVS5+5AggFxNtCxewM5vDIxnbD0eHSYCPv74Voy3S39I+CAx3y59V4yosWKG6XF7rHGN6LC0N+QP/6CkQNNkPZAkhLLY/m048Jq8xo/zrgu73v7DlQnLbaOK/pb6etAEpPf9M2F+NcfLP8TxTTLA0NsKkGY9L9/wrLSFGMRqKQwlQpy3g0wEyIiyVghjNfvzqkX96zviESyK9+dQvI8o/E/gn2/7jFiBh4fKng9Ohf5rEf+dZZ6mqP5DT8q+gyiV9H7GkgIh87v3369L5hTOr77+UPuZqKltAIaYPbOog15Y3LW3AohM8NqvSpbaijIXzK5wmt5uQ0lw9/6PhBMxCCh752mGI/GtD/yakAEfeDDjPXAlAGq+XOHqUGfOnKP/ltv3rKf8cxxH1Pzk4mDOo9PWR17Hh4Q246E8X4W2Pvg3f3vptvNz7MmKp7NkE9LFnrj65yb8gCoT817vqmbatcgX+BeIB4i6YVzEPHMeRa3kwOTXknz5nAcCPd/1YV0g4kTBVZJL/6I4dpJBdDsv/DE4OFEz+d+/ejfvvvx/XXnstLrzwQlxwwQXMvxmcIhDSQPcW6barVr9/mur3b65wMJb/ive+l9xeved5opANaEL/ortURc5RJRcGAiqZpJXWfH3/ipLdQiX9W2ez8+hNbhea/+9HqLzhBvU16uthrbaiTpROvjuEudg/pL9wtVKhf83yudoZB6zy+ryUqrkoimSBVu22gbfZwMkJ4GmjLTMLrlRvZ0n9b6es/51j8sXy1Z9IjgEAOOcWZsxVrrA/AEhQyr81xxg4OvUfAN6yogl2i2pv7miSLY4C0DYIJIQEIet6iNP9/gsWsuRfR/nvCarvs9ndjLFl6t84MSiTpDNvhN9pxfw6aXLA7p4ANm1Se8UN2f6pC/aiStXOnS30b2hyRvmfSoiiSJL+3RY3VtevJvcZtf1zFgtJ3FaU/+Sgep4pxPYPsNkYtkWLMu438RyqZeKuPWfmA1NMKqCNpBxgxv3lOGfpkn+m518qHudT2fQWo0AO5V+2/Ydc0nnHsO0fAMY7mcBP5+rVwCgV9mdQ+SfvMZSAIIh4Yq9EMsxWfdt/ocq/zWwirXZDwRhC8RR++oJUpOA44JOXzivo+aYC/gJ7/gG17z89Opp13xoLJ4jlHwBMucL+FGjH/cnKPywuuM6/kNwVfvllRvmf9EiPG5qinn8zz8FBXR+Vvn8xEoGQwwn4St8rSAjSZ3pk4gh+u++3+OjTH8X6B9fjI09+BL95/Tc4PH6YKSCwyv/JbfsfjY6SdUG9qx4ui7qeKdeovyMTagvo/ArJJeOxSue2aCo6JZZ8bRtfNBXF1zd/3fBEmumAXrE1vEnt93eunSH/bxQUTP5Xr1596s60n4GKwb1ScBwgWf517Jts2J8dka0q+a+84Xpi5a7q68D8CWmfyCT/dL+/fEINqGnaTOI/deHVQ5dMZFso5d82O1ON4Uwm1N3xWTR+65twnXceGr76VXBd6glsq7gAO7r0SYGNGmHSPCqdlMsV9hdOpBFLSgq7svBXlDRDtn/AUN//LDr0byQsBVrt+J30C4sTOPtjzPY0+V/UwPb7AyCjl3ifD6YcIy0v1ZD/d57F2sMONKgtQXMN9P3H6KR/rfIfyVR06V78JncT4qvUhPXkgA2weoAlbwcAnD9P/R5NwxLJTnM8rv/bUTywqYMh7FrQyj89IiibKl8sWdMj/zPKfyZ6Q71EVVles5zpATeq/AOAtUnaX9OBANKhkJr0D8BcgO0fAKxUe4xdh/wDUkEVAAaDMcRTxkP/aBvy9Cv/xsi/Qs4dZgdR7mj1MSCfovIVs2jyT09xUb5vu8lOenXFdFpdsLolZ0VesqCx/Vdc+y4416yB/13vguvsszXKf37yX019HyPhOHb2TJA+/Gq/eq6b5Z0FMye9x2LUTOV7Hw7Gcf9LxzEuJ8i/ZXkj5tVlnsOnG3TP/7iBnn+A7fvPpv5ryX/OMX8KmOvGiEr+/a1wrVddYKGXX0aS6vkXayUlfqqUf5/DwrTNmOuovv8cif/ZCmYJIYFN/Zvw3de+i2seuwYb/rIBr/RJ7s40rfyf5LZ/ut+/3lkPh1kdJ10u2z8d9qcl/wAQShRWkMuHlJAi16LZvtmocUjfwYs9L+LprqfL+lqlQO98G95Mhf2tWzvt72kGU4OCyf8vfvELfOtb38JvfvMbbNu2Dbt372b+zeAUQR7LPwD00eTfbUFk504AkgpmaW5GxXXXkvuv6JBOEP0a0pQR9geQwD9AQ/57cyv/HSOy7V9W/jmLhQnq0sL3lreg9b6fw33euUy+wRZhIXZ0T+g+xtrSAlgkVaV5RE5mDquV2ZKS/qlFRLWsAKsBWgYV3Yo2KaUfkCY1hIYyNmmrVm1yHaMRYNuvAeWiufJ96ngrGUrYHwAsbmDtyWIySRYi1hyfNQDMqXGRtoHlzT4sbVKfKykksbtG3TeMhP4xyv/ChYAr96i/3qC6XzW6G2FZsRQJ2V1t6bNAXPoOwCYp/p+8bD4+ftFctFY6URudAACM2L3Y1DGBux59HWu/8Qze9dNN+O2mDiRSbJCfovxX2CpQ71IXbFmV/yJs/5Gkfu/hjPKfCUX1B4DltctRYVP370LIPxv614vUkFp8yZVFogf7IrUo5Fi5QncbhfyLIki2ihEMMwGS0zPmT4HJqx7TudRJ5XNXVH8ASI2ytn8gfzErq+1fTvuvclQRApUOBIgDLSYr8NFUNLey5qOcTBOdsDQ1YdYDv0HDV74MjucNj/lTUOVilX9F9QcAp1MOqQOHGmcNXFbpQyhU+QfUrIdYUiCqv4nn8IlLT4552YWm/QPGEv9HQ3FUxNT9rmDb/9B+IC2/n4pZsM2bB7N8bEe2bEWiQ2oJ4Gw2OORpPIFosqDiXD4o5N+rmdJhZhL/s5N/OivjVxt/he9e8F1cM+8a1DnZ4vtAeAA/2/Uz6fnotP/KEzP+0SgGIhT5d9WD53hSACiX8k+P+ZtXITllaPJf7r5/JaMBkAp/n13zWXLfNzd/s+zFhmJholpR0+MTSAeDiO3ZCwCwzZt7SoRFzsAYCg78Gx4extGjR/GBD3yA/I7juIID/2ZwgkGT/yzhd73jlO1/pBuiPOfTedZZUo/UlVdi8JvfghAK4cKeHbhvyVUYpJR/IZFAfL/Ua21tb4fJGwFiE4zt39JILbgN9PzzQhpNcr+3ta3N8PgtdG6SXkM0YYcwFzVUKB0NzmKBrW0W4oePoHEUMKVF+KdgzJ/St6ko6UI4DDGVAmc2cEguuAIY2gdABA79G1j1fubu9mpV+e8aDgCdP5d/4oC1H2W2FUWRkP9KlxV1GmU6OTBA+u71UsxpcByH+244C8/sH8SGxfWMqjEeG0dXLZAwSy0U+ZR/URQROyiRf1NNtbTIS1NWvEhmz39PSN2vmtxNsPBm7G/msLxDhDXMI1G7Acpf57aZ8emNC3DreS049CtJeQt61YWkKAJbOsawpWMMw8E4btsgBbYlhSSGo9JCqsHdAJ9NJUPZ0ssHqYKY9vPNBtoi2OhqJK6GGeU/E3S//4qaFaiwq+TfqO0f0IT+9fYiSff8F2j79159NRLdPTB5vXCdo39+ba5Qi3Q941GS1ZEPJ1L5NxlQ/lNCihTCaPKflm3/SacVSYtUUMuv/PvVx49Lz5lMJ8mxli3sL+61AYgiLaaREBKwmbJ8Tlan1PYWHgLGOzPvH6WV//bM+zWoopX/UByP75VcQiaeQ1yU3l+NowYW3gKX2YVAPFCU8k+3D4XlbIFrVjYx5/4TCaUtATCW9g8A1vY2clsv8T+ZFjAZS8EfV4lZwbZ/ZcwtAPhbwXEcXOvXI/DXv0KMxZDsklwBloYGprA2HIwzx2uxEAQRIXm6h5b8W+qpFkiDyn+zuxmr61djY9tGiKKI44HjeLnvZfxwxw8RTUWJe0xx3ZgqKkir4ckKWvmvc0nnXZfFhWgqWraef1r5n+uX3J5ui5v8rtx9/3S/f42jBpfNugznN5+PF3texFB0CD/c8UPcsfaOsr5mMTDTbVYTE4hs3UpGXzrXZYaCz+DURcHK/0033YSVK1di06ZNOHbsGI4fP878P4NTAKIIdElkGDYvUHeG7ma08l9xRO2Ldq4+CwDAO53wXX0VAMCeTuLi7u3op8h/fN8+EhDoWLYM8MmL68k+ckIx11SDk5V2hvy//lfg3uXAS/dIz5VKoy8QRX1kDBZBWuxYdSz/ugiPAiMSkeywzkUUdnSNRRgyTsMqW//NAlA3UT7bP0v+Wds/AAghg9Xf+Veotw8+nnE3bfuv73kCCMqf64IrM/pWh4NxjMqLs8UN3oz07iQ181xvfrkWTX4Hrj+7DfU+VpEci40hbeJwTOZQ9ROAJyJmJf+pgQEIAWmBb18gq6gmixR6COgq/3QvfpO7CVXBEexuV/+e8KFMFZgOdVu1eiEe/8R5uOXiuZhTo36Gv321E7GktM8NhgfJSL9GVyP8Nj/ZLhv5V2yjVjNPAp7ygSb/ijKR6zVOZyhJ/zzHY2n1UvhtfnCQvveCyD+t/Pf0sGpZgeSft1pRe+snUfXBm7Im4ivKPwD0jBtXtJgMiWnu+ec91PkqC/mfiE8QlYtR/mUCkvari+x8xSyzjvI/GtPv96fH/CW8BViFFet/aABIahwYiu3f2wxYHMgHuuf/P4eH0T0mnd/WzPZiTH7fhNDIyn9Rtn9NdoiZ53DLJSe+11+BxcTDY5cK2RMRY/3TrPLfkXG/4iAo3PZPOd36d6q35bwH2vqvwNLYwHzG5bL+B2MpxZyScS2wMMp/9sR/mvzTajXHcZjtn433L34/mtzSuWw0OgpBEMixdyoot3TQbb1TctYprT3lUP4FUSDKf6OrkXyGdHhvuZV/RTAAgBpnDTiOw+fWfg52k7ROevDAg9g7sresr1kMTJpRf+FXKcv/TNjfGwoFk//Ozk5861vfwtq1a9HW1oZZs2Yx/2ZwCmD0iDryrWUtwOur50rPv9XEg9uzk/zeedZZ5Lb/WtX6f2XHqxgIqCdn2vJvX74M8MqLayEpKS2QkrGV0D9C/pMx4O+fBMY7gKe/BIwdR894FKKYO+wvK7rVE9ho1Znk9s4s6r9tDtX3PyKiKqweJqWQ/2Fq9rOi2DEBWkb7/pvOBFzy+zj2HKAJtfI5LHLPpYgNgT+rd5x9c8ZT5Q/7U/M9LCWMeFF6gI80qkTorZuErAvz2AG1358Zk6b0b+rZ/kOS7d9n88FtdaP64BMs+X/llYzHpKicCUtDIxY1eHHbhgV4+rYLcPVyqSVlPJLEP3dL29H9/lrlP5/tv8Zty0oEtaD7/Wnyb2Q82umEcDJMVJx5/nlwW90w8SbyvRgd9QcAVmqSRaKnhxSGDM0SLwI0+e8ugPyfPMq//vlKL+xPiEYhhCWSK1aqx0whPf9K4B8d9ldlr6LuV1835VW/r7zj/qjwUwSoPKPImJSXAgBVxgrNdBL/k6+rx/D6BTZSEFHs2YrSGE/HkUwbI8gKtO1D165uQUtl6cp0OaH0/WsnAGWDtbkZkJ1vej3/2jF/AGAuVPkfp55X/t5d68/JyDwyNzQw7opykX8l7A+QpuEwr1lP9fwP5lf+eY5nkvBpKMddLB1DZHwYYlx6/yd7vz+QafsHQEL/yqH894X6SBFB6fcHptb2TxfzlX7/JncTPrZCyl8SIeIrm76SMwB5OqAl/xEl7I/nmXX/DE59FEz+L774YuyiEtxncAqCsfxnt/Io5L/RZ0V0uzST2FRRwSTi2xcsgH35cgBA+2Q/HIfV8XNM2N/y5aryD+iG/gmhkGQl3f+Y1B4AABCBLfehc1Q66TfnCfvTBfX3WtrVKv+O7myhf+rfN3fchvqYuggoZUwO2/MvLYyMBmgx4Hlg/kbpdjICHH8xY5O2KifWcAewUJTdOA0rdNs78of90WP+ctv+c0EhBJsW8VA66K/aIkL87SO628cPqv3+NkX5BwCnrFzEAkwbQFJIEsLc5G4CYpOoeP0f6KoFAvL6KLJlizqqUnkcTf6ppH+O43DDOW3k5wc2dQBgyb9W+dcj/4mUQBatxYb9KbZEYKbnX4s9I3uIE2NF7Qrye8X6X3zPfx8J/LPU1hou2hQCre3fKGgiolWApxq0UykdzJLIrpf0P6oSdq5KJWP5lH/O4VAnosjKf9YxfyPqawiUuyCv8q9J/Cdg+v3zh/0B6qg/AGRMLscBi5rVdkgtoQEKJzX092418/j4xXNzbH1ioPT9B6JJpNJCnq2lljtlhniiowOiwD5mLKSn/BfY809DJv/migrYFy9m7rI0NDKfcbkS//XG/JHXrDOo/MuWdLfFDZ7TX8LTRbHRXjXZ/mRP+gf0bf9Kz39KSCGRNlZMygba8k8X1qeS/DO2f6e6hnzf4veRAsT+sf34w/4/lPV1CwVnsYCXBanE8eOIH5YcEvYlS3KGPc/g1EPBPf9XXXUVbr31VuzZswdLly6FxcKewK6++uqyvbkZTBEUyz+gzo3XYDKWJPOnlyfHiAXbedaZGQvhimuvRb9cEFq1+3mI4gfAcRxR/jmbDfb584ExKjBusgeApMIzoX99fTBt+w37Znb8Fr2O9wAAWoKqfcrabpD8U39v8/KLgOd2Sk+bRfk3U6nDs8et8ITUhRtfY2CxkQV6tn+TARutLhZcqSb4H3xcLQbIaKt24fJ+ahTg2R/XneiQK+wPAJK9lO2fUkYLhaLWHW7i8M+3N+Gqv0jFH+cv/oLx1mWoeNe7mO1jTNifjvIPSMqcR1ocDIQHCAlscjcBe/4MSzIMn+DHnjYO5+4TIYTDiO7eDeeZqvuDnutMKy8AsKrVjzMavXi9bxK7egLY2T3BtBYY6fmnv/OCxvxR1scWTwscZgeiqeiM8q8B3e+/vGY5uV1pr8TxwHFEU1FEU1EmMTobzHV1kvKYSiF+8CBRqs0Fhv0ZBWv7N07+FSLitZuZUZrTAXoBKGRT/qN6Y/6oFgrKepyvmMVxHEwVFUgNDqrKP2X7pyc7RDZvJreTDdVQqox5lX8m8Z8i/3S/v4ExfwBr+1dw1qwKJKAWmhXlnyH/qTD88Bt6DQCYU6MWN96zphUNvvz793SjQu77F0WJ9FYZcKlY29ok4h+LITU4yIxeVNrT6MA/k5FivDPLNZv63l3nnovY69TI14bibP/HhkP4zSsdSKQFuKxmOG1muG0mOK1muG1mdI+phShtzz/v84Gz26XsAQPKP01Wtaik3A4TfR1Q9spTQvmXyX+lvZJkdTDj/pIRWE3F5xbQYX+08u+2Uj3/06D8A4CFt+Cus+/C+//1fogQ8aOdP8KGtg1MkPB0w1RRASEYlAJUZbjWzqT8v9FQMPn/6EelwLCvfOUrGffNBP6dIlCUcJMNaFypuwmdPr1sXE3e1bP+eK+4HMe//FXY41Gc07UDgeExuM0cGRFnP+MMqa/fSyv/lKJMXeCTB16DvfMl9gXik6g6/BcAZ7HKPxUQlBWJMNAvO1WqF6CuvgkNvgPoD8Swq3sCaUGEiWdJcaDOiRQv9fw3jqTBy+P5YhYgbBEKWKKx0O/5z2+j1cXsC6XvLx2XRv6JIkPuVzhHcSkvuTVijjrYz3ir7tMoyr/VzGN2Taa1OaEo/xzHFGkKBb1gH7xsOf4w0o/3vCB9rgNf/BJMXi+8l6tjDOOy7Z+zWpkRUCz5HyXkX7H8A0CTqxHYdj8AoDqdxu52M87dJ6lw4ZdfYck/o/yzfx/Hcbjh7DZ85i9SEeuBTR3wNLPKv8fqAc/xEERBl/wXk/QPsIuFWmctvFYvoqnoTM+/BkzYH6X8073m47FxONz5yRFnMsHS0IBkdzeTdVFov79R2C0mVLttGAnFC+r5V4jIdKv+gKZNKdssdlr5l0lImlL+bbXq52mkmGXy+yXyPzEBURR1lX8hGkXoP/+Rtq+qQnRhC7BP2iZvnzBt+58oTfl328ywmnlmQsjGM+oxEFaLmcrCng4YKzTte0mTF3e+eTGGg3F88tKTp9efRgU97i9ikPy3twPPPw9AUv/ptYHW9s/Z7eBdBlodrG6At0jthgpsXsDuJz+61p+D0Z/9jPxsaWxgztfDWfKBtLjjkT3YfNyY20ir/HMcB0tdHRKdnVmVf1EUYRoJ4Obn0rD5QxDfmtYNPaaV//BgDyH/ppO85z8lpEh/PD29gG5vKLRQpoXemD8A8Fqmruc/m/IPSEXrdy14Fx46+BCiqSju3nw3fnDxD8r6+oXA5PeT4EsFM/3+bzwUbPsXBCHrvxnifwog0KsucJrPAsz6F+TeCXXB1N6rniwdOuSfdzhwZMX5AACbkMLgn/+KKNUa4li2TLrho5RjHds/ACS3/kPdZsV7yc1VAw+BE9NoDUoXRXNDg7E+3J6tgNJHJbc4rGz1A5BSkg8PZZ7kBxOjGJBbTSsGI3AHpEXHhKu0nmtaPagiaf/06KwCntvqkgoAABDsZ4OMAJw39jB4TiK82xuulcLyNIgkUjg+IqmbC+o8sJgyTwdKAcfcUF9SSjBNCJo9zfjb2RweWysXK0QRvbd/BqGXXgYACJEIEp3SPmqbO5edgODSkH8Z9Ji/pvEeYGAPAKDK7MLuNqrvfxPlegGQGqB7/hugxVXLG8ki7R+7+tFJFa0a3Y3gOZ4EBenZ/plwtkKUf9n2z3M8qh3V8Nqk15gh/yoEUSBhf1X2KjS71eIiPe6vsMT/THeLpW5qlH9AVf8HJ+OGxomF4ilE5HT3QopJ5QITUGrA9q+QkBQ1Z9xRq57vjezPSt+/mExCCEeYhbSi/IdeegliTDrWPJdcAqdNJdb5e/6z2f7ppH9jLjOO4zJyGC5fUs+08dAJ5goKtf1zHIcPntuOz16xcNrdH0ZRaXDc35GhIC773gv40G9eA9eiFmLimnF/CvlX0v7NVVXG2nE4LtP675/FFMudK1aAd6oE09Kosf1P5if/8VQa27uMn2sW1mcq94r7TAiFkNYJAJ7cvwdf/nUcF+wVse6lUQSffkb3uWlHTGyQcred5Mr/SHSEOPho9Vur/JeCwxOS8m/lrWj1qvvbdPT8mzgTc21ScMuqW0gh87nu5/Bc13Nlff1CQE9YAaRWAMeqVSfmzcxgylAw+acRixmfTTyDkwSM5V9/BBUA9CrKvyii+pjUx8+7XNK8dR2MXHQluZ3421+YsD/HCtmOS/f8T1LKfxNF/g9uk26YrMBlXwXazgMA1Kd6cXlqKzxyuJ2NVoNzoZP6e1ulv3dFi5/8Ss/63x/uR0+1tDAwJQVY5faHcTfwP3/dhE/9aRe+9Njr+N6TB3Hfi8fw0NYuHBvOr9yMyD2LXrsZNrO0YDMSoJUVC1SlnEn9j4xhVtdfpZuiDf+2bYQeDg4ESfKwXr9/OhQifbbWpuLD/gA2pKvZ0wxwHH53EY+hi5dKv0wm0fP//h+iO3dKfWbyG7Np9zdG+VdJAKP87/kbuV1VuwRjXg498sOiu3czwYqK7Z93uUivGw2H1YRrV0tZB4m0gCNjUjHEaXYS0q/0/edV/gvo+VcWC9X2aph5M3xWqUiUEBKIpWbOuwBwdOIomZG+onYFQwTocX/F9v0rmCrbP8Ba//sm8n+vJ7LfH2Bt/4UE/qWG1WPVU69mhxhV/slrTkzoKv/Bp55Sn/+yy5g2j7xkwdcCyNMhMEEpXsT2zwEVbXnfpwLa+r+s2YfmCqdugjmj/CdPjjnf5QSt/Oca9/fVf+zH4aEQnt4/iJfjKgHXhv6NhRMwCWn4EtL3aWjMnwKHlvy3Mj9yVivcF14gPa/PB3NDA6pcVlIfMKL87+8PIpmWrluXLa7Dwx89G7+5aQ1+/N5V+M47luFLVy3G7RsX4GMXzsE9167ABfMziTiT+D/Iqv/hTZvQf/1NqKYOu8hrr+m+F2bKBnXslZJZNB2g+/1p8q+k/QOlhf7FUjF0TkoFvjn+OTDzqrAwHT3/VfYqmHQCtr1WL/5n9f+Qn/925G9lff1CYPazxQnHypXg7dNfaJ7B1KJg2386ncbdd9+Nn/70pxgcHMShQ4cwe/Zs3HnnnWhra8MHP/jBqXifMygX6LC/1uxhf8qYv8bwCCwBaTHnOHOVrsUMANwLF2BvVTuWjB6HubsDEw8/TO4jyr+nEdIiS8yu/Adka96iqyWVd91/Ax2SnfP9YXWBZ3jMX1dmuOHKVvXktrNrAu9ewy4E+sP96K0GcJD5NSbcHLZ09SIddkMLh8WEp247P+csYMX2X00t2unRWdkCtLJi/uUAbpVuH3wcuOhz0u1tvwYvq11/Sl+A/RP63xmT9N+QGeZCW58tLcWH/QEqITBzZtXOx3HY/8ELMMdUj+BTT0GMRtH1Xx+Fj8oNYfr9gUzbvwyG/Cs9oSvfh6raWcDIDuxp49A8KgLpNCJbtsBzySUQRZHY/i2NDVlVpPetnYX7/nMMoiggkBwGOEn1V7ZX+v5DyRCSQhIWXnVZFGP7TwpJslhQVEJ6DFEgHoDdPHMx3jm8k9xeUbOCuY8m/4Ul/mcWucyUTb3cYEP/InnntJ9o8s/Z7YDFAiSTWc9Xej35qVGVgNhq6uDocxhuY6GVqPT4eEbav5hIIPTc8wAA3uOBa+0aODtU4pTX9m+2At5GYJJyxYmiqvz7WgCL8eOtiiK9ly+RCIxCajhwqJZDS2krc6lq5smICkr5n8ii/B8ZCuKFQ2oexK+6BHxbvq0d9zcWTsBX6Jg/BRnKf2vGJnWf+xysc+bAdc454K1W8JC+y5FQggnrzYbdPRPk9rlzq3FWW5agwRww11GJ/wMDsMnhyhN/+xv6v3AnkGLT4KM7dug+D237F0fUYtzJrvxnJf/0sVLCuL+jgaPEWUCH/QFTR/7TQpqcE7WWfxqXzboMJs6EtJhmgoWnG3SxFZix/L9RUbDy//Wvfx2//vWv8e1vfxtWyga8dOlS/OIXvyjrm5vBFEAh/xwPtKzJulmvHEC1ZETte3SetTrr9vVeO/7Vpp4k0nK12VRTTUb5wWwF3LKKRvf819cTC14yLBPVM2+U/p9/OVKyNWtRWLVkGhrzl04CPXJl3NtMLvhLGn0wy33+eon/PcE+ovzTGHcDnEn/whNNpvHwth7d+wDJYq/YdWlbKK38ZwvQygpvo5TiDwADu6XPNJUAtvxcej5wuD99OTpG9CvlTNhfY2bYHz3mz9pSHuW/0l7JVvHFGBr/97twyhcYIRDA+G9/S+5nkv6BzMA/GTT5b0ylpQX7xm8QZZAZ+feydAykx8fVEUj1mZZ/Ba1VTly0oBacKQxw0uKrwaVuT4f+aQPMhoOqmmuUrI1GR8lYsFpnbeZrzIT+Acje7w9k9vwbha7yPw22f8BY6N9QsLg2knKB4zjS9y8Estj+qcA/xRVD2/7NNdVkfzayL5vpcX8T42Qh7bF4YDfbEd68BYLs5nFfdCE4q5UhC3lt/4Bq/Y+MAvGQdG6JyYUJg2P+FLRXS8VhngOuXCKdJxTbf7WjmhQH3+jKf6VLLYKOhfVHGf7ypQ7m5z0RMwSH9N1plf/RcBwVhSb9K9CSfzrkUXm+6mrU3HwznCvVHCQlm2c4GIeo2OSyYHePWsha1px5PTUCS4NKeFMDAxBFEcM//jH6P3sHIf5b53Hokw+J2P79ECKZaxLa9s+Pq8fYyZ72z5B/Z/lt/9nC/gCW/JfzGjsWGyMFBzrsTwsTbyLfm5J7cCJAj1cFAOfaGfL/RkTB5P+BBx7Az3/+c7z3ve+FiVKBly1bhgPUbO4ZnISIjAHD8ii+huWALXtarKL8Lx2lyX/2OZ8NPjtealyGSc3cWcey5ayi6pUX16FBiahCstyZq6QTTjJiksKV2s6VtuNN6J73PgBAYlI1qhga89e/SxqFBzAjDR1WExbJSvfhoRAzezeWTOPJgweykH8On76iGU/fdj4e+dg5+PUHVuO771xOrIF/3dGbdYEwElSVD1b5L2LUH40FarsFDj0BvP5XKQMAwFbbOnSK9RgKxhGOZ86PpZX/hXpj/nood4aOImoUgigQ5b/KUQWHRSU80VQUvNWK5h/+CHbFIUIhU/mnFi+U8t83Kdl1q1Np2EUReMuPALuXKCD7WjmIcsEn/IpE/umkf71+fxrXnz0LnEUlkY1u1a1Cj/vTKpl0r6hR2z8z6kh2SeSbKnA6Qun3t/AWLKpaxNxXvO0/cz+36Nj+Y6kYtg5sRTxd2ggwlvznX9SeaOUfUEP/6PYZGgo599v8xFabpq3HlZXEyRKIB/KSqmy2f2WhrLX8AyjM9g9oEv+7NP3+xsL+FHz0wtm4aX077r1uJdqqXUimVScP08dsLb7n/1RARZ6e//FwAo9slwrmJHOX49DvkQhSsrcXQkJ93Fg4Qfr9gfLa/rNBOcYSaYEZ06cHRfk38xxZXxQKWvlP9PSg/847MfKDH5LfRd9yIb57DY/9rfIHlk4jumdvxvPQxU+bnN/E2Wzg3ZmuxZMJA5H8tv9SlP9sY/4AwGqykukC5SzG0UQ+l/IPALUO6VozGh1FSshcs00HaPLPO51wLF1yQt7HDKYWBZP/3t5ezJ2bOVNWEAQkk7lPjjM4wRjaL6XeAqT/PRt6ZfK/fEwK3eFsNjiWnJF1+3qfHUmTBU+3sgUCx/Ll7Iak718kJBUALB7pYpaOmSAsey8TxrOt8k0IizbEKfJvaMxfjhYHJfRPFIHd3RKZCsaSuOFXWzAWH0RfJSBo+P+EC0hzYcyt9WBVawUuXFCLd5zZjLNnS4uQztEItmcZH0j3DLLKf5Gj/hRo+/43/Yj8uLX+PeR2xyi7uEwLIg4OSAup1konvPbMQMAkpfyXQv6DiSBSonQh0yr/iipncrvQ8rOfwjpXXWibGxpg8mkUFFrBCUsL6lgijGHZ2t2YSgGrP0zCEBXlP2rjEJgnEelERweSfX1s2F9jbvJ//rwa1FWqiw6rqC48aWKuDf0blJVaE88xM8BzQZv0D2hs/3lmo58OGIuNkd7NxVWLyaJNQVmVfx2r7O0v3I6b/n0TPv/S5w0/tx5Y278R5b+46RHlBC8fk0IwmDGLHVCLLfR3kJT7l02VleAsFnLMJIUkYuncWQf0YjQ6MkiIcpWjCmI6jeAzUugZZ7fDfa5UNNY7x+SENvGfTvo3OOZPQa3HjruuWoyrlksFwuHoMHHy0Anmb3TlP1/P/x+2dCEuT0W4/uw2zK+TPo9DVnm/EQQmdXwsnCBJ/0Cptv9M5V8P9DE2lMP6H46ncGRI+g4XNniKDmGke/5Hf/FLBB7+i/pebr8d/R95E0Sew4FmdXGiZ/23m+1ELXfKBWhzTY2xgMQTiGy2/1LCMWnkUv4BVf0vp+1/OEKR/xzKP6AWB0SITHvTdIJus3KuXi1N6prBGw4Fk/8zzjgD/5FH6tD485//jJWUXWoGJyHa1gOf7QJu+Adw5g1ZN0umBQxOxlATGUdNWO73X7EiZ9p7pdMKi4nD422sRcihVXOZ0D9ZWU4lYIFKeJI1FzEPOTJpxsPp84nyz9stMNca6F2jyb8m3FAh/wCwo2sc4+EE3veLzdh8fAy8ZQIpM4fhSjYSY9ytr7q+baVKGP62ozfjfkA75k/9HJnRWVmUtJyoX6a6KY48I9n/AWmEY6v6XXSOstXyztEwaUPQC/sDgESv2sag1wttFEyPrqMqqypnrqhA6y9/SfIFvBsuy3wynZ7/vpe/S37VxNuBy77MvJ6CnoXU+KNXXilI+ed5DivaVYXyYK+6bxhR/qvd1oyRktmglwyeq7XgdMSuIXWaiLbfH2CJZyHKv7mmmjnPmSorM857KSGFl/qkcaQv9ryYV7nOhUJt/yeT8g9RhBBmF+KRZISQbeU7EJNJpIak87uS76LNsMj5epTyHxpRyUG1oxrRHTvIGEH3eeeBd0ifJ3OOMaIUahP/R4tX/rWgj+dshKbQUX+nAnL1/CdSAh7Y1AFAqvPftL4dHzpPKuj3uNVru5L4LwgixiNJ+Gnbf0nKv7EMG/oYG85B/vf2BiDIp4FlzX7j70sDJe0fACCLaZzFgqbv/S+qPngTJpPSGuFQU27yD0jHnyktwhWRCizmk3zMH8BmY9AqOaP8l2D7V5T/SnslEQZoTAn5p5T/amfu70Ap9gOsCDCdsC9aRMQ3z4YNJ+Q9zGDqYZj833TTTQgGg/jiF7+Ij3/84/jWt74FQRDwyCOP4MMf/jDuvvtu3HXXXVP5XmdQDlidQPt5QM2CrJsMTsYgiMCSUXXUTi7LPyCRozqvHT2eWuytk+xUnMMB+xKNZchLKWtK3//Bf8JiU0/oyQl2Edw1FsbvE5eQPACrJwlOyDMWa8t9wCE5Ad9RAVSzf+/KFlVNeu7gEK79+Sbs6gkAfAycSVKiJhtZUjzh5nTHuV2xtAF2i3Qo/X13HzPjWQFL/tUFBWe1gpMXrAWN+iNPwAELrpB/oEjI2R9HW42qLB3X9P2zYX/6/YnJbun74ez2kuYDMwFgdpb8a1U5S10dZv/9Mcx68A+o/fSnM5/M7gOUhN7IKDC0H32v/Zzc3Tz3cmkMogz6An9orvq64VdeIWF/ANRcihyorVDf6+ZDAkJyK4WSxA+wyn9aEMn3XohKS1/0FaWQJkszPf+asD9Nvz/AFksKUf45nmcCSM11mWF//eF+YsmMpqIMuSsUdouJnA9OFds/T08o0fT90+GKJOl/aAiQHQJKka2QDAsTlT4dG1U/62pHNWv5p4qFBff857T9F9bzr4VeGw+g6WMuwcp8ssLvpHv+WfL/rz39GJQLo5ctqkNrlRNvWSGN1+ulyL/S9z8ZSyItiPDHaOW/yJ5/u1+6jhhArUHyr/T7c6YQUs6X0BPMnv+TC6aKCkZp5X0+tN7/K3ivlNr7FFLaXwkIXmn/ie7cqevAqbJXwU9d9k/2sD9APxsDYI/nYpX/kegIKQRrLf8KPBbp3BZKhpDOt8Y0CJr8K7b+bGDIf/TEkH9rSwtm/fYBNH3/e/C97a0n5D2cTEgJKXxry7fQHzpxIYxTAcPk/ze/+Q2i0SiuuuoqPPTQQ/jXv/4FjuNw1113Yf/+/fj73/+Oyy7TUepmcMqBhP3R/f6rc5N/QOr7B4DvLHsnPNdeh6bvfw8mtya92qdD/rf9GmaXeqJN9bMHWedoBImgGco4JpsrAhz8V/Y3svlnwL8o4rj+EwDP7uqzqpyokBcn27smcGhQUhSqfOoiLNbCnqjH3fqqq9tmxobFUsV+IpLE8wczT9pMz79mDjTpoS008E/B/CvYn71NwOK3oK1K/ew7hoIY+OrX0H3zx5EaH9eE/WX2J4qCQNL+rS3NJdkFafKfzfZPg7fb4Vy5Ut9uxnGq+h8aAv76UfRSX21jExti6bf5wcn7zb66FOl5DG96FcleKtPAAPkfjavEIxzx4K9yv6qPWkjSKuZoOE7UoELC2eixYIT824wrpacD6LC/5TXLM+638BZSMClE+QfYFhe9fv+uyS7m5+OB4xnbFAJF/R+cjCOeyr3gVKzHFhMHv+PE2DFN1IQSbcGSDvtTyD9dZFPaa+iCWV7ln7KhJsbU56+yVWJSIf8WC9wXXEDuK7jnX2v7V5R/ji9ozJ8emOPZlcX2/wZU/i0mHh67VKgdj6gtoaIo4pcvqcfMB8+VwnttZhNuPKeNUf6VxP9RuXhAB/4VVJCmHWM6YX/ZQBfY6LBNLXbJ/f62+r/h8YEf4xPPfcL4e6PAcRyca6RrmKWpCW0P/oERXogizXEQlki29XQggMTxzHNQlaMKfmq3OtnD/pLpJHEJ0g4ZoDxp/7Tlf54/C/mnQv/CqfLkcNC2/3zKP90WQD9uuuE86yx4r7gCHF+wOfwNh5/v/jl+t/93eMff34H/9GS63k9VGP5maWvjxo0b8cILLyAUCiESieCll17Chhl7yBsGfQFN0r/ZnNm7r4M6r0T+h1yVSN/yaXguvDBzIx9lt5vslXorjz0PC0X+k3195LYoiugcjaAlpBJqqycFbP6p/pvY9GPg8c+oP597G7D+kxmbcRzHjPwDpEX4HVepFx2uXX2vKR4IOTJ7uhW8bZVa1PirjvWfUf41RFBR0oqy/QOSk8NKBfms+QhgsqCNGhtm3rEV47//PULPPIPR+37BKv865D81PAJRDlvSC0ErBFrbv8VkIUFghlQ5LQj5HwD6d6LXrFrwm9xsz7aZN5Pwt+HEKJxr1wKQkv6V4D9wnK7Cq0VfWNovRdEEMeXBA5s6IYoiY/tX9g9RFPHCQaribzDsD2BtwtOV9n94/DDu33s/M0P9ZEUyncTro68DkL7vbCFKCvksZNQfAFia1X3IrEP+lawBBaWS/5ZKdWHbN5G7/11RH6vdNvAG20jKDZOPGk+qKVjShZZK2WpNn88Vhw1dzMrXxkIr/6lx9bts6ksgJbfuuNatY/JTCg4I8zapjqJxquff1yJNqSkB2ULMytXHfDKjUu77pwP/Xuscx55eqeCzpMmLNe2qKv/eta0Y86vn4shR6XtQnAN04F9BNnba9m8w7A8wbvtXlH+zU8rJOTR+qOjAtqZ7vo/mH/8Y7Y8+mhFsTNvRLcuXktt61v9KeyX8YXXdfrIr/4ORQZKNoSX/LnPpaf902J9evz8wNeP+ClH+aWfQibL9z0DF1oGt+NnunwGQztH0/nGqo6CyzskeFjKD/BBFEfFjuRerfRMx+OJBtMqE23HGGaSXMhcU5R8A+gNZFrGM7b8X2P4AAMDipMh/r7pYHAsnEIqn0BKkyL83BXS+DPTvZp/7lR8C/75D/fn8zwCX3MWEB9I4c5a6qJxb68bDHz0HgkldXDrmqa0Ck24eIsdlVanOm1tNevmf2T+EAKV0ANl7/gFVSRMjEYjFhGaabcAZb5XfdCXJc3DbzMRl4Duyj2weeu457JfJv89hQaMv05Ke7KHC/lqM9UdmA0MIZEKmKHNFVfGdrN2z16KS/2Z3ZqFC6fsfjY7CdbYa/CiEJFnEXF0NPkeehQLF9mUVKwDwODwUwqZjo2zPfyKAPT0BvPu+V3H7w+r+SQe75YNC/n02H+xm6bsppEe6UIiiiI8/83F8b9v38I3N3yjrc08FDowdICn7epZ/BUrRJ5wMI5HWnzOuBzr0T68o1BVklf+OyQ7Dz60Ho4n/qbSA0bDSRnJiLP8AwOdS/qljXZm0wWRr6PT85ytm8S4noLiAqGJD7VbVmea57FLmMQXb/nmTmkczfABQChIFhv3pQc/JA2h6/t+AgX+A2vcfiCaRSkvW9F/+R11/3LS+nVlX+p1WvOWceRixS/tHWCb/oyFW+ees1sKS62sXAsrCve184w8zQP7Hwwl0jUUACOBM6v5ZLHk0eTzwXHxRpmsS7LHiWrWK3I7okH+t8l9K6950IFt7DFAe2z8T9lc5jeRfVvB5jmeyaPRAF7JnyP+JxXhsHJ998bNkTOPNK27Oud441VAQ+Z8/fz4qKytz/pvByQtREDDw5S/j+Nvfjshrr2Xdrmc8iiUjVL+/Acs/ANT71EXsQDby766lFJbjwI7fAVDT/gFWKeockxbDzSG1emrzyhV1Wv1/6fvAk19Qf77wDuDiz2cl/gDwvnWzcNGCGrxpWQMe+sg61Pvs6Aupr105fwkgq8qBCnkRk4V4mU08SXdOpAX8cw/bupCt5x/Q9NAWq/5f8W3gqh8AN/1byjiQ0V4tXTRnDRwhv0scPw5Tn2RZX9Tg0S3qJaikf2tzU8b9hUCr/AMq+Y8mS1D+ZfT6pffHgctQDACVhCSEBMQ1mQ4Wc56kf0BadCkL9BaqgPXbTZ2MhfmFI5246kcv4dVjKgk6c1YF3nWWsQKKKIrkok/3/02l8j8RnyCuhu1D28v63FMBpt9fJ+xPQYWtuHF/jqVqSKl98aKM+8ut/BsN/RsLJ6AY8Mrd719IaKEpR8+/tsUH0Nj+G2TyX0AbC8dxMMuhf6ZJdeHvfHm3sgE8l1zCPMbCW2DipIwYw0qhoggLVAG2xLA/QC3maUPMzLwZdpNU3HujKv9Ka50oSgWA7rEIntwnkbxajw1vXtaY8Zib1rejT7b+W0OTiIyOEedARUza30zVVYWJUXYf8JHngXf/ETjrJsMPY23/+uR/t+xi4MwhgFN776eiPYsmpL7lZ5L1SXTHzoxtq+xVqGBs/ye38p/NIQOUJx9DUf55jsccn/5xPZXKf6W9EiY+9xQI+ppPOwZmML0QRRF3vnwnyV1Y27AWNy0xft44FWDOv4mKL3/5y/BpR2/N4JTB+B//iIk/PgQA6P7If6HlF7+Ac1XmhIa+iSjT7+/IE/anoN6rKsgDk1nIP28CPI1AoEtSWGSYllwB/snDEAIBhvx3ySn1RPk3mWCtdgHJALDnz8ClXwa2/wZ49qvqa1z0BeCC2/O+X5/Dgvs/wPaI94fVhWpD1Sx4P/0pBP76N2w6PwWgE8FkECkhRWzrNK5Z2Yz7X+4AAPx1Rw/es1a1F47IyoXHZs4YA0SPs0sNj8BcTBHN6tKd4DCryoVtx0awcJxVK9cM7Mff5tZkD/vrofrhS1T+tYF/gGrLLcn2DwB1S9HLSwuuOlcdLKbMPmg69C9Q64S5sYHYhQGVkOQCHfZyRu0s9HlsGA7G8eS+QXz0QvXz6Q+qf+usKic+s3Ehrlxab3ihOh4fR1ImH9qxYBw4iBDLvqikFYaR6AgmE5OMMnuyge73z1WJr6SsvuOxcd3CkB6ca9eg4ZvfgBhPwK3TuqTt+S9d+afH/WVf2A5NQdifKIq45blbsG9kH+69+F4sqc4/05lnJpRkV/5V8q+ez/V6/o0Us0x+P1LDw7CG4oDIoWkU4Dqlc5TzzDMzwt84joPT7EQwGTR+jtEb/1YG5V9RNLUhZoBEamLp2ClN/ocjw0x7FQ163N94JIEHt3STHJTrz54FqzlTf2qtcmJz6yxgRMpdeObJ1zBWPxu8kIY3IR0fBY35U1A9V/pXANw2M+wWHrGkkFX53909AQDgzOx+PBUjWRVCynM83J5K2BcvRmz3biSOHUNqfBxmaixmhu2/+iQn/1nG/AGlp/2nhBSOBaQ1baunlTjqtKDJfzmK7GkhTcSPfGP+AMkRZTPZEE/HZ5T/E4jf7/89Xuh5AYB0HH3j3G/kLdycaihI+b/uuutwww035Pw3g5MX/ne8A67zzgMACJEIuj/yEUR3787Yrm8iiqUK+ec4OCl7WS7UU/bxrMo/wI77U3DmjcQSmhwchJiW2gA6RsPgRAHNcguCtaUF3OrrpcekE8Dv3sYS/0vuMkT8s0F7Aaq68UbMfvRvGF2uEvlsF4UlTV7MrZWsiFs7xtE9pl6kRpReXZ1Fu22OuiCJH9hf9HvXQ3u1C+2T/bCn2XaCtQNSz7Revz8AJCnl31LCmD+AJQR+ux8Aa/sveFRaq2zdtzgRvup7mJDJsLbfX4FScACkQoTrHHbso5GwP9oR0uxpwrvXSPtDWhDx1v/bAlGQikGcKQK/04K73rwYT916Ad60rKEghSqbRZjneKKWllv51yoMpSrZUwlRFAn5d5qdmOvPvpinlf+CEv85Dv63vhUV174rI/AoKSTRG2IzPQbCAyWNn6KV/+6x7ESVTfo3Pj0iFw6NH8Lz3c9jKDqEX+39laHHmLwqcRdy9PwrLh8lwJWz2WCSC5uFBliaZFJjTgqwJYE1B9VzhkdvJCiKaC3SC4IrUflPCkmSo6G1MgOAW85qOVVt/3tH9uLShy/Fxr9s1CUrldS4v+6xKB7aKl1XbGYe71mbPXhvwVlnkNubXtiBkVAcvkQYvNwTXlDSfwngOI5MahkO6ZP/XUrSv5b8T6Hy77F6wHM8nNR47ejOncy2VY5TTPnPQf4tJgspnBWj/HcFu0irWLakf0BN+wfKE8I5Hh9HWpTWstmyaWhwHEeKBDPk/8Rg3+g+fG/b98jPX1v/NUPf3akGw+R/pt//1AdvtaL5hz+A6xyJPAmhELo+9GFEX3+dbCOKIsaHxtAekBZstoULmSClXGB7/nOoLT4NSfO3ArMvUklYKkXmQneNRlAdDRDyap09Wwq04+Rdd2CP+jyXfQU471OG3ms2KMp/ha2CSYzWC3XTguM4vG1lZvBfLJlGUB4Lp+33BwD7EnWhE937esb9paCtyoXFYx0Zv18yehyuRBSLG/S/20SvOqrI2lQe27/f5icXcOWzTYtponQbxrJ3Ah98GvjvV9Dr8pNfZyP/tPI/GhuFO4P851eEFVs8ADS4GvDeta0wy4FroshBTEt/j9uZwAu3X4Sbzm3XVbXyQW/MnwJFLS33olKbKnxs4liWLU88BsIDxIq3tGaprgNHAd1fSbtPSkFvsJcs5miUov43+Y31/E/FmD+arG8f3G6oEGfK0aZEt/hU2ishiiLJcLE0qIWwgpV/StH0RIFzDqvHlufSS/UeQvqES1L+SxzzNxwZzhpiBqh25nAyXHgR9CTAY0cfgyAKiKai2DqwNeN+Wvn/6QtHyXjUa1Y1kTBAPbSvWkxum/u68fieAfiZpP/pIf+AeqxNRJK60zh2y0n/TgdLFqeU/Msk1UGTf431v8peBZ+s/IscYK46udty6cJ3vTP3sVIojIT9AeW3/dMBukaUf0C1/k8mJhFL5Q6AnUF5EU6G8ZkXP0PWpDcsvgHnNZ93gt/V1KCotP8ZnLrg7XY0/9//kXEywuQkum76IGIHJAt+IJpE+8ARUmF3GrT8A9JFUqkRDUxmT8aNuzRK66obAM18bcX63znGJv3bZrdLxYKFb2KfY+Pd0ki/EpASUoR8aRdqTM91jnTqt1Lk/287eiGKIrNo1/b7A4B9sbrQib1eZvJf7cSiMbVH2XHmmQAAsyhgzchB4lTQItktkX9TVRV4V2bwUCFQCAZNxhwWlfAUZf1vWQ1UtqM3qKqwWZV/B6X8R0fhPPtsJgvCbED5p23/je5G1HntuHq5ur96ZDIjcGH4ShjBppf0r0Cx4gcTQRJCUw5oFYaTWfk32u8PgLEhF6L85wId9kcXBzsCHUU/p91iIgQjV88/PWqsXIF/tDV5NDaaEWaoBybwb1Lf9m/hLXBb3BAmJyFEpIKGhcrWKFj5l3v+AWD2gIhZ/RKJtC9Zwlw3aNC5IobWL1ryz5kKGgunB/p4psf8KVAIjSAKiKXLv9Av6txaAHYMqUFzekWcCkr533xcLTR9YH17zue1tbWR282hYQxMxlBBJ/0XY/svEjXUNVtp31MwEIiRdpzaCnbNMxXBrLTyD2jJPxv6V+moJMp/xG0BZy6oy3faofT8mzkzU7BXoFj/i3FZMWF/00j+6WurUfWY6fs/geP+Tkd8/dWvk0yfM6rOwCdWlcYpTmYYJv+CIKBWZ+zRDE498A4HWn7yY0IEhUAAXR+4CbFDh9AzTln+URj5t5h4cqEcyKL8C4KIhw+rC7E0eAjL3ys9niH/EtnqHI2gmU76b5eVmHNvBZT+ycu/CZx9s+H3mQ3DkWGi6jW62QUlTf6zKf+ApOKtmy2R3GMjYezqCeQM+wMAc0UFSRiP7d9PWh7KgbYqFxbJyn/CbIX3Qx8m9108cVhXnRbicaQGpUWrtUTLfyQZIQtQmoTTPXylLFBpRd4o+TdXVMC+SA1yM9LzT79Oo0va/qtvXYLvvnM5Hv/EeVhUKxWL4ul4SX9PLrKg7IMixLKFEQGZtn+lN/JkhNF+f0BD/gsc95cNdNjfOY2qg+T4ZHlC/4aCccSS+sf/VCj/2kLm9sH8gY+M8p+F/FfaK8FxHBP2RxfZ3BY3eNm9ZaQ32lThJ7cv2UlZ/i/Tt/wDKvlPiSlj7iIt0fe3AjoZIoWAsTLnUDOB8of+/Xrvr7HuD+vw1U1fzb9xEQglQoyiqlcUr3Rlfn7nzavG/LrcI7MsTU0kzK5JDvv1x1Rlfbps/wA7plXb96+o/gDgdrGktNw9/9FUFClRKnophWBLXS1ZO0T37GGmBbnNbvjlXWrSXbgLLS2kp5V8KsdKjbNGt79acfIUY/un99Octv8y9/wXo/wzif/RGev/dOGxo4/h78f+DkA6L3/n/O/oZki9UVD4GWEGbwjwLhdafvYzOJZL6efp8XF0feAmDO09wCb9n3VmQc+rWP+Hg3Ey2ofGT188imf61YvpU+kz8ZfD0gVNq/yH4imMhOKM8m+dLSsGTWcCN28Gbt4CrPvvgt5jNjBhfxp3Ak3+81X0r1mpEua/bu9h1IJsi3b7EiloS4xGkThePuXVOjGG+ohEfI5UtaKnbTHCctjNku7XIaYyZxHToxZL7ffXC/sDWNW0lH7pnqDanqAt2Oi9rnIx9l1zDQBpjrttXv4QKEX5pycKuGxmvOPMZixq8LLj/kpQfLL1/AOa8Wh5ZqMXglNJ+T88oSo4S6uX5tiSdZqUS/mnyf8FzReQ26Uo/wAb+tc3oV88onuOy6b8a/bVbYPb8j6Gp9rA6MA/QRTI50zC/rIEa/IcTxbaRvZlWvlffswY+S943J+rFjBRn2u5x/zpKP9ui+q8KkePMY2HDj4EQRTw8OGHp8Q+vHt4N+NA0itI0sq/gg+em1v1BwDOYoFVDpptDI+AEwVW+Z9O2z9VsB/SBBnv7lGPH7OV/fvLrfzTny9NUhX1X4zFiIMTAMTJSVjkOuK4szDnriAKuP7x63Hxny/G11/9OtJC+QQJPURTUSKqZAtmpdt4Cn0/ivLvNDuzigTAFCv/Rm3/jhnlf7rREejA1179Gvn5rnV3ocVbWtD1yY4Z8n8aw+R2oeUX98G+VFpEp0dHUXXXrZg3IYXyxBtbCq6wK6F/gpgZkPPS4RF8998H8bKwBK8LszAienFP6u345uMHEIgkYWliyb+S9E8r/7Z2auFQNQeoWVDQ+8sFmvxrL0BGev4VXLG0HjZZUf/77n7GBaGn/AOA/Qy673+v0becF3QI0G5fK7b0BLGtVrK92aMhRHftynhMsocK+2spX9gfY/s3l2j7l0GHrzW79d+rtucfACre8260/fnPmP33x8Db8hMpRfmvcdToVoMLKQ7lAr1YyLD9U1bpcob+aRcYPaEeEo50skF5r06zk/nM9VDsqL9coJP+1zeth5mT1MnpGPc3NJnbQVQMtOcyI6MeeasVnF0+z1OBf5PxSeKcUiYt0JNbtPZ8kmFhQCGlU8yVRYt17hypDSwLCi4w8rw67g8o65g/QD/wb6qU/0Q6Qc5ZgihMSUFPu6/o2v41ff1zalw4f54xEmSVrf/2dBLV0QD8FPk3Taftnyq0adc0uyjlPyGyBcbpI/8ryG3a+p8aUVXnYWeqoFax3mAvdo9IYdB/PPhHfPY/n0UybcA9UyRyZd0ocJnVY6WQNUM4GSbrhHkV84jjSA/051qOEE5G+S/C9k+fP2YwNUikE/jMi58h+9Rb574VV86+8gS/q6nHDPk/zWHyeND6i/tgk+dZWwPjMCsXiWWZYwDzgR73108l/vdORHHLH3dAEIE4rHj6vD/jrnl/xQGxFaPhBP73qYMZyn/XmLQYapFtf6aqKkYBKjdyKv9W4+TOY7fgssXSBWwsnMBftqsEVS/wDwDsZ9B9//uMv+k8oBcD+yvb8PjeAWypV18r9NxzGY9JUEn/pdr+6QAwxvZPqXLFzu0F1BR+M2fOIMsK/DY/ueAr74fjeTiWLmHGLGZDLBUj5LHBrZ8PYLQtJB+Ui73D7MgYt1euAoMWWuVfEIWMWfYnC5T3mu27pjEVyr/SE++xeFDjqEGzRzo+Oic7S8phMEL+FeLhtWeOCy0W2v2oO9htSG0yyeP+6MA/JulfdtvojflToOzPoUQor5Knd97PpfoDRbYW0db/Mo75A3IH/gHlJf89wR5mfzwycaRsz62A7vcH8vf8A8BN57aD542FR1upQn9zaJgJ/DPXTB/5z2b7F0URe3ql46fabcVYnD1uyk7+k/rkn078j2Qh/+MusaDrEt3mBgBPdDyBW567ZcoyJPIdJwC7ZijkWKH7/XNZ/oGTQ/mniwTFKP//+9r/4gNPfCBjJO0MMiGKIr772nexf0yastXmbcMda+44we9qejBD/mcAk8+H1l/+ErYFrIruW7e64Oeq96mLWGXcXzyVxsd+tw1jYcn+ftGCGvy/S+bjC28+Aw55Efu7VztxIGoiilKyrw+doxE4k1FUxaRFBaP6TwG0oW40fPbCiNc1q1Rr2U55DjCgP+oPmLrQP5r8H6iYhW2d49hatwgCpAVY8PnnMx6T7FGLFZbm0qxPtO2/3Mq/KIqkol/vqs86h9XEm4gKTFfijYJemCj9/loU4gzJBZrcaiesMLb/Min/aSGNkVjmZ3Iy9v1HkhFSKNILhNLCYrKQVOxy9Pwn0glSIGz1toLjOLT52gAAsXSM2U8KBW3710v8F0WRKP+1VIG1VOip7obUf9n6LwTYwEAFyrGe6qdt/yz5V/ZnEWJelY1O+yePz0P+GeXfaIGRDv0ro/LPgdNV/hjbfxnH/WmnT9DtMuVAUkhiz8ge5nd6ZMnvtMAkk32/08K0xOWDtU39LubERjWBf9Np+1ePtyGK/HeNRTARkdTwJc3OjHPydCn/tvnzwTtlS/z2HSTcMjWsEsdxN8cU4vOBFkIUvNT7Ev7rqf8q+6hZwBj5pwtlhQgGdCE712hYALCb7GSCTDnT/jlwjPiRC3Rhu9Ce/8Pjh/Hr13+N1wZfw892/6ygx55uEEUR39/2fTx44EEAgJW34rsXfJcpMr2RMUP+ZwBAslVW/uRn6PJIinXSZEbTRYWPuKDH/Snk/8t/30dm4bZWOnHPtSvB8xwa/Q7ccolUiRVE4AuPvk4WiMm+PnSMhNFCh/3NLm3sUj4Ytf0bsameN68GVTqjjGqy2HXNFRWkv75coX9CPI7oPslF0O2uwaRNunhO2lw4VisVUhJHjjJKP8Da/q2l2v6jmWogwKpyxSr/k4lJsmBu8uQeR6iQxdHYaMGTS5gxfwaU/2IXfeFkmPw9etbHqVD+x2JjRCGkx+Ydnzj5+v7pYEKjKooS+kfvh8WCVlNbvZI9vN2nFiRLsVbnU/7DiTSichBgtnNIMdDrtzcW+ieT/0iE5IbotfjQPf/mevacyrSx5On71yr/6fpq2KjQTj0U3PMPAMuuBSxOoGoe0Lbe2GNyQCE11Y5qMuaUxlQp/1rV78h4eZX/g2MHMz5TPVJoMfH40Hnt8DksuPNNi+GwGnes0MX+m2aZsMgu7WecxcLkTkw1GNs/Rf53Uf3+s+szr9flDvyjP1+a/HNmM+zLlwEAUoODpOCWGlaLuhOuwlqfaCHkxjNuJEWqHUM7cNMTNxVVRM+FfMGYQPE5QXQxnl6D6IHjOFIwLkeRQ7lmVdorc46lpUFf2wpV/umin5Hz+OmKtJDGV1/9Ku5//X7yuzvW3oEFleVrIz7ZMUP+Z0Dw6piIT5/3Mfxm0eV4+Yb/gbVOv/cqF+ooVWpgMoY/vdaNP2yWFiI2M4+fvG8VfE51EfTBc9sxp0ZaAO3snsCoS1qsi9EohnsH9cP+pggK+bfyVkalBljbvxFl12LicdXyTJU4V6+u0vcvRqNIHCtdeY29/jogp//ur2xj7utfpAY5hp57nrkvIY/5g9mcsWAvFEzgH1X5ZpT/ZHHKv5F+f+1rp4RUwRd1xhGSRfkvBzHPNeYPYJX/ci0saWVhWfUycvtkDP2jF0LVTmO2X4X8B5PBkntWaQVplldSJdu95SH/TX6a/GcubOmgMdqGXCqUfdXCW8DJbiBjyj+V+C9b/3XJv0xETNXVGdkahezPWuXffNH6DGeMFkWRhda1wO1HpDBZahxpMUgKSUKSsvUxu63To/yX2/avRyyyFXDuuGIRdn1xA95+ZmGFZCs17s893AdPRHp+U1VV3u++nKhyW8lkWJr876YcfY2VCWgxlcq/tiVMz/pPK/8TJSj/b579Zvxy4y/JMX1w/CBuePwG0nJXDihj/oDyK//090AXHLNBKayUejwKooCRiHT8G+33B6SipVKA0Lbk5UN3UBVuekI9BT/+dEBSSOKOl+7Anw/9GYDkyrhz3Z14x/x3nOB3Nr2YIf8zIHj+4BCCVhf+uOBSLHzLhqKeg1b+Xzo8gi/8TQ2vu/ttS3FGI9tjbTXz+OpblpCft0bVBWKkuxfNQfUCZptTug0zG0RRJBe8eld9RiiMy+Ii4V5Gk9bftpJVo11WU07lgwn9K4P1n7b879OQf5yjujpClPVfFEUkeyTyb2lsBGcqrbd4KgP/aPKfLelfARP6V8AiCDCm/JfD9p8r6R9gCwzlSvunCfWZdWfCxEnf98lo+6fVJjoRORfKOe6PJv+tnkzlX0u4CoHdYiIKo57yz4z5K6Pyr+yr1Y5qMv/64NjBvJZXk0ddRAtZyL+YSCA1JC0+tWF/QGH7M+92I031ivs3XJ5ze6AEd5HVBWRpISoEI5ERiJBcRnpJ/wAbYlZW5T/IKv/94f6yThOg+/3LaZOmYaquBu+WiiPxY0eRHpP2r+m0/ANSIb9Szi5gyD+l/Hs9mftXMBEsa0p+Nts/oCb+A0B0x04AbM//hIstxOcDfc2rd9VjcdVi/PryXxNi3hXswvsffz+OThwt6G/IBlr5z3qsFOmSock/fZ3OBuWzDSaCBbsEaUzEJ8hoRqNONQVKsWA4OlzQe6CnHwGZuRynO2KpGG597lY8fvxxAICJM+Gb530T71rwrhP8zqYfM+R/BgAk0vfcQWmhZjPzOHt2cRfYeor87+ufRCIl2WTft641a+X/nLnVRCXvphR2bmiAVf7bp872H0wGyQVFj+BxHEeqxkbJ3bJmH2bXqBesbP3+ChxLVPJfjtA/Oul/qJUNumlddQZZkIe3bkU6JC0M0xMTEOTbpYb9ASzRpsl/OWz/vUGV/Oca3wPoj/szCiPKfzlG/eVK+gc0oZPlUv6p12xyN6HFI2U8dEx2TPl4p0JBv1ejyn85Q/86gyr5b/O2Mf8D5Uv8HwrGEUuynz2dMp5tXGihEEWR7Ec+mw+r6lZJv4eInUM7cz7WRCv/AYm4060VlY5KJIeGAHnhqu33BwpT/jmOQ8AvOcbG3UDNmnNzbg8UafsvIwypmdapIf+dgczAznKp/6IoElLhsXiwoEKyygaT5SW7HMcR9T/V1w8I0lrCNI1j/hQox9xwMA5RFJEWROztk/bZJr8DUSHz3CJCLGtBJCf5X74cij0hqqP8j7sLs/0rZNxlcZHjtN3Xjgcuf4Cc84YiQ7jxiRuxd6T06UTK61l4S4brUgGzZijA9k+fW/JNiAHUz1YQhZLCiOnCeiHKP719NBUtyIGgJf/5zuOnE8LJMG5+5ma80PMCAMnhe89F95wWyf56mCH/MwAA7O8PYlAOlDpnTlXRadJ2iwl+J9vbuKLFjzvfvDjLIyR8/spFcFlNGHKoSl1NeJyM+eNstoy06HKCJnjapH8FCsEzSu44jsM1lPqfbzwXE/pX4rg/URQRkRUA3uvNyEtY3OiH+6KLpB+SSYRffkW6yYT9lYH8y2qDw+xgFuPlVv7zkn+q5aAQBQRgVZBsDoNy2/711I9CeqSNgumjd9Zgtk/aT+LpeEbi84kGMzbJaM9/Gcf90X3USs+/3+4nr9ER6Cjp+enQv74J9pigx/yVy/YfTUWREiRlymdVyT+Q3/pP91wLQWlfZFp87FXsmD8d8l/oMfOHKxzYPpvD766phMmUv3+22B7hciGfkwfQBP6VSZmPJCO6QWHlIv/dwW7yXS+vXc4UPsvZugCw1n8F5mkc86dAIf+JtIDJaApHhkKIJKRCx7JmH1OYpAs95ez7z0X+TV4vbHOlMLvYgQMQwmGkRqRze8wCxKzGHW+CKJD1UIOrgWmxaHA34NeX/xqLKqW8jYn4BG559paSR8Mqx0qdsy7rKD5G+U8Vp/zTBfRsKFfiP31tNRJQS4M+XxRi3e8JseTfSAvX6YBAPIAPP/lhbBnYAkAqJP3k0p/gwpYLT+wbO4GYIf8zAACi+gPARQuNWWqzgR73V+Wy4ifvWwWbOXcxod5nxycvnY8hp5/8riE8gsawtOC3treD46dud6VtZ9nIv7JYjaQihvuH37qyCYpbta3KlXNbk9+vhv4dOFBS6F+ypwdp2fbnWL4cbdXqBc1jM6O5wgH3hReS3ykj/+iwP0uJYX+ASri0QTvlUOWKJf/FKv8+my9rEmyhmRB6yDfreCp6/ml1otZZW7YAu6lAMYF/ZVX+Zdu/3+ZniKvymQ1Fh0oicC05Qv8Y5d9dnrR/bS/sqlqK/OcJi6Jt/+lJfds/k/SvU7gtZHrFSHQEL7aG8c1rTYidaSyUqahRf2VEoQnm5VL+acs/fV6kR56VAppQrKpdxX6PZSpKKrC2t2X8brpt/wDrthkKxrCrZ4L8vKzZz5y75/lVl105+/7pY0Tb8w9Q1v90GtE9e0ng34QLAMcZLn6OxcaQEKQMA721UJWjCr/c+EssrpLEiuHocEmFz3AyTMYYZjtOAMBhKa6Yp3wHZs7MHG/ZQJP/UkL/mGurwTY1BfT1zSj5TwkpRsQCgANjB8rqKDoVMRwZxo1P3Eimk3itXty34T6saVhzgt/ZicUM+Z8BAOC5AxT5X1Aa+V/cIF2YeA744btXosFnLDjpxvVtcLWqhHP5yFGY5XRt2xSH/TF93XnIP2CcfDVXOHHPdStx7Vkt+OSluWfMAoB9iZR/UGroH93v71i5Am3V6kVvUYMXPM/BuXYNOHlEUOjFFyGm02rYH0q3/SeFJLnwasfclEOVU8i/zWTLW1kvtuc/JaSIIp/N8g9IY+WUhcVU9fzbzXbYTNIitFyLStptUOOowWy/6hA5qcm/QRtluXr+o6ko+awU1V+BMu4PKK3vnx33N/XKv9YOW+usJcGZe0b25FTz2MA/2fYvkwuPxQOrycoq/3l6/vPtzwfGDpDbiuqYDwxZKMG+WywYJ48B5b9ci3R6H7y49WJyu1zKP91HvKJ2BetISpaZ/Osp/yfA9l/rUQtuw8E4dlPkf7lG+Z9boY6TKyf5z6X8A2zff2TLZjKGc8ItqQ9Gr3u5Rh7Tr7+uYR35uZTxtkaKZACbj1EM+ffavIaCIpWwPaA0Nw6j/BtsU1NAX9/o58mFgfAAyRhQIIgCdg/vLui130hQWlOUc1+VvQr3X34/ltUsy/PINz5myP8MMBFJYHuXtDCeW+tGS2Vpcy4/vXEB/uv82fjtB9finLnGT3oWE49b370eaTl1elZQXTxNZb8/wKbbZh3nRqu7sQnDz3318kZ86x3LDH2u9jNU6390b/GhfxGK/DtXrkR7tfraixqkixtvtcK9/hwAQHpsDNHdu0nYHwBYmluKfn1A0wOs6eMr1fYviiJJG250N+a9qBfb8z8cGUZalBwYuRYmgNoWUqxaoJAFE2fK2veo7IPlmrWsqBNm3owKewWx/QMnX+if8l7tJjtDmnKB/hxLsf3TKcqzPLOY+8qV+M+O+2MXt6zyXybyr2OHVaz/SSGZs5eXCfybZHv+Kx06Y/7y9Pzn25/3j+4ntxdVGSP/p63yT7WnrKhZQc595Sb/Zt6MJdVLWKW0zMo/Pe5PgekE2v4B6VjcQ4X9LaHIv8fqYQo9U2H75zme2bcVOFep5D/41FPkdsQrhRUabXfLNfKYBt3uUUph1Sj5p113BQX+UbkmRlA2238Jyn8xtn/a8k9nBp3OoX9fe/VrxAnV4GrAb674DQm2Pd0xQ/5ngBcPj0CQA0UvWlBYMIkeGv0O3HHlIqwvgPgrWDevDhFvJvGZ6jF/A6H8tn8m1K3MM3wVOKjE/1gJif9K4i94Hvaly3DevBrMrnHBYzPjXatVUu++8CJyO/T8C4zt31qi7Z8mW7mU/2IW5qOxUcTS0vizfEn/gEb5LzL1ON/rKGQmEA8UlRKskP8aZw1MWdLGFZWt3D3/NY4a8BzP2P6PTZxk5F9+r9WOasOjvmjlvxTyr9fvr6BcrRLNuWz/csq4xcRlZKoUC1qtU85tZ9apI0BzLRpNPtb2n0gniHVXO+YPKF353z9GkX+jyv+J7vmXj2cOXNY2FYfZQUYslqtfXjuScl6F5Dgbi40VPOlEi7HYGNnHF1cthsPsKKiIUyiss2Zl/M5cfWLJf894FPv7pX1duaYq56ZaR21Z8l/0oBBRj9Wje/6ztLbCVCkde/HDaqEnLo8RHYuNGbou0eQ/l9uNWQ/Fiv87GfLvzKH8FzHqLykkSaHASL8/UEbbfxFONb3tDZN/KuzvzbPfTG6frn3//+n5D57rltpZqx3VeOCKB8iI3hnMkP8ZAHi+jJb/cqBidmvG72yzp0/5z2bRpC/qpdjccoEJ/SuS/KdDIcQPHQIA2BYsgMntgstmxtO3XoDX7ryUGbfovuB8khIceu45Yvvn3W7wPmMXy2zQBoDRKLXnn+73V6zKueCz+cgYu0IWwPQs42xFIQXKYigtpgkRMopkOknIqV7SvwJloR1Lx0oOWaJfU1lsuCwu8vrHAsdKGnVUTsRSMbL4LWQhVa6efy2holEu23+jXyWr3VrlPygVumrctrLNOGeUf/ncRvf9bxvclvWxPDPqb1J3pKdC/jm7HSa/P+M5ilH+7SY7M2EhF+hzzAmx/cttPFWOKlhM+gUbjuOIi2UqbP8tnhbM9as29FLVfzo9XNlX6O+x3OP+eJcL5jr2enxibP8q+f/P4WEk0lI74vJmPyYTk+RcXOusLcvkFz0Q8m/JtPwD0r5EW/8VpCuk7yeejhvax5hrXhYXJFC+lqp8QbcKaLeD0WNF7xyXD1MR+Kdd/+QD7RSgHQS5QLvT1tSvIevY3cO7SbDr6YJEOoFvbf0W+flTZ30qr3PzdMMM+T/NIQginj8knVxcVhPOatO3G08nnDqKs17vXzmhKLyV9krYzfqBWlNV0adh8vthaZGU+diBAxBThZ+0Y7t3k7FIzpUryO95nssIXjRXV8O+bCkAIH7oELH9W1paSiYZeoRAgd2kfsbFLMzpBUq+sD9Askoq76EQ8s+oIHmU/1IWfXQ6d7biE1DYbPR8oNsf6MWGYv2fTEyWnJBfLhST9A9oFqglkH86RE2r/De5m8is81KUf7vFREgGrfyn0gJGw1IAV7nG/AGaADHZUTLLO4scJzuHdmYd3caM+psMZhzroiiSnn9Lo35bjtEMi8nEJLG0zq+cn9UVo8WJtP0nhSRZ/OdSMwF13F+5lH/FpVLnrIPT4iTKP1A6+df2+wPlU0qzQXvtN53gwL+tHep5ZGkT2+9f46xhR7KWaZ0giiKj/GcDbf0nqFLPgUZcb0wLZI6Cd7mKHMXY/o2uGehr5Imy/VfaK7MW/7KBzggoRvlv8bSQ4lw0FcXB8YMFvf6pjgf2PUAK9qtqV+FN7W86we/o5MMM+T/Nsbs3gDF5YXnuvGpYzSd+l9BaRC2NjeAdxkIDi0FSSJITda6L3XSQfwCwy9Z/MRpFvIjQv8jOneS2nhKghYdK/Vfmcpca9gewJFtr+zfxJrLwL1X5N2L7B1Tr/1hsDIIcJJkPdJEhlwUSYEfxFbp/GBkLBhSmluYDXXCg1fSTse+fIf8FKP82k42QwFIKGYzyr+n5N/NmtHqkgkDXZFdJs84V6/9wMI5YUnqe0XBCOSxR4ylP0j+g3/PPcRyx/oeSIRye0E+I5z00+Q9kkP/0xATEqHRc6435075urn354Ji6cDVq+QdOrO1/JDICEdKXlkvNBNQgs3Io/4F4gLjSFIcKrfyXmvhPk/+VtdK1ZSpGkNJgEv/NZphKdKQVA5r8pwXVDbW8xZcxpaWYYOB8iKaiJMxNL+lfgd713lyjni+NnAMV8m/mzDkLrVPS82/U9m/weNaGmhoBTf6LLciJokiuWYWO+QMAC28hRVi9sZ16UAqkPMejwdWAlXXqvrBj8PTp+x8ID+Dnu38OQPosPrf2c2Vzy72RcOKZ3gxOKMqZ8l8uaMm/dkZ9uTEUGSILtVxEkr7YTZXtH2BD/2Kv7yv48aTfH4BjxYq827svuijjd5Yyk3+9ADuFlEWThZN/usptxPYPqEFkKTFlmJwbCYJUUMr+kW/Mn4JyFqC0Y/4U0OS/nIn/faE+3Pb8bfj9/t8X/Fj68yl0MaXse6UsUBU1tdJeCbc1M2xQ6ftPCAkmJ6JQ0In/vRPScaH0+wPlVf6zWWKNWP9NFPkXdJT/fGP+FBjJsNg3qp4DlfFiRmAz2cjM8OlW/gcixtRMQFX+o6loSYUjQL89ZY5/DvldKcp/LBXD66NSK1qbt40cV1Np+wdY5d9cWTmlI3+zwWMzw25hX9fEc1jcwJL/WufU9PznS/pXYD/jDMDCqsz2OnX/M+J6U655da66nC4b5npXQACyFsqxYjfZcxJ0u8lOjmfD5F+nwJkP5VD+A/EAkoI0DrrQfn8FyjV5JDJiSKxQ1kT1znpYTBZSnANOr77//33tf8n5/toF12JBpbHRsKcbZsj/aY7nD6oXrgtPWvI/tWF/9GibXAu16VL+HfK4P6Dwvn9REBCVlX9TdbUhEm9bsADmevbvtpQY9gfkDvwDVGVuOmz/AFBtL3zcn/I6dpMdFbaKnNuWQv7pvsdcPf/l3AcZuyql8DChf2VU/u/dfi+e6nwK39ryLUbtMQImPKkA2z+gkv9APFBU72M4GSavny0waCpD/6aK/OsF/gFq4j8AbB/UXzRyZjN4l0Ra08EgO9nDUcmE/ekl/SswkmFBj/lbWLkw63NlvEeOK+kcUwqMOnkAzbi/VGnqvx75d1lc5Bx5ZOJI0Tkee0f2kuOH3kem0/ZvOgH9/oC0L2mPvfl1Hjispgzbv9viJiGO003+eZsNjsVsgcxVp17L8133IskIec/5ilYeq4eQ8WLFEFEUybWg3lWfU6HlOI4IBkaPE/p9GVX+y+GuY1x1BV6vFCjrgJSYytuyFogHyHtt9kjf9zz/POKW2DG0Y1rze2KpGLYPbmdcW9OBLf1b8ETHEwCAClsFbl5x87S+/qmEGfJ/GmM4GMcueWTNogYv6n3ls5SWAksTS/5ts+dk2bI8mO4et3xgQv/2Zh+3pYfE0aMQgtJCwblyhSG7E8dxcF94AfO7stj+cwT+ASr5L8X27zQ7DV/U6QLESCz/uD96YdLgbsj7WZZCzI2GHpXV9h/JYvv3l1/5TwtpvNz3MgBAhFhwMF6xtn+A7fsvZpFKJ/1nI/90CF1p5F9V/pVxf0Ny2B/ABo+VCnofpa3b8yvmk0Xj9qHtWReNvFd6jDDJZkNU2auYMX+WhuxuKiOWcSXsz8ybGQu7ERB30TQr/8zxnIf8M+P+EqWRf/q4ovdV5XMLJ8MFF94UMP3+NSvI7alM+wfYcX8nIulfgXbE5vJm6XyvdW2ZeBMh6GUj/0lj5B8AHKvUwgx4Hv56dT/IZ/s3mvQPSK17ippeLPmfTEySYzNfewygHs/FKP/0+i0X6GJcscr/SKS4jBoa9OPy9f3TY/5aPFJmlIk3keN0JDrCuCXLjXAyjJd7X8YPtv8ANzx+A8558Bzc8MQNeMff35G1gFxuJIUkvrHlG+TnT6z6hOG14emIGfJ/GuOFQ6qaVo4Rf+WCtkd0ypV/g+SfXuRM1ag/ADD5fEWH/kV2qAs0x4r8/f4KPBrrv6W5JcuWxqEsNMy8WbdPUSH/sVSsoKp0WkgTa3WTp8lwPxcz7s+A8j8WG1PHCeZZCAElkv/w9Cv/tJpOE5QqexVZYJZL+T8wdoB5v7RzwwjoFoVCF1OljvvrDGZP+ldAK/+lJP5Pp/KvEDWH2UHyNwDpeF1esxyAtGikU6RpKNb/9OQkU+irtFeSsD9Af8yfgnzhaNFUFMcnpWLKXP9cWE3WvH8XDaL8T3PPv9EQM0BD/kvs+89WqGL6/rPkOOQDTf61yr+idE+F7d/S2gr3hReCs1rhv+btZX9+o6jV5G0sa/YD0Fd5FaJZrnWCUeUfABxUyK+pshJVLvV8mS/wjz4vG0lHV65HxZJ/o/3+CpTQv2LIP11ozPcaiqOh2P05W55OIaDXAfS1Wg9MG6RHFW5o6/+O4fL1/QuigOe7n8d3tn4H1/3jOpzz4Dn46NMfxX177sP2oe2k5QEANvdvLtvr5sIfD/yRtDUtqVqCt81727S87qmKGfJ/GuM5yvJ/8cKTw/IPALzDAVOFumCfzjF/ufq6HWYHrLy0+JzKnn+ACv2LxQoK/WP6/Q2E/Slwrl0Lzi4vbjguw31RDBSCXWmv1CXoyoVchEhIthEMR4eJ/dSo5R9g3Qe0kpwNhfT7A+Xr+Tcy6g+YOuWf4zjS9z8QHigLcVJUfwUFk/8SbP+lJv7ThEoJ9tOCHvdXbtv/EEX+p0L51yvMGen75+XEfzEex0RQ/X4q7azt30jPP6C/Px8aP0T6XQsJ+1NAyMJ02/4NOnkAVmksNfFfsf3zHM9kocytKG3cnyAKZMxfpb2SOQ54jid/w1Qo/xzHoeWnP8H8LZvhvXxj2Z/fKLSFt2Ua5Z/neOIuU0jxZHzScLhsLtCfa17yT+X8mGtqmLydfEXvQqbbAOq5NZwMI5lO5tk6E/RxYqTYQB/PRgQD+nMzqgLT+3Oxx2Ox02lo0OuAvMp/lgwkIy1cxeDuzXfj/z37//DAvgfw+ujrGfs4/V3SxfOpwkh0BD/e+WPy8+fWfo4UcGagj5lP5zRFKi3gRVn59zksWNHiP7FvSAPF+m5papry0T5GlX+O49SK/hTa/gHAseQMcruQ0L+orPxzFgsTHJgPvN0O/zXXAABc550L3lYayRBEgais2WbcFpvGTSf9F0L+GeXfwMijQpL+gdLaQpRFUKW9klFhtZiKwD+7yZ4xO7rcoX+v9L3C/Fws+bfwloKtfJU2dfFbDPnX66PWwmv1kv28I9BR8GsoaPTT5F86JqZC+RdFkew/ep8ns2jMEhZl8qqPi4xL3w/P8fDZfEj2y98vx2XMaaeRT/k/MFpcv78CxSacElJFkZNioSiaHDhmjKYeyqX8i6JI9tUmdxMzXmyenxr3N144+T8ycYRYz1fVrsoo5hoJbiwVvP3EtiXSx57VzGNBvXTOVM6jVfYqMvJT+TxEiGVxQ9Cfa660fwCw1NbCc/nlAADfW64mQbdAYbb/XGshBfS5oxhBpBCHDKAeK2kxnTUjhAbT828w8A9QCyxFK/9ZCuuFoBDyT7uzaOV/SfUSmDlpn6SdO6VCez2fVzEP1y24Dt+54Dt49p3P4h9v+wdxA3UGpp78f3/b90mh5pp512BpzdIpf81THeYT/QZmcGKwvWsCwZiknp4/vwZm08lVB6r/4l2YePgv8GzYMOVjOgZC0gXIZrLlDXXz2rwYig5NOflXlH9A7vt/21vzPiY1Po5ERwd5fKEEvu7zn4P/2mthm1O602IyPom0KCVX04sPGjT5L6Qnt1jyT/f8F5J6DBhT/osl5oIokAVkLtUf0JClEi2lijWxxlmTcYxpQ//OqD4DxSKcDGPX0C7md4Um4is9lNWO6oLPB6Xa/mnlX+mn1EO7rx2jsVGMxkYRiAeK6je0W0yo9dgwFIxPqe0/mooiIUgjXvV6YZdWL4WZNyMlpLIqRnTif3xiDHBJIUs8xyMl9/ybq6vBW7Nb9fMp//vH9pPbhST9K2AKjKkIfKbp6QFV2niqHFV5Z3yXS/kfiY4Qh0Orl3WotPnaYOJMSIvpopR/elTYitoVGfd7rV70oheTiUmIoviGHK1Fu24WN3hhMfFICSlSSKbP3dqiVqm9x4XY/gGg6fvfg/CVL8Mk53K4LW6EkqG8Re9Cr3n0emk8Pl4w0S2U/CvFPEC6rtjNuQtCxfT8A+pnXOz+XA7lv9Sef0A6/y2qWoQ9I3twLHAM47Fx5npYLJT1U5O7CX980x/ht/sztmlwNaAv3IfOYGfR54TD44cxFhvD4qrFWff7nUM78djRxwBI39snVn2i4Nc5HXFyMb4ZTBtoy//J1O+vwNraitrbbmUU8KmAKIqEiDS48oe6KReQeDqOWMq4Vb1QMKF/BhP/lZR/wNiIPy04kwn2BfPBmUuvCeYL+wNUCx8wPeS/0J7/QpX/YtOPx2JjZIZzvnCwfGTJKKKpKFlQ6i1Oyqn8bx3YSv4+BYUo/8l0kozpK0ZFoW2vxYz76wpK5L/WUcvss1rQ1v9y9P0PB+OIJdPE9u9zWGAzZx+9VQjy2WHtZjuWVElTR7qCXbptMkrgHwCkJqVFdpWjCkIigdSw7NTI0e8P5Ff+lTF/HDjMr5if87n0UOw5phQkhSRxquQ7ngH2PZbSYkM7VOgASkAqbCsFgaMTRwseKUj3C9MtIQoUNTotpqc9XHG6UOdViaYS9jcSVcewMeS/zJOBCiX/HMcR4g+ohe+8tn968pGBHvxSx/0V2/MPGGvlUT57E2diHDb5oHzGKSFVUEuiAjqjptDRtAqK6fn3WDwZzhC6719p3SkFkWSEfPYNrgZd4g+oLrlgIljUdXf74HZc89g1+NCTH8L6B9fjbY++DV985Yv4y6G/4PD4YQiigLSQxt2b7yaP+fiKj+uOlZ5BJmbI/2mK5w5I5J/jJOX/dAWdNjsdNjejMPl8sLRKizWjoX/F9vtPBehFhiHbfwE9ufRz51PKaXitXmLLNGT7p9RpI/2PPMeTC28h+4bRMX8AmDFSpVhs6TRivdekyX+poX+0RVB574ORQSYUKBdKVVEY8l+g7T+YUGfYa9VULdq9VOhfCdZ/NvE/SpT/cob9MUFYWWzE+fpFaeXfGpG+y0p7JVID6oLenKPfH2DPp9piVjKdJCp1m68tZ+ElG4o9x5SCkcgIREj9yEbUzHIp//naU5TQv4SQyBrimA2K8m832bGwKrP9YqrH/Z0MOHtOFZY0eVHttuH9Z0ufL03y6PMo0wJWhtC/QtL+9aBcg0PJUE67vKL8V9gqDB1vNPErZj3ETEowkPZPE3gjhTJlX/TZfAUpz3QbXChR+DGpkHW/zV9wSKmCiv/f3nuHx1Weef/fM1UjadSrZVuSbbl3gy2K6WBsMMWGsCEBElIWsoTwJptCCZiwJJvsEniBQPYlC15+m03YUEJMDwbbFGNjgwsGXGVZli1blqw60mjK+f0xfh49ZzTltKm6P9flyyNpytFoznOe712+d04xL9mPlfn3BX08iDLWPXbE7ykG68wo/VckdiKMcGaI10uxek4t7xx6h9+WIWNf1z68uPdFrNq4Civ+tgJn/eksfPXVr/LqsMnFk/GVKV/R/DqjFRL/o5Cj3QP4si10MZk9tghl+eZtKjMNI6ZuiS/9D2X/5cFBePfHF2ADCqf/uYk6LFUoRn9FuUDoLftXZC019PFJksQ3QaoM/05lQWySTbXoZJ8PLcJcy0xwq8WKfIdxc614bsRj8sdwc0uj4n/jkY0AQtmXxupGAKFWh3iljAwx66Eni2Kk7F/NmD+G2Cphlunf7rZeDPhCWdpEjfmLVpK8oHIBvx2p799aOBw0yDulJ0JO/+rG/AFhE1TC1tP93ft5gEiP2R+gf40xgpYxfwD4+QyYKP7dIz+rYt+/Fsf/tv42HgidVT4LdsvINgaxIinR18VUkWO3Ys1tZ2PzXRdiUkVIHEYzak1k5j9ez38kxABo50DkNdAf9PPfR03QClCW/esR/0xIOq1ORRAsGmLZv5pgHjsmre+ZGGDR2vcvyzIPCunt9wdCyYSy3ND1Lta1sq2/jbdYiv3+DLFNxxTxLyRfYl2PxeojPZVw4r5jSvEUHghh9Pn6FG1hdy26iyd3iPiQ+B+FrNudniP+UoGizE3FBS+ZmxyX2Pcfp/Rf9vkwsHMngJBJor0ytdMbwkd/RUKxMffpE/9qx/cwWCDi5ODJuKWvbMNbmRea3awGdjy9vl4+kSAeap3+GSzgYeTzp3jNCIZkVosVtYUhAdHS06I6Sx9Oa18rv/DPKZ+DhuJhAaK29N+I0z9gTPyLgipe5t+8sv/hDe6nh4YrFUzN/A/FF/9zK+bySo1ImX+LWxD/pypjRzj9V6vP/IdnSL/oGN7Y6arvHogAAHtDSURBVBX/CrGQpHF/ek3MAKB/SL/hn0L8F0bI/IuO/xpM/0TBIJYQi4jiKhHj/tIFSZJgsQxnViON+QNiB7X0oLjm6RD/YgA+2hrY7mnnIlJNpRtgvBKSCcnSnFJVmXkt5pi+oI/fR0u/P2CskqVnqIf7qejt92ew/UDnYGfUa3A0sz9GqauUC/HPOj4z3K6qpqUTMJ75Z+I/z56Hvyz/Cz68/kP816X/hR8t+BEurr1YsW9Z2bBSEawm4kNhklEIK/kHgPOnpM+Iv1QglnarKfs3u5wvFjkzZ/Lbg7t2ASuizy0d/HI35MHQop7qkn9AXdm/uDHXkpXr9Q5vLtVkC0TYsQTkALq8XVGrEvqG+vgmVs3nghFeGRKrLI6hZSwYENpwHe47jJ6h0BgpPSNt1LgRTyicgL0n98Iv+9HS26JoBVCLWPJ/5pgzFVlOteI/XotCPFw2F1w2Fwb8A5rL/uNlU0XG5IWqJYaCQ4Yy/+NKhoNin7Z08dsJy/xHqZ4pcBSgobgBe07uwe6Tu9E31Mf/ft6AF2s7PwJzJmHif2rJVPi2DHtyxBsZGmt0pZjVmVaqM/NvT//Mv0LQ+I2Lf7vFHrF/mpX9A9oy/6L4j9TvD4yOsv9IKMrWhb91ojL/VsmqCJqrRbwGR2t507oXAoyNUfUH/TxgoLZPW0swT6y+02q4aCTzb0a/P0MUuCc8JyJWp0Yb8ycyr2IeDvYchD/ox66OXYaEsmJvF2N/YyTzP+gf5PuDCYUTIEkSXDYX5lfOV7SjtfW3oWOgQ/f1YTRDmf9RhtcfwPv7Tjln5zswqyY57sfpipilUWPqJm6UE9nzD2gz/VOU/M+bm6hDUo3Wsn8t/bhsc+m2u1Vn5Blqx/3tObmH31abBQH0tYVE20BGgwmmoBzUPRosWq+qiML0r0ufmGUl/0BI/IvnmJ7Mv97NFCtP1Sz+e9Vn/q0WK7/Pod5Dqis/whEz/ztbhz9DZmb+xbUrVlaMib2gHMS29m2QZRl/b/47rvzrlfjfI6/w+xX77Lhz4Z24YuIV8B0Z/rvGy/wrRGNYq8yXncbG/AHay4TNQLymaO1j1pv5DwQDPAM43j0+4ro43j2et/Jocfxn4t8iWTCnfE7E+8QK4mQz0YKosSpa9MAEqNvh1uWaLorraKZ/Wsf8AcaCHF3eLu6NoSZIDigN/+Jd+9RUN0XDiPgXq0H0BKtFxM+U+LwiotN/pMw/oKzYMVr6r7bsf0z+GF6qrzXzf7DnIP9siO104VTlVWFG2QxdCZDRDr1jo4yPm07CMxQq7Tp3coWihG00ovWCl8yef2tBgSrTP39HB7r+8hf+dW6aZf5Vlf3r6PnXWvIPKDcZsfr+X9r3Er+9sGqh6ufXs+nT0vM/4jV0fgbVbFCMmv75g358dPQjACFxML10uiKQonbcn6LsX2cPJctQdXm7NDmds02LBCnmmD8G26j4g37FVAotjCkadhUf8gf5bTPFv2JueIzzSMwQvbzvZdz85s344boforWvFf05w9eOldWX4vpp10OSJD7mD4gv/q0WKzfXEkVjIBjg4r8mv0b3qDS9rUVGEINayTL8a/O08VLjaN4UVosVE4smAgh9rtXMSe8d6uWB0IaiBkXljshoKfsPJ1rLltn7BFH860Ex5jZK0FtsgVTjfwSMHPWnBbUZZBEtbv9qTE2jIb7PWs9JcV9hOPMvOv57Ijv+i5n/cfmRr1Gi+I82ulUtasv+bRYbD0Yc6j0EWZZVv8aBruH9hp6KQyI+JP5HGYoRf1NHd78/oBT/arI0yTY2imf6N3S4Fc3Xfw3evaEyTvu4cXBO1j4Sy2zEzH+0ubJ6xnDJssyFi57eRzXj/nqHevFG0xsAQtUFl9Rdovr5FZUhKkcfsTLhXFtu1M21iBlZNnEjEa0v0aiB3a6OXXzT2ljdCKvFqhT/ajP/JpRRss+gDFlTJo6VUlflVcWdKQ2YY/rntFlRWTBS6Fe447++WtRmxcRN4xsH38CWY1v415PHD//M6hkWkqznX8rNhaUwvmhna6q4nh7qPcTXBL39/oD20WBmwEZD2iw2VePLtPQxR6O5O7bTP4OV/gfkgKqJFDvad/BRdtH6/QEq+8+x5ijW5XgjLLUgy7Jh8a8186+mChIIXYuYL4jWUX9qWgPDybOpd/sX3/dk9vyrqapTi/j4aKZ/TPxbJSuq8iOvN7UFtfwzsK19Gz+n9SAGN+IFbVgl3IB/QLXBL6BMNpD4Twwk/kcZTPxbLRIWT9In/n1Bn6o56ZkAi3aXucpUjWRRzLVNcNk/ALjC+/4FBvfsQfP112OoObTxs1VVYdzvn4RkS72VB4sOFzmLojqwKsr+VZpxefwePjNel/GR2PsY5TP82oHX+GzfyyZcpqnHUuvnQ5ZlLv7VBJ8AczL/LJueb8+POtKptqCWb+z0ZP7D+/2B0KaKbazUZsbZZsMqWXXP8NUz7q9rsItv/OKV/DPEPkdjjv8j/yaJGvUXa2JGZV4lavJrFN8b7x6PR89/FL9Z9jv+vWB36H2SZZmLf/uYalUlyuw8Zh4WgNLsT2/JP5B8t39ZlvlmfGz+WFVtSQ6rg5fj6xb/vSrFf7G2vn9Fv7/QaxuOGBQ3MoI00xBd3cXPuigejYr/Af8AN+JLZOZfrMRS6/ZvtVj5317rfkiNKXA4ejP/msv+7frL/o0a1IqIj48knmVZ5u0+VXlVESdxACGjSha86x3qxf6u/bqPSU1VJ0Nci0T/nHgoxH8Rif9EQOJ/FNHc0Y8D7aHNxYLxxSjMjbxQxMLj8+Dql6/GBX+5QDGHMxMZCgzxhVptpNtsI5945IiO/599xm97PvkUzTfcCP/x0AXBUV+Puv/5I5wTJyb8mNTAMv+xIvp6NuZqy5WjEW8TJMsynt/7PP/6msnXaHr+wpzoc8sj0efr47+72iyB0X5SWZb5RiJWGX2OLYcLv6buJk1le8DIfn8Ge85j/cdUleCzc7TUVaq7t08x6kql479CUMUx+2OIWQpjjv8jA07JHvXHWFa/DEAoQ/3DBT/ES1e+hPPHnw9rfj5wSvAEekMb5MDJk9x4NN6Yv/DXFz0szDD7A5Lv9t8+0M4Dh2raRBgs+6+37F/tVArR9E+N47844jFW5n80lv17fB70+kK/a/jabbVYuVA32vNv1OkfUF6Ho61/bX0hrwqn1akpyMpK/7WKfzW+QOFoqZIxJP5NMvwzMuoPULYBikEFRs9QD18zovX7M8zq+2f7pgJHQdyEmXjdFK+n8WCBc7vFPiL4TJgDif9RRM+AHwvrS2C1SDhPZ8n/+63vo7mnGUE5iNebXjf5CJOL6MqsNtKddPEfwfSvb8MGHLr5ZgS7Q6+fM2sWav/nj7CPUW9Ml0g8Pg8XtLEu6rrEv4kjjyL1/H/e8TnvNZ5ZOhNTSqZoen6tmX+t/f5AWNm/jiybIuAQYcyfCIu6e/wexfkSj96hXuxo3wEgVAov9pAybw2/7I+4oRHxB/0802Aki6LHlVo0KVKb+RczHcYy/0rxb7dKKHRpD9ZGg302c6w5cdsZbpt3G/647I94c+Wb+ObMb/INn2SxwFJwynyyJ/Q59Gno92eIayo7v0XxP710+ojHqCXZmX9x7JbazwwwLGp0Z/4F8S9Wn4TTUDQ8ajOe6d/ek3uxpS3U5lGTXxPzGjkay/7FtSvSOmrGSFZAKT71Zv7z7Hm8uiRSxZssyzzzX52nrmKHwc7fPl+fppGwesr+tRj+idffWNVNkTAk/k0wqGUoDP8iZP7VOP0zxEkdYlBPK2zfpCZgI44cFVuTYuEP+nngvLagNmrlKGEMEv+jiFljC/G//3gGPvn5xfjaQnWZrHDWH17Pb2sp40lHRFdmte62TquTbyiTIf6tBQWw154y/du9G11//StavvdPPLuWd+YZGP/MM7AVR+6rTwVqy8L09PwbFf/xev6NZP0B7dMgtDr9A2Eltjo22loyE/UFwz3soglPPDYf3cxLVcWsPwBFJD9e33/nYCd3/TUk/gVjKtWZ/x51pdQi+Y58LgTU9FRHI7zsvzzfqcvlOxrcN0NF9YxFsmB2+eyI2TOrO7RJZpl/31HB6X+MujU1fCa6LMu87L/MVWZoA53snn8xYKQl88+8Poxm/nNtuTHfr6q8Kh5oiCf+H/v0MX7uXTflupj3Fde90SL+o5n9MVggWGxn0YNC/Nv1iX9JkrhYi7T+9Qz18GuwltG2gHJt1bInUhjHqTX80zAeWPwcihV5alCIf5++zH+BowBOq7FqrXx7Pt9vRhL/YrAxXuZ/aulU5FhDgd5Pj+nL/CsSOyoCNnoy/4d7D/NJOdTvnzhI/I9CCl12XSX/QTmI91vf519rdfBMN0ThodbdFhiOdCej5x8AXKdK/+XBQRz92Z3AKdd/95IlGPv738Oanxfr4UlH7UVdz6g/o2X/brub98WFl/17fB68duA1AKFNxtL6pZqfX6vLs9aZ4IDxzL/o9B9P/Iv9dk096jPZkfr9GeLmMl7fvxlO/4C+nn89mX9g2PTvpPek5tGCjPDMf3mBeWZ/wHApsl4XfYal4JT47+mBLMvwHzWW+e/2duNo/1G+cTdi9geEiYUkuP2Lm3E9Zf/+oB9DgSFNr+kL+Ph5VFtQGzNIJEkSL/1v7WuNmj3ddnwb3m15F0Aoq/3VqV+NeQx2q52v56Ol5z+e+BfbWfQGdQBzMv/AsFg7OXhyRLuV3r0QoDx/tZj+6en51132rzHzL07g0JL5l2WZX7OMmv0BofOVPU8kt39xzF+89cZusWNW+SwAIX8HMfmlFvFvpiYoW5lXyQMgasf9Ub9/ciDxT6jmsxOfKaLG/b7+mLPS0x09BjeAUM431J2U4IfY988o+ofrUPPbh2BxxDcpTDZqR8GkouxfkiR+0Qov+3+96XUehFg2YVlUI7xYaG0LafMMX4CT1fOvcCOOV/YvjvvTkPln4t9mseG0ytMUP9OS+T/hGf4bmVX2r7Xn3yJZoo5QikRdYR2/rbfvP1Lm3ywG/YN8zJvWTXE4Vvepc9DvhzwwoCz7V9mGFD69wiyzP0BfgNEIirJ/t/ayf0B79v9w32GeWVZToSL2/Ucy/pJlGY9++ij/+pa5t6iadMGE6Wjp+Y8n/hWTgQb1VwmK1zwj4r/EFRLYMuQRY/m0jjwWUbRUaRj31zkQWoetklV1EFKLSbCRnn+rxcrPSS2f515fL19bjZb8M9h1r9fXO+J3VpT9x8n8A8b7/rWOZ7RIFh6UaOltUeXxQ07/yYHEP6EaseSfkcml/+JcWy2mIiy76w/6k7KhzJkxU/F12fduRdV990GyxneSTgVqy/5zrDncTV5tVs5M86Pwme/P7xFK/hu0l/wDoc0JqyzQXPav1u1fLLHVk/mPs2kVEUfXqXX8b+lp4RmJeRXzRgRRxHF/4qYzEor+yVz9mymtG1RZlvnaVp1XDbtVfaWU+J7pLf0fU6QUWxURRv8BoQ3VB60fqNpUMYxsisOxFgyfg4HeXviODAdzbBoN/9ixmdXvD+hrLTICG/NnkSyarimKjOaQtr5/tWZ/jIbi2H3/G49sxMdtH4eezz0eV026StVxiFMbRgNxM/8OY0FahtmZf2Bky5sR8a93AhI7hpKcEtVGrjaLjZeu9/vV9fxbJasik68WPcEsMVhtRuYfUFa8hXvkaOn5B5R9/4bFv0qfBuZB4gv64l7vAWWSgcR/4iDxT6hmw+ENI76ntpQnHREz/1oueMk2/ctdMB85s2ZBcrlQec89KL/9dlP7f81GrYuvJEk8kq82iCK+33rK/sVjCspBLgS/7PwSn3WEpilMK5mmW3RIksQ3Q1oN/9RuFhQZJT2Zf9GoKs5rFjoLeQBHrfiPVfIPKMV/3LJ/0Z/AQOZf3KioKcXvGOzgZaVq+/0ZZoz7c9qsqBQEf3jm/2D3QfzsvZ/h8pcuxy1v34Intz+p+rkVRlgmlf0DIdM/NuYPkgR7pcrPc3jmv9O8zL8YYEy0278sy2jpCWX+tQaMRHGiNfOv1uyPIWb+955UjvuTZRn/99P/y7++bd5tUceHhcP+joOBQc2tC5mIKP4jtSSZtU8QxafegDegvBaHVz+JiRBxfVaDHvEflIPDE4FU9vszWEAv3vnMglCFzkJd+yUm/vuG1J+PYkudWZl/sTovvO+fVRq5HW5Va/mc8jk80KJL/Gss+weUAUk1yUK2z5Agab72Euoh8U+ooq2/jbugi+6bmZz5ZyXH+fZ8TRdVRY9bEvr+Jbsddf/7HCZ/+AFKvv61hL+eUbTMgWXiX0/Zv96S5Uimf2LWf2XDSkPBFfb5UJOVZxlym8Wmuu8xx5rDnZv1bCrjbVrDYdH3zsFOVa8XT/wXOAp4plNL5t+I+HfZXLz3UE3ZvxjU1LoBETP/WnwSwhFL/8tPjflr7mnGXe/dhStfvhKvHniVl3tvPbZV9fMqziGjmX+3kPkXxL+togKSXZ1oVLj9e3vwZUfoOuN2uA2PeRIDjInO/Hd7u7k5mJZ+f8A88a+17D888//35r/j847PAYQCL0vqlqg+jvAgTraj1vAPME/8Gyr7F64v4e2aelsgAaAop4jfVtvz3zvUC7/sH3FcamA+HmrL/vUGTJi5opZgllnBahHxsyU+vy/g422DatebfEc+JhdPBgDs7tyteU0UWyXVBm3EgGQ8vSDLMg+Y1+TXqGo3IvRB4p9QhZj1Z3OfgcwV/0E5yIVHdb620TZmXdS1IEkSLK6Rs7/TES3ze42If70XdXGzcWLgBAb8A3j1wKv8eJZNWBbtoapgn4/BwCAG/YNR73dy8CS/0E0rmaa69FGSJJ79N+z2r2KDIpbexctk+4I+bGrbBCDkAh0pcytJEq+0OdJ3JKYTtlmGf5Ik8dJ/NZl/PU7/jKq8Kl6aaszxf/h8t9g7cPf7d+PKv16JNQfWjHjPtIxhNGKEFY6Y+fe3n0DgRGhzqGXsqHgeH+g+wLNn00umm1LhpLW6SC+s5B/Q1u8PhE0l0FihoPWzWuoq5WugKP79QT8e+/Qx/vX3531f9ZoEjL5xf2xtKnQWRnR1N+rNwhDd5s0q+2f99gxm/iZBQlWuRvGvI/Ovp3ycwTP/Mc5nX9DHg2h6A5ziuqS29N+s65WIKP7FgNPR/qP8OqCm5J/BrucyZM2mf3r+bloy/8c8x/jflcz+EguJf0IV7x1+j9++bsp1PPuvdnxHutHuaefjRGrytGWXkl32n2locfFVW8LHUIh/nWX/isz/YAfePPgm3ygsqVtiaIMFqK8M+eTY8KzdBZULtL2GgRnSbANR5CziM9tjIV6E45X+72zfycvlG8c0RhUPLKPrC/oijlxksB5KCZLmDFE4bCRVl7cr7ugtI0LOIlm4CGvpbYEvoH72tcismkJI9g7kVP8Fv951M/62/298fGKBowC3z7udv86x/mOqzUfN7fkffrx3zx5+W63Tf/gxbDm2hd82WvLPUCMWzED8zKQi81/kLFL992TZ/xMDJ3gwbM3+Ndygcn7FfCyuWazpOBQjSFPg+O/xeQyN1NOCLMt8HY3WOmVWhaBpmX9XjMz/qSrIcle5pnYVQDnqT7X41zHmj8GqxrwBL9/DhSN+/sTghBbY+E1Ag/hPQOZfDCKIbQVazf4YYmWHZvGv4+8mBiTj6QXq908eJP6JuAz6B/HR0Y8AhBa0mWUzeaSxpaclaRdcM1EY3BgYbUPifyRMzOXachXuvJFgPx8KDqkyLev1Dl+E9Zj4AMqL1omBE3hhzwv865UNK3U9p4jayhBR6GgW/6c+gwP+AU3iUpZlvoFQm5moLxBM/+I4/scr+WeoHffHjrUkp0TRbqQHFjwIyIG44sRI5h8YLv0PyAG09LXEuXdk5kzqRmHD/4W9aCuCp0S/2+HGbXNvw5sr38R3Zn+Hb/qGgkOqnbbFLKRx8T8sRgb37Oa37WPUr6lihk0c3zWt1NiYPwYrE070qD/FmL8CbeJfywgzkQH/AK/60DKOMrz03xvw4ontT/Dv/WD+DzRXXejJlJrF2kNrceafzsQNr9+QlP1Il7cLvmBo3Y0m/o2OZOWPNaHaDYhu+OcNeLmo07oXAsLK/pOR+RfGd0Y7V8xY48RAi9rPs1gWn4jMvxhcENebpIl/HX+30pxSvr41d8cR/+T0nzRI/BNx2dy2GYOBUPnyOWPPgUWy8D6ewcDgCBOSTEAUHFr7SsVS2WT0/GcaWox8tI77Yxsht90Nq0XftAMx87/56GZsa98GILQhnlM+R9dziqgNDrE+bQmSYgSPGsRNoJaS0i5vF8+WxBvzxxAz//F62Dce2chvn1F9RtT7qRn3F5SDvDzVjI2UYtyfN3bfP+v5t0k2zQZYgLLvf9eJXZofDwDP7HoKATnUa+q2u/G9ud/DmyvfxD/O+UeelRJLdEXzyFiYWvbvHt4ge78cFv82DZl/l80VMbAzrcQc8S8GGKNlCs2Amf0B2qtFxCyjlsy/6E2hxuyPMalYafr3v7v/lwuBxTWLMb9yfrSHRiVVZf+yLOPxTx9HQA5gR/uOESaGiUDR7x9lHTXb8M8qWeMG02MRzfBPFIBanf4B5bVIbc+/ojrQpa2iS80EDzHYorvnXxT/PnXiX+GnY1bmX3ge8fmZXxCgrdJIvGaIo4bVwIIbBY4C1RUikiTx9fBI/5GYyQpR/IvXUMJ8SPwTcRH7/c8Zew4A7Q6e6Yah0TZCpNtIL1824gv4+MZPTZm2GMVXI/65iY/Okn9AGbH+4MgH/PY1k68xpcdYTbln71AvN9CcXDxZc3ZCb4mtVrM/AKjMreR/p1iZ/25vN5+YMKloUszRhaKgFs2mRE4OnuSmUGZspBTj/mL0/cuyzEu4a9w1uioOTq86nd9+4+Abmh/fOdjJqygqcyvxxjVv4NY5t44o+xXfY7V9/4ka9ec7PLwZ1dLzL0nSiCCEy+Yyzek5WeP+xLJ/LZk4AMiz6cv8661QaSgaHve3vX07ntrxFP/69vm3q34ekVQZ/u08sVPhXRAtmGgm4rkWLfOvqAAzYdSf2+E2ZkTrKORtWKL4Ft8vPZl/m8XG//Zqq4+MZP7VVMmYscbpqWRh4tjtcJtmVpdjy+HHohD/Gsf8Mcwo+9c6yYAFJoNyMGYlnCLzTz3/CYXEPxETWZax/vB6AIDdYkdjdSOAsD6eDBT/ZmX+1UT0m7qbsGb/Gk0jYzIVRU+Yiou6yz6cyYjXkyvLMt9UGil/jHThclqduHzC5bqfU0SNAdKnxz+FjFCPttaSf0D/RlvLmD+GJEk8Ct/a14ovOr6IGL3fdHQTL7mNVfIPhIn/KJt1s0soxWBULPHfPtDORaLWDC5jQeUCVOaGhPmHrR+qmjAg8veDf+f9/csmLIv6eVdkcVRu5BIl/kW0iH9gZDBvSvEU3ZU94YjZ0kSO+2NluBWuCs0Z2jyHPvGv8KbQWfb/WtNrXLQtrVuq22shVWX/L+59UfF1tGCimYjl19HWUTFQZ0bm36gXjdVi5f35ovg2mvkHoGm8LaDNFDgcMWEQ7XwWj0N3z79dW8+/LMv8+mpW1p/BPmPtA+3c24Vl/q2SVdOEBr3i3+Pz8Oui1r+ZuDbFGg/ODIXLXGWG9nhEfEj8EzHZ27WXLxALqxbyLEqmi39xrm0ie/49Pg++8cY3cNf7d+Hqv12ND1o/iHn/TEfrRV1L2b/H71EYnuklz543wp354tqLDQshhmJ0WRRhLvb7n1Z1mqHX0LKxVGxaVZb9A0qH4K+88hUs/ONCrPjbCtz53p145rNn8EHrB3j70Nv8/prEf5TNuhioMGNmsij+Y4lxo/3+QMj0j02N8Mt+vHnwTU2Pf63pNX77svrLot5PV+bfxJ5/SzTxr6HsHxjZfmCW2R+gvbpID31DffwzpbXfHwgz/NMQJBanSWgp+8935I8QelbJin+a90+qnyMcRdl/kgz/PD7PiMqaZGT+4435A0IZcTYuTq/4l2XZNPEPDF+TOwc7uYgU198xedpbnIDhasjeoV5VrTWmZf79icv8a+357/f18/UlUeLfG/CiZ6gHsizzYGN1XrWm6rQiZxHf/2gR/0b+Zmr0QtdgF19Dqd8/8ZD4J2ISqeQfUJ7MsSJ56QrL/LtsLoVbrRrELFW8SPf29u18QWvrb8Mtb9+Cez+4N2tHIYkXCDVl/1rEv6KPz0DZvyRJI8TkNZOv0f184Sgy/1F6IMW57PMrtPfXqgkwREJP2T8ALB6rdP72y37sPbkXrxx4Bb/d+lvc8vYteL3pdQCAw+KI2zNc7Czm4/CibdbNdk4Wz/NYmf93W97lt430HYqinY2SVMORviP45HhoEsTEwol8LnMkjGT+HRYH/xvoxeoeKUgseXkKLwA1hJ/P00unGzouEUXmP0GO/wqzP41O/4B+wz9xI621SkXM/gPA1Q1XG2q1ULQiJen69lbzWyPeL7GlL1GIruux1lH2nugV/wP+AR7wNkP8s2uyL+jjfexiIkRLBllE6/hjMfgqtlGqQc1YTEWAU6eviVbxr/YzoYfwvv8ubxf/3Gtdb8RRu239baqnxBiZ0KBG/FO/f3Ih8U/EZH3Len5bFP8VuRU8ephp4/5kWeYbhOq8as19dHaLnWdq4l3oxAwv46V9L+Hqv16tCKxkC1oz/2pK+BhmuR4Dysh1fWG9LgEejXiGkB6fB5+f+Jy/ttYLKRBm+Kcl86+j7B8AltYvxf+39P/DHfPvwLL6ZZhUNAk2KXK2YUHlgrhlz5Ik8ez/0b6jETcgZs9MVvT8R+lN7RrswvN7ngcQagW5cPyFul9vSskUNBSHequ3t29XGMLFggVRgFDJf6z1yUjPf6Gz0LDHheRyATbl58A+RvuamtDMvwqxYBRR/OtpFREz/3rK/itcFYrfUw2i6Z/T6sQts2/R9PhwUlH2/9Lel0Z8L9b0ELMQg6isvScSLEjbPdStawqBmdc8QHlNZoF6MViix9wUUNfqJsKEZJGzCHaLttGCqtz+U9Dzz8bSAonL/AOhoLjeMX8Mdt3w+D2qzQzFxI7WSjyt4p8y/4nH2OwkIqs5OXgS29u3AwhloMRFxiJZMM49Dvu69qGltwX+oN/wKK5k0THYAW/AC0D/xa7QWYg+X1988d82LP5/MP8H+MPOP6Df14/jA8fxT2v/CcsnLMdPF/7UtJLzVKNw8TU782/iRkh0GF7ZsNIUoz+GwhAywudje/t2bmR3WqX2kn8grOxfg5mUKBC1blDmVszF3Iq5/OuhwBAOdB/AnpN7sLtzN/ac3IOAHMCPTvuRqucbkz8GB7oPYDAwiM7BzhFBELMz/4qy/4HIZf9/2v0n/jlc0bBCV2BG5LL6y/DIyUcAAK82vYpb5sQXWGLJ/9L6pTHvm2fPg9vuRq+vV7PbvxlrjiRJsBYUINA5/H7aNPb7A8qssc1iG5GVNkIyyv7F3ns9mX9RuKsV/z1DPTzYWluoPWM/vWS4uuKrU78a06BTDck2/GvqblJUyPT7+9HW36bIZCcKtjZZJWvM6xwLagXlIPp9/Zqz96LoNKXsXwh6dw52or6wnov/fHu+7tcQq6riiX9ZlrmQ1Fo+Dqgz8DS97F+FQDY7WC0iiv/jA8cV13w94j+8YkzNfkr04NH6dyt0FqLIWYQub5c68U9mfwmHMv9EVN5vfZ+bkp0z7pwRP2c9hv6gPymldmYhbg709ripieh7A17sPLETQGhD+O1Z38Zfr/wrzqo5i99nzYE1uOrlq7D20Fpdx5FuaO0LS0XZPzBcal/sLMYVE68w9FzhKAwhIwhzseRfj9kfoH+GNNu0SpAMC1uH1YGpJVNxxcQr8OPTf4ynLnkKTy95GlNKpqh6vHjuRSr9Vxj+mez2H2nUn8fnwf988T8AQpv6m2bcZPg1L5ugLP2PV2K59+Re7Dm5BwAwu3y2KiHJRNsxz7G4zz/oH+RjW80KOIaX/mvt9weU50xDUYPqMVJqSHrZv46ef4tk4UEKtaP+xHY7PdUGF46/ENdOvhYrG1bi1jm3an58OC6bi1cDJUP8v7RvOOt/dcPVfD056T2ZUGNHYDiIWuYq4w76kdBaDh+OQvzbzSv7B0LX6qAc5O1Cepz+GWLAO964P4/fw9cgPdegZLn9i+M31WT+zQ5Wi4jBhOOe44r1RovTP0OP6Z+Rsn9gOPt/zHMs4l6PMv/JhcQ/ERWxLP3cseeO+LlaB890o7V/uCxQd+ZfiOhH26ztaN8BXzDkis5EXlVeFZ688Ek8cNYD/GJ+YuAE7nj3DvzLR/+iuv8qXdFc9q9hDJeZmf+bZtyE31/0e/zxsj8qRKEZ2K12vkGJlAUxQ/zrzfyzDUqpqzTllTrxTP/EHkozDP/y7fn8d47U8//Svpf432tp/VLNU0AiUZVXxas7DvYcxOcdn8e8v6Lkv36Zqtdg4t8b8MbNuonnkN5e2HDCTf/s1cYy/9NKpxk+JpFkjPoz2vMPDJf+qxX/B3sO8ttazP4Ydqsd955xL1aduUpzy0AkJEnif8dEG/75gj78bd/fAIQqRZZPXK5YTxKZjPAFfPw6F6vkH1B+rg2LfxMN/4CQmOsY6OB7FL1O/4AyyBFv3J9YdaWmOjAcRatglGAeuyZaJauipUYLYrBFlfhPYOZf/Jwd9xxXlP3rWW90if8Bc8Q/EFkvNHWFnP7z7fmmB0+IkZD4JyLiC/q4M32BowBzyueMuI94MosbkXRHkfk3ocetezDyRV0UeWJ5tyRJuGrSVfjrVX9VBFWe2/2c4jGZiBHDP009/wYz/xbJgrNqztK9UY8HE1bhGz5vwIsd7TsAhCL2eg2W9GT+A8EATgyGsunpcHGNN+6P9VAWO4tNyQRLksQ/k+Hi3xfwYfWu1fzrb878puHXY4gjJF858ErU+8myzEv+LZIFS+qWqHp+sYQzXt+/mWP+GCMy/2O0iwixCmR22WzDxySSjFF/bDNb5CzSHZhk4/7UHqPC7E/DmL9Ewn73RPf8v3f4PZ6JPH/c+SjJKVGI10Q6/msZQap3KgtDvOaZafgHhAL1YtDVLPEfLwBpNIOsJfNf4CjQ3dJnt9r52pHyzL/wfO2edj7mD9BZ9q9D/Bsp+wdi9/17fB7+WZxQOMHUNkwiMiT+iYhsO76N9zmdXXN2xCxhpjr+i4ZAesW/IqIfJfMqmv1FyvBW5FbgsQsewx3z7+DfE0sZMxGWEbFZbKo2wVrK/sXNU7rPgOVtId5uRTXHZyc+w1BwCID+rD8QNkNaZea/c7CTt6hoMftLFLHEvzgzuSzXeNafwcW/96Ti7/Ja02t8E3Tu2HNjOuxr5eK6i7mp1etNr0cdhbW9fTtfmxZVLVJd7SBmheJt5BIh/i2FYZl/HT3/i8cuxg3Tb8BXp37V9DacRPf8D/oHedBFT/k9I88WEjX9vn5V5nDiBlpP5j8RsHWp19eLQDCQsNd5ce+L/PbVk64GAEWlTiLFvxhgi7eOxmsBi4fZ4j/c8E+skDBN/Mcp+zcyMg5Q6fZvkq8Jy/5rzfybUakmUuoq5e0lYua/0Fmo63OhZ0qMImij4++mqBTuVeoFMXlITv/JgcQ/EZFoLv8iikheBjn+K9xt9c61jRPp9gV82H48ZJZYlVcVtYRYkiR8bdrX+AL+1sG3MnYM4JG+I3wRL3OVqYre6jX8M6tkOVGwz0dADijKeM0o+QeUM6TVZv7FMvq0EP950cv+e4Z6eDmqmVkUZkzlD/p5cDMoB/H0Z0/z+3xr1rdMez0gFKhiFT4dgx3YdHRTxPuJRn/LJqgr+QeUWZx4pn+JyfyHl/1rFxE2iw0/Of0nuGvRXab2+wOJ7/kXg8l6+v0ZLPMvQ1YVpGDi3yJZdGX/EoEYlFXbvqCV457jeK/1PQChwNeZY84EoOxZj9RGZBZaJqYYzfyLotMUt/+cMPFvQhUkkNzMf7wJQb6gj3/2jK5xrO9fi/jPt+eb0kYjYrPY+N/uSP8RLtj19PsDYZl/j7ay/0Jnoa41WgxQhmf+yewv+ZD4JyKy/nBI/FskC86uOTvifUpzSvlCnEmZf5YVcFgcuk3P4hn57OrYxU1tFlQuiCmEc2w5fCb4YGAQrx94Pep90xVZlvHLTb/kUxQuGn+RqscpovhxNuZmjz1KJOKmQ9wMidMfTqvS5/TP4P21KoNFirJEk3sS9VDqKoXD4gAwMlMnjtIyM4uiGPd3qvR/Xcs6vvmYXzEf8yrmmfZ6jHDjv3D8QT/ePPgmgNC6pGXEoJj5j1v2P5QA8V8gZJ4sFtgqUh9YEkn0qD/x2mekjUjsTe4bii2cZVnmr1udVw2H1aH7dc0kGY7/f9v/N14ZceWkK2G1WAEog4mJdPwX16Z44t9Uw78ElP2blvkXDf80iH89Pf+Ksn//yLJ/8T0znPk/9Z57/J6oFVvAqUq1U9dXs7P+DHbN7hzs5EbceoN++Y58njzQmvnXk/UHlFVRI8R/F5n9JRsS/8QIDvUc4hncueVzoy6gkiTx7H9rXyt8AV+yDlE3sixzoVGdXx3TqTcW0cQdI1q/fzRWTl7Jb7+478UY90xP1h5aywNG5a5yfG/u91Q9LlVu/4kmUsbHF/RhW/s2AKFNo96oPYNttMNbC6Kh2LS6Ui/QLJKFZ5uO9B1R/A5asmtaCN/8yrKM/9z5n/x7Zmf9GYvHLuYbybcPvT1ChG46uom3zJw77lxNG31xRJumsn+zDP+EzL+tshKSLb1GvmpZY/Qgmv0ZKvuPI2pEOgY7eHYzXUr+AaVATYT4l2UZL+0dbo27atJV/LaY+RdNfc1Gi/iPt0+Ih9mZf4fVwf9GHYPKzL8R8S/+nvEM/xJd9m/mGid+nmMF5A73HebJixq3caPYSES6ZhsJNvIpMf3xp8R4fB6+dupNmOXac/nvEC7+m7qb+G0S/8mBxD8xAoXL/7iRLv8iTPwH5aDChCRd6fZ280Vab8k/oLzYRSq7jtfvH87UkqmYXhqau/x5x+f4ouML3ceWbPqG+vCrzb/iX/904U9Vixct/bjiZlKvg2+yiJTx+bLjS/47xqsGUQMLgATkgKpyZnHTmg6Zf2B4w+nxexSbNtFcKFGZ/87BTmw5tgU7ToQMGBuKG7C4ZrFpryXitDpxSe0lAEKf83Ut6xQ/V5T8q3T5ZyjK/lNh+Cf0/Ovp9080atzBjSD2rxrZjCvE/1Bs8Z+OZn+AMiibCMf/Lce28Pd7UdUixfvttDr5WpG0zH+cIKri/dARDDE78w8MC24x82+TbIbWWbvFzjPJ8SoctE4ECsdhcfCRkpEM/8xc48T3nLWJRWLb8W389tzyuYZeMxqRAk1GEgjsujEUHFL8TSIhBmzKcvR/Ttha1TnYqfhss8o7h8VhypQdIj4k/okRsAwuEHnEn0imjfsTewGN9LjFiugHggF8evxTAKELrdrMzMoGIfu/N3Oy/49ve5xviBbXLOYiRw1a+nHZ5sltd/NSz3QlUg+kGBBSUw0SD4WZlIqS0kRl040QbdxfopyTw8v+FVn/md9KqMuwWPovuv4P+gfxdvPbAEJBrcVjtQUg8ux5PBiWirJ/i+D2r6ffP9G47MnL/JtW9h+nX17MlKVT5l/MTifC8V/M+l/dcPWIn7P1pH2gnbegmY2mzL/GNTqcRIh/Vv3U7+vngZTKvErD11RW+h9pjKqI1olA4UiSxM/pSOezmeJf7edZIf4r5hp6zWhECtgb8frQ4vhv1KeBEckk3Bf08du1hbVpv7fLFkj8jyJkWcblL12Om16/CXe/fzee3P4kXjnwCra3b0fHQAdkWUbfUB8XKTX5NXFLcMSNRyaM+0uEwU24i++XJ7/kEWktGd6l9UuRY80BEOoLHvQP6j6+ZLGrYxf+9OWfAAA51hzc3Xi3JgGlyPz71JX9p3vJPxA5OKS1FUTLa6jJKiky/2kw6g+I7vivZZyWFsTN5odHPsQHR0LjTGvya1SP1tPLgsoFfMP14ZEPebZl/eH1PPB1Ue1FcFqdmp+b9f239bfFLOFMRNm/rXg4oGKvSb+sjZY1Rg9M/OfZ83SJGYaaEWaM/V37+e10MshKZNl/71Av/t78d/46kXwxxGo+tb3MWmHrqMvmUvzNIqGYCmRg1J9NsikC5UYQxRsTz0ZK/hlsT9Q71BuzP56te3n2POTYcnS9FnvfI2b+TQxwigG5mOL/VDufRbKYPqqUETHzb0T8a3D8V4z5M0n8M73Q0tsCvxz6vFDJf/JIr+Y8IqF0DHaguacZzT3N+OT4JyN+nmvLRXFOMV+4zxl7Tlwhl2mZf9GZ2VCPmyN65n9rmyDyNJi6uR1uXFJ3Cf62/2/o9YU2OssnLtd9jInGH/Tj/g/v5+ZLt869VXPJlt1qh02ywS/7Y2blZFnmG6F0N/sDRvb8B4IBfHIsdM4VO4tNGWcjvg+qMv+nsuk2yabIgKcSUfyL52aiDP9EccaEBAB8Y8Y3Io4zNROLZMGy+mV4+rOnEZADeKPpDVw/7Xq83jRs8Km15J9RlVeF/d374Q140e3tVhhwiSSi7D/39NOR29gI/9GjKFq5wpTnNBNRYJid+fcFfTxoNd493lDliCg04ol/MfM/sXCi7tc0m0Qa/r3e9Do30b2s/rKIwlHh+N93RCE2zIKtTZW5lXH/3naLHfn2fPT5+nSN+mOC0+1wm1aVFClAZSQRwmDiX0boWh0tEMYy/3qN44DhgF6kasFE9fxHE/+9Q73Ye3IvAGBK8RTTnf4Z4eLfJtkUAl4rWhz/jfo0MCJl/pu6qN8/FVDmfxTROdgZ88T1+D2KDXi8kn8AqHVn1rg/0d3WSG+R2+GGhNDFOLy3UWu/v0gmlf7/+cs/44vOkDdBQ3EDbph+g67nYRmNWBtzj9+DgByaG50J4j+8539v117eM2hGvz+gfYwUK/svyy3TbXRpNuI5KJ6bisx/Akb9iZTklCiMwxKJwvW/6VX0DPVwj5XSnFIsrFqo63lF079Ypf/sc2K32E3LJEp2O2pXP4MJb7wOx/j06T9nWCQL/13jtRYd6jmE6165Dj/Z8BNVc+qP9h3l65LRcXuiaIhX9s96ZN12d8LcxfUgZrrNLvsXr4crGiIHmWryhteT8AkiZtDv6+efIbWtU2yd1lX27xsW/2YRKXMrCkG9iAHlaOaG3oCX/05GMsgs8+/xeUZUOomvLV6H9aBG/O9o38Hd9xNV8g+MvA6OyR9jqEQ+1WX/LPOvGPNH4j9ppHQH+NBDD+G8885DdXU1nE4namtrcdNNN+HAgeEPw86dO7Fy5UrU1NQgJycHs2fPxjPPPKN4HlmWsXr1apx22mkoKChAUVERrrjiCnz++edxj2H16tWQJCniv3379pn+O6eSycWTse66ddh0/Sa8cMULeOT8R/DPp/0zrptyHc4acxZqC2p59mtm6UxVG9GinCIuxsIdPNMRMbhhJNpttVj5hUG82ATlIK+qKHQWYlLRJE3PO69iHm+l2HJsS9q+p239bXjs08f41/c23gu7Rd98bta/F2sMVyY5/QMje/4VJf8GR/wxtGTZfAEfL7dMB6d/hlh9I56bLFDhdrh1l4ZGIlLFw9enfd3U14jF5OLJmFw8GUBo0/jMZ8/AFwxNSVlav1T3Zk4c9xdrI8eyj4XOQtP9DRLpl2AULv7jjPr77y/+G593fI7Xm15XeN9Ewyynf0B95t/j8/BAWX1RfVq974o1yUTDv92du7GrYxcAYFrJNEwrnRbxforMf7/54l8MrKltR9I6lYUhy7Ii828WkRJARsyPGYpWt8GuiPfpHBDM/oxk/k8FymTII5IGye75ZyX/QOLM/oCRwSajwUbx2pussv9x7nE8acYy/6L4N6MiklBHSsv+H3vsMTQ3N2P8+PGoqalBU1MTnn32Wbz11lvYvXs3Dh8+jMbGRng8HhQXF6OhoQE7d+7EzTffjO7ubtxxxx0AgPvvvx/3338/AKChoQF9fX1Ys2YN3nvvPXz66aeoq6uLeyxutxvTp09XfC8nJzkbwmSTa89VbEJFAsEATnpPojSnVPWmoq6gDjtO7EBbfxsG/YNJ20jrQXS3NZpRLHIWoWeoR3Gx2de1j389v2K+5gyrJElY0bACv936WwAhg6M7Ftxh6DgTwb9u/leeAbl28rWGIt6shC9W5l8Ut5mQ+Q/PyoviX2s1iNrXiIV48U4Xsz8glM2wWWzwB/3cj0OWZX68ZnsTFDgKeJsJEMogXTf1OlNfIx6XTbgMe7buAQCF4aDekn9AveM/+5yY1e+fKeTactGJzrhl/7tO7OK33215FxeMvyDm/UWnf6Ou+/kOdYZ/TT3pWyabqJ7/l/bFNvpjKCqJEuD4LxqRas38B+QA+n39ir9zLDx+D2+pS7T4N6PnX6yqijbuT3SVN+KPET7BQ6yaMTNRIP6torn9M3NnIJS8SRRFziLYLXYeLDY6KljLiFizyv4dVgfG5I9Ba18rmnuaIcsyF/8WyYK6wjrdz01oI6WZ/+985ztobm5Gc3MzDhw4wMV8W1sb1q5di9WrV8Pj8cDhcGDv3r3YuXMn7r77bgDAqlWrMDAQupA/8cQTAICVK1diz549aG5uRn19Pbq6uvDLX/5S1bHMnz8fH330keLf2LHGTq5MxGqxosxVpimbIG56xExIOsKyi2a427KLeu9QLy8RNcPUbfnE5XyUzcv7X+aLfbrw7qF3sfbQWgChC/gP5v/A0POpKftXiP8MyPy7HW4e+BEz/267Gw1FDaa8hhbDv+MD6TfmDwitN6xvkZXp9vn6+GfBbPEvSZKiH/4rk7+S9GDSsvplPPvBykXHucdhZtlM3c+pJvM/FBji76tZ/f6ZAq8uilH27w/6sfvkbv71hsMb4pb+iz43Rpz+AfWj/g50pW+ZbCJ6/n1BH5+O4bA4YgbJolUSmYWWMX8MRZBWQ99/Ipz+gciZW7FiQi9qgtFmlY/HMsc00/AvXtm/P+jHzvadAEJrsBnvYzQkSVIEnIyuN06rkwdg4vb8D5oj/oHh0v9eXy86Bju4f0lNfo0us1tCHykV/3fffTfGCz2CixcPjzhyOp0IBkNRT1aGz24DQHd3Nz7++GMAUNwvnLffflvVsWzevBn5+fkoKyvD+eefj3fffTfm/b1eL3p6ehT/Riui+E/XMnUgtHizBdwMgxt2YZExXJ63pU0Y56azvLvMVYbzxp0HIJSxfe/we8YO1EQ8Pg9+uXk4oPbT039q+ALLxL9f9sMXiBzoUETzMyDzb5Es/Dj3nNzDMx7zK+ebNspGi+GflvFUyYZl63p9vegZ6lGMJExEoIKd+3aLHV+f/nXTnz8eVXlVI9aGZfXLDJVvi+I/WuY/EWZ/mQLLFHoD3qiCfn/XfsV4uM7BTuw4sSPm8x7uPcxvG92MK8r+/THEv1AmO7Eofcz+AKUXjlk9/4d7D/PP7uKxi2N+dnPtubzlSvQQMQvx3FK7job7v6glUdVukcSb2T3/0cb9mZVBVmT+w1p5WBumVbLCbTcWNIkn/vee3MsDions92eIwXCjZf/A8HWj3dMec0IDq8QrdBbCbtXX3skQ26M+bvuYB6TTLZCZ7aSH6xMAv9+Pxx9/HAAwYcIEXHjhhbjmmmtgtVrh9XrR0NCA2bNn48EHH+SPaW0NRXb/4R/+AQDw/PPPY8qUKairq0NTU5PiPrGwWCyorq5GXV0durq6sG7dOlx44YV49dVXoz7mV7/6FQoLC/m/ceOMXfgzGXHcn1niv2eoBy/ufRHH+mPPrdaCaABkeo+btwuyLHOzv3x7PqYUT9H93KKhUToZ/z2x7QmeWTyj+gwsrV9q+DnFOdzRMnOZVvYPDH8+xMoNs0r+xecHVGT+03DMH0PMlhztO4oTnsSY/THumH8HzhxzJv7lrH9JWSDk8gmXK742UvIPhJX9R1kzR7P4F80No1UYfd4x0iPo3UOxkwCs7N9pdRr+LImly2oz/+nWI2uRLDyIYVbmXwywqBEILLh3zHPM9Ko5PWX/4vUqmhFeJBKV+S9xKcvtS3JKTDH/VBPkSErm/9RrFzgKDPthxOv5F/v9E1nyzxA/c2aIf3bdCMgBRWtgOCx5YTTrD0BR2i+uryT+k0taiP/+/n6sWLEC7777LqqqqrBmzRo4nU40NjZizZo1aGxsxNDQEDo6OnDjjTfyx9ntoQjUQw89hHvuuQcTJkxAS0sLqqurccEFFyjuE40LLrgAra2t2L9/Pz777DNs2bIFLpcLsizj4Ycfjvq4O++8E93d3fxfS0t6l7snEsW4P6EHUi+yLOO2tbfhvg/vw/WvXa/LJTcSYibAzNE2QKjU7GDPQb5IzquYZyjDe+aYM3lU9r3W90wNguhl78m9+O8v/htAaLP788afm2I2pZjDHWVjnmll/0BkgWWm+NdiriVuWtOp7B8YOe5PzPwnwsn89KrT8R8X/weWTTAmuI1wUe1FyLGGvFGmlUwzPKs935HPN8TRSjgV5bCjsOefEW2NYYZyIu+2RBf/QTnIhenY/LGGJ2iImf9YPf8s8++0Ok0JYpsNW5/NMvw73Dcs/tUIHvaeBOWgIuhpBnoqqBRBWg3vSaLEf64tl689gDlZf0C5H4rW8y9m/o30/MdKGLD32IwAZ7zMv9jvn0izP8aVk66E0+rE/Ir5ET27tKLG8d/j8/A104zrsZj5f691uKo13QKZ2U7KxX9bWxvOPfdcrFmzBpMnT8YHH3ygMN5bunQpNm7ciN7eXrS2tmLJkiX8Z1OmhDKrTqcTDzzwAPbv3w+Px4MtW7bAZrMp7hON8ePHo6pq+ASYO3cuf/1Dh6ILWafTiYKCAsW/0Yo47u9g90HDz/dm85t8UT3uOY5/+/jfDD8nYJ7TP0PcQHd7uw2N+AvHarFyY6OgHMTL+1829Hxm8Lttv+Njrb47+7sYV2BOtYuYdYiW+RcDQJmS+Q8fM+SyuaK6VOvBZXPx6RzxeklFQZ1Obv/AyHF/ijF/aRaoMIsCRwF+fc6vsax+GR446wFTnpMFC4/1H4voKj6qM/8qqou+6PiC355aMhVAaBwV60kN57jnOIaCQwBgylrotDq510s0t39fwMd9deoK6kxrITITtj73DvVqcrePRmvv8HVbzXhe8dpu9rg/hXeKyqokrSNZGYkS/5IkKbLuZgWQ1Iz6My3zbxvO/Itl//6gnxvzmZEkcFqdfIpRJPG//fh2AKFr8eQS42I8HueMPQcbrtuA1ZeuNmVcrxrxb1arBkOsFBaDnEYD4IQ2Uir+d+3ahcbGRmzduhWLFy/Gxo0bMWGC8gOwfv3wuJ2WlhasWrUKADBjxgzMnBkySGpqakJz83C5+XPPPYe33noLwHBLAADceOONmDp1qqJ64He/+51iJOCOHTv412qmBBChrBNbFIxm/ocCQ3hk6yOK7728/2VT+t5F999ElP2bPc7tqklX8f7JF/e+yJ1/U8GXnV9yk79yVzlunH5jnEeoR1GS64uf+c+UrGW4+J9bPlf3OMRISJLE34t4GSVF2X+aCepwk650blEwkwvGX4Bfn/NrTCnR3x4kwjZyg4HBiCXXo1n8x+oRBpRmf+Pd4xVtGdGy/6LZn9Exf0DofM5zhERNNPHf3NPMA7DpWibLhKpf9sedrqAGzZn/RIr/U2tTSU6J6t5nRZJAg+GfeA6bKf4BZdbdLJM68fdM1qg/QBnME9+z8OuvXth7Hy7+j/Uf4+MkZ5bNNPXaHotce65p4z2Z2S4QXfyfGDRnzB+jOr+aBzlF0nU9y1ZSKv5XrFjBRXtvby+WLVuGxsZGNDY24g9/+AMA4LLLLkNFRQVmzZqFhoYG7NmzB7m5uXjqqaf4CbB161ZMmDABkydPRn19PRf8ixYtwu23385f79ChQ9i9e7cio/+Xv/wFM2bMwJgxYzBr1iwsWLAAAwMDsNls+NnPfpastyLjYQ6eJwZOxJxRHI8/f/lnnqEXLw73b7zfsIGQOPfXTMM/IHSxY2Z/LpsL00unR3uYamrya9BY3QggJIo2t202/Jx6eXLbk/z2t2Z9y9RxjuFjeyKRaYZ/wMjjNLPkn7/GqexG3Mz/qbJ/p9WZdu9f+HiuRBv+ZSvxHP8V1TMZ0jpjFvHK/kWzv+ml03HBuOERf9H6/sVAt1GzPwbLaEYr+xfN/tI1U2a24z9rrbBJNsVnPBpiMFG85hslKAe5H4kWfwdxuojezL/Za7a4tzJjzB8A2K123roSL/PvsDgUfftaidbzrwhwmpQkECtZRMR+/2SU/CcCMfATrV1Mkfk3QfzbLLYRQbxyV7npAS4iNikV/17vsLPutm3bsGnTJv7v8OHQgr98+XLYbDbs3r0beXl5WLFiBTZu3IgzzjiDP3bChAlYuHAhjh8/jtbWVkycOBF33XUX1q5dC6cz9uiI2267DZdffjmsViv27t2LyspKXHHFFfjwww+5bwARHzMc/7u93fiPHf8BAJAg4YmLnsAZ1aG/8zHPMTy05SFDx8iyABbJophxqhcxsvx55+fcCXhO+RzTosArJqs3/os3lkovX3R8gXda3gEQKhm/ZvI1pj6/GjOuTOz5D888mFENEg7b4PT7+mOaW7Fy1YrcCtOyBmZRkVsBqxQqX27ta1WW/Wdx5t9sxDUtkuO/GCAyKyuWKcQr+xfN/qaXTse4gnGYWBhy0t/evl2xAWaIY23NyPwDiJv5V4j/NM2UieuzUfEvyzJPBlTlVfE2p1iIwUQzM/+dg53wyyFHdC3rkiIjngaGf4DS9M9M3wiWEIn2e3LjOFepoeuQKP7FSp5EVDex977P16eovtx2fBu/nQyn/0SgJvNvdtk/MJwsZKTrWpbNxF9JE8jBgwfj3udPf/pT3PvMnz8fGzdujHu/devWjfjeNddcg2uuMVfMjEbEk/lQzyFdme+ndjzFNwvLJy7H9NLpWHXmKlz98tXw+D14Ye8LWFK3BGeMOSPOM0WGbQQqcitMEefiBnpDywZ+28wM7wXjLkCRswhd3i683fw2XjnwCk4OnkS7px3tA+1o97Tj+MBxnPCcQJ+vD5dPuBwPnv2gqQLvye3KrL/Zs1jFEj414l80xkpnxM+Hw+IwNMc9GuJGu3eoN6KJ0oB/gG8k01FM2yyhjN6R/iM40n8Exf5Q72iuLVfx2SBiE28jl4isWKYQL/Mvmv3NKJ0BADh//PnYv3M/ZMjYcHgD92BhiOLfLP8TtrZ5A174gr4R16lMEP/ieDWjpn/d3m5eBaHW3Tx8eohZ6B2XqgiG6DX8MziyLpwZpTPw4t4XYZNsplQpMoqdxWjta0W3txuBYEDhSeEP+vkIQKMiUkwYiGMxE5EkYOJfhox+Xz//WhT/c8rnmPJayaY8txwWyYKgHExa2T8wUvyT2V/ySbnhH5EdiCeznsz/4d7D+J8v/wdAqDT5+/O+DyBUnv/DBT/k91v14SpdbQUen4c70JoV6VYIL9/whfq0SvMyvA6rA8snLgcQGhl353t34jcf/wbP7HoGrxx4BZvaNqGpuwm9vl7IkLHmwBrsObnHtNf/vONz3vNakVuBlZNXmvbcDIXhX4R+XGD4ou62u9PS5CoShTnDAmtW+SzTgybASNPJSOgZT5VsWBtOt7dbEaQj1CNm/uOK/1HW8x9vjRHN/pgp5/njzuffY5VPIqzn3ybZTCudjpbRZDDzQatkHbGBThfMzPyL/f5qzP6AUJk2E8tmlv1vb9/Ob2v5e+vt+U9k5v/qSVfjl2f/Ev+55D9N6/kHhlscZMgjyuS7vF2QETKANCoio50nYsWBWdVNYrKB/U4D/gF82fklAGBi4cSMXU9tFht38BenYYmYXfYPRMj8p2kLUzZD4p8wBbHsUY/4f/STR3nZ8g3Tb1C4kF475VqcXnU6gNDF/OGt0UcwRsPsMX9A5IuLw+LArPJZpjw/45qGa3hZdCRcNpdiBMtrTa+Z9tpir/+3Z307IQJWVdn/qYxJppT8A6HxXwzm3WA2ijFSUTba6Wz2xxDPSeagnogxf9mM2A8dr+w/UzereolVXeQL+hRmf0xozSybyT+DHx35SPE4WZZ55n9M/hhV5ehqEEVNeN9/IBjg4n+ce5xqw7lkE282uha0mv0xmKA92n/UNKPcVw68wm+fN+481Y+zW+288iQd3P7ZMS2fuBzzK+eb+ryxxv2ZNeYPiG7gmYjqpkjj/j478RlvAcnUkn8G22t3DnZiKDA04ufi360sx5xrMpX9p56Ulv0T2YOi579Xm/jf2b4Trx98HUCobOzmmTcrfm6RLLj/jPuxcs1KDPgH8Nzu57CkbgkPCKhB7P0zK0uTb8+HVbJy92UgMRneCUUT8NgFj+HjYx+jxFmC8txylLvKUZ5bjorcCuTZ89Ax0IEL/3IhAnIAbzS9gTvm32G49H/XiV1Yd3gdgJCwWNlgftYfiC/+ZVnmwjbdzOpiMaN0Bm6fdzuOeY6ZOh1BRHw/omb+03jMHyNSQC4dWxTSGTFgGkn8swCaTbIpNs+jgVjjRA90HVCY/TEskgXnjj0XL+x9AYOBQXx05COcPz5UDdAx2MGfx6ySf0CZZewbUor/I/1H+HGm82bZTMM/ZvYHaBP/Y/LGYM/JPfAH/Wj3tBv2+DnUcwg72ncAACYXT9Y8oaPIWQSP36NJ/LP3zibZFJ/fdEYU/+G/q1lj/gCVhn8mBTgjfZ6zod+fUZVbhR0IfbaP9R8bsZ6JZf+iV4QRSPynHsr8E6bgsrl45kkcgRQPWZbx71v+nX99y5xbIka5xxWMw+3zhic33PfhfZrGCIniX235YDwkSRpxgUmEozsALB67GD9c8EN8Y+Y3cNmEy7CweiHqC+v5RbDUVYpF1YsAhDaJO07sMPyaYq//d2Z9Bw6rw/BzRiKe27/H7+EBlkzK/EuShO/M/g7uabwnYb3r8UpsD/Ucwu+2/Y5/na6l9JFaccpyKfOvhXx7Pj+XjvWPFP+sJLbQWZh2po+JJtaoP9Hsj/X7My4YL7j+CyP/RFE6Lt888R9N1ADDJf9AepfJitdvo+Kfmf0BykqqeCjG/ZlQ+v/qgVf5bXEMpFrYPqHb2w1ZllU9hmWZ3Q53xpyvisz/YPTMv9Ge/2ij/hJp+AcMB+REp/95FfNMeZ1UIQaNIzn+s79bobPQNCPritwK5FhDE6PcdjdV+aUAEv+EabBoXpe3S3WE+92Wd/HJ8U/446+dcm3U+14/7Xq+0Lb0tuDRTx5VfWziBsDMHrfwTLSZ/f5aWVq/lN9+o+kNQ8/12YnPsP7wegChi0O42ZWZiE7ckQI6mTjmL1nEyvxvO74NX3/t67wNp8JVgXPHnZvU41NLpMx/ulYppCuSJPEM5zHPsREig30+RlvJPxC77F80+ws3P1tYtZBnXdcfXs8nqohj/sSqN6OImf9w8X+gK/3N/gD9BneRUGT+9Yp/g47/shzy0gFCU4jE66xa2Hvil/1Rx9mGw3yEMmkEWnFOMb8d7vjPnP4B45n/aB4eiRD/+Q6h59/Xi6Ac5Jn/kpwS0yZ9pAqxEjbcK0aWZf53M6vkHwhVVV0+MRREu3LSlRkT3MomSPwTpqF13J8v6FP07/+f+f8nZmTRIlnwizN/wcvq//jFH/Hp8U9VHVsiMv+AMtJtk2wpdX29YPwF/P178+Cbhkb/PbHtCX47kVl/IH7Zv8LBl8S/AkXPv7DRfvPgm/jWm9/ifZcTCyfi2WXPGpqtnEgo828OzPF/wD+gOG98AR8XHaNR/Mcq+49k9sfIseXgzDFnAgiJl50ndgJQVreZufkXgxQjxH8GOP0DJvf8nxL/+fZ8TZ9bUfxHMzJTy44TO7i/w8LqhYpMqVrUGLOKyLKsyPxnCuLfKFz8i2X/Rnv+LZKFn9OKzH8CfE3Ce/4Pdh/ka+uc8jkZL1wVmf8w8e/xe/iezCyzP8a9jffinWvfwU8X/tTU5yXUQeKfMI26gjp+W434f2HPCzjYcxAAML9ivqLEMuprFNbhtrm3AQg5yt77wb0Y9A/GfZyY+ddz8Y6GeIGZXjY9paPJChwFOLvmbAChPu+tx7bqep6d7TvxXut7AE5l/SclLusPxB/DlYjxPdlCuOGfLMv4z53/iX9e/8/cOG9R9SI8u+xZU4NeZlOVVwUJyk0U9fxrJ5rjv2JTPMrG/AHR15hoZn8ikVz/FWP+3Anq+Q8z/BPFfzqPxjKr7N8f9PPPcE1+jSaRJQYTxdYBPbyyf9joT0/JP6Bcp9WIf4/fw40KM0n8FzuHM/+xDP/MmBfPAtmRev4tksW0kcDhPf9iwinT+/2B2OLf7L+ZiCRJaWtAPBog8U+YhpgBEcsiI9E31KfoKf/RaT9SfXG/YfoNmFUWctQ/2HMQf93317iPYZn/cle5qYZ84kU9lSX/DLEkkZkoauWJ7cqsf6JdpeON4aKy/+iI70fHYAfu33g/HvnkEf69qyZdhScvfDLt3ze71T7Cj4DEv3aiOf4rzqFRGECLtsaIZn/h/f6Mc8aeA4sU2iq9eyjU98/EvwQJNW7zgmp5jsg9/7Is87L/6rzqlAaZ4yEGl4yI/2OeY9xRXYvZH6Bs7Tvapz/z7wv48MbBUAtdjjUHF42/SNfzKMS/inF/iXT6TyRs1B+QWMM/YFj8R+r5L3AU8HPWKOE9/9nU7w8oxX94lYzZfzMifSDxT5iG6ODZ3B078//0Z0/zXqJL6y7F7PLZql/HarHi7sa7+dfxRtt5A16cGAg5lprZ7w8ox5ElyuxPC+eOPZdvdP/e/Hc+PlEt29u34/3W9wGEsieJzvoD8cv+xc1SuovYZCNuKt9oegMv7H2Bf/39ed/HL878RdqOBAsnvO+fyv61E83xXyzBHY1l/9F6/kWzv/B+f0ZxTjHmls8FEAo2N3U38eB2VV6VqcHkaD3/JwZO8B7wdC75B0KBPLamGyn7F/v9tVYtFTuL+TEYMfz74MgH/Nw5f9z5iv5vLYjtgeHl8JHI1Fa3WIZ/nQOh/Z5VspqyBrFqnkiZ/0hjmPXitivL/lm/v91ij7pmZBIlOSV8VGm44Z8i80/iP6sg8U+Yxlj3WB5tjTXub0f7Djz7+bMAAJvFhtvn3x71vtGYXjIdEwsnAgA+Pf5pzOi++LOaPHNLn6+edDWmlkzFpXWX4qwxZ5n63HrItefivLHnAQhdCD868pGmxz+5TXD4n534rD+goud/lGctYyFmJWSEDN7sFjv+dfG/4ruzv5tR/Yii+M+x5ig2XYQ6xMy/ouxfyMKZuTHOFJizNKDMFMYy+xMRW9L+tv9v/P00s+QfiF72nykl/wx27hox/FM4/WvM/EuSxI3MjvYdVe2wH84rB4SS/4n6Sv6BsNJxFe9Jxmb+VYz6K84pNiUrzwJ6/qAfvoAP/qCfB8jM3CeIAZ9DvYd4q+r00ummj3VOBRbJwq8b4WX/LGkGmF/2T6QWEv+EaTisDn7BPdRzKOIF9+O2j/Gdt77DSy2/OvWrujZQkiSpLnFPlNM/EPIg+Mvyv+Dfzv03WC1WU59bL5fWX8pvs5JFNWw7vg0fHPkAQCjTcuXEK00/tkhYLVZ+EY3khJypWZBkYLfYFSZ+hc5CPHXJU7hswmUpPCp9iH26Za6yjApcpAtiz7847m+09/xbLVYeABDL/mOZ/YmcN+48fvt/d/8vv222+I9m+Kcw+0vjMX8MJr6MlP3rdfpnsGDiYGBQ4TSvlt6hXt7mUZJTgjPGnKH5ORhae/4zVfw7rA6ekRd7/kXXeLNEpOjj0e/rV7xnZq5x4p6DZf2B7Cj5Z7CKsd6hXsX6KJb90zi+7ILEP2EqrPS/z9enWDgAYMPhDbj17Vu5wFtYtZCb9+lBIf6bYoj/BDn9pytn15zNMy9rD61VZYgYlIOKXvFk9PqLsOz/gC+24d9oFC7xmF8xH0BIiPz30v9Oi/YTPYiZfzIC0ke0sv9EjMDKNJiwZtVFvqAPX3Z+CSC62R+jtqCWl9uL65GZY/6AsMz/kJD5z5AxfwwmmAYDgxgKDOl6jsN9Qtm/Dl8FMZioZ9zf281vc9PUS+suNTTjXKv4Fz9jmST+geFxf12DXfx7PUM98AdD/g1mlY+LQe9+f3/C1jiXzQWrFErsBOThCUqsFSgbiGb6R2X/2QuJf8JUxL5/cRzSG01v4Afv/IBn/M8Zew5+d+HvDBkXjS8Yj5mlMwEAX3Z+qciOiIgXfnGmabbisDp4mWq/r5/38Mfi+T3P8+kAY/PH4opJVyT0GMPh4j9e2T9l/kfw7+f+O35/0e/x/PLnUVdYl+rD0Y0o/inLoA+33c3PpWhl/6O1dSZ8jTnQdYCLu2hmfyKi6z/D7Mx/uKBhiNc21u6Wzpjh+N/aO1z2rydoL1b56en7V5T863T5ZyhG/WWx4R8wXPrfPdTNJxYkwjVe3Dt6fB6Fl4KZrU2SJEX8G8ypSN1YZ7MR98XidYPK/rMXEv+EqShM/06N+3thzwv4yYafcOfeS+suxSPnP4IcW07E59CCmuy/6GA6GjL/gPqqCCDUE/nQlof41/eeca+hLIceWAkfjfrTTq49F2fVnJXWDuBqmFI8BQ6LA4A6MUaMRJIknsU55jnGW68o8z9S/Ksx+xM5f/xI8S9OuDEDhfgfGin+S3JKFI7q6Ur4eDQ9sMx/RW6Frt5q8Vqv1fG/rb8NH7d9DCA0wnhm2UzNry8i/s2y2fAPGBbeQTnIgxhiFWhJTokprxNe9p/IfUL42MBx7nFZFaCuyhUy/4Lpn+Lv5jLn70akByT+CVMRN0PNPc14dtezWLVxFTcjW9mwEv+6+F9NE5eX1l/K54O/0fRGRJ8BMfMvljdlM4uqF/GZuxsOb1D0j4rIsoz7N97PWzFWNqw01NuoF3FjHv43ZBd1CZJps3uJ9KPUVYr/d8n/w88bf47rp12f6sPJWJh504B/gJ87YrZxNBr+AcoAY1AOqjb7Y8wqmzUi+2V25t9msXFvAmb41zPUwzNwmWD2ByjFlx7Hf4/Pw3vE9fT7A8pspmgeqIZXD7zK9yyXTbjMsP+IEcO/jBP/EQIdiRgZp8j8+z3KAKfJ7YHhmf9s6vcH4pf9FzmLkp4QIhILiX/CVOoK6vjtF/a+gH/b8m/86xun34j7zrjPVGO8itwKnFZ1GoDQGKYvOr8YcR9W8leSU5Lx2VG12Cw2XFJ3CYBQ3+W6lnUR7/fy/pe5yV9FbgV+dNqPknSESlz2kPiXIWMwoPQoYAIm35GfNqaKRGJYULkAX5nyFcUECEIbouM/6/tP5MY4U2BrDAAM+gdVm/0xLJJFYfxXmlOakOsJy/6zgG2m9fsD2sVuOGK/v1anf4Yi89+vPvMvy7Ki5N8M81SH1cHXtGw2/AMij/tLRO+4WCXj8XkSWt0UHoCZU549Jf+AUvyzc0WWZf53o5L/7IPEP2Eq1fnVsEmhmaFiedv35n4P/3zaPyfEwTtWibsv6MNxz/HQsY2Cfn+RS+uGXf8jlf4f9xzHbz7+Df/63sZ7U7bRiDXuj20eMy0DQhCpQGH6168U/1bJqtg0jybENaZnqIeb/dUW1Kpe98S+f7PN/hhstBjL/Dd1N/GfZYr4N9rzb9TpHwiJTJat1JL533NyD/Z17QMQyvCaVd3BBOlo6fkHhtedRPT859kE8e9PXM8/MDoz/x6/hydiyOwv+yDxT5iKzWIbEan/8Wk/xq1zbk3Y6K6Lx1/MAw6vN73OTWaA0OaXfS0aio0G5lfOR4WrAgDwwZEPFJFxWZbxwMYH+Cbj8gmX49xx56bkOAFl/544akaWZb55JPFPEPERx/2x/k12DhU6C0ftCEVxjfnsxGfc7G96SfySf8ai6kXcRf6M6sS0R7HgjMfngSzL2N+1n/8sE8b8AcZ7/kWxrsfpHwhVarCA/9H+oxFbAiOxZv8aftuo0Z8Iq7jp9nbHPZZsEf9s3J84atG0nv+wsZiJzPyLfwO33Y2JRelvuqmFAkfBCKNYcvrPbkj8E6Yzu3w2gFCP9qozVuHGGTcm9PWKcopwZs2ZAEJlrp8e/5T/TOz3F0f/jAYskgVL6pcAAPxBP9YeWst/9nrT61h3eB2AUCT+Zwt/lopD5ETL/Hv8Hj5eh8z+CCI+irL/sMz/aA6giWJhy7Et/Laafn9Gji0Hf7zsj3h6ydP47uzvmnp8DCb+A3IAg4FBhdN/pmT+xc+Znp5/MzL/wHDAP9wQLhqBYACvNb0G4FTrXO0lul87HCaKfUFfRGNbEfaeiR4QmYKi5//UuL+E9/z7PIqKCrNbm1g1DgDMrpgNi5Rd0kmSJH7dYEax5PSf3WTXJ5hIC/7Pgv+D7835Hp5e8jRWTl6ZlNeMVvovjvgRR/+MFpbWjXxfOgY68KvNv+Lfv6fxnpQ7gEcT/zTmjyC0oSj79xyDL+jjJeSj1ewPUK4xbKwpoE38A6ExlKdXnZ4w/xGF47+vn4v/PHueIrCTzijK/nX0/Csy/wYm9IjVfmIiIBqb2zajfaAdAHBOzTmmTlYQg9fx+v7FardMq9RhRsPAcOtn58Bw5r84pzj8IboY4fbvTZzbv/h5nls+19TnThdYlQwzik1EwIZIH0j8E6ZT5irDrXNv5UZ8yeCCcRfwCPlbB9+CL+gDoLzgj5YxfyIzy2byzMnmts04MXACv9r8K35RvqT2ElxUe1EKjzCEGMUXxb8YzSfxTxDxEQViW3+bYlOc6iBfKhHFwu7O3fy2GrO/ZCJONOkY6ODXsPqC+owRgqL4MtLz77A4UJ5brvs4xGo/MREQDdHo7/KJ5pX8A8pzL17fP8v8Z1rJP6AMMIa7/ZvpGi8GyQb8A/y1LJLF9PeNjZ4NN/3MJsL7/sWy/2waa0iEIPFPZAW59lzes37SexKbjm4CoBT/o83wDwiVc7GqiKAcxM8/+DnePPgmgNCF+M5Fd6by8DhiVk7s+U9kNJ8gshGxf/OY55iyHHYUi39xjWFj3LSY/SULUdTs6tjFjzVT+v0BY2X/sizzzH+Nu8ZQibWWzL/H58HbzW8DCPV1nzP2HN2vGwmxFD1W5j8oB3mljtueXp9NNUQS/6zn36x+f2Bk5l9sbTK7LH9xzWI8ceETWH3pakwtmWrqc6cLI8T/oPkmjUT6QOKfyBoilf6L0f7RZvjHuLR+2PX//db3+e2fLfxZ2kR0o5b9D1HZP0FoQezfbOtvUwiN0XwORRrLp8XsL1mI4n9H+w5+O1P6/QFjhn8dgx3cZdxotZ4Y8I8n/te1rIPHHwo8X1J3CZxWp6HXDkeR+Y8h/j0+DzcpTrfAlBrEVomTgyfh8Xn4Nd3M8vHw9hgW5ExEgFOSJCweuzjrXP5Fwsf9KXr+qew/6yDxT2QNZ9eczUsm1x5ai0H/IL/gux3ujLyQmkFDUQMmFirdac8bex6W1S9L0RGNhMQ/QZgHc/wf8A8ozNMo869Ea79/MhDL/necyEzx77K5+AQereLfLLM/QBk8YPPLIyHLMv68+8/8azNd/hmRMuKRyGSnfwBwWp38XOvydiVkzB+gDOb1+fr4+2a22d9ooSqXyv5HEyT+iazBaXXiwvEXAghFgtcdXsfdrkdjvz9DkiRF9t9td+PnZ/w8rfpHFaP+/FT2TxBGEPv+95zcw2+PZvEvrjGMdBT/YkYzE8f8AaFrDluvtZb9t/S28NvhY4O1Up5bDqsUMmaMlfl/p+UdPiWovrAe8yvnG3rdSKj1QRB/loniHxg2/evydiXMOE48n9l4OmB0r3FGUJT9e5Rl/2aZNBLpA4l/IqsQs9nP7noWftkPYHT2+4tcNekqFDoLYZWsuLvxblTkVqT6kBRQ5p8gzEPcyInifzS7/Ucq+083sz9AOVaMlX/bLfaMC2Cz9Vqr27/o9G8082+z2Pi5EM3wzxf04ZGtj/Cv75h/R0JGuant+ReDJZl6zWMCvNvbrcggm9nzb7fauXmgWNVB4l8f0Qz/zDRpJNIHW6oPgCDMZGH1QpTklKBzsBM7T+zk38+0jZPZVOVV4eUrX4bH78E497hUH84IXPb44p8u6gShDjHzLzrbj+aS2PCy/3Q0+wOUmX9GbUEtbJbM2q6x97bX14tAMKB6NKKi7N9g5h8IBf5b+1rR7e1Gv69/xPv74p4XcbDnIABgfsV8nD/ufMOvGQm1Pf+ZXvYPDGeKA3KAv7eA+cZxefY8dHm7FHsG2ifoI9eeC7fDjd6hXoX4p5L/7IQy/0RWYbPYcEntJSO+P9oz/0Co5C4dhT+gLOFTiH8vZf4JQitiFkcs3xzNG+Pwsv90NPsDIov/iUUTI9wzvRHXa+Zer4bDfcPi34ygfSzH/35fP57Y/gT/+ken/Shh7XCqxb8v88W/+Lse6D7Ab5ttHBfpXBnNAU6jsH3y0f6j3HSTnP6zExL/RNaxbMJII7vRnvlPd6KO+qOyf4LQjJj5FxnNvhnhmf907PcHlIZ/jEwy+2PodfxnZf9FziJFC4ReRPEfbvq3etdqPobuktpLMLt8tuHXi4YoiLPZ8A8Y7vkHgH1d+/hts4VkJBPP0RzgNAoLGrN2IwAocZnXqkGkDyT+iaxjTvmcEZn+6nzK/Kcz8Xr+JUgZuxEiiGQjZv5FRvPGOLznf0bZjBQdSWwiZTMzUfyL67Va8T8UGOImvUb7/Rlj8obFv+gncNxzHP+1678AhCoGfzD/B6a8XjREF/xsN/wTvUWaupv4bbOFZMTM/yhe44wiOv4zKPOfnZD4J7IOi2RRuNsDlPlPd+KJ/3xHfkJMmAgiGylwFCDHmqP4nlWywm3PTDFhBuFl/1NLpqboSGITKfNfX1ifgiMxhlhlotbx/2j/UciQAQA1bnOu2YrMf99w5v+JbU/wa811U67D+ILxprxeLFg1RLYb/hXlFPHb4vXcbCEZaYIHiX/9RAoaU89/dkK7aSIrEV3/c225GXsRHS2IWblIo/7o70cQ6pEkacRGrsBRkFbjPZONy+aChNDvn65mf8DIbKZFsqCusC41B2MARdm/Ssd/hdlfAjL/zPF/38l9eGnfSwBCwZZ/nP2PprxWPEQXfFmWI94n28r+GXn2POTYciLcWz/U828ukcS/2T4NRHpA4p/ISqYUT8GsslkAgHkV80b1pjcTyLHm8I35gC+UKZBlmWf+SfwThDbC+/5He0bMarFiRcMK2CQbbph2Q6oPJypikAIIiWCn1ZnCI9KHnrJ/s53+gZCgYe8nM/x75JNHeF/zt2Z9K2lzzNk5OBQc4oZq4WSD+I+01iSifDzS+M7RPM7UKBHFP5X9ZyWZNTuGIFQiSRIeveBRbDyyEYtrFqf6cIg4SJKEHFsOBvwDvEyw39ePgBwAMLqNyghCD5V5SvFP5xCw6sxVuGvRXXBYHak+lKhIkoR8ez53fc/Efn9An+Gf2JNvVque3WpHeW45jnuO40jfEXzc9jHWH14PIBQg+/q0r5vyOmoQhWm3tzuiYV02iP9IwZSSHPON4yKV/dM6p59IPf9U9p+dUOafyFrKXGVYPnG5ov+MSF/YhZyJf3L6Jwj9jMj8UzksAKS18GfkOYbLmeuLMq/fH9DX8y+O+TMr8w8Ml/53DHbg15t/zb///XnfN70UPRbidSxa3z97r2wW2wjfjkwhUvY9EeXj4Zl/MgY2RnjAGKCy/2yFMv8EQaQFLAvCev5J/BOEfsJLOKkcNnPIsw2L/0zN/CvK/jX2/Fsla9SJFXoYkz8G29q3AQB2n9wNAJhcPBmXT7jctNdQQ/i4v3ZPO77o/AJfdn7J/7X0tgDIbI+OZJX9h/f8FzgLyBjYAA6rA6U5pegY7ODfS1ZLDJFcSPwTBJEWuOwh8c8z/8KGkUr5CEIb1POfuYiZ/0wV/3rK/lnmvyqvCnaL3bRjER3/GT9c8ENYLVbTXkMN4jn4/Xe+r3DCD6euoC4JR5QYXDYXcqw5Cl+DRGSQw8U/BTiNU5VXxcV/sbPY1POQSB9I/BMEkRawzL834EUgGKDMP0EYYITbPwXQMgYWuHFYHFkh/tWU/Xd7u/n9zHL6Z1TnVSu+PqP6DJxVc5apr6EGsfUmkvDPseZgcslkTC+Zjhtn3JjMQzOdopwitPW38a+T0fNPrU3Gqcqrwq6OXQCo5D+bIfFPEERaIF7IB/wDJP4JwgDU85+53DrnVgDA+ePOR74jP8VHow+3ww0JEmTIqjL/CrM/tzlmf/z5BPNACRJ+eNoPTX1+tSyqXgS33Y1eXy8KnYWYWjIV00qm8f9rC2qTXo2QKIqdxQrxn4yefwpwGkcMGpPTf/ZC4p8giLRAdD4e8A8oyv6pZJkgtFHoLITT6oQ34OVfE5lBQ3EDfnveb1N9GIawSBY+tUCN+FeM+TM58z+paBKskhUBOYDlE5djaslUU59fLWPdY/HWNW+h39ePityKjO3pV0P4epOQUX/hmX9a4wwjOv5T5j97IfFPEERaMEL8U+afIHQjSRKq8qrQ3NMMgDbGRPIpcBag19erquw/UU7/QMjF/Lfn/RZ7T+5NeTl9viM/Y6s5tFDsVBrFUc9/ZqDI/JP4z1rIFpMgiLRALOEbIf6pnI8gNCOW/tPGmEg2LGjb4+2BLMsx79vaK5T955tb9g8AF4y/AP845x8VQWYicYQHGxPS82+nnn+zmVcxDw5LaBzqaZWnpfhoiERBmX+CINICcVPm8XuUbv+U+ScIzdQX1mNz22ZYJMsIDwCCSDRs3J9f9mPAPzBCrIkkMvNPJB9xRJzD4kC+3fxqB3EkJkBJAjOozKvEi1e+iJODJzGnfE6qD4dIECT+CYJICxRl/z4q+ycIo9w882b0DvVifsV8lOeWp/pwiFFG+Li/mOL/VM9/ri13RMk4kXmIlUalrtKE+Buw8cAMam0yh9qCWtQW1Kb6MIgEQuKfIIi0IFrPvwSJZ5AIglDPmPwx+PU5v071YRCjFDET2zPUM2L8JCMQDOBI/xEAIaf/bDbCGy0oxH+CXOOp558g9EE9/wRBpAWic6/H70G3txtAyCDJItFSRRAEkUm47cNBW7GNK5zjnuPwB/0AzHf6J1JDUU4Rv13iMr/fHwByrDmKvQH1/BOEOmhHTRBEWhAt808l/wRBEJlHeOY/GmK/fyLM/ojkU+Yq47crcisS8hqSJCmSBlT2TxDqIPFPEERaIPbveXwePh6KxD9BEETmIa7dscb9sX5/gMz+soWGogYsrVuKce5x+MrkryTsdUQfCRL/BKEO6vknCCItECP4JwZOICAHAJCDL0EQRCYierWozfyPc49L6DERyUGSJPzm3N8k/HXYvoG8gQhCPZT5JwgiLRDL/o95jvHblPknCILIPMLd/qPR2tfKb1PZP6GFeRXz+P/kDUQQ6qDMP0EQaYGY+SfxTxAEkdmIVVtqy/7H5I9J6DER2cXdjXdjSd0SzC6fnepDIYiMgcQ/QRBpgZj5b+tv47epj48gCCLzUGT+Y7j9M/Ff7ipXXAcIIh5OqxNn1ZyV6sMgiIyCamQIgkgLROOedk87v02Zf4IgiMxD7MFu7WuFx+cZcZ8B/wA6BjsAUMk/QRBEMqDMP0EQaYGY8fHLfn6bDP8IgiAyD3Hu+ifHP8G5z52LM8eciYtqL8I5Y89BobMQrb3D/f7k9E8QBJF4SPwTBJEWRCv3pMw/QRBE5mG32nHeuPOwrmUdAGAwMIh3Wt7BOy3vwCbZcHrV6YoefxL/BEEQiYfEP0EQaYHdYodNsimy/gCJf4IgiEzl4fMexqajm/D2obfxzqF30DnYCSBU3bXx6EbFfansnyAIIvGQ+CcIIi2QJAkumwu9PqUrNJX9EwRBZCY2iw1n1ZyFs2rOwj2L7sH29u08ECCO+AOAuoK61BwkQRDEKILEP0EQaUNE8U+Zf4IgiIzHarFifuV8zK+cjx+f9mN82fkl1h5ai41HNmJC0QQa10YQBJEESPwTBJE2uOwuYED5PRL/BEEQ2YUkSZhWOg3TSqfhtnm3pfpwCIIgRg006o8giLQh15ar+FqCpBgXRRAEQRAEQRCEPkj8EwSRNoQ7/uc78mGRaJkiCIIgCIIgCKPQrpogiLQhXPxTyT9BEARBEARBmAOJf4Ig0oZcu7Lsn8Q/QRAEQRAEQZgDiX+CINKG8Mx/obMwRUdCEARBEARBENkFiX+CINIGKvsnCIIgCIIgiMRA4p8giLRhhPh3kvgnCIIgCIIgCDMg8U8QRNoQPuqPMv8EQRAEQRAEYQ4k/gmCSBuo7J8gCIIgCIIgEgOJf4Ig0gYq+ycIgiAIgiCIxEDinyCItIFG/REEQRAEQRBEYiDxTxBE2kBl/wRBEARBEASRGEj8EwSRNlDZP0EQBEEQBEEkBhL/BEGkDZT5JwiCIAiCIIjEQOKfIIi0gXr+CYIgCIIgCCIxkPgnCCJtEDP/EiS4He4UHg1BEARBEARBZA8k/gmCSBtE8Z/vyIdFoiWKIAiCIAiCIMyAdtYEQaQNubbhsv9CR2EKj4QgCIIgCIIgsgsS/wRBpA0umwsSJABAoZPEP0EQBEEQBEGYBYl/giDSBqvFihUNK2Cz2LCiYUWqD4cgCIIgCIIgsgZJlmU51QeRDfT09KCwsBDd3d0oKCCHcoIwgjfghdPqTPVhEARBEARBEERao0WHUuafIIi0g4Q/QRAEQRAEQZgLiX+CIAiCIAiCIAiCyHJI/BMEQRAEQRAEQRBElkPinyAIgiAIgiAIgiCyHBL/BEEQBEEQBEEQBJHlkPgnCIIgCIIgCIIgiCyHxD9BEARBEARBEARBZDkk/gmCIAiCIAiCIAgiyyHxTxAEQRAEQRAEQRBZTkrF/0MPPYTzzjsP1dXVcDqdqK2txU033YQDBw7w++zcuRMrV65ETU0NcnJyMHv2bDzzzDOK55FlGatXr8Zpp52GgoICFBUV4YorrsDnn3+u6jjeeustnHXWWcjNzUVBQQGWLFmCLVu2mPq7EgRBEARBEARBEESqkGRZllP14nV1dWhubsb48eNhtVrR1NQEAKiqqsLu3btx+PBhnH766fB4PCguLkZNTQ0+++wzAMDDDz+MO+64AwCwatUq3H///QCAhoYG9PX14ejRoygqKsKnn36Kurq6qMfw+uuvY/ny5QgEAqipqYHX68WJEyfgcrmwceNGzJkzR9Xv0tPTg8LCQnR3d6OgoED/m0IQBEEQBEEQBEEQKtCiQ1Oa+f/Od76D5uZmNDc348CBA1zMt7W1Ye3atVi9ejU8Hg8cDgf27t2LnTt34u677wYQEvwDAwMAgCeeeAIAsHLlSuzZswfNzc2or69HV1cXfvnLX8Y8hp/85CcIBAJobGzEwYMHceDAAdTV1WFgYAD33HNP4n55giAIgiAIgiAIgkgSKRX/d999N8aPH8+/Xrx4Mb/tdDoRDAYBAJIkQZIkfhsAuru78fHHHwOA4n7hvP3221Ffv7W1lVcSXHHFFbDZbHC73bj44osBAGvXrkUgEIj4WK/Xi56eHsU/giAIgiAIgiAIgkhH0sbwz+/34/HHHwcATJgwARdeeCGuueYaWK1WeL1eNDQ0YPbs2XjwwQf5Y1pbWwEA//AP/wAAeP755zFlyhTU1dXxFgJ2n0i0tLTw2xUVFfx2ZWUlAGBgYADt7e0RH/urX/0KhYWF/N+4ceP0/NoEQRAEQRAEQRAEkXDSQvz39/djxYoVePfdd1FVVYU1a9bA6XSisbERa9asQWNjI4aGhtDR0YEbb7yRP85utwMIGQfec889mDBhAlpaWlBdXY0LLrhAcZ9IRLM7EL8fqZoAAO688050d3fzf2IggSAIgiAIgiAIgiDSiZSL/7a2Npx77rlYs2YNJk+ejA8++ADTp0/nP1+6dCk2btyI3t5etLa2YsmSJfxnU6ZMARBqEXjggQewf/9+eDwebNmyBTabTXGfSIgtB8eOHeO3jx8/DgBwuVwoKyuL+Fin04mCggLFP4IgCIIgCIIgCIJIR1Iq/nft2oXGxkZs3boVixcvxsaNGzFhwgTFfdavX89vt7S0YNWqVQCAGTNmYObMmQCApqYmNDc38/s999xzeOuttwAMtwQAwI033oipU6fy6oGamhr+HC+//DL8fj96enr4Yy+66CJYrVaTf2uCIAiCIAiCIAiCSC62VL74ihUruGjv7e3FsmXL+M++/e1v49vf/jYuu+wy5ObmorKyEnv37oXX60Vubi6eeuopXpK/detWXHfddZg4cSJ8Ph8OHjwIAFi0aBFuv/12/pyHDh3C7t27UVVVxb/3m9/8Bpdffjk2b96Muro6xai/Bx54IAnvAkEQBEEQBEEQBEEklpSKf6/Xy29v27ZN8bNLL70UALB8+XKsX78eu3fvhtvtxmWXXYb77rsPs2fP5vedMGECFi5ciC+++AIejwcTJ07Eddddh7vuugtOpzPmMSxduhSvvfYafvGLX+CTTz6BzWbDxRdfjAcffBBz5sxR/bswnwBy/ScIgiAIgiAIgiCSAdOf0fzsRCRZzb2IuBw+fJgc/wmCIAiCIAiCIIik09LSgrFjx8a8D4l/kwgGgzhy5AjcbnfUCQEEQYSik+PGjUNLSwsZZRLEKIHOe4IYXdA5TxDJQ5Zl9Pb2YsyYMbBYYlv6pbTsP5uwWCxxIy0EQQxDUzIIYvRB5z1BjC7onCeI5FBYWKjqfikf9UcQBEEQBEEQBEEQRGIh8U8QBEEQBEEQBEEQWQ6Jf4IgkorT6cR9990XdxIHQRDZA533BDG6oHOeINITMvwjCIIgCIIgCIIgiCyHMv8EQRAEQRAEQRAEkeWQ+CcIgiAIgiAIgiCILIfEP0EQBEEQBEEQBEFkOST+CYIgCIIgCIIgCCLLIfFPEIRqNmzYgGXLlqG8vBySJEGSJPz+979X3Gfnzp1YuXIlampqkJOTg9mzZ+OZZ55R3GfNmjW46qqrUFdXB5fLhcrKSlxyySVYv379iNd89NFHMX36dDidTlRUVOCb3/wm2traEvp7EgQxjFnn/bp16/jjw/+9/fbbivvSeU8QqcWs8x4Afv/732PBggUoLi6Gy+VCfX09br31VnR0dCjuR+c9QSQBmSAIQiUPP/ywbLPZ5MmTJ8sAZADyk08+yX++a9cuOTc3VwYgFxcXyzNnzuT3e/jhh/n9brrpJhmAXFpaKs+YMUOWJEkGIFutVvnDDz/k97vzzjv54xsaGmSXyyUDkCdPniz39fUl81cniFGLWef9u+++KwOQHQ6HvGjRIsW/zZs38/vReU8Qqces8/6ZZ57h3x83bpw8Y8YM/vWyZcv4/ei8J4jkQOKfIAjVnDhxQvZ4PHJTU1PEzcCPf/xjvrk/ceKELMuyfPfdd8sA5MLCQtnj8ciyLMt/+MMf5E2bNvHH/fWvf+XPd/vtt8uyLMtHjx6VbTabDED+0Y9+JMuyLG/fvp0HCv793/89Wb82QYxqzDrvmfivra2N+lp03hNEemDWef+tb31LBiC73W7Z6/XKsizLl1xyiQxAnjFjhizLdN4TRDKhsn+CIFRTWloKl8sV9efBYBAAeIkguw0A3d3d+PjjjwEA3/rWt7Bw4UL+uMWLF/PbTqcTALB27Vr4/X4AwMqVKwEAs2fPxqRJkwAAb775pim/E0EQsTHrvGccOXIERUVFKCoqwqJFi/D888/zn9F5TxDpgVnnPbu+9/b2YtKkSZg5cybeeust1NbW4rHHHgNA5z1BJBMS/wRBmMY111wDq9UKr9eLhoYGzJ49Gw8++CD/eWtra8THPfzwwwBCwv/GG28EALS0tPCfV1RU8NuVlZUAgEOHDpl+/ARBaEfreV9dXY3a2loMDg5i8+bNuPbaa/Hkk08CoPOeIDIFtef9TTfdhMceeww2mw0tLS3YtWsXAGDq1KmYOHEiADrvCSKZkPgnCMI0GhsbsWbNGjQ2NmJoaAgdHR1czAOA3W4f8Zhf/OIX+Jd/+RfY7XY8++yzmDlzJgBAluWIr8G+zzIMBEGkFrXn/YwZM3DgwAE0Nzdj+/bt2LNnD9/cP/TQQwDovCeITEHteb927VrceeedKCgowGeffYb29nacffbZePPNN3HllVcCoPOeIJIJiX+CIExl6dKl2LhxI3p7e9Ha2oolS5bwn02ZMoXf9vl8+OY3v4n77rsP+fn5ePnll/GVr3yF/3z8+PH89rFjx/jt48ePAwDGjRuXyF+DIAgNqDnvy8vLUV9fz78/fvx4nH322QCGM3t03hNE5qDmvL/33nvR19eHs88+GzNmzEBZWRlWrFgBANi2bRtOnDhB5z1BJBES/wRBmIo4rq+lpQWrVq0CEMr6sax+d3c3li5ditWrV6Ompgbvvfceli5dqnieCy+8EDabDQB4T/C2bduwb98+AMCll16a6F+FIAiVqDnvn332WWzatInf7/Dhw3j//fcBAHV1dQDovCeITELt9R4Adu3ahcHBQQDA1q1bAQAWiwU5OTl03hNEMkml2yBBEJnFCy+8IE+cOFGura3l7r/l5eXyxIkT5euvv16WZVnOy8uTy8vL5ZkzZ8pOp1MGIOfm5ipG+H33u9/lj58wYYJi5Nett97K7xdt9E9DQwON/iGIJGHWec9GfJaVlcmzZ8+Wc3Jy+POtXr2a34/Oe4JIPWad9/feey9/fEVFhTxp0iT+9bXXXsvvR+c9QSQHyvwTBKGanp4e7N+/H83Nzfx77e3t2L9/Pzf3Wb58OWw2G3bv3o28vDysWLECGzduxBlnnMEf4/V6+e0DBw5g06ZN/N/nn3/Of/bggw/ikUcewdSpU3Hw4EHk5eXhpptuwoYNG5CXl5eE35ggCLPO+xtuuAHXXnst8vPzsWfPHhQWFuKiiy7C3//+d9x00038fnTeE0TqMeu8v++++/D4449j/vz5GBoawpEjRzBt2jT84he/wOrVq/n96LwniOQgyXIUlw2CIAiCIAiCIAiCILICyvwTBEEQBEEQBEEQRJZD4p8gCIIgCIIgCIIgshwS/wRBEARBEARBEASR5ZD4JwiCIAiCIAiCIIgsh8Q/QRAEQRAEQRAEQWQ5JP4JgiAIgiAIgiAIIssh8U8QBEEQBEEQBEEQWQ6Jf4IgCIIgCIIgCILIckj8EwRBEASRcFatWoW5c+em+jAIgiAIYtQiybIsp/ogCIIgCILIXCRJivnzm266CY8//ji8Xi9KS0uTdFQEQRAEQYiQ+CcIgiAIwhBtbW389nPPPYd7770Xu3fv5t9zuVwoLCxMxaERBEEQBHEKKvsnCIIgCMIQVVVV/F9hYSEkSRrxvfCy/2984xu46qqr8Mtf/hKVlZUoKirC/fffD7/fjx//+McoKSnB2LFj8fTTTyteq7W1Fddddx2Ki4tRWlqKK6+8EgcPHkzuL0wQBEEQGQiJf4IgCIIgUsI777yDI0eOYMOGDfjtb3+LVatW4fLLL0dxcTE2bdqEW265BbfccgtaWloAAB6PB+effz7y8/OxYcMGvP/++8jPz8ell16KoaGhFP82BEEQBJHekPgnCIIgCCIllJSU4NFHH8WUKVNw8803Y8qUKfB4PLjrrrvQ0NCAO++8Ew6HAx988AEA4M9//jMsFgv+8Ic/YNasWZg2bRqeeeYZHDp0COvWrUvtL0MQBEEQaY4t1QdAEARBEMToZMaMGbBYhvMQlZWVmDlzJv/aarWitLQUx48fBwBs3boV+/btg9vtVjzP4OAg9u/fn5yDJgiCIIgMhcQ/QRAEQRApwW63K76WJCni94LBIAAgGAxiwYIF+OMf/zjiucrLyxN3oARBEASRBZD4JwiCIAgiI5g/fz6ee+45VFRUoKCgINWHQxAEQRAZBfX8EwRBEASREXzta19DWVkZrrzySrz33ntoamrC+vXr8YMf/ACHDx9O9eERBEEQRFpD4p8gCIIgiIwgNzcXGzZswPjx47FixQpMmzYNN998MwYGBqgSgCAIgiDiIMmyLKf6IAiCIAiCIAiCIAiCSByU+ScIgiAIgiAIgiCILIfEP0EQBEEQBEEQBEFkOST+CYIgCIIgCIIgCCLLIfFPEARBEARBEARBEFkOiX+CIAiCIAiCIAiCyHJI/BMEQRAEQRAEQRBElkPinyAIgiAIgiAIgiCyHBL/BEEQBEEQBEEQBJHlkPgnCIIgCIIgCIIgiCyHxD9BEARBEARBEARBZDkk/gmCIAiCIAiCIAgiy/n/AcgHglSfSaVHAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Create the plot\n", - "plt.figure(figsize=(12, 6))\n", - "\n", - "# Plotting the annual mean for each dataset on the same plot\n", - "for key, annm in annual_mean.items():\n", - " source_id = key.split('.')[2]\n", - " annm.plot(label=source_id)\n", - "\n", - "plt.title(\"Annual Mean Surface Air Temperature (Regional)\")\n", - "plt.xlabel('Time')\n", - "plt.ylabel('Temperature (K)')\n", - "plt.legend()\n", - "plt.show()\n" - ] - }, - { - "cell_type": "markdown", - "id": "3ab40b96-b2f1-40ed-bf3d-16380a461f79", - "metadata": {}, - "source": [ - "### References \n", - "[Global Mean Surface Temperature](https://projectpythia.org/cmip6-cookbook/notebooks/example-workflows/gmst.html)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.14" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/_preview/44/_sources/notebooks/ex-regrid-plot.ipynb b/_preview/44/_sources/notebooks/ex-regrid-plot.ipynb deleted file mode 100644 index f510e83..0000000 --- a/_preview/44/_sources/notebooks/ex-regrid-plot.ipynb +++ /dev/null @@ -1,939 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "7ec06613-53cd-494c-ade6-8a3a156f77a0", - "metadata": { - "tags": [] - }, - "source": [ - "\"ESGF\n", - "\"Rooki\n", - "\"Cartopy" - ] - }, - { - "cell_type": "markdown", - "id": "50b5d7e7-df4e-4992-a29b-8804b081a320", - "metadata": { - "tags": [] - }, - "source": [ - "# Demo: Regridding and Plotting with Rooki and Cartopy \n" - ] - }, - { - "cell_type": "markdown", - "id": "abd4b497-cdbf-4c29-857c-3017abf9e927", - "metadata": { - "tags": [] - }, - "source": [ - "---" - ] - }, - { - "cell_type": "markdown", - "id": "0f79862d-7181-4f04-966c-19b5e03a22a5", - "metadata": {}, - "source": [ - "## Overview\n", - "In this notebook, we demonstrate how to use Rooki to regrid CMIP model data and plot it in Cartopy for two examples:\n", - "\n", - "1. Regrid two CMIP models onto the same grid \n", - "1. Coarsen the output for one model" - ] - }, - { - "cell_type": "markdown", - "id": "4f1db315-fb2d-466d-bd6e-8a4ef18b6cf1", - "metadata": { - "tags": [] - }, - "source": [ - "## Prerequisites\n", - "\n", - "| Concepts | Importance | Notes |\n", - "| --- | --- | --- |\n", - "| [Intro to intake-esgf](https://projectpythia.org/esgf-cookbook/notebooks/intro-search.html) | Necessary | |\n", - "| [Intro to Cartopy](https://foundations.projectpythia.org/core/cartopy/cartopy.html) | Necessary | |\n", - "| [Using Rooki to access CMIP6 data](https://projectpythia.org/esgf-cookbook/notebooks/rooki.html) | Helpful | Familiarity with rooki |\n", - "| [Understanding of NetCDF](https://foundations.projectpythia.org/core/data-formats/netcdf-cf.html) | Helpful | Familiarity with metadata structure |\n", - "\n", - "- **Time to learn**: 15 minutes\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "id": "7cbc5d91-db3f-4afd-9093-c3abc7dec82b", - "metadata": {}, - "source": [ - "---" - ] - }, - { - "cell_type": "markdown", - "id": "2582d535-9b99-4115-b0ee-7459acd76ec0", - "metadata": {}, - "source": [ - "## Imports\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "ad4562c9-f5eb-496e-9e17-6453f426e910", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "import os\n", - "import intake_esgf\n", - "\n", - "# Run this on the DKRZ node in Germany, using the ESGF1 index node at LLNL\n", - "os.environ[\"ROOK_URL\"] = \"http://rook.dkrz.de/wps\"\n", - "intake_esgf.conf.set(indices={\"anl-dev\": False,\n", - " \"ornl-dev\": False,\n", - " \"esgf-node.llnl.gov\": True})\n", - "\n", - "import rooki.operators as ops\n", - "import matplotlib.pyplot as plt\n", - "import matplotlib.colors as mcolors\n", - "import cartopy.crs as ccrs\n", - "import cartopy.feature as cfeature\n", - "\n", - "import intake_esgf\n", - "from intake_esgf import ESGFCatalog\n", - "from rooki import rooki\n", - "from matplotlib.gridspec import GridSpec\n", - "from mpl_toolkits.axes_grid1.inset_locator import inset_axes\n" - ] - }, - { - "cell_type": "markdown", - "id": "c2b47b1d-db2d-4074-8c92-bb71fa0459a7", - "metadata": { - "tags": [] - }, - "source": [ - "## Example 1: Regrid two CMIP6 models onto the same grid" - ] - }, - { - "cell_type": "markdown", - "id": "cc1d512a-68d3-43cf-aac7-6ca233d9ef73", - "metadata": {}, - "source": [ - "In this example, we want to compare the historical precipitation output between two CMIP models, CESM2 and CanESM5. Here will will look at the annual mean precipitation for 2010. " - ] - }, - { - "cell_type": "markdown", - "id": "46f5fba3-7410-465c-abdf-4e338855284c", - "metadata": {}, - "source": [ - "### Access the desired datasets using intake-esgf and rooki" - ] - }, - { - "cell_type": "markdown", - "id": "c5f4dc65-0dff-4023-880c-f511cbc58666", - "metadata": { - "tags": [] - }, - "source": [ - "The function and workflow to read in CMPI6 data using `intake-esgf` and `rooki` in the next few cells are adapted from [intake-esgf-with-rooki.ipynb](https://github.com/ProjectPythia/esgf-cookbook/blob/cf69015a464b68ee28cfdd4a27cee4e9d6ca2ca9/notebooks/use-intake-esgf-with-rooki.ipynb). Essentially, we use `intake-esgf` to find the dataset IDs we want and then subset and average them using `rooki`." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "d053a676-2a27-4be0-93c0-eafb9671c0bc", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "def separate_dataset_id(id_list):\n", - " rooki_id = id_list[0]\n", - " rooki_id = rooki_id.split(\"|\")[0]\n", - " #rooki_id = f\"css03_data.{rooki_id}\" # <-- just something you have to know for now :(\n", - " return rooki_id\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "095db615-275a-4dbc-8467-833fd7992aed", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "cat = ESGFCatalog()\n", - "cat.search(\n", - " activity_id='CMIP',\n", - " experiment_id=[\"historical\",],\n", - " variable_id=[\"pr\"],\n", - " member_id='r1i1p1f1',\n", - " grid_label='gn',\n", - " table_id=\"Amon\",\n", - " source_id = [ \"CESM2\", \"CanESM5\"]\n", - " )\n", - "\n", - "dsets = [separate_dataset_id(dataset) for dataset in list(cat.df.id.values)]\n", - "dsets\n" - ] - }, - { - "cell_type": "markdown", - "id": "777f6bc4-f3a8-4110-bc2a-82cbf227ec4e", - "metadata": {}, - "source": [ - "Subset the data to get the precipitation variable for 2010 and then average by time:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "bf653879-96b5-48e0-be9b-0f0cc08152e2", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "dset_list = [[]]*len(dsets)\n", - "\n", - "for i, dset_id in enumerate(dsets):\n", - " wf = ops.AverageByTime(\n", - " ops.Subset(\n", - " ops.Input('pr', [dset_id]),\n", - " time='2010/2010'\n", - " )\n", - " )\n", - "\n", - " resp = wf.orchestrate()\n", - "\n", - " # if it worked, add the dataset to our list\n", - " if resp.ok:\n", - " dset_list[i] = resp.datasets()[0]\n", - " \n", - " # if it failed, tell us why\n", - " else:\n", - " print(resp.status)\n" - ] - }, - { - "cell_type": "markdown", - "id": "e040d078-3981-4246-a10b-c50cf104d8ed", - "metadata": {}, - "source": [ - "Print the dataset list to get an overview of the metadata structure:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "b2ed096a-2cfc-4e51-9b2a-43b9ee4f103e", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "print(dset_list)" - ] - }, - { - "cell_type": "markdown", - "id": "776f84fd-e329-42e8-bab4-54253636aefc", - "metadata": {}, - "source": [ - "### Compare the precipitation data between models" - ] - }, - { - "cell_type": "markdown", - "id": "ee469ea1-e402-4e55-b709-0de01e7875b3", - "metadata": {}, - "source": [ - "First, let's quickly plot the 2010 annual mean precipitation for each model to see what we're working with. Since precipitation values vary greatly in magnitude, using a log-normalized colormap makes the data easier to visualize. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "e49b55e3-1970-4410-8557-9328f31853fb", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "for dset in dset_list:\n", - " dset.pr.plot(norm=mcolors.LogNorm())\n", - " plt.show()" - ] - }, - { - "cell_type": "markdown", - "id": "6cb2aca3-16b4-4bc3-986b-3b1c3e3b4c51", - "metadata": { - "jp-MarkdownHeadingCollapsed": true, - "tags": [] - }, - "source": [ - "Uncomment and run the following cell. If we try to take the difference outright, it fails! " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "4276c97e-d798-42b7-846b-98f6460ce897", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# pr_diff = dset_list[0].pr - dset_list[1].pr" - ] - }, - { - "cell_type": "markdown", - "id": "5c7745fe-2ddd-4232-ad1c-c76601909db7", - "metadata": { - "tags": [] - }, - "source": [ - "The models have different grids so we can't directly subtract the data. We can use the `grid` attribute to get information on which grid each uses." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "11beadd3-beef-4337-a6cf-1fdd1d657ddf", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "print(dset_list[0].grid)\n", - "print(dset_list[1].grid)" - ] - }, - { - "cell_type": "markdown", - "id": "4947c0a2-e796-4a57-aaaf-d4ba07fb26a6", - "metadata": {}, - "source": [ - "### Regrid the models onto the same grid with Rooki" - ] - }, - { - "cell_type": "markdown", - "id": "4823272f-614b-437c-8331-95c24c267b47", - "metadata": { - "tags": [] - }, - "source": [ - "Look at the documentation on the `regrid` operator to see the available grid types and regrid methods:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "423e4302-6aa6-42e7-9686-d99c1b8cd3af", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "rooki.regrid?" - ] - }, - { - "cell_type": "markdown", - "id": "8f6d5022-7973-4133-b321-5b4804f5eb9b", - "metadata": { - "tags": [] - }, - "source": [ - "Here we'll do the same process as before to read in and subset the datasets with rooki, but now we **regrid using `ops.Regrid` before averaging over time**. In this example, we use `method=nearest_s2d` to regrid each model onto the target grid using a nearest neighbors method. The target grid is a 1.25° grid, specified by `grid='1pt25deg'`.\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "4993b311-f18b-4d79-8902-a6040aff3271", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "rg_list = [[]]*len(dsets)\n", - "\n", - "for i, dset_id in enumerate(dsets):\n", - " wf = ops.AverageByTime(\n", - " ops.Regrid(\n", - " ops.Subset(\n", - " ops.Input('pr', [dset_id]),\n", - " time='2010/2010'\n", - " ),\n", - " method='nearest_s2d',\n", - " grid='1pt25deg'\n", - " )\n", - " )\n", - "\n", - "\n", - " resp = wf.orchestrate()\n", - " \n", - " # if it worked, add the regridded dataset to our list\n", - " if resp.ok:\n", - " rg_list[i] = resp.datasets()[0]\n", - " \n", - " # if it failed, tell us why\n", - " else:\n", - " print(resp.status)\n", - " " - ] - }, - { - "cell_type": "markdown", - "id": "dfb8efaf-a4ab-4709-b1eb-a38c6f4bade2", - "metadata": {}, - "source": [ - "Print the list of regridded datasets to get an overview of the metadata structure. Note how `lat` and `lon` are now the same and each dataset has additional attributes, including `grid_original` and `regrid_operation`, which all keep track of the regridding operations we just completed." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "e38e4a39-0465-4ed8-8a5c-6bdcd61d77c1", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "print(rg_list)" - ] - }, - { - "cell_type": "markdown", - "id": "d048801f-fb36-46b2-84af-f1b61768727c", - "metadata": {}, - "source": [ - "Now they are on the same grid!" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "59b6fefa-90e7-49c7-b816-27351a0f51f4", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "print(rg_list[0].grid)\n", - "print(rg_list[1].grid)" - ] - }, - { - "cell_type": "markdown", - "id": "168c41e8-7ae2-4ee6-9020-94f9de00500d", - "metadata": {}, - "source": [ - "### Quick plot the before and after for each model\n", - "The plots largely look the same, as they should - with the nearest neighbors method, we are just shifting the precipitation data onto a different grid without averaging between grid cells." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "a9d5213f-65a1-415f-b3fe-6860d70fd14d", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "print(dset_list[0].source_id)\n", - "for ds in [dset_list[0], rg_list[0]]:\n", - " ds.pr.plot(norm=mcolors.LogNorm())\n", - " plt.show()\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "0fabcf8b-c9e2-40c4-b7e1-ce7de3809d29", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "print(dset_list[1].source_id)\n", - "for ds in [dset_list[1], rg_list[1]]:\n", - " ds.pr.plot(norm=mcolors.LogNorm())\n", - " plt.show()\n" - ] - }, - { - "cell_type": "markdown", - "id": "36031d82-c46f-4da5-8cbb-82067ade465b", - "metadata": {}, - "source": [ - "#### Take the difference between precipitation datasets and plot it\n", - "Now that both models are on the same grid, we can subtract the precipitation datasets and plot the difference!" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "4f781e26-0c43-45e9-be89-31d3575f4c99", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "pr_diff = rg_list[0] - rg_list[1]\n", - "\n", - "pr_diff.pr.plot(cmap=\"bwr\")\n", - "plt.show()\n" - ] - }, - { - "cell_type": "markdown", - "id": "e1fc1957-c334-4431-9e0a-15715106b5d6", - "metadata": {}, - "source": [ - "### Plot everything together\n", - "Plot the regridded precipitation data as well as the difference between models on the same figure. We can use `Cartopy` to make it pretty. With `GridSpec`, we can also split up the figure and organize it to use the same colorbar for more than one panel." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "86ab0c4a-ce76-48ab-843d-e79333bdd58c", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# set up figure\n", - "fig = plt.figure(figsize=(6, 8))\n", - "gs = GridSpec(3, 2, width_ratios=[1, 0.1], hspace=0.2)\n", - "\n", - "# specify the projection\n", - "proj = ccrs.Mollweide()\n", - "\n", - "# set up plots for each model\n", - "axpr_1 = plt.subplot(gs[0, 0], projection=proj)\n", - "axpr_2 = plt.subplot(gs[1, 0], projection=proj)\n", - "axdiff = plt.subplot(gs[2, 0], projection=proj)\n", - "\n", - "# axes where the colorbar will go \n", - "axcb_pr = plt.subplot(gs[:2, 1]) \n", - "axcb_diff = plt.subplot(gs[2, 1])\n", - "axcb_pr.axis(\"off\")\n", - "axcb_diff.axis(\"off\")\n", - "\n", - "# plot the precipitation for both models\n", - "for i, ax in enumerate([axpr_1, axpr_2]):\n", - " ds_rg = rg_list[i]\n", - " pcm = ax.pcolormesh(ds_rg.lon, ds_rg.lat, ds_rg.pr.isel(time=0), norm=mcolors.LogNorm(vmin=1e-7, vmax=3e-4),\n", - " transform=ccrs.PlateCarree()\n", - " )\n", - " ax.set_title(ds_rg.parent_source_id)\n", - " ax.add_feature(cfeature.COASTLINE)\n", - " \n", - "# now plot the difference\n", - "pcmd = axdiff.pcolormesh(pr_diff.lon, pr_diff.lat, pr_diff.pr.isel(time=0), cmap=\"bwr\", vmin=-3e-4, vmax=3e-4,\n", - " transform=ccrs.PlateCarree()\n", - " )\n", - "axdiff.set_title(\"{a} - {b}\".format(a=rg_list[0].parent_source_id, b=rg_list[1].parent_source_id))\n", - "axdiff.add_feature(cfeature.COASTLINE)\n", - "\n", - "# set the precipitation colorbar\n", - "axcb_pr_ins = inset_axes(axcb_pr, width=\"50%\", height=\"75%\", loc=\"center\")\n", - "cbar_pr = plt.colorbar(pcm, cax=axcb_pr_ins, orientation=\"vertical\", extend=\"both\")\n", - "cbar_pr.set_label(\"{n} ({u})\".format(n=rg_list[0].pr.long_name, u=rg_list[0].pr.units))\n", - "\n", - "# set the difference colorbar\n", - "axcb_diff_ins = inset_axes(axcb_diff, width=\"50%\", height=\"100%\", loc=\"center\")\n", - "cbar_diff = plt.colorbar(pcmd, cax=axcb_diff_ins, orientation=\"vertical\", extend=\"both\")\n", - "cbar_diff.set_label(\"Difference ({u})\".format(u=pr_diff.pr.units))\n", - "\n", - "plt.show()\n" - ] - }, - { - "cell_type": "markdown", - "id": "a77d6b7b-5729-4ba3-9e72-6f960dbe3253", - "metadata": { - "tags": [] - }, - "source": [ - "## Example 2: Coarsen the output for one model" - ] - }, - { - "cell_type": "markdown", - "id": "919dd269-6a7a-48d9-a477-f1e76ed48d11", - "metadata": {}, - "source": [ - "We can also use `Rooki` to regrid the data from one model onto a coarser grid. In this case, it may make more sense to use a conservative regridding method, which will conserve the physical fluxes between grid cells, rather than the nearest neighbors method we used in Example 1. " - ] - }, - { - "cell_type": "markdown", - "id": "d32f8ab0-05ef-41a6-a599-f4a289103c2e", - "metadata": {}, - "source": [ - "### Get the data using intake-esgf and Rooki again" - ] - }, - { - "cell_type": "markdown", - "id": "81cdf527-cec0-4353-98d7-29cc3effa014", - "metadata": {}, - "source": [ - "In this example, we'll look at the annual mean near-surface air temperature for CESM2 in 2010. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "d64f5c8d-6355-4225-b5c8-8f2c344fa241", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "cat = ESGFCatalog()\n", - "cat.search(\n", - " activity_id='CMIP',\n", - " experiment_id=[\"historical\",],\n", - " variable_id=[\"tas\"],\n", - " member_id='r1i1p1f1',\n", - " grid_label='gn',\n", - " table_id=\"Amon\",\n", - " source_id = [ \"CESM2\"]\n", - " )\n", - "\n", - "dsets = [separate_dataset_id(dataset) for dataset in list(cat.df.id.values)]\n", - "dsets\n" - ] - }, - { - "cell_type": "markdown", - "id": "a647dc7d-e107-49ef-87de-08dbf9024cd2", - "metadata": {}, - "source": [ - "First, get the dataset with the original grid:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "9c70d292-6e0e-43dd-b64e-5b143e38590e", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "wf = ops.AverageByTime(\n", - " ops.Subset(\n", - " ops.Input('tas', [dsets[0]]),\n", - " time='2010/2010'\n", - " )\n", - ")\n", - "\n", - "resp = wf.orchestrate()\n", - "\n", - "if resp.ok:\n", - " ds_og = resp.datasets()[0]\n", - "else:\n", - " print(resp.status)\n" - ] - }, - { - "cell_type": "markdown", - "id": "138de51a-727e-4f47-8876-eccbfc6d74bd", - "metadata": {}, - "source": [ - "Use the `.grid` attribute to get information on the native grid:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "b43c0357-ef9e-469d-b2e7-1635d0387ee5", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "ds_og.grid" - ] - }, - { - "cell_type": "markdown", - "id": "a52f11e3-a17f-4a74-849e-a4219de6a2c9", - "metadata": {}, - "source": [ - "The native grid is 0.9°x1.25°, so let's try coarsening to a 1.25°x1.25° grid using the conservative method:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "710606ac-1c41-4b27-b2c4-2ae4957357ea", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "wf = ops.AverageByTime(\n", - " ops.Regrid(\n", - " ops.Subset(\n", - " ops.Input('tas', [dsets[0]]),\n", - " time='2010/2010'\n", - " ),\n", - " method='conservative',\n", - " grid='1pt25deg'\n", - " )\n", - ")\n", - "\n", - "resp = wf.orchestrate()\n", - "\n", - "if resp.ok:\n", - " ds_125 = resp.datasets()[0]\n", - "else:\n", - " print(resp.status)\n", - " " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "f51dd55a-a419-4a24-bc2f-4bdaeb435318", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "ds_125.grid" - ] - }, - { - "cell_type": "markdown", - "id": "a8556572-54a6-42b0-94d8-cc562d40ccd3", - "metadata": {}, - "source": [ - "We can also make it even coarser by regridding to a 2.5°x2.5° grid:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "71a84338-90cf-49ec-b120-8f071213cf3e", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "wf = ops.AverageByTime(\n", - " ops.Regrid(\n", - " ops.Subset(\n", - " ops.Input('tas', [dsets[0]]),\n", - " time='2010/2010'\n", - " ),\n", - " method='conservative',\n", - " grid='2pt5deg'\n", - " )\n", - ")\n", - "\n", - "resp = wf.orchestrate()\n", - "\n", - "if resp.ok:\n", - " ds_25 = resp.datasets()[0]\n", - "else:\n", - " print(resp.status)\n", - " " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "412c50c9-0a30-4f28-8c97-c8a3d957de51", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "ds_25.grid" - ] - }, - { - "cell_type": "markdown", - "id": "087503d7-e4ac-42f8-82a6-770a92795780", - "metadata": {}, - "source": [ - "### Plot each dataset to look at the coarsened grids" - ] - }, - { - "cell_type": "markdown", - "id": "020b10a4-95ff-4ecf-a203-32db9f3beaf9", - "metadata": {}, - "source": [ - "Make a quick plot first:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "96f1af51-6836-436f-a09f-1d6375614f98", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "for ds in [ds_og, ds_125, ds_25]:\n", - " ds[\"tas\"].plot()\n", - " plt.show()\n", - " " - ] - }, - { - "cell_type": "markdown", - "id": "919dc7a1-ad2a-4291-aa90-c2d622f1d433", - "metadata": {}, - "source": [ - "### Plot the coarsened datsets together using Cartopy" - ] - }, - { - "cell_type": "markdown", - "id": "e4a00e56-4b5c-47da-ae9c-ae4b1ce0686d", - "metadata": { - "tags": [] - }, - "source": [ - "Now let's zoom in on a smaller region, the continental US, to get a clear view of the difference in grid resolution. Here we can also decrease the colorbar limits to better see how the variable `tas` varies within the smaller region." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "0679c3e5-f2bc-4e50-8b4d-f0cefa54d65a", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# set up the figure\n", - "fig = plt.figure(figsize=(6, 8))\n", - "gs = GridSpec(3, 2, width_ratios=[1, 0.1], height_ratios=[1, 1, 1], hspace=0.3, wspace=0.2)\n", - "\n", - "# specify the projection\n", - "proj = ccrs.PlateCarree()\n", - "\n", - "# set up plot axes\n", - "ax1 = plt.subplot(gs[0, 0], projection=proj)\n", - "ax2 = plt.subplot(gs[1, 0], projection=proj)\n", - "ax3 = plt.subplot(gs[2, 0], projection=proj)\n", - "axes_list = [ax1, ax2, ax3]\n", - "\n", - "# set up colorbar axis\n", - "axcb = plt.subplot(gs[:, 1])\n", - "\n", - "# loop through each dataset and its corresponding axis\n", - "for i, dset in enumerate([ds_og, ds_125, ds_25]):\n", - " plot_ds = dset.tas.isel(time=0)\n", - " ax = axes_list[i]\n", - " pcm = ax.pcolormesh(plot_ds.lon, plot_ds.lat, plot_ds, vmin=270, vmax=302.5, transform=proj)\n", - " \n", - " # add borders and coastlines\n", - " ax.add_feature(cfeature.BORDERS)\n", - " ax.coastlines()\n", - " \n", - " # limit to CONUS for this example\n", - " ax.set_xlim(-130, -60)\n", - " ax.set_ylim(22, 52)\n", - " \n", - " # add grid labels on bottom & left only\n", - " gl = ax.gridlines(color=\"None\", draw_labels=True)\n", - " gl.top_labels = False\n", - " gl.right_labels = False\n", - " \n", - " # label with the regrid type; if it fails, that means it hasn't been regridded\n", - " # (so label with the grid attribute instead)\n", - " try:\n", - " ax.set_title(dset.regrid_operation)\n", - " except:\n", - " ax.set_title(dset.grid)\n", - " \n", - "# use the same colorbar for all plots\n", - "axcb.axis(\"off\")\n", - "axcb_ins = inset_axes(axcb, width=\"50%\", height=\"75%\", loc=\"center\")\n", - "cbar = plt.colorbar(pcm, cax=axcb_ins, orientation=\"vertical\", extend=\"both\")\n", - "cbar.set_label(\"{n} ({u})\".format(n=plot_ds.long_name, u=plot_ds.units))\n", - " \n", - "plt.show()\n" - ] - }, - { - "cell_type": "markdown", - "id": "e57aee30-caff-4916-bb95-efa00ff15ba4", - "metadata": {}, - "source": [ - "---" - ] - }, - { - "cell_type": "markdown", - "id": "9f883994-e2f8-4ce9-8ca2-56fedb2e1a58", - "metadata": {}, - "source": [ - "## Summary\n", - "\n", - "`Rooki` offers a quick and easy way to regrid CMIP model data that can be located using `intake-esgf`. `Cartopy` lets us easily customize the plot to neatly display the geospatial data. " - ] - }, - { - "cell_type": "markdown", - "id": "6c9caac9-3de5-4842-90c5-e4de995c06ef", - "metadata": {}, - "source": [ - "## Resources and references\n", - "* [Regridding overview from NCAR](https://climatedataguide.ucar.edu/climate-tools/regridding-overview), including descriptions of various regridding methods\n", - "* [Rooki regridding example notebook](https://github.com/roocs/rooki/blob/master/notebooks/demo/demo-rooki-regrid-cmip6.ipynb)\n", - "* [Rooki documentation](https://rooki.readthedocs.io/en/latest/)\n", - "* [Cartopy logo image source](https://scitools.org.uk/cartopy/docs/v0.16/gallery/logo.html)\n", - "* [Rooki logo image source](https://rooki.readthedocs.io/en/latest/#)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.16" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/_preview/44/_sources/notebooks/how-to-cite.md b/_preview/44/_sources/notebooks/how-to-cite.md deleted file mode 100644 index 7fea855..0000000 --- a/_preview/44/_sources/notebooks/how-to-cite.md +++ /dev/null @@ -1,7 +0,0 @@ -# How to Cite This Cookbook - -The material in this Project Pythia Cookbook is licensed for free and open consumption and reuse. All code is served under [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0), while all non-code content is licensed under [Creative Commons BY 4.0 (CC BY 4.0)](https://creativecommons.org/licenses/by/4.0/). Effectively, this means you are free to share and adapt this material so long as you give appropriate credit to the Cookbook authors and the Project Pythia community. - -The source code for the book is [released on GitHub](https://github.com/ProjectPythia/esgf-cookbook) and archived on Zenodo. This DOI will always resolve to the latest release of the book source: - -[![DOI](https://zenodo.org/badge/721319801.svg)](https://doi.org/10.5281/zenodo.11663067) diff --git a/_preview/44/_sources/notebooks/intro-search.ipynb b/_preview/44/_sources/notebooks/intro-search.ipynb deleted file mode 100644 index 1ac8147..0000000 --- a/_preview/44/_sources/notebooks/intro-search.ipynb +++ /dev/null @@ -1,275 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\"ESGF" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Introduction to `intake-esgf`\n", - "\n", - "## Overview\n", - "In this tutorial we will discuss the basic functionality of [intake-esgf](https://github.com/esgf2-us/intake-esgf) and describe some of what it is doing under the hood. `intake-esgf` is an `intake` and `intake-esm` *inspired* package under development in ESGF2. Please note that there is a name collison with an existing package in PyPI and conda. You will need to install the package from [source](https://github.com/esgf2-us/intake-esgf). \n", - "\n", - "## Prerequisites\n", - "\n", - "| Concepts | Importance | Notes |\n", - "| --- | --- | --- |\n", - "| [Install Package](https://github.com/esgf2-us/intake-esgf) | Necessary | `pip install git+https://github.com/esgf2-us/intake-esgf`|\n", - "| Familiar with [intake-esm](https://intake-esm.readthedocs.io/en/stable/) | Helpful | Similar interface |\n", - "| [Understanding of NetCDF](https://foundations.projectpythia.org/core/data-formats/netcdf-cf.html) | Helpful | Familiarity with metadata structure |\n", - "- **Time to learn**: 30 minutes\n", - "\n", - "## Imports" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from intake_esgf import ESGFCatalog\n", - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Populate the Catalog\n", - "\n", - "Unlike `intake-esm`, our catalogs initialize empty. This is because while `intake-esm`\n", - "loads a large file-based database into memory, we are going to populate a catalog by\n", - "searching one or many index nodes. The `ESGFCatalog` is configured by default to query\n", - "a Globus (ElasticSearch) based index which has information about holdings at the (Argonne Leadership Computing Facility (ALCF) only. We will demonstrate how this may be expanded to include other nodes later." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "cat = ESGFCatalog()\n", - "print(cat) # <-- nothing to see here yet" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Summary information for 195 results:\n", - "mip_era [CMIP6]\n", - "activity_id [CMIP]\n", - "institution_id [CCCma]\n", - "source_id [CanESM5]\n", - "experiment_id [historical]\n", - "member_id [r28i1p2f1, r6i1p2f1, r14i1p1f1, r20i1p2f1, r2...\n", - "table_id [Lmon, Amon]\n", - "variable_id [gpp, tas, pr]\n", - "grid_label [gn]\n", - "dtype: object\n" - ] - } - ], - "source": [ - "cat.search(\n", - " experiment_id=\"historical\",\n", - " source_id=\"CanESM5\",\n", - " frequency=\"mon\",\n", - " variable_id=[\"gpp\", \"tas\", \"pr\"],\n", - ")\n", - "print(cat)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The search has populated the catalog where results are stored internally as a `pandas` dataframe, where the columns are the facets common to ESGF. Printing the catalog will display each column as well as a possibly-truncated list of unique values. We can use these to help narrow down our search. In this case, we neglected to mention a `member_id` (also known as a `variant_label`). So we can repeat our search with this additional facet. Note that searches are not cumulative and so we need to repeat the previous facets in this subsequent search. Also, while for the tutorial's sake we repeat the search here, in your own analysis codes, you could simply edit your previous search." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "cat.search(\n", - " experiment_id=\"historical\",\n", - " source_id=\"CanESM5\",\n", - " frequency=\"mon\",\n", - " variable_id=[\"gpp\", \"tas\", \"pr\"],\n", - " variant_label=\"r1i1p1f1\", # addition from the last search\n", - ")\n", - "print(cat)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Obtaining the datasets\n", - "\n", - "Now we see that our search has located 3 datasets and thus we are ready to load these into memory. Like `intake-esm`, the catalog will generate a dictionary of `xarray` datasets. Internally, the catalog is again communicating with the index node and requesting file information. This includes which file or files are part of the datasets, their local paths, download locations, and verification information. We then try to make an optimal decision in getting the data to you as quickly as we can.\n", - "\n", - "1. If you are running on a resource with direct access to the ESGF holdings (such a Jupyter notebook on nimbus.llnl.gov), then we check if the dataset files are locally available. We have a handful of locations built-in to `intake-esgf` but you can also set a location manually with `cat.set_esgf_data_root()`.\n", - "2. If a dataset has associated files that have been previously downloaded into the local cache, then we will load these files into memory.\n", - "3. If no direct file access is found, then we will queue the dataset files for download. File downloads will occur in parallel from the locations which provide you the fastest transfer speeds. Initially we will randomize the download locations, but as you use `intake-esgf`, we keep track of which servers provide you fastest transfer speeds and future downloads will prefer these locations. Once downloaded, we check file validity, and load into `xarray` containers." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dsd = cat.to_dataset_dict()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You will notice that progress bars inform you that file information is being obtained\n", - "and that downloads are taking place. As files are downloaded, they are placed into a\n", - "local cache in `${HOME}/.esgf` in a directory structure that mirrors that of the\n", - "remote storage. For future analysis which uses these datasets, `intake-esgf` will\n", - "first check this cache to see if a file already exists and use it instead of\n", - "re-downloading. Then it returns a dictionary whose keys are by default the minimal set\n", - "of facets to uniquely describe a dataset in the current search." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(dsd.keys())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "During the download process, you may have also noticed that a progress bar informed\n", - "you that we were adding cell measures. If you have worked with ESGF data before, you\n", - "know that cell measure information like `areacella` is needed to take proper\n", - "area-weighted means/summations. Yet many times, model centers have not uploaded this\n", - "information uniformly in all submissions. We perform a search for each dataset being\n", - "placed in the dataset dictionary, progressively dropping dataset facets to find, if\n", - "possible, the cell measures that are *closest* to the dataset being downloaded.\n", - "Sometimes they are simply in another `variant_label`, but other times they could be in a\n", - "different `activity_id`. No matter where they are, we find them for you and add them\n", - "by default (disable with `to_dataset_dict(add_measures=False)`). \n", - "\n", - "We determine which measures need downloaded by looking in the dataset attributes. Since `tas` is an atmospheric variable, we will see that its `cell_measures = 'area: areacella'`. If you print this variable you will see that measure has been added." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dsd[\"Amon.tas\"]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "However, for `gpp` we also need the land fractions, which is detected by the presence of `area: where land` in the `cell_methods`. You will notice that both `areacella` and `sftlf` are added to `Lmon.gpp`." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dsd[\"Lmon.gpp\"]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Simple Plotting" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "fig, axs = plt.subplots(figsize=(6, 12), nrows=3)\n", - "\n", - "# temperature\n", - "ds = dsd[\"Amon.tas\"][\"tas\"].mean(dim=\"time\") - 273.15 # to [C]\n", - "ds.plot(ax=axs[0], cmap=\"bwr\", vmin=-40, vmax=40, cbar_kwargs={\"label\": \"tas [C]\"})\n", - "\n", - "# precipitation\n", - "ds = dsd[\"Amon.pr\"][\"pr\"].mean(dim=\"time\") * 86400 / 999.8 * 1000 # to [mm d-1]\n", - "ds.plot(ax=axs[1], cmap=\"Blues\", vmax=10, cbar_kwargs={\"label\": \"pr [mm d-1]\"})\n", - "\n", - "# gross primary productivty\n", - "ds = dsd[\"Lmon.gpp\"][\"gpp\"].mean(dim=\"time\") * 86400 * 1000 # to [g m-2 d-1]\n", - "ds.plot(ax=axs[2], cmap=\"Greens\", cbar_kwargs={\"label\": \"gpp [g m-2 d-1]\"})\n", - "\n", - "plt.tight_layout();" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Summary\n", - "\n", - "`intake-esgf` becomes the way that you download or locate data as well as load it into memory. It is a full specification of what your analysis is about and makes your script portable to other machines or even in use with serverside computing. We are actively developing this codebase. Let us [know](https://github.com/esgf2-us/intake-esgf/issues) what other features you would like to see." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.16" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/_preview/44/_sources/notebooks/notebook-template.ipynb b/_preview/44/_sources/notebooks/notebook-template.ipynb deleted file mode 100644 index dad9f26..0000000 --- a/_preview/44/_sources/notebooks/notebook-template.ipynb +++ /dev/null @@ -1,358 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's start here! If you can directly link to an image relevant to your notebook, such as [canonical logos](https://github.com/numpy/numpy/blob/main/doc/source/_static/numpylogo.svg), do so here at the top of your notebook. You can do this with Markdown syntax,\n", - "\n", - "> `![](http://link.com/to/image.png \"image alt text\")`\n", - "\n", - "or edit this cell to see raw HTML `img` demonstration. This is preferred if you need to shrink your embedded image. **Either way be sure to include `alt` text for any embedded images to make your content more accessible.**\n", - "\n", - "\"Project" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Project Pythia Notebook Template\n", - "\n", - "Next, title your notebook appropriately with a top-level Markdown header, `#`. Do not use this level header anywhere else in the notebook. Our book build process will use this title in the navbar, table of contents, etc. Keep it short, keep it descriptive. Follow this with a `---` cell to visually distinguish the transition to the prerequisites section." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "---" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Overview\n", - "If you have an introductory paragraph, lead with it here! Keep it short and tied to your material, then be sure to continue into the required list of topics below,\n", - "\n", - "1. This is a numbered list of the specific topics\n", - "1. These should map approximately to your main sections of content\n", - "1. Or each second-level, `##`, header in your notebook\n", - "1. Keep the size and scope of your notebook in check\n", - "1. And be sure to let the reader know up front the important concepts they'll be leaving with" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Prerequisites\n", - "This section was inspired by [this template](https://github.com/alan-turing-institute/the-turing-way/blob/master/book/templates/chapter-template/chapter-landing-page.md) of the wonderful [The Turing Way](https://the-turing-way.netlify.app) Jupyter Book.\n", - "\n", - "Following your overview, tell your reader what concepts, packages, or other background information they'll **need** before learning your material. Tie this explicitly with links to other pages here in Foundations or to relevant external resources. Remove this body text, then populate the Markdown table, denoted in this cell with `|` vertical brackets, below, and fill out the information following. In this table, lay out prerequisite concepts by explicitly linking to other Foundations material or external resources, or describe generally helpful concepts.\n", - "\n", - "Label the importance of each concept explicitly as **helpful/necessary**.\n", - "\n", - "| Concepts | Importance | Notes |\n", - "| --- | --- | --- |\n", - "| [Intro to Cartopy](https://foundations.projectpythia.org/core/cartopy/cartopy.html) | Necessary | |\n", - "| [Understanding of NetCDF](https://foundations.projectpythia.org/core/data-formats/netcdf-cf.html) | Helpful | Familiarity with metadata structure |\n", - "| Project management | Helpful | |\n", - "\n", - "- **Time to learn**: estimate in minutes. For a rough idea, use 5 mins per subsection, 10 if longer; add these up for a total. Safer to round up and overestimate.\n", - "- **System requirements**:\n", - " - Populate with any system, version, or non-Python software requirements if necessary\n", - " - Otherwise use the concepts table above and the Imports section below to describe required packages as necessary\n", - " - If no extra requirements, remove the **System requirements** point altogether" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "---" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Imports\n", - "Begin your body of content with another `---` divider before continuing into this section, then remove this body text and populate the following code cell with all necessary Python imports **up-front**:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import sys" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Your first content section" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This is where you begin your first section of material, loosely tied to your objectives stated up front. Tie together your notebook as a narrative, with interspersed Markdown text, images, and more as necessary," - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# as well as any and all of your code cells\n", - "print(\"Hello world!\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### A content subsection\n", - "Divide and conquer your objectives with Markdown subsections, which will populate the helpful navbar in Jupyter Lab and here on the Jupyter Book!" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# some subsection code\n", - "new = \"helpful information\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Another content subsection\n", - "Keep up the good work! A note, *try to avoid using code comments as narrative*, and instead let them only exist as brief clarifications where necessary." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Your second content section\n", - "Here we can move on to our second objective, and we can demonstrate" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Subsection to the second section\n", - "\n", - "#### a quick demonstration\n", - "\n", - "##### of further and further\n", - "\n", - "###### header levels" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "as well $m = a * t / h$ text! Similarly, you have access to other $\\LaTeX$ equation [**functionality**](https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Typesetting%20Equations.html) via MathJax (demo below from link),\n", - "\n", - "\\begin{align}\n", - "\\dot{x} & = \\sigma(y-x) \\\\\n", - "\\dot{y} & = \\rho x - y - xz \\\\\n", - "\\dot{z} & = -\\beta z + xy\n", - "\\end{align}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Check out [**any number of helpful Markdown resources**](https://www.markdownguide.org/basic-syntax/) for further customizing your notebooks and the [**Jupyter docs**](https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Working%20With%20Markdown%20Cells.html) for Jupyter-specific formatting information. Don't hesitate to ask questions if you have problems getting it to look *just right*." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Last Section\n", - "\n", - "If you're comfortable, and as we briefly used for our embedded logo up top, you can embed raw html into Jupyter Markdown cells (edit to see):" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "

Info

\n", - " Your relevant information here!\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Feel free to copy this around and edit or play around with yourself. Some other `admonitions` you can put in:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "

Success

\n", - " We got this done after all!\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "

Warning

\n", - " Be careful!\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "

Danger

\n", - " Scary stuff be here.\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We also suggest checking out Jupyter Book's [brief demonstration](https://jupyterbook.org/content/metadata.html#jupyter-cell-tags) on adding cell tags to your cells in Jupyter Notebook, Lab, or manually. Using these cell tags can allow you to [customize](https://jupyterbook.org/interactive/hiding.html) how your code content is displayed and even [demonstrate errors](https://jupyterbook.org/content/execute.html#dealing-with-code-that-raises-errors) without altogether crashing our loyal army of machines!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "---" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Summary\n", - "Add one final `---` marking the end of your body of content, and then conclude with a brief single paragraph summarizing at a high level the key pieces that were learned and how they tied to your objectives. Look to reiterate what the most important takeaways were.\n", - "\n", - "### What's next?\n", - "Let Jupyter book tie this to the next (sequential) piece of content that people could move on to down below and in the sidebar. However, if this page uniquely enables your reader to tackle other nonsequential concepts throughout this book, or even external content, link to it here!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Resources and references\n", - "Finally, be rigorous in your citations and references as necessary. Give credit where credit is due. Also, feel free to link to relevant external material, further reading, documentation, etc. Then you're done! Give yourself a quick review, a high five, and send us a pull request. A few final notes:\n", - " - `Kernel > Restart Kernel and Run All Cells...` to confirm that your notebook will cleanly run from start to finish\n", - " - `Kernel > Restart Kernel and Clear All Outputs...` before committing your notebook, our machines will do the heavy lifting\n", - " - Take credit! Provide author contact information if you'd like; if so, consider adding information here at the bottom of your notebook\n", - " - Give credit! Attribute appropriate authorship for referenced code, information, images, etc.\n", - " - Only include what you're legally allowed: **no copyright infringement or plagiarism**\n", - " \n", - "Thank you for your contribution!" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.8" - }, - "nbdime-conflicts": { - "local_diff": [ - { - "diff": [ - { - "diff": [ - { - "key": 0, - "op": "addrange", - "valuelist": [ - "Python 3" - ] - }, - { - "key": 0, - "length": 1, - "op": "removerange" - } - ], - "key": "display_name", - "op": "patch" - } - ], - "key": "kernelspec", - "op": "patch" - } - ], - "remote_diff": [ - { - "diff": [ - { - "diff": [ - { - "key": 0, - "op": "addrange", - "valuelist": [ - "Python3" - ] - }, - { - "key": 0, - "length": 1, - "op": "removerange" - } - ], - "key": "display_name", - "op": "patch" - } - ], - "key": "kernelspec", - "op": "patch" - } - ] - }, - "toc-autonumbering": false - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/_preview/44/_sources/notebooks/rooki.ipynb b/_preview/44/_sources/notebooks/rooki.ipynb deleted file mode 100644 index 08a59db..0000000 --- a/_preview/44/_sources/notebooks/rooki.ipynb +++ /dev/null @@ -1,397 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "931a4b84-bb67-44e4-aa91-30f3d8bcc529", - "metadata": { - "tags": [] - }, - "source": [ - "# Compute Demo: Use Rooki to access CMIP6 data" - ] - }, - { - "cell_type": "markdown", - "id": "81f6c01b-1e08-463d-90d5-b9e7be5a61ac", - "metadata": { - "tags": [] - }, - "source": [ - "## Overview\n", - "\n", - "[Rooki](https://github.com/roocs/rooki) is a Python client to interact with [Rook](https://github.com/roocs/rook) data subsetting service for climate model data. This service is used in the backend by the [European Copernicus Climate Data Store](https://cds.climate.copernicus.eu) to access the CMIP6 data pool. The Rook service is deployed for load-balancing at IPSL (Paris) and DKRZ (Hamburg). The CMIP6 data pool is shared with ESGF. The provided CMIP6 subset for Copernicus is synchronized at both sites. \n", - "\n", - "*Rook* provides operators for *subsetting*, *averaging* and *regridding* to retrieve a subset of the CMIP6 data pool. These operators are implemented by the [clisops](https://github.com/roocs/clisops) Python libray and are based on [xarray](https://pypi.org/project/xarray/). The *clisops* library is developed by Ouranos (Canada), CEDA (UK) and DKRZ (Germany). \n", - "\n", - "The operators can be called remotly using the [OGC Web Processing Service](https://ogcapi.ogc.org/processes/) (WPS) standard.\n", - "\n", - "![rook 4 cds](https://github.com/atmodatcode/tgif_copernicus/raw/main/media/rook.png)\n", - "\n", - "**ROOK**: **R**emote **O**perations **O**n **K**limadaten\n", - "\n", - "* Rook: https://github.com/roocs/rook\n", - "* Rooki: https://github.com/roocs/rooki\n", - "* Clisops: https://github.com/roocs/clisops\n", - "* Rook Presentation: https://github.com/cehbrecht/talk-rook-status-kickoff-meeting-2022/blob/main/Rook_C3S2_380_2022-02-11.pdf" - ] - }, - { - "cell_type": "markdown", - "id": "31d3693d-4e01-4982-b1d0-dffcd2a13157", - "metadata": { - "tags": [] - }, - "source": [ - "## Prerequisites\n", - "\n", - "| Concepts | Importance | Notes |\n", - "| --- | --- | --- |\n", - "| [Intro to Xarray](https://foundations.projectpythia.org/core/xarray/xarray-intro.html) | Necessary | |\n", - "| [Understanding of NetCDF](https://foundations.projectpythia.org/core/data-formats/netcdf-cf.html) | Helpful | Familiarity with metadata structure |\n", - "| [Knowing OGC services](https://ogcapi.ogc.org/processes/) | Helpful | Understanding of the service interfaces |\n", - "\n", - "\n", - "- **Time to learn**: 15 minutes" - ] - }, - { - "cell_type": "markdown", - "id": "288086a4", - "metadata": {}, - "source": [ - "## Init Rooki" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "a2339b90", - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "\n", - "# Configuration line to set the wps node - in this case, use DKRZ in Germany\n", - "os.environ['ROOK_URL'] = 'http://rook.dkrz.de/wps'\n", - "\n", - "from rooki import rooki" - ] - }, - { - "cell_type": "markdown", - "id": "d6ed87c2", - "metadata": {}, - "source": [ - "## Retrieve subset of CMIP6 data\n", - "\n", - "The CMIP6 dataset is identified by a dataset-id. An intake catalog as available to lookup the available datasets:\n", - "\n", - "https://nbviewer.org/github/roocs/rooki/blob/master/notebooks/demo/demo-intake-catalog.ipynb" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "6e071b15", - "metadata": {}, - "outputs": [], - "source": [ - "resp = rooki.subset(\n", - " collection='c3s-cmip6.CMIP.MPI-M.MPI-ESM1-2-HR.historical.r1i1p1f1.Amon.tas.gn.v20190710',\n", - " time='2000-01-01/2000-01-31',\n", - " area='-30,-40,70,80',\n", - ")\n", - "resp.ok" - ] - }, - { - "cell_type": "markdown", - "id": "f822b3c8", - "metadata": {}, - "source": [ - "### Open Dataset with xarray" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "eacbecbd", - "metadata": {}, - "outputs": [], - "source": [ - "ds = resp.datasets()[0]\n", - "ds" - ] - }, - { - "cell_type": "markdown", - "id": "46301d38", - "metadata": {}, - "source": [ - "### Plot CMIP6 Dataset" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "05482a1d", - "metadata": {}, - "outputs": [], - "source": [ - "ds.tas.isel(time=0).plot()" - ] - }, - { - "cell_type": "markdown", - "id": "94409343", - "metadata": {}, - "source": [ - "### Show Provenance\n", - "\n", - "A provenance document is generated remotely to document the operation steps.\n", - "The provenance uses the [W3C PROV](https://www.w3.org/TR/prov-overview/Overview.html) standard." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "11af235a", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "from IPython.display import Image\n", - "Image(resp.provenance_image())" - ] - }, - { - "cell_type": "markdown", - "id": "cd84aa80-e69b-4cbb-840f-30c036355e60", - "metadata": {}, - "source": [ - "## Run workflow with subset and average operator\n", - "\n", - "Instead of running a single operator one can also chain several operators in a workflow." - ] - }, - { - "cell_type": "markdown", - "id": "c6de09be-9e01-4a80-a38b-0a865cffd62d", - "metadata": { - "tags": [] - }, - "source": [ - "### Use rooki operators to create a workflow " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "e59a5ea7-7682-4080-918c-1bdfba54be08", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "from rooki import operators as ops" - ] - }, - { - "cell_type": "markdown", - "id": "8c77562a-16b9-415f-9261-639ff11f92ce", - "metadata": { - "tags": [] - }, - "source": [ - "### Define the workflow \n", - "\n", - "... internally the workflow tree is a json document" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "1ce774a5-62d2-4651-8458-7cf34c4cac67", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "tas = ops.Input(\n", - " 'tas', ['c3s-cmip6.CMIP.MPI-M.MPI-ESM1-2-HR.historical.r1i1p1f1.Amon.tas.gn.v20190710']\n", - ")\n", - "\n", - "wf = ops.Subset(\n", - " tas, \n", - " time=\"2000/2000\",\n", - " time_components=\"month:jan,feb,mar\",\n", - " area='-30,-40,70,80', \n", - ")\n", - "\n", - "wf = ops.WeightedAverage(wf)" - ] - }, - { - "cell_type": "markdown", - "id": "1936ac5e-d18d-4353-8465-4d971ac52139", - "metadata": { - "tags": [] - }, - "source": [ - "### Optional: look at the workflow json document\n", - "\n", - "... *only* to give some insight" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "e2c704a2-29eb-463f-ab40-41c3a5dae859", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "import json\n", - "print(json.dumps(wf._tree(), indent=4))" - ] - }, - { - "cell_type": "markdown", - "id": "582e0978-d2eb-4d9a-bed4-41475f35d3d1", - "metadata": { - "tags": [] - }, - "source": [ - "### Submit workflow job " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "1835a033-6a9e-4846-96dd-f755950920c4", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "resp = wf.orchestrate()\n", - "resp.ok" - ] - }, - { - "cell_type": "markdown", - "id": "a0d61b51-3d07-45f6-8af1-197a91db0f6b", - "metadata": { - "tags": [] - }, - "source": [ - "### Open as xarray dataset" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "76d43934-e545-431d-83c4-8954aeddfa44", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "ds = resp.datasets()[0]\n", - "ds" - ] - }, - { - "cell_type": "markdown", - "id": "faafcbc6-9f3d-40b7-b001-43e77aace961", - "metadata": { - "tags": [] - }, - "source": [ - "### Plot dataset" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "903a4e7e-9512-493f-b3bd-ade6b6b4d68c", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "ds.tas.plot()" - ] - }, - { - "cell_type": "markdown", - "id": "299b72a5-5ac5-4b52-a1d6-bfa45cb7aa04", - "metadata": { - "tags": [] - }, - "source": [ - "### Show provenance" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "2777d062-6c09-41c4-8918-1da03e8db4b4", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "Image(resp.provenance_image())" - ] - }, - { - "cell_type": "markdown", - "id": "f3cc1404-0030-4e7c-98bb-498c354301d2", - "metadata": { - "tags": [] - }, - "source": [ - "## Summary\n", - "In this notebook, we used the Rooki Python client to retrieve a subset of a CMIP6 dataset. The operations are executed remotely on a Rook subsetting service (using OGC API and xarray/clisops). The dataset is plotted and a provenance document is shown. We also showed that remote operators can be chained to be executed in a single workflow operation.\n", - "\n", - "### What's next?\n", - "\n", - "This service is used by the European Copernicus Climate Data Store. \n", - "\n", - "We need to figure out how this service can be used in the new ESGF: \n", - "* where will it be deployed? \n", - "* how can it be integrated in the ESGF search (STAC catalogs, ...)\n", - "* ???\n", - "\n", - "## Resources and references\n", - "- [Roocs on GitHub](https://github.com/roocs)\n", - "- [Copernicus Climate Data Store](https://cds.climate.copernicus.eu/)\n", - "- [STAC](https://stacspec.org/en)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.16" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/_preview/44/_sources/notebooks/rooki_enso_nonlinear.ipynb b/_preview/44/_sources/notebooks/rooki_enso_nonlinear.ipynb deleted file mode 100644 index 26678ce..0000000 --- a/_preview/44/_sources/notebooks/rooki_enso_nonlinear.ipynb +++ /dev/null @@ -1,482 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "fd53a474", - "metadata": {}, - "source": [ - "---" - ] - }, - { - "cell_type": "markdown", - "id": "931a4b84-bb67-44e4-aa91-30f3d8bcc529", - "metadata": { - "tags": [] - }, - "source": [ - "# Compute Demo: ENSO nonlinearity index with CMIP6 data" - ] - }, - { - "cell_type": "markdown", - "id": "6cff08e9", - "metadata": {}, - "source": [ - "\"Alpha" - ] - }, - { - "cell_type": "markdown", - "id": "cffd29c8", - "metadata": {}, - "source": [ - "---" - ] - }, - { - "cell_type": "markdown", - "id": "81f6c01b-1e08-463d-90d5-b9e7be5a61ac", - "metadata": { - "tags": [] - }, - "source": [ - "## Overview\n", - "\n", - "In this demo we combine multiple multiple tools described in previous cookbooks to subset, regrid and process CMIP6 data. We will be computing a measure of ENSO nonlinearity by computing the EOFs of the pacific sea surface temperature anomalies. This measure is particularly useful for characterizing models by their ability to represent different ENSO extremes (Karamperidou et al., 2017).\n", - "\n", - "The process we are going to follow in this demo is:\n", - "\n", - "1. Find the CMIP6 data we need using intake-esgf\n", - "2. Subset the data and regrid it to a common grid using Rooki\n", - "3. Load the datasets into xarray and perform the computations\n", - "4. Plot the results\n" - ] - }, - { - "cell_type": "markdown", - "id": "31d3693d-4e01-4982-b1d0-dffcd2a13157", - "metadata": { - "tags": [] - }, - "source": [ - "## Prerequisites\n", - "\n", - "| Concepts | Importance | Notes |\n", - "| --- | --- | --- |\n", - "| [Intro to Xarray](https://foundations.projectpythia.org/core/xarray/xarray-intro.html) | Necessary | How to use xarray to work with NetCDF data |\n", - "| [Intro to Intake-ESGF](intro-search) | Necessary | How to configure a search and use output |\n", - "| [Intro to Rooki](rooki) | Helpful | How to initialize and run rooki |\n", - "| [Intro to EOFs](https://projectpythia.org/eofs-cookbook/notebooks/eof-intro.html) | Helpful | Understanding of EOFs |\n", - "\n", - "\n", - "\n", - "\n", - "- **Time to learn**: 20 minutes" - ] - }, - { - "cell_type": "markdown", - "id": "288086a4", - "metadata": {}, - "source": [ - "## Imports" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "a2339b90", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "import os\n", - "import intake_esgf\n", - "\n", - "# Run this on the DKRZ node in Germany, using the ESGF1 index node at LLNL\n", - "os.environ[\"ROOK_URL\"] = \"http://rook.dkrz.de/wps\"\n", - "intake_esgf.conf.set(indices={\"anl-dev\": False,\n", - " \"ornl-dev\": False,\n", - " \"esgf-node.llnl.gov\": True})\n", - "\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "import numpy.polynomial.polynomial as poly\n", - "import xarray as xr\n", - "import xeofs as xe\n", - "from intake_esgf import ESGFCatalog\n", - "from rooki import operators as ops\n", - "from rooki import rooki" - ] - }, - { - "cell_type": "markdown", - "id": "d6ed87c2", - "metadata": {}, - "source": [ - "## Retrieve subset of CMIP6 data\n", - "\n", - "The CMIP6 dataset is identified by a dataset-id. Using intake-esgf we can query the ESGF database for the variables and models we are interested in. For this demo we are interested in the tos (sea surface temperature) variable for the historical runs. Also, for sake of simplicity we will only query a subset of the models available." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "66b3b3c0-6aa0-465b-bc17-86ae2ce5f25b", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "cat = ESGFCatalog()\n", - "cat.search(\n", - " experiment_id=[\"historical\"],\n", - " variable_id=[\"tos\"],\n", - " table_id=[\"Omon\"],\n", - " project=[\"CMIP6\"],\n", - " grid_label=[\"gn\"],\n", - " source_id=[\n", - " \"CAMS-CSM1-0\",\n", - " \"FGOALS-g3\",\n", - " \"CMCC-CM2-SR5\",\n", - " \"CNRM-CM6-1\",\n", - " \"CNRM-ESM2-1\",\n", - " \"CESM2\",\n", - " ],\n", - ")\n", - "cat.remove_ensembles()\n", - "print(cat)" - ] - }, - { - "cell_type": "markdown", - "id": "4aea426b", - "metadata": {}, - "source": [ - "Once the catalog has been queried, we have to do some manipulation in pandas to keep only the dataset_id. This has to be done because the same data has multiple locations online, and these get appended at the end of the dataset_id. Rookie only accepts the dataset_id without the online location, so we get rid of it in the next step." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "9482b7d7", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "def keep_ds_id(ds):\n", - " return ds[0].split(\"|\")[0]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "46726e56-030d-4e54-a1a4-5e2f2ca11b43", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "collections = cat.df.id.apply(keep_ds_id).to_list()\n", - "collections" - ] - }, - { - "cell_type": "markdown", - "id": "513d3941", - "metadata": {}, - "source": [ - "We are left with a list of dataset_ids that Rookie can accept as input for the next step." - ] - }, - { - "cell_type": "markdown", - "id": "674a3b8b", - "metadata": {}, - "source": [ - "## Subset and regrid the data\n", - "\n", - "We define a function that will do the subset and regridding for us for each of the dataset_ids we have. The function will take the dataset_id as input and then use Rookie functions to select 100 years of data for the tos variable in the Pacific Ocean region. We don't need high resolution data for this particular use, so 2.5 degree resolution is enough." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "30e8c66b", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "def get_pacific_ocean(dataset_id):\n", - " wf = ops.Regrid(\n", - " ops.Subset(\n", - " ops.Input(\"tos\", [dataset_id]),\n", - " time=\"1900-01-01/2000-01-31\",\n", - " area=\"100,-20,280,20\",\n", - " ),\n", - " method=\"nearest_s2d\",\n", - " grid=\"2pt5deg\",\n", - " )\n", - " resp = wf.orchestrate()\n", - " if resp.ok:\n", - " print(f\"{resp.size_in_mb=}\")\n", - " ds = resp.datasets()[0]\n", - " else:\n", - " ds = xr.Dataset()\n", - " return ds" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "eacbecbd", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "sst_data = {dset: get_pacific_ocean(dset) for dset in collections}" - ] - }, - { - "cell_type": "markdown", - "id": "46301d38", - "metadata": {}, - "source": [ - "## ENSO nonlinearity measure: `alpha` value" - ] - }, - { - "cell_type": "markdown", - "id": "788b135d", - "metadata": {}, - "source": [ - "This part of the demo is computation heavy. You can refer to Takahashi et al. (2011) and Karamperidou et al. (2017) for more details on the usefulness and computation of the `alpha` parameter.\n", - "\n", - "The `alpha` parameter is computed by doing a quadratic fit to the first two EOFs for the DJF season of the SST anomalies in the Pacific region. We are looking to obtain two EOFs modes that represent the Eastern and central pacific SST patterns, which is why we include a correction factor to account for the fact the sometimes the EOFs come with the opposite sign.\n", - "\n", - "The higher the value of `alpha`, the more nonlinear (or extreme) ENSO events can be represented by the model. Likewise, a model with lower `alpha` values will have a harder time representing extreme ENSO events, making it not suitable for climate studies of ENSO in a warming climate (Cai et al., 2018, 2021)." - ] - }, - { - "cell_type": "markdown", - "id": "99631cca", - "metadata": {}, - "source": [ - "We are looking to obtain data that can reproduce a figure similar to the one below (taken from Karamperiou et al., 2017):" - ] - }, - { - "cell_type": "markdown", - "id": "a4266bc6", - "metadata": {}, - "source": [ - "\"Alpha" - ] - }, - { - "cell_type": "markdown", - "id": "31e2e06a", - "metadata": {}, - "source": [ - "Each of the \"wings\" of this boomerang-shaped distribution represents a different ENSO extreme, with the left (right) wing representing the extreme central (eastern) pacific El Niño events. More details on Takahashi et al. (2011)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "f43be532-c565-45e7-84d8-21be6e4e351e", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "def compute_alpha(pc1, pc2):\n", - " coefs = poly.polyfit(pc1, pc2, deg=2)\n", - " xfit = np.arange(pc1.min(), pc1.max() + 0.1, 0.1)\n", - " fit = poly.polyval(xfit, coefs)\n", - " return coefs[-1], xfit, fit\n", - "\n", - "\n", - "def correction_factor(model):\n", - " _eofs = model.components()\n", - " _subset = dict(lat=slice(-5, 5), lon=slice(140, 180))\n", - " corr_factor = np.zeros(2)\n", - " corr_factor[0] = 1 if _eofs.sel(mode=1, **_subset).mean() > 0 else -1\n", - " corr_factor[1] = 1 if _eofs.sel(mode=2, **_subset).mean() > 0 else -1\n", - " return xr.DataArray(corr_factor, coords=[(\"mode\", [1, 2])])\n", - "\n", - "\n", - "def compute_index(ds):\n", - " tos = ds.tos.sel(lat=slice(-20, 20), lon=slice(100, 280))\n", - " tos_anom = tos.groupby(\"time.month\").apply(lambda x: x - x.mean(\"time\"))\n", - "\n", - " # Compute Eofs\n", - " model = xe.models.EOF(n_modes=2, use_coslat=True)\n", - " model.fit(tos_anom, dim=\"time\")\n", - " corr_factor = correction_factor(model)\n", - " # eofs = s_model.components()\n", - " scale_factor = model.singular_values() / np.sqrt(model.explained_variance())\n", - " pcs = (\n", - " model.scores().convert_calendar(\"standard\", align_on=\"date\")\n", - " * scale_factor\n", - " * corr_factor\n", - " )\n", - "\n", - " pc1 = pcs.sel(mode=1)\n", - " pc1 = pc1.sel(time=pc1.time.dt.month.isin([12, 1, 2]))\n", - " pc1 = pc1.resample(time=\"QS-DEC\").mean().dropna(\"time\")\n", - "\n", - " pc2 = pcs.sel(mode=2)\n", - " pc2 = pc2.sel(time=pc2.time.dt.month.isin([12, 1, 2]))\n", - " pc2 = pc2.resample(time=\"QS-DEC\").mean().dropna(\"time\")\n", - "\n", - " alpha, xfit, fit = compute_alpha(pc1, pc2)\n", - "\n", - " return pc1, pc2, alpha, xfit, fit" - ] - }, - { - "cell_type": "markdown", - "id": "2334677a", - "metadata": {}, - "source": [ - "Now we can compute the `alpha` parameter for each of the models we have selected." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "140ee71c-01ad-4df5-a4af-d3f7f28c622a", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "alpha_fits = {}\n", - "for key, item in sst_data.items():\n", - " if len(item.variables) == 0:\n", - " continue\n", - " alpha_fits[key] = compute_index(item)" - ] - }, - { - "cell_type": "markdown", - "id": "b8714f85", - "metadata": {}, - "source": [ - "## Plot the results\n", - "\n", - "Finally, we can plot the results of the `alpha` parameter for each of the models we have selected. This will give us an idea of how well the models represent different ENSO extremes." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "6b327ec5-f261-4ae8-9ee8-19fff28b62dc", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "fig, axs = plt.subplots(nrows=3, ncols=2, figsize=(8, 12))\n", - "axs = axs.ravel()\n", - "for num, (ds, (pc1, pc2, alpha, xfit, fit)) in enumerate(alpha_fits.items()):\n", - " ax = axs[num]\n", - " ax.axhline(0, color=\"k\", linestyle=\"--\", alpha=0.2)\n", - " ax.axvline(0, color=\"k\", linestyle=\"--\", alpha=0.2)\n", - "\n", - " # draw a line 45 degrees\n", - " x = np.linspace(-6, 6, 100)\n", - " y = x\n", - " ax.plot(x, y, color=\"k\", alpha=0.5, lw=1)\n", - " ax.plot(-x, y, color=\"k\", alpha=0.5, lw=1)\n", - "\n", - " ax.scatter(\n", - " pc1,\n", - " pc2,\n", - " s=8,\n", - " marker=\"o\",\n", - " c=\"w\",\n", - " edgecolors=\"k\",\n", - " linewidths=0.5,\n", - " )\n", - "\n", - " ax.plot(xfit, fit, c=\"r\", label=f\"$\\\\alpha=${alpha:.2f}\")\n", - "\n", - " ax.set_xlabel(\"PC1\")\n", - " ax.set_ylabel(\"PC2\")\n", - "\n", - " ax.set_title(ds.split(\".\")[3])\n", - "\n", - " ax.set_xlim(-4, 4)\n", - " ax.set_ylim(-4, 4)\n", - " ax.legend()\n", - "fig.subplots_adjust(hspace=0.3)" - ] - }, - { - "cell_type": "markdown", - "id": "9f67612b", - "metadata": {}, - "source": [ - "From this example, we can see that from the subset of models we have selected, the `alpha` parameter is higher for CMCC-CM2-SR5 compared to the other models as the \"boomerang\" shape is better represented in this model. This indicates that this model is better at representing extreme ENSO events compared to the other models." - ] - }, - { - "cell_type": "markdown", - "id": "f3cc1404-0030-4e7c-98bb-498c354301d2", - "metadata": { - "tags": [] - }, - "source": [ - "## Summary\n", - "In this notebook, we used intake-esgf with Rooki Python client to retrieve a subset of a CMIP6 dataset. The subset and regrid operations are executed remotely on a Rook subsetting service (using OGC API and xarray/clisops). The dataset is analyzed using xeofs to extract a measurement used in ENSO research. We also showed that remote operators can be chained to be executed in a single workflow operation.\n", - "\n", - "## Resources\n", - "- [Roocs on GitHub](https://github.com/roocs)\n", - "- [Copernicus Climate Data Store](https://cds.climate.copernicus.eu/)\n", - "- [STAC](https://stacspec.org/en)\n", - "\n", - "## References\n", - "- Cai, W., Santoso, A., Collins, M., Dewitte, B., Karamperidou, C., Kug, J.-S., Lengaigne, M., McPhaden, M. J., Stuecker, M. F., Taschetto, A. S., Timmermann, A., Wu, L., Yeh, S.-W., Wang, G., Ng, B., Jia, F., Yang, Y., Ying, J., Zheng, X.-T., … Zhong, W. (2021). Changing El Niño–Southern Oscillation in a warming climate. Nature Reviews Earth & Environment, 2(9), 628–644. https://doi.org/10.1038/s43017-021-00199-z\n", - "- Cai, W., Wang, G., Dewitte, B., Wu, L., Santoso, A., Takahashi, K., Yang, Y., Carréric, A., & McPhaden, M. J. (2018). Increased variability of eastern Pacific El Niño under greenhouse warming. Nature, 564(7735), 201–206. https://doi.org/10.1038/s41586-018-0776-9\n", - "- Karamperidou, C., Jin, F.-F., & Conroy, J. L. (2017). The importance of ENSO nonlinearities in tropical pacific response to external forcing. Climate Dynamics, 49(7), 2695–2704. https://doi.org/10.1007/s00382-016-3475-y\n", - "- Takahashi, K., Montecinos, A., Goubanova, K., & Dewitte, B. (2011). ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophysical Research Letters, 38(10). https://doi.org/10.1029/2011GL047364\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "e92000c2-4af7-407f-ac39-69988b083cfe", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.16" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/_preview/44/_sources/notebooks/running-on-nimbus.md b/_preview/44/_sources/notebooks/running-on-nimbus.md deleted file mode 100644 index 1257cdb..0000000 --- a/_preview/44/_sources/notebooks/running-on-nimbus.md +++ /dev/null @@ -1,42 +0,0 @@ -# Running Notebooks on Nimbus - -Interested in running your notebooks on ESGF infrastructure? Please follow these steps! - -## 1. Apply for access to the Nimbus Access - -Please fill out [this form](https://forms.gle/h8y14hfefcaCraEJ8) to request access to the Nimbus Jupyterhub! - -You will be added to the [Nimbus User Group](https://github.com/orgs/esgf-nimbus/people), which is used for authentication! - -## 2. Clone this repository - -Once you log into the Jupyterhub (https://nimbus.llnl.gov/), go to your home directory (shown by default) and clone this repository - -```bash -git clone https://github.com/ProjectPythia/esgf-cookbook.git -``` - -## 3. Build your Execution Environment -The cookbook environment is slightly different than the base environment available on the hub. You will need to build the required environment, using the `environment.yml` file in the repository. - -```bash -conda env create -f esgf-cookbook/environment.yml -``` - -## Activate Your Environment -Once you build the enivronment, you will need to activate it. You will need to follow the following steps: - -```bash -# Make sure you can activate the environment -source .bashrc - -# Activate the environment -conda activate esgf-cookbook-dev -``` - -## Open a Notebook and Select the `esgf-cookbook-dev` environment -Now that you have an environment, you can select this when opening a notebook. Select in the top right corner the kernel options, and select `esgf-cookbook-dev`. - -Wait a second for the notebook to pick up on this, then execute your cells! - -If you need to install more packages, or update versions, you can do so by updating your `environment.yml` file or by installing via the command line. \ No newline at end of file diff --git a/_preview/44/_sources/notebooks/use-intake-esgf-with-rooki.ipynb b/_preview/44/_sources/notebooks/use-intake-esgf-with-rooki.ipynb deleted file mode 100644 index 0f6b06c..0000000 --- a/_preview/44/_sources/notebooks/use-intake-esgf-with-rooki.ipynb +++ /dev/null @@ -1,382 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "5191269c-944c-4516-9f51-6cdfc704852a", - "metadata": {}, - "source": [ - "\"Intake" - ] - }, - { - "cell_type": "markdown", - "id": "fa96801d-4d1a-4264-94f9-9bf12a77421a", - "metadata": {}, - "source": [ - "---" - ] - }, - { - "cell_type": "markdown", - "id": "545103ee-abac-4da8-af3b-c8877a3d2d6c", - "metadata": {}, - "source": [ - "# Using intake-esgf with rooki\n", - "\n", - "## Overview\n", - "\n", - "In this notebook we will demonstrate how to use intake-esgf and rooki to perform server-side operations and return the result to the user. This will occur in several steps.\n", - "\n", - "1. We use intake-esgf to find data which is local to the ORNL server and then form an id which rooki uses to load the data remotely.\n", - "2. We build a rooki workflow which uses these ids (`rooki_id`) to subset and average the data remotely.\n", - "3. The results are downloaded locally and we visualize them interactively using hvplot.\n" - ] - }, - { - "cell_type": "markdown", - "id": "0b633dab-4c9d-482a-b148-8f9b09102e78", - "metadata": {}, - "source": [ - "## Prerequisites\n", - "\n", - "| Concepts | Importance | Notes |\n", - "| --- | --- | --- |\n", - "| [Intro to Intake-ESGF](intro-search) | Necessary | How to configure a search and use output |\n", - "| [Intro to Rooki](rooki) | Helpful | How to initialize and run rooki |\n", - "| [Intro to hvPlot](https://hvplot.holoviz.org/user_guide/Geographic_Data.html) | Necessary | How to plot interactive visualizations |\n", - "\n", - "- **Time to learn**: 30 minutes" - ] - }, - { - "cell_type": "markdown", - "id": "64a5b6f9-eeee-4726-abdc-686e96dfc3cf", - "metadata": {}, - "source": [ - "---" - ] - }, - { - "cell_type": "markdown", - "id": "f7571ba4-43cf-4f61-b74a-a51cdee373aa", - "metadata": {}, - "source": [ - "## Imports" - ] - }, - { - "cell_type": "markdown", - "id": "b3de6244-5afc-4cb4-aabe-7508423944ae", - "metadata": {}, - "source": [ - "Before importing rooki, we need to set an environment variable that will signal the rooki client to use the web processing service (WPS) deployment located at Oak Ridge National Lab (ORNL)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "c12d0875-9794-4101-b74f-346148cb36c0", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "import os\n", - "\n", - "# Configuration line to set the wps node - in this case, use ORNL in the USA\n", - "url = \"https://esgf-node.ornl.gov/wps\"\n", - "os.environ[\"ROOK_URL\"] = url\n", - "\n", - "from rooki import operators as ops\n", - "from rooki import rooki" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "d19a5944-12d7-401c-a9cb-8e92f1f95f96", - "metadata": {}, - "outputs": [], - "source": [ - "# Other imports\n", - "import holoviews as hv\n", - "import hvplot.xarray\n", - "import intake_esgf\n", - "import matplotlib.pyplot as plt\n", - "import panel as pn\n", - "import xarray as xr\n", - "from intake_esgf import ESGFCatalog\n", - "\n", - "hv.extension(\"bokeh\")" - ] - }, - { - "cell_type": "markdown", - "id": "7dd9b81a-9aeb-4769-8c67-4db88a089859", - "metadata": {}, - "source": [ - "## Search and Find Data for Surface Temperature on the ORNL Node\n", - "\n", - "Let's start with refining which index we would like to search from. For this analysis, we are remotely computing on the ORNL node since this is where rooki is running. We know this from checking the `._url` method of rooki!" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "d3cdea76-9a74-4001-91b4-6c1b664835b2", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "rooki._url" - ] - }, - { - "cell_type": "markdown", - "id": "4a4442f9-6c41-4a56-ac66-4299d0c4ddda", - "metadata": {}, - "source": [ - "### Set the Index Node and Search\n", - "\n", - "Because we are using the ORNL-based WPS, we only need information about ORNL holdings. So here we configure intake-esgf to only look at the ORNL index for data information." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "8d78dd66-16d0-4573-b94d-b7c52200cee8", - "metadata": {}, - "outputs": [], - "source": [ - "intake_esgf.conf.set(indices={\"anl-dev\": False,\n", - " \"ornl-dev\": True})" - ] - }, - { - "cell_type": "markdown", - "id": "37d7a372-8db7-4a02-9d3f-6d8fc54e7e88", - "metadata": {}, - "source": [ - "Now we instantiate the catalog and perform a search for surface air temperature (tas) data from a few institution's models. Note that we have also included specificity of the data node. The ORNL index contains information about holdings beyond the ORNL data node and so we give this to force the catalog to only return information about holdings which are local to ORNL." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "d0f5ede4-feb0-4896-9e65-e100cbfadee4", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "cat = ESGFCatalog().search(\n", - " experiment_id=\"historical\",\n", - " variable_id=\"tas\",\n", - " member_id=\"r1i1p1f1\",\n", - " table_id=\"Amon\",\n", - " institution_id=[\"MIROC\", \"NCAR\", \"NASA-GISS\", \"CMCC\"],\n", - ")\n", - "cat.df" - ] - }, - { - "cell_type": "markdown", - "id": "b00d07ff-58a7-4141-922c-9f7a97772f1e", - "metadata": { - "tags": [] - }, - "source": [ - "## Extract IDs to Pass to Rooki\n", - "\n", - "The catalog returns a lot of information about the datasets that were found, but the rooki WPS interface just needs an ID that looks similar to what we find in the `id` column of the dataframe. We need to remove the `|esgf-node.ornl.gov` on the end and prepend a `ccs03_data`. To do this we will write a function and apply it to the dataframe.\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "d77e9325-3594-4454-a330-e6d3b139c32b", - "metadata": {}, - "outputs": [], - "source": [ - "def build_rooki_id(id_list):\n", - " rooki_id = id_list[0]\n", - " rooki_id = rooki_id.split(\"|\")[0]\n", - " rooki_id = f\"css03_data.{rooki_id}\" # <-- just something you have to know for now :(\n", - " return rooki_id\n", - "\n", - "rooki_ids = cat.df.id.apply(build_rooki_id).to_list()\n", - "rooki_ids" - ] - }, - { - "cell_type": "markdown", - "id": "4a470bea-581c-4796-a716-a02fd02e1531", - "metadata": {}, - "source": [ - "### Compute with Rooki\n", - "Now that we have a list of IDs to pass to rooki, let's compute! In our case we are interested in the annual temperature from 1990-2000 over an area that includes India (latitude from 0 to 35, longitude from 65 to 100). The following function will construct a rooki workflow that uses operators (functions in the `ops` namespace) that rooki uses to:\n", - "\n", - "- read in data (`ops.Input`)\n", - "- subset in time and space (`ops.Subset`), and\n", - "- average in time (`ops.AverageByTime`) on a yearly frequency.\n", - "\n", - "We then check to make sure the response is okay, and if it is, return the processed dataset to the user! If something went wrong, the function will raise an error and show you the message that rooki sent back." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "38704069-b1ad-474f-99f6-3273554df831", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "def india_annual_temperature(rooki_id):\n", - " workflow = ops.AverageByTime(\n", - " ops.Subset(\n", - " ops.Input(\"tas\", [rooki_id]),\n", - " time=\"1990-01-01/2000-01-01\",\n", - " area=\"65,0,100,35\",\n", - " ),\n", - " freq=\"year\",\n", - " )\n", - " response = workflow.orchestrate()\n", - " if not response.ok:\n", - " raise ValueError(response)\n", - " return response.datasets()[0]" - ] - }, - { - "cell_type": "markdown", - "id": "cf88a09b-8178-4798-afc6-744242e65ca6", - "metadata": {}, - "source": [ - "Now let's test a single rooki_id to demonstrate successful functionality. The rooki_id let's the WPS know on which dataset we are intersted in operating and then the data is loaded remotely, subset, and then averaged. After this computation is finished on the server, the result is transferred to you and loaded into a xarray dataset. Inspect the dataset header to see that there are 10 times, one for each year and the latitude and longitude range spans our input values." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "94609894-705d-4fdc-a235-b2f1f5747305", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "india_annual_temperature(rooki_ids[0])" - ] - }, - { - "cell_type": "markdown", - "id": "4ecacf51-e35f-4810-8250-3e90a1b5888a", - "metadata": {}, - "source": [ - "Now that we have some confidence in our workflow function, we can iterate over rooki_id's running for each and saving into a dictionary whose keys are the different models. You should see messages print to the screen which inform you where the temporary output is being downloaded. This location can be configured in rooki, but for now we will just load them into datasets." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "a52e7d71-18fd-4bbe-91a7-fa86725ad4de", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "dsd = {\n", - " rooki_id.split(\".\")[4]: india_annual_temperature(rooki_id)\n", - " for rooki_id in rooki_ids\n", - "}" - ] - }, - { - "cell_type": "markdown", - "id": "4a77cda9-536f-4fc2-8e89-9ce2e4937810", - "metadata": {}, - "source": [ - "## Visualize the Output\n", - "Let's use hvPlot to visualize. The datasets are stored in a dictionary of datasets, we need to:\n", - "- Extract a single key\n", - "- Plot a contour filled visualization, with some geographic features" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "1b08b0a0-7add-4a50-8e62-9bb88b98cc7c", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "tas = dsd[\"MIROC6\"].tas\n", - "tas.hvplot.contourf(\n", - " x=\"lon\",\n", - " y=\"lat\",\n", - " cmap=\"Reds\",\n", - " levels=20,\n", - " clim=(250, 320),\n", - " features=[\"land\", \"ocean\"],\n", - " alpha=0.7,\n", - " widget_location=\"bottom\",\n", - " clabel=\"Yearly Average Temperature (K)\",\n", - " geo=True,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "id": "33c9fce3-722a-4cc9-8b4c-5d2038cc981f", - "metadata": {}, - "source": [ - "---" - ] - }, - { - "cell_type": "markdown", - "id": "86e3979e-505a-455c-8753-6cd5c7f0b219", - "metadata": {}, - "source": [ - "## Summary\n", - "Within this notebook, we learned how to specify a specific index node to search from, pass discovered datasets to rooki, and chain remote-compute with several operations using rooki. We then visualized the output using hvPlot, leading to an interactive plot!\n", - "\n", - "### What's next?\n", - "More adaptations of the intake-esgf + rooki to remotely compute on ESGF data." - ] - }, - { - "cell_type": "markdown", - "id": "bbda4631-017e-4295-b2a5-e97fe5197cf8", - "metadata": {}, - "source": [ - "## Resources and references\n", - " - [intake-esgf documentation](https://intake-esgf.readthedocs.io/en/latest/)\n", - " - [rooki documentation](https://rooki.readthedocs.io/en/latest/)\n", - " - [Working with geographic data with hvPlot](https://hvplot.holoviz.org/user_guide/Geographic_Data.html)\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.16" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/_preview/44/_sphinx_design_static/design-tabs.js b/_preview/44/_sphinx_design_static/design-tabs.js deleted file mode 100644 index b25bd6a..0000000 --- a/_preview/44/_sphinx_design_static/design-tabs.js +++ /dev/null @@ -1,101 +0,0 @@ -// @ts-check - -// Extra JS capability for selected tabs to be synced -// The selection is stored in local storage so that it persists across page loads. - -/** - * @type {Record} - */ -let sd_id_to_elements = {}; -const storageKeyPrefix = "sphinx-design-tab-id-"; - -/** - * Create a key for a tab element. - * @param {HTMLElement} el - The tab element. - * @returns {[string, string, string] | null} - The key. - * - */ -function create_key(el) { - let syncId = el.getAttribute("data-sync-id"); - let syncGroup = el.getAttribute("data-sync-group"); - if (!syncId || !syncGroup) return null; - return [syncGroup, syncId, syncGroup + "--" + syncId]; -} - -/** - * Initialize the tab selection. - * - */ -function ready() { - // Find all tabs with sync data - - /** @type {string[]} */ - let groups = []; - - document.querySelectorAll(".sd-tab-label").forEach((label) => { - if (label instanceof HTMLElement) { - let data = create_key(label); - if (data) { - let [group, id, key] = data; - - // add click event listener - // @ts-ignore - label.onclick = onSDLabelClick; - - // store map of key to elements - if (!sd_id_to_elements[key]) { - sd_id_to_elements[key] = []; - } - sd_id_to_elements[key].push(label); - - if (groups.indexOf(group) === -1) { - groups.push(group); - // Check if a specific tab has been selected via URL parameter - const tabParam = new URLSearchParams(window.location.search).get( - group - ); - if (tabParam) { - console.log( - "sphinx-design: Selecting tab id for group '" + - group + - "' from URL parameter: " + - tabParam - ); - window.sessionStorage.setItem(storageKeyPrefix + group, tabParam); - } - } - - // Check is a specific tab has been selected previously - let previousId = window.sessionStorage.getItem( - storageKeyPrefix + group - ); - if (previousId === id) { - // console.log( - // "sphinx-design: Selecting tab from session storage: " + id - // ); - // @ts-ignore - label.previousElementSibling.checked = true; - } - } - } - }); -} - -/** - * Activate other tabs with the same sync id. - * - * @this {HTMLElement} - The element that was clicked. - */ -function onSDLabelClick() { - let data = create_key(this); - if (!data) return; - let [group, id, key] = data; - for (const label of sd_id_to_elements[key]) { - if (label === this) continue; - // @ts-ignore - label.previousElementSibling.checked = true; - } - window.sessionStorage.setItem(storageKeyPrefix + group, id); -} - -document.addEventListener("DOMContentLoaded", ready, false); diff --git a/_preview/44/_sphinx_design_static/sphinx-design.4cbf315f70debaebd550c87a6162cf0f.min.css b/_preview/44/_sphinx_design_static/sphinx-design.4cbf315f70debaebd550c87a6162cf0f.min.css deleted file mode 100644 index 860c36d..0000000 --- a/_preview/44/_sphinx_design_static/sphinx-design.4cbf315f70debaebd550c87a6162cf0f.min.css +++ /dev/null @@ -1 +0,0 @@ -.sd-bg-primary{background-color:var(--sd-color-primary) !important}.sd-bg-text-primary{color:var(--sd-color-primary-text) !important}button.sd-bg-primary:focus,button.sd-bg-primary:hover{background-color:var(--sd-color-primary-highlight) !important}a.sd-bg-primary:focus,a.sd-bg-primary:hover{background-color:var(--sd-color-primary-highlight) !important}.sd-bg-secondary{background-color:var(--sd-color-secondary) !important}.sd-bg-text-secondary{color:var(--sd-color-secondary-text) !important}button.sd-bg-secondary:focus,button.sd-bg-secondary:hover{background-color:var(--sd-color-secondary-highlight) !important}a.sd-bg-secondary:focus,a.sd-bg-secondary:hover{background-color:var(--sd-color-secondary-highlight) !important}.sd-bg-success{background-color:var(--sd-color-success) !important}.sd-bg-text-success{color:var(--sd-color-success-text) !important}button.sd-bg-success:focus,button.sd-bg-success:hover{background-color:var(--sd-color-success-highlight) !important}a.sd-bg-success:focus,a.sd-bg-success:hover{background-color:var(--sd-color-success-highlight) !important}.sd-bg-info{background-color:var(--sd-color-info) !important}.sd-bg-text-info{color:var(--sd-color-info-text) !important}button.sd-bg-info:focus,button.sd-bg-info:hover{background-color:var(--sd-color-info-highlight) !important}a.sd-bg-info:focus,a.sd-bg-info:hover{background-color:var(--sd-color-info-highlight) !important}.sd-bg-warning{background-color:var(--sd-color-warning) !important}.sd-bg-text-warning{color:var(--sd-color-warning-text) !important}button.sd-bg-warning:focus,button.sd-bg-warning:hover{background-color:var(--sd-color-warning-highlight) !important}a.sd-bg-warning:focus,a.sd-bg-warning:hover{background-color:var(--sd-color-warning-highlight) !important}.sd-bg-danger{background-color:var(--sd-color-danger) !important}.sd-bg-text-danger{color:var(--sd-color-danger-text) !important}button.sd-bg-danger:focus,button.sd-bg-danger:hover{background-color:var(--sd-color-danger-highlight) !important}a.sd-bg-danger:focus,a.sd-bg-danger:hover{background-color:var(--sd-color-danger-highlight) !important}.sd-bg-light{background-color:var(--sd-color-light) !important}.sd-bg-text-light{color:var(--sd-color-light-text) !important}button.sd-bg-light:focus,button.sd-bg-light:hover{background-color:var(--sd-color-light-highlight) !important}a.sd-bg-light:focus,a.sd-bg-light:hover{background-color:var(--sd-color-light-highlight) !important}.sd-bg-muted{background-color:var(--sd-color-muted) !important}.sd-bg-text-muted{color:var(--sd-color-muted-text) !important}button.sd-bg-muted:focus,button.sd-bg-muted:hover{background-color:var(--sd-color-muted-highlight) !important}a.sd-bg-muted:focus,a.sd-bg-muted:hover{background-color:var(--sd-color-muted-highlight) !important}.sd-bg-dark{background-color:var(--sd-color-dark) !important}.sd-bg-text-dark{color:var(--sd-color-dark-text) !important}button.sd-bg-dark:focus,button.sd-bg-dark:hover{background-color:var(--sd-color-dark-highlight) !important}a.sd-bg-dark:focus,a.sd-bg-dark:hover{background-color:var(--sd-color-dark-highlight) !important}.sd-bg-black{background-color:var(--sd-color-black) !important}.sd-bg-text-black{color:var(--sd-color-black-text) !important}button.sd-bg-black:focus,button.sd-bg-black:hover{background-color:var(--sd-color-black-highlight) !important}a.sd-bg-black:focus,a.sd-bg-black:hover{background-color:var(--sd-color-black-highlight) !important}.sd-bg-white{background-color:var(--sd-color-white) !important}.sd-bg-text-white{color:var(--sd-color-white-text) !important}button.sd-bg-white:focus,button.sd-bg-white:hover{background-color:var(--sd-color-white-highlight) !important}a.sd-bg-white:focus,a.sd-bg-white:hover{background-color:var(--sd-color-white-highlight) !important}.sd-text-primary,.sd-text-primary>p{color:var(--sd-color-primary) !important}a.sd-text-primary:focus,a.sd-text-primary:hover{color:var(--sd-color-primary-highlight) !important}.sd-text-secondary,.sd-text-secondary>p{color:var(--sd-color-secondary) !important}a.sd-text-secondary:focus,a.sd-text-secondary:hover{color:var(--sd-color-secondary-highlight) !important}.sd-text-success,.sd-text-success>p{color:var(--sd-color-success) !important}a.sd-text-success:focus,a.sd-text-success:hover{color:var(--sd-color-success-highlight) !important}.sd-text-info,.sd-text-info>p{color:var(--sd-color-info) !important}a.sd-text-info:focus,a.sd-text-info:hover{color:var(--sd-color-info-highlight) !important}.sd-text-warning,.sd-text-warning>p{color:var(--sd-color-warning) !important}a.sd-text-warning:focus,a.sd-text-warning:hover{color:var(--sd-color-warning-highlight) !important}.sd-text-danger,.sd-text-danger>p{color:var(--sd-color-danger) !important}a.sd-text-danger:focus,a.sd-text-danger:hover{color:var(--sd-color-danger-highlight) !important}.sd-text-light,.sd-text-light>p{color:var(--sd-color-light) !important}a.sd-text-light:focus,a.sd-text-light:hover{color:var(--sd-color-light-highlight) !important}.sd-text-muted,.sd-text-muted>p{color:var(--sd-color-muted) !important}a.sd-text-muted:focus,a.sd-text-muted:hover{color:var(--sd-color-muted-highlight) !important}.sd-text-dark,.sd-text-dark>p{color:var(--sd-color-dark) !important}a.sd-text-dark:focus,a.sd-text-dark:hover{color:var(--sd-color-dark-highlight) !important}.sd-text-black,.sd-text-black>p{color:var(--sd-color-black) !important}a.sd-text-black:focus,a.sd-text-black:hover{color:var(--sd-color-black-highlight) !important}.sd-text-white,.sd-text-white>p{color:var(--sd-color-white) !important}a.sd-text-white:focus,a.sd-text-white:hover{color:var(--sd-color-white-highlight) !important}.sd-outline-primary{border-color:var(--sd-color-primary) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-primary:focus,a.sd-outline-primary:hover{border-color:var(--sd-color-primary-highlight) !important}.sd-outline-secondary{border-color:var(--sd-color-secondary) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-secondary:focus,a.sd-outline-secondary:hover{border-color:var(--sd-color-secondary-highlight) !important}.sd-outline-success{border-color:var(--sd-color-success) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-success:focus,a.sd-outline-success:hover{border-color:var(--sd-color-success-highlight) !important}.sd-outline-info{border-color:var(--sd-color-info) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-info:focus,a.sd-outline-info:hover{border-color:var(--sd-color-info-highlight) !important}.sd-outline-warning{border-color:var(--sd-color-warning) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-warning:focus,a.sd-outline-warning:hover{border-color:var(--sd-color-warning-highlight) !important}.sd-outline-danger{border-color:var(--sd-color-danger) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-danger:focus,a.sd-outline-danger:hover{border-color:var(--sd-color-danger-highlight) !important}.sd-outline-light{border-color:var(--sd-color-light) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-light:focus,a.sd-outline-light:hover{border-color:var(--sd-color-light-highlight) !important}.sd-outline-muted{border-color:var(--sd-color-muted) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-muted:focus,a.sd-outline-muted:hover{border-color:var(--sd-color-muted-highlight) !important}.sd-outline-dark{border-color:var(--sd-color-dark) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-dark:focus,a.sd-outline-dark:hover{border-color:var(--sd-color-dark-highlight) !important}.sd-outline-black{border-color:var(--sd-color-black) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-black:focus,a.sd-outline-black:hover{border-color:var(--sd-color-black-highlight) !important}.sd-outline-white{border-color:var(--sd-color-white) !important;border-style:solid !important;border-width:1px !important}a.sd-outline-white:focus,a.sd-outline-white:hover{border-color:var(--sd-color-white-highlight) !important}.sd-bg-transparent{background-color:transparent !important}.sd-outline-transparent{border-color:transparent !important}.sd-text-transparent{color:transparent !important}.sd-p-0{padding:0 !important}.sd-pt-0,.sd-py-0{padding-top:0 !important}.sd-pr-0,.sd-px-0{padding-right:0 !important}.sd-pb-0,.sd-py-0{padding-bottom:0 !important}.sd-pl-0,.sd-px-0{padding-left:0 !important}.sd-p-1{padding:.25rem !important}.sd-pt-1,.sd-py-1{padding-top:.25rem !important}.sd-pr-1,.sd-px-1{padding-right:.25rem !important}.sd-pb-1,.sd-py-1{padding-bottom:.25rem !important}.sd-pl-1,.sd-px-1{padding-left:.25rem !important}.sd-p-2{padding:.5rem !important}.sd-pt-2,.sd-py-2{padding-top:.5rem !important}.sd-pr-2,.sd-px-2{padding-right:.5rem !important}.sd-pb-2,.sd-py-2{padding-bottom:.5rem !important}.sd-pl-2,.sd-px-2{padding-left:.5rem !important}.sd-p-3{padding:1rem !important}.sd-pt-3,.sd-py-3{padding-top:1rem !important}.sd-pr-3,.sd-px-3{padding-right:1rem !important}.sd-pb-3,.sd-py-3{padding-bottom:1rem !important}.sd-pl-3,.sd-px-3{padding-left:1rem !important}.sd-p-4{padding:1.5rem !important}.sd-pt-4,.sd-py-4{padding-top:1.5rem !important}.sd-pr-4,.sd-px-4{padding-right:1.5rem !important}.sd-pb-4,.sd-py-4{padding-bottom:1.5rem !important}.sd-pl-4,.sd-px-4{padding-left:1.5rem !important}.sd-p-5{padding:3rem !important}.sd-pt-5,.sd-py-5{padding-top:3rem !important}.sd-pr-5,.sd-px-5{padding-right:3rem !important}.sd-pb-5,.sd-py-5{padding-bottom:3rem !important}.sd-pl-5,.sd-px-5{padding-left:3rem !important}.sd-m-auto{margin:auto !important}.sd-mt-auto,.sd-my-auto{margin-top:auto !important}.sd-mr-auto,.sd-mx-auto{margin-right:auto !important}.sd-mb-auto,.sd-my-auto{margin-bottom:auto !important}.sd-ml-auto,.sd-mx-auto{margin-left:auto !important}.sd-m-0{margin:0 !important}.sd-mt-0,.sd-my-0{margin-top:0 !important}.sd-mr-0,.sd-mx-0{margin-right:0 !important}.sd-mb-0,.sd-my-0{margin-bottom:0 !important}.sd-ml-0,.sd-mx-0{margin-left:0 !important}.sd-m-1{margin:.25rem !important}.sd-mt-1,.sd-my-1{margin-top:.25rem !important}.sd-mr-1,.sd-mx-1{margin-right:.25rem !important}.sd-mb-1,.sd-my-1{margin-bottom:.25rem !important}.sd-ml-1,.sd-mx-1{margin-left:.25rem !important}.sd-m-2{margin:.5rem !important}.sd-mt-2,.sd-my-2{margin-top:.5rem !important}.sd-mr-2,.sd-mx-2{margin-right:.5rem !important}.sd-mb-2,.sd-my-2{margin-bottom:.5rem !important}.sd-ml-2,.sd-mx-2{margin-left:.5rem !important}.sd-m-3{margin:1rem !important}.sd-mt-3,.sd-my-3{margin-top:1rem !important}.sd-mr-3,.sd-mx-3{margin-right:1rem !important}.sd-mb-3,.sd-my-3{margin-bottom:1rem !important}.sd-ml-3,.sd-mx-3{margin-left:1rem !important}.sd-m-4{margin:1.5rem !important}.sd-mt-4,.sd-my-4{margin-top:1.5rem !important}.sd-mr-4,.sd-mx-4{margin-right:1.5rem !important}.sd-mb-4,.sd-my-4{margin-bottom:1.5rem !important}.sd-ml-4,.sd-mx-4{margin-left:1.5rem !important}.sd-m-5{margin:3rem !important}.sd-mt-5,.sd-my-5{margin-top:3rem !important}.sd-mr-5,.sd-mx-5{margin-right:3rem !important}.sd-mb-5,.sd-my-5{margin-bottom:3rem !important}.sd-ml-5,.sd-mx-5{margin-left:3rem !important}.sd-w-25{width:25% !important}.sd-w-50{width:50% !important}.sd-w-75{width:75% !important}.sd-w-100{width:100% !important}.sd-w-auto{width:auto !important}.sd-h-25{height:25% !important}.sd-h-50{height:50% !important}.sd-h-75{height:75% !important}.sd-h-100{height:100% !important}.sd-h-auto{height:auto !important}.sd-d-none{display:none !important}.sd-d-inline{display:inline !important}.sd-d-inline-block{display:inline-block !important}.sd-d-block{display:block !important}.sd-d-grid{display:grid !important}.sd-d-flex-row{display:-ms-flexbox !important;display:flex !important;flex-direction:row !important}.sd-d-flex-column{display:-ms-flexbox !important;display:flex !important;flex-direction:column !important}.sd-d-inline-flex{display:-ms-inline-flexbox !important;display:inline-flex !important}@media(min-width: 576px){.sd-d-sm-none{display:none !important}.sd-d-sm-inline{display:inline !important}.sd-d-sm-inline-block{display:inline-block !important}.sd-d-sm-block{display:block !important}.sd-d-sm-grid{display:grid !important}.sd-d-sm-flex{display:-ms-flexbox !important;display:flex !important}.sd-d-sm-inline-flex{display:-ms-inline-flexbox !important;display:inline-flex !important}}@media(min-width: 768px){.sd-d-md-none{display:none !important}.sd-d-md-inline{display:inline !important}.sd-d-md-inline-block{display:inline-block !important}.sd-d-md-block{display:block !important}.sd-d-md-grid{display:grid !important}.sd-d-md-flex{display:-ms-flexbox !important;display:flex !important}.sd-d-md-inline-flex{display:-ms-inline-flexbox !important;display:inline-flex !important}}@media(min-width: 992px){.sd-d-lg-none{display:none !important}.sd-d-lg-inline{display:inline !important}.sd-d-lg-inline-block{display:inline-block !important}.sd-d-lg-block{display:block !important}.sd-d-lg-grid{display:grid !important}.sd-d-lg-flex{display:-ms-flexbox !important;display:flex !important}.sd-d-lg-inline-flex{display:-ms-inline-flexbox !important;display:inline-flex !important}}@media(min-width: 1200px){.sd-d-xl-none{display:none !important}.sd-d-xl-inline{display:inline !important}.sd-d-xl-inline-block{display:inline-block !important}.sd-d-xl-block{display:block !important}.sd-d-xl-grid{display:grid !important}.sd-d-xl-flex{display:-ms-flexbox !important;display:flex !important}.sd-d-xl-inline-flex{display:-ms-inline-flexbox !important;display:inline-flex !important}}.sd-align-major-start{justify-content:flex-start !important}.sd-align-major-end{justify-content:flex-end !important}.sd-align-major-center{justify-content:center !important}.sd-align-major-justify{justify-content:space-between !important}.sd-align-major-spaced{justify-content:space-evenly !important}.sd-align-minor-start{align-items:flex-start !important}.sd-align-minor-end{align-items:flex-end !important}.sd-align-minor-center{align-items:center !important}.sd-align-minor-stretch{align-items:stretch !important}.sd-text-justify{text-align:justify !important}.sd-text-left{text-align:left !important}.sd-text-right{text-align:right !important}.sd-text-center{text-align:center !important}.sd-font-weight-light{font-weight:300 !important}.sd-font-weight-lighter{font-weight:lighter !important}.sd-font-weight-normal{font-weight:400 !important}.sd-font-weight-bold{font-weight:700 !important}.sd-font-weight-bolder{font-weight:bolder !important}.sd-font-italic{font-style:italic !important}.sd-text-decoration-none{text-decoration:none !important}.sd-text-lowercase{text-transform:lowercase !important}.sd-text-uppercase{text-transform:uppercase !important}.sd-text-capitalize{text-transform:capitalize !important}.sd-text-wrap{white-space:normal !important}.sd-text-nowrap{white-space:nowrap !important}.sd-text-truncate{overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.sd-fs-1,.sd-fs-1>p{font-size:calc(1.375rem + 1.5vw) !important;line-height:unset !important}.sd-fs-2,.sd-fs-2>p{font-size:calc(1.325rem + 0.9vw) !important;line-height:unset !important}.sd-fs-3,.sd-fs-3>p{font-size:calc(1.3rem + 0.6vw) !important;line-height:unset !important}.sd-fs-4,.sd-fs-4>p{font-size:calc(1.275rem + 0.3vw) !important;line-height:unset !important}.sd-fs-5,.sd-fs-5>p{font-size:1.25rem !important;line-height:unset !important}.sd-fs-6,.sd-fs-6>p{font-size:1rem !important;line-height:unset !important}.sd-border-0{border:0 solid !important}.sd-border-top-0{border-top:0 solid !important}.sd-border-bottom-0{border-bottom:0 solid !important}.sd-border-right-0{border-right:0 solid !important}.sd-border-left-0{border-left:0 solid !important}.sd-border-1{border:1px solid !important}.sd-border-top-1{border-top:1px solid !important}.sd-border-bottom-1{border-bottom:1px solid !important}.sd-border-right-1{border-right:1px solid !important}.sd-border-left-1{border-left:1px solid !important}.sd-border-2{border:2px solid !important}.sd-border-top-2{border-top:2px solid !important}.sd-border-bottom-2{border-bottom:2px solid !important}.sd-border-right-2{border-right:2px solid !important}.sd-border-left-2{border-left:2px solid !important}.sd-border-3{border:3px solid !important}.sd-border-top-3{border-top:3px solid !important}.sd-border-bottom-3{border-bottom:3px solid !important}.sd-border-right-3{border-right:3px solid !important}.sd-border-left-3{border-left:3px solid !important}.sd-border-4{border:4px solid !important}.sd-border-top-4{border-top:4px solid !important}.sd-border-bottom-4{border-bottom:4px solid !important}.sd-border-right-4{border-right:4px solid !important}.sd-border-left-4{border-left:4px solid !important}.sd-border-5{border:5px solid !important}.sd-border-top-5{border-top:5px solid !important}.sd-border-bottom-5{border-bottom:5px solid !important}.sd-border-right-5{border-right:5px solid !important}.sd-border-left-5{border-left:5px solid !important}.sd-rounded-0{border-radius:0 !important}.sd-rounded-1{border-radius:.2rem !important}.sd-rounded-2{border-radius:.3rem !important}.sd-rounded-3{border-radius:.5rem !important}.sd-rounded-pill{border-radius:50rem !important}.sd-rounded-circle{border-radius:50% !important}.shadow-none{box-shadow:none !important}.sd-shadow-sm{box-shadow:0 .125rem .25rem var(--sd-color-shadow) !important}.sd-shadow-md{box-shadow:0 .5rem 1rem var(--sd-color-shadow) !important}.sd-shadow-lg{box-shadow:0 1rem 3rem var(--sd-color-shadow) !important}@keyframes sd-slide-from-left{0%{transform:translateX(-100%)}100%{transform:translateX(0)}}@keyframes sd-slide-from-right{0%{transform:translateX(200%)}100%{transform:translateX(0)}}@keyframes sd-grow100{0%{transform:scale(0);opacity:.5}100%{transform:scale(1);opacity:1}}@keyframes sd-grow50{0%{transform:scale(0.5);opacity:.5}100%{transform:scale(1);opacity:1}}@keyframes sd-grow50-rot20{0%{transform:scale(0.5) rotateZ(-20deg);opacity:.5}75%{transform:scale(1) rotateZ(5deg);opacity:1}95%{transform:scale(1) rotateZ(-1deg);opacity:1}100%{transform:scale(1) rotateZ(0);opacity:1}}.sd-animate-slide-from-left{animation:1s ease-out 0s 1 normal none running sd-slide-from-left}.sd-animate-slide-from-right{animation:1s ease-out 0s 1 normal none running sd-slide-from-right}.sd-animate-grow100{animation:1s ease-out 0s 1 normal none running sd-grow100}.sd-animate-grow50{animation:1s ease-out 0s 1 normal none running sd-grow50}.sd-animate-grow50-rot20{animation:1s ease-out 0s 1 normal none running sd-grow50-rot20}.sd-badge{display:inline-block;padding:.35em .65em;font-size:.75em;font-weight:700;line-height:1;text-align:center;white-space:nowrap;vertical-align:baseline;border-radius:.25rem}.sd-badge:empty{display:none}a.sd-badge{text-decoration:none}.sd-btn .sd-badge{position:relative;top:-1px}.sd-btn{background-color:transparent;border:1px solid transparent;border-radius:.25rem;cursor:pointer;display:inline-block;font-weight:400;font-size:1rem;line-height:1.5;padding:.375rem .75rem;text-align:center;text-decoration:none;transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out;vertical-align:middle;user-select:none;-moz-user-select:none;-ms-user-select:none;-webkit-user-select:none}.sd-btn:hover{text-decoration:none}@media(prefers-reduced-motion: reduce){.sd-btn{transition:none}}.sd-btn-primary,.sd-btn-outline-primary:hover,.sd-btn-outline-primary:focus{color:var(--sd-color-primary-text) !important;background-color:var(--sd-color-primary) !important;border-color:var(--sd-color-primary) !important;border-width:1px !important;border-style:solid !important}.sd-btn-primary:hover,.sd-btn-primary:focus{color:var(--sd-color-primary-text) !important;background-color:var(--sd-color-primary-highlight) !important;border-color:var(--sd-color-primary-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-primary{color:var(--sd-color-primary) !important;border-color:var(--sd-color-primary) !important;border-width:1px !important;border-style:solid !important}.sd-btn-secondary,.sd-btn-outline-secondary:hover,.sd-btn-outline-secondary:focus{color:var(--sd-color-secondary-text) !important;background-color:var(--sd-color-secondary) !important;border-color:var(--sd-color-secondary) !important;border-width:1px !important;border-style:solid !important}.sd-btn-secondary:hover,.sd-btn-secondary:focus{color:var(--sd-color-secondary-text) !important;background-color:var(--sd-color-secondary-highlight) !important;border-color:var(--sd-color-secondary-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-secondary{color:var(--sd-color-secondary) !important;border-color:var(--sd-color-secondary) !important;border-width:1px !important;border-style:solid !important}.sd-btn-success,.sd-btn-outline-success:hover,.sd-btn-outline-success:focus{color:var(--sd-color-success-text) !important;background-color:var(--sd-color-success) !important;border-color:var(--sd-color-success) !important;border-width:1px !important;border-style:solid !important}.sd-btn-success:hover,.sd-btn-success:focus{color:var(--sd-color-success-text) !important;background-color:var(--sd-color-success-highlight) !important;border-color:var(--sd-color-success-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-success{color:var(--sd-color-success) !important;border-color:var(--sd-color-success) !important;border-width:1px !important;border-style:solid !important}.sd-btn-info,.sd-btn-outline-info:hover,.sd-btn-outline-info:focus{color:var(--sd-color-info-text) !important;background-color:var(--sd-color-info) !important;border-color:var(--sd-color-info) !important;border-width:1px !important;border-style:solid !important}.sd-btn-info:hover,.sd-btn-info:focus{color:var(--sd-color-info-text) !important;background-color:var(--sd-color-info-highlight) !important;border-color:var(--sd-color-info-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-info{color:var(--sd-color-info) !important;border-color:var(--sd-color-info) !important;border-width:1px !important;border-style:solid !important}.sd-btn-warning,.sd-btn-outline-warning:hover,.sd-btn-outline-warning:focus{color:var(--sd-color-warning-text) !important;background-color:var(--sd-color-warning) !important;border-color:var(--sd-color-warning) !important;border-width:1px !important;border-style:solid !important}.sd-btn-warning:hover,.sd-btn-warning:focus{color:var(--sd-color-warning-text) !important;background-color:var(--sd-color-warning-highlight) !important;border-color:var(--sd-color-warning-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-warning{color:var(--sd-color-warning) !important;border-color:var(--sd-color-warning) !important;border-width:1px !important;border-style:solid !important}.sd-btn-danger,.sd-btn-outline-danger:hover,.sd-btn-outline-danger:focus{color:var(--sd-color-danger-text) !important;background-color:var(--sd-color-danger) !important;border-color:var(--sd-color-danger) !important;border-width:1px !important;border-style:solid !important}.sd-btn-danger:hover,.sd-btn-danger:focus{color:var(--sd-color-danger-text) !important;background-color:var(--sd-color-danger-highlight) !important;border-color:var(--sd-color-danger-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-danger{color:var(--sd-color-danger) !important;border-color:var(--sd-color-danger) !important;border-width:1px !important;border-style:solid !important}.sd-btn-light,.sd-btn-outline-light:hover,.sd-btn-outline-light:focus{color:var(--sd-color-light-text) !important;background-color:var(--sd-color-light) !important;border-color:var(--sd-color-light) !important;border-width:1px !important;border-style:solid !important}.sd-btn-light:hover,.sd-btn-light:focus{color:var(--sd-color-light-text) !important;background-color:var(--sd-color-light-highlight) !important;border-color:var(--sd-color-light-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-light{color:var(--sd-color-light) !important;border-color:var(--sd-color-light) !important;border-width:1px !important;border-style:solid !important}.sd-btn-muted,.sd-btn-outline-muted:hover,.sd-btn-outline-muted:focus{color:var(--sd-color-muted-text) !important;background-color:var(--sd-color-muted) !important;border-color:var(--sd-color-muted) !important;border-width:1px !important;border-style:solid !important}.sd-btn-muted:hover,.sd-btn-muted:focus{color:var(--sd-color-muted-text) !important;background-color:var(--sd-color-muted-highlight) !important;border-color:var(--sd-color-muted-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-muted{color:var(--sd-color-muted) !important;border-color:var(--sd-color-muted) !important;border-width:1px !important;border-style:solid !important}.sd-btn-dark,.sd-btn-outline-dark:hover,.sd-btn-outline-dark:focus{color:var(--sd-color-dark-text) !important;background-color:var(--sd-color-dark) !important;border-color:var(--sd-color-dark) !important;border-width:1px !important;border-style:solid !important}.sd-btn-dark:hover,.sd-btn-dark:focus{color:var(--sd-color-dark-text) !important;background-color:var(--sd-color-dark-highlight) !important;border-color:var(--sd-color-dark-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-dark{color:var(--sd-color-dark) !important;border-color:var(--sd-color-dark) !important;border-width:1px !important;border-style:solid !important}.sd-btn-black,.sd-btn-outline-black:hover,.sd-btn-outline-black:focus{color:var(--sd-color-black-text) !important;background-color:var(--sd-color-black) !important;border-color:var(--sd-color-black) !important;border-width:1px !important;border-style:solid !important}.sd-btn-black:hover,.sd-btn-black:focus{color:var(--sd-color-black-text) !important;background-color:var(--sd-color-black-highlight) !important;border-color:var(--sd-color-black-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-black{color:var(--sd-color-black) !important;border-color:var(--sd-color-black) !important;border-width:1px !important;border-style:solid !important}.sd-btn-white,.sd-btn-outline-white:hover,.sd-btn-outline-white:focus{color:var(--sd-color-white-text) !important;background-color:var(--sd-color-white) !important;border-color:var(--sd-color-white) !important;border-width:1px !important;border-style:solid !important}.sd-btn-white:hover,.sd-btn-white:focus{color:var(--sd-color-white-text) !important;background-color:var(--sd-color-white-highlight) !important;border-color:var(--sd-color-white-highlight) !important;border-width:1px !important;border-style:solid !important}.sd-btn-outline-white{color:var(--sd-color-white) !important;border-color:var(--sd-color-white) !important;border-width:1px !important;border-style:solid !important}.sd-stretched-link::after{position:absolute;top:0;right:0;bottom:0;left:0;z-index:1;content:""}.sd-hide-link-text{font-size:0}.sd-octicon,.sd-material-icon{display:inline-block;fill:currentColor;vertical-align:middle}.sd-avatar-xs{border-radius:50%;object-fit:cover;object-position:center;width:1rem;height:1rem}.sd-avatar-sm{border-radius:50%;object-fit:cover;object-position:center;width:3rem;height:3rem}.sd-avatar-md{border-radius:50%;object-fit:cover;object-position:center;width:5rem;height:5rem}.sd-avatar-lg{border-radius:50%;object-fit:cover;object-position:center;width:7rem;height:7rem}.sd-avatar-xl{border-radius:50%;object-fit:cover;object-position:center;width:10rem;height:10rem}.sd-avatar-inherit{border-radius:50%;object-fit:cover;object-position:center;width:inherit;height:inherit}.sd-avatar-initial{border-radius:50%;object-fit:cover;object-position:center;width:initial;height:initial}.sd-card{background-clip:border-box;background-color:var(--sd-color-card-background);border:1px solid var(--sd-color-card-border);border-radius:.25rem;color:var(--sd-color-card-text);display:-ms-flexbox;display:flex;-ms-flex-direction:column;flex-direction:column;min-width:0;position:relative;word-wrap:break-word}.sd-card>hr{margin-left:0;margin-right:0}.sd-card-hover:hover{border-color:var(--sd-color-card-border-hover);transform:scale(1.01)}.sd-card-body{-ms-flex:1 1 auto;flex:1 1 auto;padding:1rem 1rem}.sd-card-title{margin-bottom:.5rem}.sd-card-subtitle{margin-top:-0.25rem;margin-bottom:0}.sd-card-text:last-child{margin-bottom:0}.sd-card-link:hover{text-decoration:none}.sd-card-link+.card-link{margin-left:1rem}.sd-card-header{padding:.5rem 1rem;margin-bottom:0;background-color:var(--sd-color-card-header);border-bottom:1px solid var(--sd-color-card-border)}.sd-card-header:first-child{border-radius:calc(0.25rem - 1px) calc(0.25rem - 1px) 0 0}.sd-card-footer{padding:.5rem 1rem;background-color:var(--sd-color-card-footer);border-top:1px solid var(--sd-color-card-border)}.sd-card-footer:last-child{border-radius:0 0 calc(0.25rem - 1px) calc(0.25rem - 1px)}.sd-card-header-tabs{margin-right:-0.5rem;margin-bottom:-0.5rem;margin-left:-0.5rem;border-bottom:0}.sd-card-header-pills{margin-right:-0.5rem;margin-left:-0.5rem}.sd-card-img-overlay{position:absolute;top:0;right:0;bottom:0;left:0;padding:1rem;border-radius:calc(0.25rem - 1px)}.sd-card-img,.sd-card-img-bottom,.sd-card-img-top{width:100%}.sd-card-img,.sd-card-img-top{border-top-left-radius:calc(0.25rem - 1px);border-top-right-radius:calc(0.25rem - 1px)}.sd-card-img,.sd-card-img-bottom{border-bottom-left-radius:calc(0.25rem - 1px);border-bottom-right-radius:calc(0.25rem - 1px)}.sd-cards-carousel{width:100%;display:flex;flex-wrap:nowrap;-ms-flex-direction:row;flex-direction:row;overflow-x:hidden;scroll-snap-type:x mandatory}.sd-cards-carousel.sd-show-scrollbar{overflow-x:auto}.sd-cards-carousel:hover,.sd-cards-carousel:focus{overflow-x:auto}.sd-cards-carousel>.sd-card{flex-shrink:0;scroll-snap-align:start}.sd-cards-carousel>.sd-card:not(:last-child){margin-right:3px}.sd-card-cols-1>.sd-card{width:90%}.sd-card-cols-2>.sd-card{width:45%}.sd-card-cols-3>.sd-card{width:30%}.sd-card-cols-4>.sd-card{width:22.5%}.sd-card-cols-5>.sd-card{width:18%}.sd-card-cols-6>.sd-card{width:15%}.sd-card-cols-7>.sd-card{width:12.8571428571%}.sd-card-cols-8>.sd-card{width:11.25%}.sd-card-cols-9>.sd-card{width:10%}.sd-card-cols-10>.sd-card{width:9%}.sd-card-cols-11>.sd-card{width:8.1818181818%}.sd-card-cols-12>.sd-card{width:7.5%}.sd-container,.sd-container-fluid,.sd-container-lg,.sd-container-md,.sd-container-sm,.sd-container-xl{margin-left:auto;margin-right:auto;padding-left:var(--sd-gutter-x, 0.75rem);padding-right:var(--sd-gutter-x, 0.75rem);width:100%}@media(min-width: 576px){.sd-container-sm,.sd-container{max-width:540px}}@media(min-width: 768px){.sd-container-md,.sd-container-sm,.sd-container{max-width:720px}}@media(min-width: 992px){.sd-container-lg,.sd-container-md,.sd-container-sm,.sd-container{max-width:960px}}@media(min-width: 1200px){.sd-container-xl,.sd-container-lg,.sd-container-md,.sd-container-sm,.sd-container{max-width:1140px}}.sd-row{--sd-gutter-x: 1.5rem;--sd-gutter-y: 0;display:-ms-flexbox;display:flex;-ms-flex-wrap:wrap;flex-wrap:wrap;margin-top:calc(var(--sd-gutter-y) * -1);margin-right:calc(var(--sd-gutter-x) * -0.5);margin-left:calc(var(--sd-gutter-x) * -0.5)}.sd-row>*{box-sizing:border-box;flex-shrink:0;width:100%;max-width:100%;padding-right:calc(var(--sd-gutter-x) * 0.5);padding-left:calc(var(--sd-gutter-x) * 0.5);margin-top:var(--sd-gutter-y)}.sd-col{flex:1 0 0%;-ms-flex:1 0 0%}.sd-row-cols-auto>*{flex:0 0 auto;width:auto}.sd-row-cols-1>*{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-row-cols-2>*{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-row-cols-3>*{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-row-cols-4>*{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-row-cols-5>*{flex:0 0 auto;-ms-flex:0 0 auto;width:20%}.sd-row-cols-6>*{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-row-cols-7>*{flex:0 0 auto;-ms-flex:0 0 auto;width:14.2857142857%}.sd-row-cols-8>*{flex:0 0 auto;-ms-flex:0 0 auto;width:12.5%}.sd-row-cols-9>*{flex:0 0 auto;-ms-flex:0 0 auto;width:11.1111111111%}.sd-row-cols-10>*{flex:0 0 auto;-ms-flex:0 0 auto;width:10%}.sd-row-cols-11>*{flex:0 0 auto;-ms-flex:0 0 auto;width:9.0909090909%}.sd-row-cols-12>*{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}@media(min-width: 576px){.sd-col-sm{flex:1 0 0%;-ms-flex:1 0 0%}.sd-row-cols-sm-auto{flex:1 0 auto;-ms-flex:1 0 auto;width:100%}.sd-row-cols-sm-1>*{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-row-cols-sm-2>*{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-row-cols-sm-3>*{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-row-cols-sm-4>*{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-row-cols-sm-5>*{flex:0 0 auto;-ms-flex:0 0 auto;width:20%}.sd-row-cols-sm-6>*{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-row-cols-sm-7>*{flex:0 0 auto;-ms-flex:0 0 auto;width:14.2857142857%}.sd-row-cols-sm-8>*{flex:0 0 auto;-ms-flex:0 0 auto;width:12.5%}.sd-row-cols-sm-9>*{flex:0 0 auto;-ms-flex:0 0 auto;width:11.1111111111%}.sd-row-cols-sm-10>*{flex:0 0 auto;-ms-flex:0 0 auto;width:10%}.sd-row-cols-sm-11>*{flex:0 0 auto;-ms-flex:0 0 auto;width:9.0909090909%}.sd-row-cols-sm-12>*{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}}@media(min-width: 768px){.sd-col-md{flex:1 0 0%;-ms-flex:1 0 0%}.sd-row-cols-md-auto{flex:1 0 auto;-ms-flex:1 0 auto;width:100%}.sd-row-cols-md-1>*{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-row-cols-md-2>*{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-row-cols-md-3>*{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-row-cols-md-4>*{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-row-cols-md-5>*{flex:0 0 auto;-ms-flex:0 0 auto;width:20%}.sd-row-cols-md-6>*{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-row-cols-md-7>*{flex:0 0 auto;-ms-flex:0 0 auto;width:14.2857142857%}.sd-row-cols-md-8>*{flex:0 0 auto;-ms-flex:0 0 auto;width:12.5%}.sd-row-cols-md-9>*{flex:0 0 auto;-ms-flex:0 0 auto;width:11.1111111111%}.sd-row-cols-md-10>*{flex:0 0 auto;-ms-flex:0 0 auto;width:10%}.sd-row-cols-md-11>*{flex:0 0 auto;-ms-flex:0 0 auto;width:9.0909090909%}.sd-row-cols-md-12>*{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}}@media(min-width: 992px){.sd-col-lg{flex:1 0 0%;-ms-flex:1 0 0%}.sd-row-cols-lg-auto{flex:1 0 auto;-ms-flex:1 0 auto;width:100%}.sd-row-cols-lg-1>*{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-row-cols-lg-2>*{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-row-cols-lg-3>*{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-row-cols-lg-4>*{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-row-cols-lg-5>*{flex:0 0 auto;-ms-flex:0 0 auto;width:20%}.sd-row-cols-lg-6>*{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-row-cols-lg-7>*{flex:0 0 auto;-ms-flex:0 0 auto;width:14.2857142857%}.sd-row-cols-lg-8>*{flex:0 0 auto;-ms-flex:0 0 auto;width:12.5%}.sd-row-cols-lg-9>*{flex:0 0 auto;-ms-flex:0 0 auto;width:11.1111111111%}.sd-row-cols-lg-10>*{flex:0 0 auto;-ms-flex:0 0 auto;width:10%}.sd-row-cols-lg-11>*{flex:0 0 auto;-ms-flex:0 0 auto;width:9.0909090909%}.sd-row-cols-lg-12>*{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}}@media(min-width: 1200px){.sd-col-xl{flex:1 0 0%;-ms-flex:1 0 0%}.sd-row-cols-xl-auto{flex:1 0 auto;-ms-flex:1 0 auto;width:100%}.sd-row-cols-xl-1>*{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-row-cols-xl-2>*{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-row-cols-xl-3>*{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-row-cols-xl-4>*{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-row-cols-xl-5>*{flex:0 0 auto;-ms-flex:0 0 auto;width:20%}.sd-row-cols-xl-6>*{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-row-cols-xl-7>*{flex:0 0 auto;-ms-flex:0 0 auto;width:14.2857142857%}.sd-row-cols-xl-8>*{flex:0 0 auto;-ms-flex:0 0 auto;width:12.5%}.sd-row-cols-xl-9>*{flex:0 0 auto;-ms-flex:0 0 auto;width:11.1111111111%}.sd-row-cols-xl-10>*{flex:0 0 auto;-ms-flex:0 0 auto;width:10%}.sd-row-cols-xl-11>*{flex:0 0 auto;-ms-flex:0 0 auto;width:9.0909090909%}.sd-row-cols-xl-12>*{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}}.sd-col-auto{flex:0 0 auto;-ms-flex:0 0 auto;width:auto}.sd-col-1{flex:0 0 auto;-ms-flex:0 0 auto;width:8.3333333333%}.sd-col-2{flex:0 0 auto;-ms-flex:0 0 auto;width:16.6666666667%}.sd-col-3{flex:0 0 auto;-ms-flex:0 0 auto;width:25%}.sd-col-4{flex:0 0 auto;-ms-flex:0 0 auto;width:33.3333333333%}.sd-col-5{flex:0 0 auto;-ms-flex:0 0 auto;width:41.6666666667%}.sd-col-6{flex:0 0 auto;-ms-flex:0 0 auto;width:50%}.sd-col-7{flex:0 0 auto;-ms-flex:0 0 auto;width:58.3333333333%}.sd-col-8{flex:0 0 auto;-ms-flex:0 0 auto;width:66.6666666667%}.sd-col-9{flex:0 0 auto;-ms-flex:0 0 auto;width:75%}.sd-col-10{flex:0 0 auto;-ms-flex:0 0 auto;width:83.3333333333%}.sd-col-11{flex:0 0 auto;-ms-flex:0 0 auto;width:91.6666666667%}.sd-col-12{flex:0 0 auto;-ms-flex:0 0 auto;width:100%}.sd-g-0,.sd-gy-0{--sd-gutter-y: 0}.sd-g-0,.sd-gx-0{--sd-gutter-x: 0}.sd-g-1,.sd-gy-1{--sd-gutter-y: 0.25rem}.sd-g-1,.sd-gx-1{--sd-gutter-x: 0.25rem}.sd-g-2,.sd-gy-2{--sd-gutter-y: 0.5rem}.sd-g-2,.sd-gx-2{--sd-gutter-x: 0.5rem}.sd-g-3,.sd-gy-3{--sd-gutter-y: 1rem}.sd-g-3,.sd-gx-3{--sd-gutter-x: 1rem}.sd-g-4,.sd-gy-4{--sd-gutter-y: 1.5rem}.sd-g-4,.sd-gx-4{--sd-gutter-x: 1.5rem}.sd-g-5,.sd-gy-5{--sd-gutter-y: 3rem}.sd-g-5,.sd-gx-5{--sd-gutter-x: 3rem}@media(min-width: 576px){.sd-col-sm-auto{-ms-flex:0 0 auto;flex:0 0 auto;width:auto}.sd-col-sm-1{-ms-flex:0 0 auto;flex:0 0 auto;width:8.3333333333%}.sd-col-sm-2{-ms-flex:0 0 auto;flex:0 0 auto;width:16.6666666667%}.sd-col-sm-3{-ms-flex:0 0 auto;flex:0 0 auto;width:25%}.sd-col-sm-4{-ms-flex:0 0 auto;flex:0 0 auto;width:33.3333333333%}.sd-col-sm-5{-ms-flex:0 0 auto;flex:0 0 auto;width:41.6666666667%}.sd-col-sm-6{-ms-flex:0 0 auto;flex:0 0 auto;width:50%}.sd-col-sm-7{-ms-flex:0 0 auto;flex:0 0 auto;width:58.3333333333%}.sd-col-sm-8{-ms-flex:0 0 auto;flex:0 0 auto;width:66.6666666667%}.sd-col-sm-9{-ms-flex:0 0 auto;flex:0 0 auto;width:75%}.sd-col-sm-10{-ms-flex:0 0 auto;flex:0 0 auto;width:83.3333333333%}.sd-col-sm-11{-ms-flex:0 0 auto;flex:0 0 auto;width:91.6666666667%}.sd-col-sm-12{-ms-flex:0 0 auto;flex:0 0 auto;width:100%}.sd-g-sm-0,.sd-gy-sm-0{--sd-gutter-y: 0}.sd-g-sm-0,.sd-gx-sm-0{--sd-gutter-x: 0}.sd-g-sm-1,.sd-gy-sm-1{--sd-gutter-y: 0.25rem}.sd-g-sm-1,.sd-gx-sm-1{--sd-gutter-x: 0.25rem}.sd-g-sm-2,.sd-gy-sm-2{--sd-gutter-y: 0.5rem}.sd-g-sm-2,.sd-gx-sm-2{--sd-gutter-x: 0.5rem}.sd-g-sm-3,.sd-gy-sm-3{--sd-gutter-y: 1rem}.sd-g-sm-3,.sd-gx-sm-3{--sd-gutter-x: 1rem}.sd-g-sm-4,.sd-gy-sm-4{--sd-gutter-y: 1.5rem}.sd-g-sm-4,.sd-gx-sm-4{--sd-gutter-x: 1.5rem}.sd-g-sm-5,.sd-gy-sm-5{--sd-gutter-y: 3rem}.sd-g-sm-5,.sd-gx-sm-5{--sd-gutter-x: 3rem}}@media(min-width: 768px){.sd-col-md-auto{-ms-flex:0 0 auto;flex:0 0 auto;width:auto}.sd-col-md-1{-ms-flex:0 0 auto;flex:0 0 auto;width:8.3333333333%}.sd-col-md-2{-ms-flex:0 0 auto;flex:0 0 auto;width:16.6666666667%}.sd-col-md-3{-ms-flex:0 0 auto;flex:0 0 auto;width:25%}.sd-col-md-4{-ms-flex:0 0 auto;flex:0 0 auto;width:33.3333333333%}.sd-col-md-5{-ms-flex:0 0 auto;flex:0 0 auto;width:41.6666666667%}.sd-col-md-6{-ms-flex:0 0 auto;flex:0 0 auto;width:50%}.sd-col-md-7{-ms-flex:0 0 auto;flex:0 0 auto;width:58.3333333333%}.sd-col-md-8{-ms-flex:0 0 auto;flex:0 0 auto;width:66.6666666667%}.sd-col-md-9{-ms-flex:0 0 auto;flex:0 0 auto;width:75%}.sd-col-md-10{-ms-flex:0 0 auto;flex:0 0 auto;width:83.3333333333%}.sd-col-md-11{-ms-flex:0 0 auto;flex:0 0 auto;width:91.6666666667%}.sd-col-md-12{-ms-flex:0 0 auto;flex:0 0 auto;width:100%}.sd-g-md-0,.sd-gy-md-0{--sd-gutter-y: 0}.sd-g-md-0,.sd-gx-md-0{--sd-gutter-x: 0}.sd-g-md-1,.sd-gy-md-1{--sd-gutter-y: 0.25rem}.sd-g-md-1,.sd-gx-md-1{--sd-gutter-x: 0.25rem}.sd-g-md-2,.sd-gy-md-2{--sd-gutter-y: 0.5rem}.sd-g-md-2,.sd-gx-md-2{--sd-gutter-x: 0.5rem}.sd-g-md-3,.sd-gy-md-3{--sd-gutter-y: 1rem}.sd-g-md-3,.sd-gx-md-3{--sd-gutter-x: 1rem}.sd-g-md-4,.sd-gy-md-4{--sd-gutter-y: 1.5rem}.sd-g-md-4,.sd-gx-md-4{--sd-gutter-x: 1.5rem}.sd-g-md-5,.sd-gy-md-5{--sd-gutter-y: 3rem}.sd-g-md-5,.sd-gx-md-5{--sd-gutter-x: 3rem}}@media(min-width: 992px){.sd-col-lg-auto{-ms-flex:0 0 auto;flex:0 0 auto;width:auto}.sd-col-lg-1{-ms-flex:0 0 auto;flex:0 0 auto;width:8.3333333333%}.sd-col-lg-2{-ms-flex:0 0 auto;flex:0 0 auto;width:16.6666666667%}.sd-col-lg-3{-ms-flex:0 0 auto;flex:0 0 auto;width:25%}.sd-col-lg-4{-ms-flex:0 0 auto;flex:0 0 auto;width:33.3333333333%}.sd-col-lg-5{-ms-flex:0 0 auto;flex:0 0 auto;width:41.6666666667%}.sd-col-lg-6{-ms-flex:0 0 auto;flex:0 0 auto;width:50%}.sd-col-lg-7{-ms-flex:0 0 auto;flex:0 0 auto;width:58.3333333333%}.sd-col-lg-8{-ms-flex:0 0 auto;flex:0 0 auto;width:66.6666666667%}.sd-col-lg-9{-ms-flex:0 0 auto;flex:0 0 auto;width:75%}.sd-col-lg-10{-ms-flex:0 0 auto;flex:0 0 auto;width:83.3333333333%}.sd-col-lg-11{-ms-flex:0 0 auto;flex:0 0 auto;width:91.6666666667%}.sd-col-lg-12{-ms-flex:0 0 auto;flex:0 0 auto;width:100%}.sd-g-lg-0,.sd-gy-lg-0{--sd-gutter-y: 0}.sd-g-lg-0,.sd-gx-lg-0{--sd-gutter-x: 0}.sd-g-lg-1,.sd-gy-lg-1{--sd-gutter-y: 0.25rem}.sd-g-lg-1,.sd-gx-lg-1{--sd-gutter-x: 0.25rem}.sd-g-lg-2,.sd-gy-lg-2{--sd-gutter-y: 0.5rem}.sd-g-lg-2,.sd-gx-lg-2{--sd-gutter-x: 0.5rem}.sd-g-lg-3,.sd-gy-lg-3{--sd-gutter-y: 1rem}.sd-g-lg-3,.sd-gx-lg-3{--sd-gutter-x: 1rem}.sd-g-lg-4,.sd-gy-lg-4{--sd-gutter-y: 1.5rem}.sd-g-lg-4,.sd-gx-lg-4{--sd-gutter-x: 1.5rem}.sd-g-lg-5,.sd-gy-lg-5{--sd-gutter-y: 3rem}.sd-g-lg-5,.sd-gx-lg-5{--sd-gutter-x: 3rem}}@media(min-width: 1200px){.sd-col-xl-auto{-ms-flex:0 0 auto;flex:0 0 auto;width:auto}.sd-col-xl-1{-ms-flex:0 0 auto;flex:0 0 auto;width:8.3333333333%}.sd-col-xl-2{-ms-flex:0 0 auto;flex:0 0 auto;width:16.6666666667%}.sd-col-xl-3{-ms-flex:0 0 auto;flex:0 0 auto;width:25%}.sd-col-xl-4{-ms-flex:0 0 auto;flex:0 0 auto;width:33.3333333333%}.sd-col-xl-5{-ms-flex:0 0 auto;flex:0 0 auto;width:41.6666666667%}.sd-col-xl-6{-ms-flex:0 0 auto;flex:0 0 auto;width:50%}.sd-col-xl-7{-ms-flex:0 0 auto;flex:0 0 auto;width:58.3333333333%}.sd-col-xl-8{-ms-flex:0 0 auto;flex:0 0 auto;width:66.6666666667%}.sd-col-xl-9{-ms-flex:0 0 auto;flex:0 0 auto;width:75%}.sd-col-xl-10{-ms-flex:0 0 auto;flex:0 0 auto;width:83.3333333333%}.sd-col-xl-11{-ms-flex:0 0 auto;flex:0 0 auto;width:91.6666666667%}.sd-col-xl-12{-ms-flex:0 0 auto;flex:0 0 auto;width:100%}.sd-g-xl-0,.sd-gy-xl-0{--sd-gutter-y: 0}.sd-g-xl-0,.sd-gx-xl-0{--sd-gutter-x: 0}.sd-g-xl-1,.sd-gy-xl-1{--sd-gutter-y: 0.25rem}.sd-g-xl-1,.sd-gx-xl-1{--sd-gutter-x: 0.25rem}.sd-g-xl-2,.sd-gy-xl-2{--sd-gutter-y: 0.5rem}.sd-g-xl-2,.sd-gx-xl-2{--sd-gutter-x: 0.5rem}.sd-g-xl-3,.sd-gy-xl-3{--sd-gutter-y: 1rem}.sd-g-xl-3,.sd-gx-xl-3{--sd-gutter-x: 1rem}.sd-g-xl-4,.sd-gy-xl-4{--sd-gutter-y: 1.5rem}.sd-g-xl-4,.sd-gx-xl-4{--sd-gutter-x: 1.5rem}.sd-g-xl-5,.sd-gy-xl-5{--sd-gutter-y: 3rem}.sd-g-xl-5,.sd-gx-xl-5{--sd-gutter-x: 3rem}}.sd-flex-row-reverse{flex-direction:row-reverse !important}details.sd-dropdown{position:relative;font-size:var(--sd-fontsize-dropdown)}details.sd-dropdown:hover{cursor:pointer}details.sd-dropdown .sd-summary-content{cursor:default}details.sd-dropdown summary.sd-summary-title{padding:.5em .6em .5em 1em;font-size:var(--sd-fontsize-dropdown-title);font-weight:var(--sd-fontweight-dropdown-title);user-select:none;-moz-user-select:none;-ms-user-select:none;-webkit-user-select:none;list-style:none;display:inline-flex;justify-content:space-between}details.sd-dropdown summary.sd-summary-title::-webkit-details-marker{display:none}details.sd-dropdown summary.sd-summary-title:focus{outline:none}details.sd-dropdown summary.sd-summary-title .sd-summary-icon{margin-right:.6em;display:inline-flex;align-items:center}details.sd-dropdown summary.sd-summary-title .sd-summary-icon svg{opacity:.8}details.sd-dropdown summary.sd-summary-title .sd-summary-text{flex-grow:1;line-height:1.5;padding-right:.5rem}details.sd-dropdown summary.sd-summary-title .sd-summary-state-marker{pointer-events:none;display:inline-flex;align-items:center}details.sd-dropdown summary.sd-summary-title .sd-summary-state-marker svg{opacity:.6}details.sd-dropdown summary.sd-summary-title:hover .sd-summary-state-marker svg{opacity:1;transform:scale(1.1)}details.sd-dropdown[open] summary .sd-octicon.no-title{visibility:hidden}details.sd-dropdown .sd-summary-chevron-right{transition:.25s}details.sd-dropdown[open]>.sd-summary-title .sd-summary-chevron-right{transform:rotate(90deg)}details.sd-dropdown[open]>.sd-summary-title .sd-summary-chevron-down{transform:rotate(180deg)}details.sd-dropdown:not([open]).sd-card{border:none}details.sd-dropdown:not([open])>.sd-card-header{border:1px solid var(--sd-color-card-border);border-radius:.25rem}details.sd-dropdown.sd-fade-in[open] summary~*{-moz-animation:sd-fade-in .5s ease-in-out;-webkit-animation:sd-fade-in .5s ease-in-out;animation:sd-fade-in .5s ease-in-out}details.sd-dropdown.sd-fade-in-slide-down[open] summary~*{-moz-animation:sd-fade-in .5s ease-in-out,sd-slide-down .5s ease-in-out;-webkit-animation:sd-fade-in .5s ease-in-out,sd-slide-down .5s ease-in-out;animation:sd-fade-in .5s ease-in-out,sd-slide-down .5s ease-in-out}.sd-col>.sd-dropdown{width:100%}.sd-summary-content>.sd-tab-set:first-child{margin-top:0}@keyframes sd-fade-in{0%{opacity:0}100%{opacity:1}}@keyframes sd-slide-down{0%{transform:translate(0, -10px)}100%{transform:translate(0, 0)}}.sd-tab-set{border-radius:.125rem;display:flex;flex-wrap:wrap;margin:1em 0;position:relative}.sd-tab-set>input{opacity:0;position:absolute}.sd-tab-set>input:checked+label{border-color:var(--sd-color-tabs-underline-active);color:var(--sd-color-tabs-label-active)}.sd-tab-set>input:checked+label+.sd-tab-content{display:block}.sd-tab-set>input:not(:checked)+label:hover{color:var(--sd-color-tabs-label-hover);border-color:var(--sd-color-tabs-underline-hover)}.sd-tab-set>input:focus+label{outline-style:auto}.sd-tab-set>input:not(.focus-visible)+label{outline:none;-webkit-tap-highlight-color:transparent}.sd-tab-set>label{border-bottom:.125rem solid transparent;margin-bottom:0;color:var(--sd-color-tabs-label-inactive);border-color:var(--sd-color-tabs-underline-inactive);cursor:pointer;font-size:var(--sd-fontsize-tabs-label);font-weight:700;padding:1em 1.25em .5em;transition:color 250ms;width:auto;z-index:1}html .sd-tab-set>label:hover{color:var(--sd-color-tabs-label-active)}.sd-col>.sd-tab-set{width:100%}.sd-tab-content{box-shadow:0 -0.0625rem var(--sd-color-tabs-overline),0 .0625rem var(--sd-color-tabs-underline);display:none;order:99;padding-bottom:.75rem;padding-top:.75rem;width:100%}.sd-tab-content>:first-child{margin-top:0 !important}.sd-tab-content>:last-child{margin-bottom:0 !important}.sd-tab-content>.sd-tab-set{margin:0}.sd-sphinx-override,.sd-sphinx-override *{-moz-box-sizing:border-box;-webkit-box-sizing:border-box;box-sizing:border-box}.sd-sphinx-override p{margin-top:0}:root{--sd-color-primary: #0071bc;--sd-color-secondary: #6c757d;--sd-color-success: #28a745;--sd-color-info: #17a2b8;--sd-color-warning: #f0b37e;--sd-color-danger: #dc3545;--sd-color-light: #f8f9fa;--sd-color-muted: #6c757d;--sd-color-dark: #212529;--sd-color-black: black;--sd-color-white: white;--sd-color-primary-highlight: #0060a0;--sd-color-secondary-highlight: #5c636a;--sd-color-success-highlight: #228e3b;--sd-color-info-highlight: #148a9c;--sd-color-warning-highlight: #cc986b;--sd-color-danger-highlight: #bb2d3b;--sd-color-light-highlight: #d3d4d5;--sd-color-muted-highlight: #5c636a;--sd-color-dark-highlight: #1c1f23;--sd-color-black-highlight: black;--sd-color-white-highlight: #d9d9d9;--sd-color-primary-bg: rgba(0, 113, 188, 0.2);--sd-color-secondary-bg: rgba(108, 117, 125, 0.2);--sd-color-success-bg: rgba(40, 167, 69, 0.2);--sd-color-info-bg: rgba(23, 162, 184, 0.2);--sd-color-warning-bg: rgba(240, 179, 126, 0.2);--sd-color-danger-bg: rgba(220, 53, 69, 0.2);--sd-color-light-bg: rgba(248, 249, 250, 0.2);--sd-color-muted-bg: rgba(108, 117, 125, 0.2);--sd-color-dark-bg: rgba(33, 37, 41, 0.2);--sd-color-black-bg: rgba(0, 0, 0, 0.2);--sd-color-white-bg: rgba(255, 255, 255, 0.2);--sd-color-primary-text: #fff;--sd-color-secondary-text: #fff;--sd-color-success-text: #fff;--sd-color-info-text: #fff;--sd-color-warning-text: #212529;--sd-color-danger-text: #fff;--sd-color-light-text: #212529;--sd-color-muted-text: #fff;--sd-color-dark-text: #fff;--sd-color-black-text: #fff;--sd-color-white-text: #212529;--sd-color-shadow: rgba(0, 0, 0, 0.15);--sd-color-card-border: rgba(0, 0, 0, 0.125);--sd-color-card-border-hover: hsla(231, 99%, 66%, 1);--sd-color-card-background: transparent;--sd-color-card-text: inherit;--sd-color-card-header: transparent;--sd-color-card-footer: transparent;--sd-color-tabs-label-active: hsla(231, 99%, 66%, 1);--sd-color-tabs-label-hover: hsla(231, 99%, 66%, 1);--sd-color-tabs-label-inactive: hsl(0, 0%, 66%);--sd-color-tabs-underline-active: hsla(231, 99%, 66%, 1);--sd-color-tabs-underline-hover: rgba(178, 206, 245, 0.62);--sd-color-tabs-underline-inactive: transparent;--sd-color-tabs-overline: rgb(222, 222, 222);--sd-color-tabs-underline: rgb(222, 222, 222);--sd-fontsize-tabs-label: 1rem;--sd-fontsize-dropdown: inherit;--sd-fontsize-dropdown-title: 1rem;--sd-fontweight-dropdown-title: 700} diff --git a/_preview/44/_static/__init__.py b/_preview/44/_static/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/_preview/44/_static/__pycache__/__init__.cpython-310.pyc b/_preview/44/_static/__pycache__/__init__.cpython-310.pyc deleted file mode 100644 index 3c18ea9..0000000 Binary files a/_preview/44/_static/__pycache__/__init__.cpython-310.pyc and /dev/null differ diff --git a/_preview/44/_static/basic.css b/_preview/44/_static/basic.css deleted file mode 100644 index d54be80..0000000 --- a/_preview/44/_static/basic.css +++ /dev/null @@ -1,906 +0,0 @@ -/* - * basic.css - * ~~~~~~~~~ - * - * Sphinx stylesheet -- basic theme. - * - * :copyright: Copyright 2007-2022 by the Sphinx team, see AUTHORS. - * :license: BSD, see LICENSE for details. - * - */ - -/* -- main layout ----------------------------------------------------------- */ - -div.clearer { - clear: both; -} - -div.section::after { - display: block; - content: ''; - clear: left; -} - -/* -- relbar ---------------------------------------------------------------- */ - -div.related { - width: 100%; - font-size: 90%; -} - -div.related h3 { - display: none; -} - -div.related ul { - margin: 0; - padding: 0 0 0 10px; - list-style: none; -} - -div.related li { - display: inline; -} - -div.related li.right { - float: right; - margin-right: 5px; -} - -/* -- sidebar --------------------------------------------------------------- */ - -div.sphinxsidebarwrapper { - padding: 10px 5px 0 10px; -} - -div.sphinxsidebar { - float: left; - width: 270px; - margin-left: -100%; - font-size: 90%; - word-wrap: break-word; - overflow-wrap : break-word; -} - -div.sphinxsidebar ul { - list-style: none; -} - -div.sphinxsidebar ul ul, -div.sphinxsidebar ul.want-points { - margin-left: 20px; - list-style: square; -} - -div.sphinxsidebar ul ul { - margin-top: 0; - margin-bottom: 0; -} - -div.sphinxsidebar form { - margin-top: 10px; -} - -div.sphinxsidebar input { - border: 1px solid #98dbcc; - font-family: sans-serif; - font-size: 1em; -} - -div.sphinxsidebar #searchbox form.search { - overflow: hidden; -} - -div.sphinxsidebar #searchbox input[type="text"] { - float: left; - width: 80%; - padding: 0.25em; - box-sizing: border-box; -} - -div.sphinxsidebar #searchbox input[type="submit"] { - float: left; - width: 20%; - border-left: none; - padding: 0.25em; - box-sizing: border-box; -} - - -img { - border: 0; - max-width: 100%; -} - -/* -- search page ----------------------------------------------------------- */ - -ul.search { - margin: 10px 0 0 20px; - padding: 0; -} - -ul.search li { - padding: 5px 0 5px 20px; - background-image: url(file.png); - background-repeat: no-repeat; - background-position: 0 7px; -} - -ul.search li a { - font-weight: bold; -} - -ul.search li p.context { - color: #888; - margin: 2px 0 0 30px; - text-align: left; -} - -ul.keywordmatches li.goodmatch a { - font-weight: bold; -} - -/* -- index page ------------------------------------------------------------ */ - -table.contentstable { - width: 90%; - margin-left: auto; - margin-right: auto; -} - -table.contentstable p.biglink { - line-height: 150%; -} - -a.biglink { - font-size: 1.3em; -} - -span.linkdescr { - font-style: italic; - padding-top: 5px; - font-size: 90%; -} - -/* -- general index --------------------------------------------------------- */ - -table.indextable { - width: 100%; -} - -table.indextable td { - text-align: left; - vertical-align: top; -} - -table.indextable ul { - margin-top: 0; - margin-bottom: 0; - list-style-type: none; -} - -table.indextable > tbody > tr > td > ul { - padding-left: 0em; -} - -table.indextable tr.pcap { - height: 10px; -} - -table.indextable tr.cap { - margin-top: 10px; - background-color: #f2f2f2; -} - -img.toggler { - margin-right: 3px; - margin-top: 3px; - cursor: pointer; -} - -div.modindex-jumpbox { - border-top: 1px solid #ddd; - border-bottom: 1px solid #ddd; - margin: 1em 0 1em 0; - padding: 0.4em; -} - -div.genindex-jumpbox { - border-top: 1px solid #ddd; - border-bottom: 1px solid #ddd; - margin: 1em 0 1em 0; - padding: 0.4em; -} - -/* -- domain module index --------------------------------------------------- */ - -table.modindextable td { - padding: 2px; - border-collapse: collapse; -} - -/* -- general body styles --------------------------------------------------- */ - -div.body { - min-width: 450px; - max-width: 800px; -} - -div.body p, div.body dd, div.body li, div.body blockquote { - -moz-hyphens: auto; - -ms-hyphens: auto; - -webkit-hyphens: auto; - hyphens: auto; -} - -a.headerlink { - visibility: hidden; -} - -a.brackets:before, -span.brackets > a:before{ - content: "["; -} - -a.brackets:after, -span.brackets > a:after { - content: "]"; -} - -h1:hover > a.headerlink, -h2:hover > a.headerlink, -h3:hover > a.headerlink, -h4:hover > a.headerlink, -h5:hover > a.headerlink, -h6:hover > a.headerlink, -dt:hover > a.headerlink, -caption:hover > a.headerlink, -p.caption:hover > a.headerlink, -div.code-block-caption:hover > a.headerlink { - visibility: visible; -} - -div.body p.caption { - text-align: inherit; -} - -div.body td { - text-align: left; -} - -.first { - margin-top: 0 !important; -} - -p.rubric { - margin-top: 30px; - font-weight: bold; -} - -img.align-left, figure.align-left, .figure.align-left, object.align-left { - clear: left; - float: left; - margin-right: 1em; -} - -img.align-right, figure.align-right, .figure.align-right, object.align-right { - clear: right; - float: right; - margin-left: 1em; -} - -img.align-center, figure.align-center, .figure.align-center, object.align-center { - display: block; - margin-left: auto; - margin-right: auto; -} - -img.align-default, figure.align-default, .figure.align-default { - display: block; - margin-left: auto; - margin-right: auto; -} - -.align-left { - text-align: left; -} - -.align-center { - text-align: center; -} - -.align-default { - text-align: center; -} - -.align-right { - text-align: right; -} - -/* -- sidebars -------------------------------------------------------------- */ - -div.sidebar, -aside.sidebar { - margin: 0 0 0.5em 1em; - border: 1px solid #ddb; - padding: 7px; - background-color: #ffe; - width: 40%; - float: right; - clear: right; - overflow-x: auto; -} - -p.sidebar-title { - font-weight: bold; -} - -div.admonition, div.topic, blockquote { - clear: left; -} - -/* -- topics ---------------------------------------------------------------- */ - -div.topic { - border: 1px solid #ccc; - padding: 7px; - margin: 10px 0 10px 0; -} - -p.topic-title { - font-size: 1.1em; - font-weight: bold; - margin-top: 10px; -} - -/* -- admonitions ----------------------------------------------------------- */ - -div.admonition { - margin-top: 10px; - margin-bottom: 10px; - padding: 7px; -} - -div.admonition dt { - font-weight: bold; -} - -p.admonition-title { - margin: 0px 10px 5px 0px; - font-weight: bold; -} - -div.body p.centered { - text-align: center; - margin-top: 25px; -} - -/* -- content of sidebars/topics/admonitions -------------------------------- */ - -div.sidebar > :last-child, -aside.sidebar > :last-child, -div.topic > :last-child, -div.admonition > :last-child { - margin-bottom: 0; -} - -div.sidebar::after, -aside.sidebar::after, -div.topic::after, -div.admonition::after, -blockquote::after { - display: block; - content: ''; - clear: both; -} - -/* -- tables ---------------------------------------------------------------- */ - -table.docutils { - margin-top: 10px; - margin-bottom: 10px; - border: 0; - border-collapse: collapse; -} - -table.align-center { - margin-left: auto; - margin-right: auto; -} - -table.align-default { - margin-left: auto; - margin-right: auto; -} - -table caption span.caption-number { - font-style: italic; -} - -table caption span.caption-text { -} - -table.docutils td, table.docutils th { - padding: 1px 8px 1px 5px; - border-top: 0; - border-left: 0; - border-right: 0; - border-bottom: 1px solid #aaa; -} - -table.footnote td, table.footnote th { - border: 0 !important; -} - -th { - text-align: left; - padding-right: 5px; -} - -table.citation { - border-left: solid 1px gray; - margin-left: 1px; -} - -table.citation td { - border-bottom: none; -} - -th > :first-child, -td > :first-child { - margin-top: 0px; -} - -th > :last-child, -td > :last-child { - margin-bottom: 0px; -} - -/* -- figures --------------------------------------------------------------- */ - -div.figure, figure { - margin: 0.5em; - padding: 0.5em; -} - -div.figure p.caption, figcaption { - padding: 0.3em; -} - -div.figure p.caption span.caption-number, -figcaption span.caption-number { - font-style: italic; -} - -div.figure p.caption span.caption-text, -figcaption span.caption-text { -} - -/* -- field list styles ----------------------------------------------------- */ - -table.field-list td, table.field-list th { - border: 0 !important; -} - -.field-list ul { - margin: 0; - padding-left: 1em; -} - -.field-list p { - margin: 0; -} - -.field-name { - -moz-hyphens: manual; - -ms-hyphens: manual; - -webkit-hyphens: manual; - hyphens: manual; -} - -/* -- hlist styles ---------------------------------------------------------- */ - -table.hlist { - margin: 1em 0; -} - -table.hlist td { - vertical-align: top; -} - -/* -- object description styles --------------------------------------------- */ - -.sig { - font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; -} - -.sig-name, code.descname { - background-color: transparent; - font-weight: bold; -} - -.sig-name { - font-size: 1.1em; -} - -code.descname { - font-size: 1.2em; -} - -.sig-prename, code.descclassname { - background-color: transparent; -} - -.optional { - font-size: 1.3em; -} - -.sig-paren { - font-size: larger; -} - -.sig-param.n { - font-style: italic; -} - -/* C++ specific styling */ - -.sig-inline.c-texpr, -.sig-inline.cpp-texpr { - font-family: unset; -} - -.sig.c .k, .sig.c .kt, -.sig.cpp .k, .sig.cpp .kt { - color: #0033B3; -} - -.sig.c .m, -.sig.cpp .m { - color: #1750EB; -} - -.sig.c .s, .sig.c .sc, -.sig.cpp .s, .sig.cpp .sc { - color: #067D17; -} - - -/* -- other body styles ----------------------------------------------------- */ - -ol.arabic { - list-style: decimal; -} - -ol.loweralpha { - list-style: lower-alpha; -} - -ol.upperalpha { - list-style: upper-alpha; -} - -ol.lowerroman { - list-style: lower-roman; -} - -ol.upperroman { - list-style: upper-roman; -} - -:not(li) > ol > li:first-child > :first-child, -:not(li) > ul > li:first-child > :first-child { - margin-top: 0px; -} - -:not(li) > ol > li:last-child > :last-child, -:not(li) > ul > li:last-child > :last-child { - margin-bottom: 0px; -} - -ol.simple ol p, -ol.simple ul p, -ul.simple ol p, -ul.simple ul p { - margin-top: 0; -} - -ol.simple > li:not(:first-child) > p, -ul.simple > li:not(:first-child) > p { - margin-top: 0; -} - -ol.simple p, -ul.simple p { - margin-bottom: 0; -} - -dl.footnote > dt, -dl.citation > dt { - float: left; - margin-right: 0.5em; -} - -dl.footnote > dd, -dl.citation > dd { - margin-bottom: 0em; -} - -dl.footnote > dd:after, -dl.citation > dd:after { - content: ""; - clear: both; -} - -dl.field-list { - display: grid; - grid-template-columns: fit-content(30%) auto; -} - -dl.field-list > dt { - font-weight: bold; - word-break: break-word; - padding-left: 0.5em; - padding-right: 5px; -} - -dl.field-list > dt:after { - content: ":"; -} - -dl.field-list > dd { - padding-left: 0.5em; - margin-top: 0em; - margin-left: 0em; - margin-bottom: 0em; -} - -dl { - margin-bottom: 15px; -} - -dd > :first-child { - margin-top: 0px; -} - -dd ul, dd table { - margin-bottom: 10px; -} - -dd { - margin-top: 3px; - margin-bottom: 10px; - margin-left: 30px; -} - -dl > dd:last-child, -dl > dd:last-child > :last-child { - margin-bottom: 0; -} - -dt:target, span.highlighted { - background-color: #fbe54e; -} - -rect.highlighted { - fill: #fbe54e; -} - -dl.glossary dt { - font-weight: bold; - font-size: 1.1em; -} - -.versionmodified { - font-style: italic; -} - -.system-message { - background-color: #fda; - padding: 5px; - border: 3px solid red; -} - -.footnote:target { - background-color: #ffa; -} - -.line-block { - display: block; - margin-top: 1em; - margin-bottom: 1em; -} - -.line-block .line-block { - margin-top: 0; - margin-bottom: 0; - margin-left: 1.5em; -} - -.guilabel, .menuselection { - font-family: sans-serif; -} - -.accelerator { - text-decoration: underline; -} - -.classifier { - font-style: oblique; -} - -.classifier:before { - font-style: normal; - margin: 0 0.5em; - content: ":"; - display: inline-block; -} - -abbr, acronym { - border-bottom: dotted 1px; - cursor: help; -} - -/* -- code displays --------------------------------------------------------- */ - -pre { - overflow: auto; - overflow-y: hidden; /* fixes display issues on Chrome browsers */ -} - -pre, div[class*="highlight-"] { - clear: both; -} - -span.pre { - -moz-hyphens: none; - -ms-hyphens: none; - -webkit-hyphens: none; - hyphens: none; - white-space: nowrap; -} - -div[class*="highlight-"] { - margin: 1em 0; -} - -td.linenos pre { - border: 0; - background-color: transparent; - color: #aaa; -} - -table.highlighttable { - display: block; -} - -table.highlighttable tbody { - display: block; -} - -table.highlighttable tr { - display: flex; -} - -table.highlighttable td { - margin: 0; - padding: 0; -} - -table.highlighttable td.linenos { - padding-right: 0.5em; -} - -table.highlighttable td.code { - flex: 1; - overflow: hidden; -} - -.highlight .hll { - display: block; -} - -div.highlight pre, -table.highlighttable pre { - margin: 0; -} - -div.code-block-caption + div { - margin-top: 0; -} - -div.code-block-caption { - margin-top: 1em; - padding: 2px 5px; - font-size: small; -} - -div.code-block-caption code { - background-color: transparent; -} - -table.highlighttable td.linenos, -span.linenos, -div.highlight span.gp { /* gp: Generic.Prompt */ - user-select: none; - -webkit-user-select: text; /* Safari fallback only */ - -webkit-user-select: none; /* Chrome/Safari */ - -moz-user-select: none; /* Firefox */ - -ms-user-select: none; /* IE10+ */ -} - -div.code-block-caption span.caption-number { - padding: 0.1em 0.3em; - font-style: italic; -} - -div.code-block-caption span.caption-text { -} - -div.literal-block-wrapper { - margin: 1em 0; -} - -code.xref, a code { - background-color: transparent; - font-weight: bold; -} - -h1 code, h2 code, h3 code, h4 code, h5 code, h6 code { - background-color: transparent; -} - -.viewcode-link { - float: right; -} - -.viewcode-back { - float: right; - font-family: sans-serif; -} - -div.viewcode-block:target { - margin: -1px -10px; - padding: 0 10px; -} - -/* -- math display ---------------------------------------------------------- */ - -img.math { - vertical-align: middle; -} - -div.body div.math p { - text-align: center; -} - -span.eqno { - float: right; -} - -span.eqno a.headerlink { - position: absolute; - z-index: 1; -} - -div.math:hover a.headerlink { - visibility: visible; -} - -/* -- printout stylesheet --------------------------------------------------- */ - -@media print { - div.document, - div.documentwrapper, - div.bodywrapper { - margin: 0 !important; - width: 100%; - } - - div.sphinxsidebar, - div.related, - div.footer, - #top-link { - display: none; - } -} \ No newline at end of file diff --git a/_preview/44/_static/check-solid.svg b/_preview/44/_static/check-solid.svg deleted file mode 100644 index 92fad4b..0000000 --- a/_preview/44/_static/check-solid.svg +++ /dev/null @@ -1,4 +0,0 @@ - - - - diff --git a/_preview/44/_static/clipboard.min.js b/_preview/44/_static/clipboard.min.js deleted file mode 100644 index 54b3c46..0000000 --- a/_preview/44/_static/clipboard.min.js +++ /dev/null @@ -1,7 +0,0 @@ -/*! - * clipboard.js v2.0.8 - * https://clipboardjs.com/ - * - * Licensed MIT © Zeno Rocha - */ -!function(t,e){"object"==typeof exports&&"object"==typeof module?module.exports=e():"function"==typeof define&&define.amd?define([],e):"object"==typeof exports?exports.ClipboardJS=e():t.ClipboardJS=e()}(this,function(){return n={686:function(t,e,n){"use strict";n.d(e,{default:function(){return o}});var e=n(279),i=n.n(e),e=n(370),u=n.n(e),e=n(817),c=n.n(e);function a(t){try{return document.execCommand(t)}catch(t){return}}var f=function(t){t=c()(t);return a("cut"),t};var l=function(t){var e,n,o,r=1 - - - - diff --git a/_preview/44/_static/copybutton.css b/_preview/44/_static/copybutton.css deleted file mode 100644 index f1916ec..0000000 --- a/_preview/44/_static/copybutton.css +++ /dev/null @@ -1,94 +0,0 @@ -/* Copy buttons */ -button.copybtn { - position: absolute; - display: flex; - top: .3em; - right: .3em; - width: 1.7em; - height: 1.7em; - opacity: 0; - transition: opacity 0.3s, border .3s, background-color .3s; - user-select: none; - padding: 0; - border: none; - outline: none; - border-radius: 0.4em; - /* The colors that GitHub uses */ - border: #1b1f2426 1px solid; - background-color: #f6f8fa; - color: #57606a; -} - -button.copybtn.success { - border-color: #22863a; - color: #22863a; -} - -button.copybtn svg { - stroke: currentColor; - width: 1.5em; - height: 1.5em; - padding: 0.1em; -} - -div.highlight { - position: relative; -} - -/* Show the copybutton */ -.highlight:hover button.copybtn, button.copybtn.success { - opacity: 1; -} - -.highlight button.copybtn:hover { - background-color: rgb(235, 235, 235); -} - -.highlight button.copybtn:active { - background-color: rgb(187, 187, 187); -} - -/** - * A minimal CSS-only tooltip copied from: - * https://codepen.io/mildrenben/pen/rVBrpK - * - * To use, write HTML like the following: - * - *

Short

- */ - .o-tooltip--left { - position: relative; - } - - .o-tooltip--left:after { - opacity: 0; - visibility: hidden; - position: absolute; - content: attr(data-tooltip); - padding: .2em; - font-size: .8em; - left: -.2em; - background: grey; - color: white; - white-space: nowrap; - z-index: 2; - border-radius: 2px; - transform: translateX(-102%) translateY(0); - transition: opacity 0.2s cubic-bezier(0.64, 0.09, 0.08, 1), transform 0.2s cubic-bezier(0.64, 0.09, 0.08, 1); -} - -.o-tooltip--left:hover:after { - display: block; - opacity: 1; - visibility: visible; - transform: translateX(-100%) translateY(0); - transition: opacity 0.2s cubic-bezier(0.64, 0.09, 0.08, 1), transform 0.2s cubic-bezier(0.64, 0.09, 0.08, 1); - transition-delay: .5s; -} - -/* By default the copy button shouldn't show up when printing a page */ -@media print { - button.copybtn { - display: none; - } -} diff --git a/_preview/44/_static/copybutton.js b/_preview/44/_static/copybutton.js deleted file mode 100644 index 2ea7ff3..0000000 --- a/_preview/44/_static/copybutton.js +++ /dev/null @@ -1,248 +0,0 @@ -// Localization support -const messages = { - 'en': { - 'copy': 'Copy', - 'copy_to_clipboard': 'Copy to clipboard', - 'copy_success': 'Copied!', - 'copy_failure': 'Failed to copy', - }, - 'es' : { - 'copy': 'Copiar', - 'copy_to_clipboard': 'Copiar al portapapeles', - 'copy_success': '¡Copiado!', - 'copy_failure': 'Error al copiar', - }, - 'de' : { - 'copy': 'Kopieren', - 'copy_to_clipboard': 'In die Zwischenablage kopieren', - 'copy_success': 'Kopiert!', - 'copy_failure': 'Fehler beim Kopieren', - }, - 'fr' : { - 'copy': 'Copier', - 'copy_to_clipboard': 'Copier dans le presse-papier', - 'copy_success': 'Copié !', - 'copy_failure': 'Échec de la copie', - }, - 'ru': { - 'copy': 'Скопировать', - 'copy_to_clipboard': 'Скопировать в буфер', - 'copy_success': 'Скопировано!', - 'copy_failure': 'Не удалось скопировать', - }, - 'zh-CN': { - 'copy': '复制', - 'copy_to_clipboard': '复制到剪贴板', - 'copy_success': '复制成功!', - 'copy_failure': '复制失败', - }, - 'it' : { - 'copy': 'Copiare', - 'copy_to_clipboard': 'Copiato negli appunti', - 'copy_success': 'Copiato!', - 'copy_failure': 'Errore durante la copia', - } -} - -let locale = 'en' -if( document.documentElement.lang !== undefined - && messages[document.documentElement.lang] !== undefined ) { - locale = document.documentElement.lang -} - -let doc_url_root = DOCUMENTATION_OPTIONS.URL_ROOT; -if (doc_url_root == '#') { - doc_url_root = ''; -} - -/** - * SVG files for our copy buttons - */ -let iconCheck = ` - ${messages[locale]['copy_success']} - - -` - -// If the user specified their own SVG use that, otherwise use the default -let iconCopy = ``; -if (!iconCopy) { - iconCopy = ` - ${messages[locale]['copy_to_clipboard']} - - - -` -} - -/** - * Set up copy/paste for code blocks - */ - -const runWhenDOMLoaded = cb => { - if (document.readyState != 'loading') { - cb() - } else if (document.addEventListener) { - document.addEventListener('DOMContentLoaded', cb) - } else { - document.attachEvent('onreadystatechange', function() { - if (document.readyState == 'complete') cb() - }) - } -} - -const codeCellId = index => `codecell${index}` - -// Clears selected text since ClipboardJS will select the text when copying -const clearSelection = () => { - if (window.getSelection) { - window.getSelection().removeAllRanges() - } else if (document.selection) { - document.selection.empty() - } -} - -// Changes tooltip text for a moment, then changes it back -// We want the timeout of our `success` class to be a bit shorter than the -// tooltip and icon change, so that we can hide the icon before changing back. -var timeoutIcon = 2000; -var timeoutSuccessClass = 1500; - -const temporarilyChangeTooltip = (el, oldText, newText) => { - el.setAttribute('data-tooltip', newText) - el.classList.add('success') - // Remove success a little bit sooner than we change the tooltip - // So that we can use CSS to hide the copybutton first - setTimeout(() => el.classList.remove('success'), timeoutSuccessClass) - setTimeout(() => el.setAttribute('data-tooltip', oldText), timeoutIcon) -} - -// Changes the copy button icon for two seconds, then changes it back -const temporarilyChangeIcon = (el) => { - el.innerHTML = iconCheck; - setTimeout(() => {el.innerHTML = iconCopy}, timeoutIcon) -} - -const addCopyButtonToCodeCells = () => { - // If ClipboardJS hasn't loaded, wait a bit and try again. This - // happens because we load ClipboardJS asynchronously. - if (window.ClipboardJS === undefined) { - setTimeout(addCopyButtonToCodeCells, 250) - return - } - - // Add copybuttons to all of our code cells - const COPYBUTTON_SELECTOR = 'div.highlight pre'; - const codeCells = document.querySelectorAll(COPYBUTTON_SELECTOR) - codeCells.forEach((codeCell, index) => { - const id = codeCellId(index) - codeCell.setAttribute('id', id) - - const clipboardButton = id => - `` - codeCell.insertAdjacentHTML('afterend', clipboardButton(id)) - }) - -function escapeRegExp(string) { - return string.replace(/[.*+?^${}()|[\]\\]/g, '\\$&'); // $& means the whole matched string -} - -/** - * Removes excluded text from a Node. - * - * @param {Node} target Node to filter. - * @param {string} exclude CSS selector of nodes to exclude. - * @returns {DOMString} Text from `target` with text removed. - */ -function filterText(target, exclude) { - const clone = target.cloneNode(true); // clone as to not modify the live DOM - if (exclude) { - // remove excluded nodes - clone.querySelectorAll(exclude).forEach(node => node.remove()); - } - return clone.innerText; -} - -// Callback when a copy button is clicked. Will be passed the node that was clicked -// should then grab the text and replace pieces of text that shouldn't be used in output -function formatCopyText(textContent, copybuttonPromptText, isRegexp = false, onlyCopyPromptLines = true, removePrompts = true, copyEmptyLines = true, lineContinuationChar = "", hereDocDelim = "") { - var regexp; - var match; - - // Do we check for line continuation characters and "HERE-documents"? - var useLineCont = !!lineContinuationChar - var useHereDoc = !!hereDocDelim - - // create regexp to capture prompt and remaining line - if (isRegexp) { - regexp = new RegExp('^(' + copybuttonPromptText + ')(.*)') - } else { - regexp = new RegExp('^(' + escapeRegExp(copybuttonPromptText) + ')(.*)') - } - - const outputLines = []; - var promptFound = false; - var gotLineCont = false; - var gotHereDoc = false; - const lineGotPrompt = []; - for (const line of textContent.split('\n')) { - match = line.match(regexp) - if (match || gotLineCont || gotHereDoc) { - promptFound = regexp.test(line) - lineGotPrompt.push(promptFound) - if (removePrompts && promptFound) { - outputLines.push(match[2]) - } else { - outputLines.push(line) - } - gotLineCont = line.endsWith(lineContinuationChar) & useLineCont - if (line.includes(hereDocDelim) & useHereDoc) - gotHereDoc = !gotHereDoc - } else if (!onlyCopyPromptLines) { - outputLines.push(line) - } else if (copyEmptyLines && line.trim() === '') { - outputLines.push(line) - } - } - - // If no lines with the prompt were found then just use original lines - if (lineGotPrompt.some(v => v === true)) { - textContent = outputLines.join('\n'); - } - - // Remove a trailing newline to avoid auto-running when pasting - if (textContent.endsWith("\n")) { - textContent = textContent.slice(0, -1) - } - return textContent -} - - -var copyTargetText = (trigger) => { - var target = document.querySelector(trigger.attributes['data-clipboard-target'].value); - - // get filtered text - let exclude = '.linenos'; - - let text = filterText(target, exclude); - return formatCopyText(text, '', false, true, true, true, '', '') -} - - // Initialize with a callback so we can modify the text before copy - const clipboard = new ClipboardJS('.copybtn', {text: copyTargetText}) - - // Update UI with error/success messages - clipboard.on('success', event => { - clearSelection() - temporarilyChangeTooltip(event.trigger, messages[locale]['copy'], messages[locale]['copy_success']) - temporarilyChangeIcon(event.trigger) - }) - - clipboard.on('error', event => { - temporarilyChangeTooltip(event.trigger, messages[locale]['copy'], messages[locale]['copy_failure']) - }) -} - -runWhenDOMLoaded(addCopyButtonToCodeCells) \ No newline at end of file diff --git a/_preview/44/_static/copybutton_funcs.js b/_preview/44/_static/copybutton_funcs.js deleted file mode 100644 index dbe1aaa..0000000 --- a/_preview/44/_static/copybutton_funcs.js +++ /dev/null @@ -1,73 +0,0 @@ -function escapeRegExp(string) { - return string.replace(/[.*+?^${}()|[\]\\]/g, '\\$&'); // $& means the whole matched string -} - -/** - * Removes excluded text from a Node. - * - * @param {Node} target Node to filter. - * @param {string} exclude CSS selector of nodes to exclude. - * @returns {DOMString} Text from `target` with text removed. - */ -export function filterText(target, exclude) { - const clone = target.cloneNode(true); // clone as to not modify the live DOM - if (exclude) { - // remove excluded nodes - clone.querySelectorAll(exclude).forEach(node => node.remove()); - } - return clone.innerText; -} - -// Callback when a copy button is clicked. Will be passed the node that was clicked -// should then grab the text and replace pieces of text that shouldn't be used in output -export function formatCopyText(textContent, copybuttonPromptText, isRegexp = false, onlyCopyPromptLines = true, removePrompts = true, copyEmptyLines = true, lineContinuationChar = "", hereDocDelim = "") { - var regexp; - var match; - - // Do we check for line continuation characters and "HERE-documents"? - var useLineCont = !!lineContinuationChar - var useHereDoc = !!hereDocDelim - - // create regexp to capture prompt and remaining line - if (isRegexp) { - regexp = new RegExp('^(' + copybuttonPromptText + ')(.*)') - } else { - regexp = new RegExp('^(' + escapeRegExp(copybuttonPromptText) + ')(.*)') - } - - const outputLines = []; - var promptFound = false; - var gotLineCont = false; - var gotHereDoc = false; - const lineGotPrompt = []; - for (const line of textContent.split('\n')) { - match = line.match(regexp) - if (match || gotLineCont || gotHereDoc) { - promptFound = regexp.test(line) - lineGotPrompt.push(promptFound) - if (removePrompts && promptFound) { - outputLines.push(match[2]) - } else { - outputLines.push(line) - } - gotLineCont = line.endsWith(lineContinuationChar) & useLineCont - if (line.includes(hereDocDelim) & useHereDoc) - gotHereDoc = !gotHereDoc - } else if (!onlyCopyPromptLines) { - outputLines.push(line) - } else if (copyEmptyLines && line.trim() === '') { - outputLines.push(line) - } - } - - // If no lines with the prompt were found then just use original lines - if (lineGotPrompt.some(v => v === true)) { - textContent = outputLines.join('\n'); - } - - // Remove a trailing newline to avoid auto-running when pasting - if (textContent.endsWith("\n")) { - textContent = textContent.slice(0, -1) - } - return textContent -} diff --git a/_preview/44/_static/css/blank.css b/_preview/44/_static/css/blank.css deleted file mode 100644 index 8a686ec..0000000 --- a/_preview/44/_static/css/blank.css +++ /dev/null @@ -1,2 +0,0 @@ -/* This file is intentionally left blank to override the stylesheet of the -parent theme via theme.conf. The parent style we import directly in theme.css */ \ No newline at end of file diff --git a/_preview/44/_static/css/index.ff1ffe594081f20da1ef19478df9384b.css b/_preview/44/_static/css/index.ff1ffe594081f20da1ef19478df9384b.css deleted file mode 100644 index 9b1c5d7..0000000 --- a/_preview/44/_static/css/index.ff1ffe594081f20da1ef19478df9384b.css +++ /dev/null @@ -1,6 +0,0 @@ -/*! - * Bootstrap v4.5.0 (https://getbootstrap.com/) - * Copyright 2011-2020 The Bootstrap Authors - * Copyright 2011-2020 Twitter, Inc. - * Licensed under MIT (https://github.com/twbs/bootstrap/blob/master/LICENSE) - */:root{--blue:#007bff;--indigo:#6610f2;--purple:#6f42c1;--pink:#e83e8c;--red:#dc3545;--orange:#fd7e14;--yellow:#ffc107;--green:#28a745;--teal:#20c997;--cyan:#17a2b8;--white:#fff;--gray:#6c757d;--gray-dark:#343a40;--primary:#007bff;--secondary:#6c757d;--success:#28a745;--info:#17a2b8;--warning:#ffc107;--danger:#dc3545;--light:#f8f9fa;--dark:#343a40;--breakpoint-xs:0;--breakpoint-sm:540px;--breakpoint-md:720px;--breakpoint-lg:960px;--breakpoint-xl:1200px;--font-family-sans-serif:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,"Helvetica Neue",Arial,"Noto Sans",sans-serif,"Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol","Noto Color Emoji";--font-family-monospace:SFMono-Regular,Menlo,Monaco,Consolas,"Liberation Mono","Courier New",monospace}*,:after,:before{box-sizing:border-box}html{font-family:sans-serif;line-height:1.15;-webkit-text-size-adjust:100%;-webkit-tap-highlight-color:rgba(0,0,0,0)}article,aside,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}body{margin:0;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Helvetica Neue,Arial,Noto Sans,sans-serif,Apple Color Emoji,Segoe UI Emoji,Segoe UI Symbol,Noto Color Emoji;font-size:1rem;line-height:1.5;color:#212529;text-align:left}[tabindex="-1"]:focus:not(:focus-visible){outline:0!important}hr{box-sizing:content-box;height:0;overflow:visible}h1,h2,h3,h4,h5,h6{margin-top:0;margin-bottom:.5rem}p{margin-top:0;margin-bottom:1rem}abbr[data-original-title],abbr[title]{text-decoration:underline;text-decoration:underline dotted;cursor:help;border-bottom:0;text-decoration-skip-ink:none}address{font-style:normal;line-height:inherit}address,dl,ol,ul{margin-bottom:1rem}dl,ol,ul{margin-top:0}ol ol,ol ul,ul ol,ul ul{margin-bottom:0}dt{font-weight:700}dd{margin-bottom:.5rem;margin-left:0}blockquote{margin:0 0 1rem}b,strong{font-weight:bolder}small{font-size:80%}sub,sup{position:relative;font-size:75%;line-height:0;vertical-align:baseline}sub{bottom:-.25em}sup{top:-.5em}a{color:#007bff;background-color:transparent}a:hover{color:#0056b3}a:not([href]),a:not([href]):hover{color:inherit;text-decoration:none}code,kbd,pre,samp{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,monospace;font-size:1em}pre{margin-top:0;margin-bottom:1rem;overflow:auto;-ms-overflow-style:scrollbar}figure{margin:0 0 1rem}img{border-style:none}img,svg{vertical-align:middle}svg{overflow:hidden}table{border-collapse:collapse}caption{padding-top:.75rem;padding-bottom:.75rem;color:#6c757d;text-align:left;caption-side:bottom}th{text-align:inherit}label{display:inline-block;margin-bottom:.5rem}button{border-radius:0}button:focus{outline:1px dotted;outline:5px auto -webkit-focus-ring-color}button,input,optgroup,select,textarea{margin:0;font-family:inherit;font-size:inherit;line-height:inherit}button,input{overflow:visible}button,select{text-transform:none}[role=button]{cursor:pointer}select{word-wrap:normal}[type=button],[type=reset],[type=submit],button{-webkit-appearance:button}[type=button]:not(:disabled),[type=reset]:not(:disabled),[type=submit]:not(:disabled),button:not(:disabled){cursor:pointer}[type=button]::-moz-focus-inner,[type=reset]::-moz-focus-inner,[type=submit]::-moz-focus-inner,button::-moz-focus-inner{padding:0;border-style:none}input[type=checkbox],input[type=radio]{box-sizing:border-box;padding:0}textarea{overflow:auto;resize:vertical}fieldset{min-width:0;padding:0;margin:0;border:0}legend{display:block;width:100%;max-width:100%;padding:0;margin-bottom:.5rem;font-size:1.5rem;line-height:inherit;color:inherit;white-space:normal}progress{vertical-align:baseline}[type=number]::-webkit-inner-spin-button,[type=number]::-webkit-outer-spin-button{height:auto}[type=search]{outline-offset:-2px;-webkit-appearance:none}[type=search]::-webkit-search-decoration{-webkit-appearance:none}::-webkit-file-upload-button{font:inherit;-webkit-appearance:button}output{display:inline-block}summary{display:list-item;cursor:pointer}template{display:none}[hidden]{display:none!important}.h1,.h2,.h3,.h4,.h5,.h6,h1,h2,h3,h4,h5,h6{margin-bottom:.5rem;font-weight:500;line-height:1.2}.h1,h1{font-size:2.5rem}.h2,h2{font-size:2rem}.h3,h3{font-size:1.75rem}.h4,h4{font-size:1.5rem}.h5,h5{font-size:1.25rem}.h6,h6{font-size:1rem}.lead{font-size:1.25rem;font-weight:300}.display-1{font-size:6rem}.display-1,.display-2{font-weight:300;line-height:1.2}.display-2{font-size:5.5rem}.display-3{font-size:4.5rem}.display-3,.display-4{font-weight:300;line-height:1.2}.display-4{font-size:3.5rem}hr{margin-top:1rem;margin-bottom:1rem;border-top:1px solid rgba(0,0,0,.1)}.small,small{font-size:80%;font-weight:400}.mark,mark{padding:.2em;background-color:#fcf8e3}.list-inline,.list-unstyled{padding-left:0;list-style:none}.list-inline-item{display:inline-block}.list-inline-item:not(:last-child){margin-right:.5rem}.initialism{font-size:90%;text-transform:uppercase}.blockquote{margin-bottom:1rem;font-size:1.25rem}.blockquote-footer{display:block;font-size:80%;color:#6c757d}.blockquote-footer:before{content:"\2014\00A0"}.img-fluid,.img-thumbnail{max-width:100%;height:auto}.img-thumbnail{padding:.25rem;background-color:#fff;border:1px solid #dee2e6;border-radius:.25rem}.figure{display:inline-block}.figure-img{margin-bottom:.5rem;line-height:1}.figure-caption{font-size:90%;color:#6c757d}code{font-size:87.5%;color:#e83e8c;word-wrap:break-word}a>code{color:inherit}kbd{padding:.2rem .4rem;font-size:87.5%;color:#fff;background-color:#212529;border-radius:.2rem}kbd kbd{padding:0;font-size:100%;font-weight:700}pre{display:block;font-size:87.5%;color:#212529}pre code{font-size:inherit;color:inherit;word-break:normal}.pre-scrollable{max-height:340px;overflow-y:scroll}.container{width:100%;padding-right:15px;padding-left:15px;margin-right:auto;margin-left:auto}@media (min-width:540px){.container{max-width:540px}}@media (min-width:720px){.container{max-width:720px}}@media (min-width:960px){.container{max-width:960px}}@media (min-width:1200px){.container{max-width:1400px}}.container-fluid,.container-lg,.container-md,.container-sm,.container-xl{width:100%;padding-right:15px;padding-left:15px;margin-right:auto;margin-left:auto}@media (min-width:540px){.container,.container-sm{max-width:540px}}@media (min-width:720px){.container,.container-md,.container-sm{max-width:720px}}@media (min-width:960px){.container,.container-lg,.container-md,.container-sm{max-width:960px}}@media (min-width:1200px){.container,.container-lg,.container-md,.container-sm,.container-xl{max-width:1400px}}.row{display:flex;flex-wrap:wrap;margin-right:-15px;margin-left:-15px}.no-gutters{margin-right:0;margin-left:0}.no-gutters>.col,.no-gutters>[class*=col-]{padding-right:0;padding-left:0}.col,.col-1,.col-2,.col-3,.col-4,.col-5,.col-6,.col-7,.col-8,.col-9,.col-10,.col-11,.col-12,.col-auto,.col-lg,.col-lg-1,.col-lg-2,.col-lg-3,.col-lg-4,.col-lg-5,.col-lg-6,.col-lg-7,.col-lg-8,.col-lg-9,.col-lg-10,.col-lg-11,.col-lg-12,.col-lg-auto,.col-md,.col-md-1,.col-md-2,.col-md-3,.col-md-4,.col-md-5,.col-md-6,.col-md-7,.col-md-8,.col-md-9,.col-md-10,.col-md-11,.col-md-12,.col-md-auto,.col-sm,.col-sm-1,.col-sm-2,.col-sm-3,.col-sm-4,.col-sm-5,.col-sm-6,.col-sm-7,.col-sm-8,.col-sm-9,.col-sm-10,.col-sm-11,.col-sm-12,.col-sm-auto,.col-xl,.col-xl-1,.col-xl-2,.col-xl-3,.col-xl-4,.col-xl-5,.col-xl-6,.col-xl-7,.col-xl-8,.col-xl-9,.col-xl-10,.col-xl-11,.col-xl-12,.col-xl-auto{position:relative;width:100%;padding-right:15px;padding-left:15px}.col{flex-basis:0;flex-grow:1;min-width:0;max-width:100%}.row-cols-1>*{flex:0 0 100%;max-width:100%}.row-cols-2>*{flex:0 0 50%;max-width:50%}.row-cols-3>*{flex:0 0 33.33333%;max-width:33.33333%}.row-cols-4>*{flex:0 0 25%;max-width:25%}.row-cols-5>*{flex:0 0 20%;max-width:20%}.row-cols-6>*{flex:0 0 16.66667%;max-width:16.66667%}.col-auto{flex:0 0 auto;width:auto;max-width:100%}.col-1{flex:0 0 8.33333%;max-width:8.33333%}.col-2{flex:0 0 16.66667%;max-width:16.66667%}.col-3{flex:0 0 25%;max-width:25%}.col-4{flex:0 0 33.33333%;max-width:33.33333%}.col-5{flex:0 0 41.66667%;max-width:41.66667%}.col-6{flex:0 0 50%;max-width:50%}.col-7{flex:0 0 58.33333%;max-width:58.33333%}.col-8{flex:0 0 66.66667%;max-width:66.66667%}.col-9{flex:0 0 75%;max-width:75%}.col-10{flex:0 0 83.33333%;max-width:83.33333%}.col-11{flex:0 0 91.66667%;max-width:91.66667%}.col-12{flex:0 0 100%;max-width:100%}.order-first{order:-1}.order-last{order:13}.order-0{order:0}.order-1{order:1}.order-2{order:2}.order-3{order:3}.order-4{order:4}.order-5{order:5}.order-6{order:6}.order-7{order:7}.order-8{order:8}.order-9{order:9}.order-10{order:10}.order-11{order:11}.order-12{order:12}.offset-1{margin-left:8.33333%}.offset-2{margin-left:16.66667%}.offset-3{margin-left:25%}.offset-4{margin-left:33.33333%}.offset-5{margin-left:41.66667%}.offset-6{margin-left:50%}.offset-7{margin-left:58.33333%}.offset-8{margin-left:66.66667%}.offset-9{margin-left:75%}.offset-10{margin-left:83.33333%}.offset-11{margin-left:91.66667%}@media (min-width:540px){.col-sm{flex-basis:0;flex-grow:1;min-width:0;max-width:100%}.row-cols-sm-1>*{flex:0 0 100%;max-width:100%}.row-cols-sm-2>*{flex:0 0 50%;max-width:50%}.row-cols-sm-3>*{flex:0 0 33.33333%;max-width:33.33333%}.row-cols-sm-4>*{flex:0 0 25%;max-width:25%}.row-cols-sm-5>*{flex:0 0 20%;max-width:20%}.row-cols-sm-6>*{flex:0 0 16.66667%;max-width:16.66667%}.col-sm-auto{flex:0 0 auto;width:auto;max-width:100%}.col-sm-1{flex:0 0 8.33333%;max-width:8.33333%}.col-sm-2{flex:0 0 16.66667%;max-width:16.66667%}.col-sm-3{flex:0 0 25%;max-width:25%}.col-sm-4{flex:0 0 33.33333%;max-width:33.33333%}.col-sm-5{flex:0 0 41.66667%;max-width:41.66667%}.col-sm-6{flex:0 0 50%;max-width:50%}.col-sm-7{flex:0 0 58.33333%;max-width:58.33333%}.col-sm-8{flex:0 0 66.66667%;max-width:66.66667%}.col-sm-9{flex:0 0 75%;max-width:75%}.col-sm-10{flex:0 0 83.33333%;max-width:83.33333%}.col-sm-11{flex:0 0 91.66667%;max-width:91.66667%}.col-sm-12{flex:0 0 100%;max-width:100%}.order-sm-first{order:-1}.order-sm-last{order:13}.order-sm-0{order:0}.order-sm-1{order:1}.order-sm-2{order:2}.order-sm-3{order:3}.order-sm-4{order:4}.order-sm-5{order:5}.order-sm-6{order:6}.order-sm-7{order:7}.order-sm-8{order:8}.order-sm-9{order:9}.order-sm-10{order:10}.order-sm-11{order:11}.order-sm-12{order:12}.offset-sm-0{margin-left:0}.offset-sm-1{margin-left:8.33333%}.offset-sm-2{margin-left:16.66667%}.offset-sm-3{margin-left:25%}.offset-sm-4{margin-left:33.33333%}.offset-sm-5{margin-left:41.66667%}.offset-sm-6{margin-left:50%}.offset-sm-7{margin-left:58.33333%}.offset-sm-8{margin-left:66.66667%}.offset-sm-9{margin-left:75%}.offset-sm-10{margin-left:83.33333%}.offset-sm-11{margin-left:91.66667%}}@media (min-width:720px){.col-md{flex-basis:0;flex-grow:1;min-width:0;max-width:100%}.row-cols-md-1>*{flex:0 0 100%;max-width:100%}.row-cols-md-2>*{flex:0 0 50%;max-width:50%}.row-cols-md-3>*{flex:0 0 33.33333%;max-width:33.33333%}.row-cols-md-4>*{flex:0 0 25%;max-width:25%}.row-cols-md-5>*{flex:0 0 20%;max-width:20%}.row-cols-md-6>*{flex:0 0 16.66667%;max-width:16.66667%}.col-md-auto{flex:0 0 auto;width:auto;max-width:100%}.col-md-1{flex:0 0 8.33333%;max-width:8.33333%}.col-md-2{flex:0 0 16.66667%;max-width:16.66667%}.col-md-3{flex:0 0 25%;max-width:25%}.col-md-4{flex:0 0 33.33333%;max-width:33.33333%}.col-md-5{flex:0 0 41.66667%;max-width:41.66667%}.col-md-6{flex:0 0 50%;max-width:50%}.col-md-7{flex:0 0 58.33333%;max-width:58.33333%}.col-md-8{flex:0 0 66.66667%;max-width:66.66667%}.col-md-9{flex:0 0 75%;max-width:75%}.col-md-10{flex:0 0 83.33333%;max-width:83.33333%}.col-md-11{flex:0 0 91.66667%;max-width:91.66667%}.col-md-12{flex:0 0 100%;max-width:100%}.order-md-first{order:-1}.order-md-last{order:13}.order-md-0{order:0}.order-md-1{order:1}.order-md-2{order:2}.order-md-3{order:3}.order-md-4{order:4}.order-md-5{order:5}.order-md-6{order:6}.order-md-7{order:7}.order-md-8{order:8}.order-md-9{order:9}.order-md-10{order:10}.order-md-11{order:11}.order-md-12{order:12}.offset-md-0{margin-left:0}.offset-md-1{margin-left:8.33333%}.offset-md-2{margin-left:16.66667%}.offset-md-3{margin-left:25%}.offset-md-4{margin-left:33.33333%}.offset-md-5{margin-left:41.66667%}.offset-md-6{margin-left:50%}.offset-md-7{margin-left:58.33333%}.offset-md-8{margin-left:66.66667%}.offset-md-9{margin-left:75%}.offset-md-10{margin-left:83.33333%}.offset-md-11{margin-left:91.66667%}}@media (min-width:960px){.col-lg{flex-basis:0;flex-grow:1;min-width:0;max-width:100%}.row-cols-lg-1>*{flex:0 0 100%;max-width:100%}.row-cols-lg-2>*{flex:0 0 50%;max-width:50%}.row-cols-lg-3>*{flex:0 0 33.33333%;max-width:33.33333%}.row-cols-lg-4>*{flex:0 0 25%;max-width:25%}.row-cols-lg-5>*{flex:0 0 20%;max-width:20%}.row-cols-lg-6>*{flex:0 0 16.66667%;max-width:16.66667%}.col-lg-auto{flex:0 0 auto;width:auto;max-width:100%}.col-lg-1{flex:0 0 8.33333%;max-width:8.33333%}.col-lg-2{flex:0 0 16.66667%;max-width:16.66667%}.col-lg-3{flex:0 0 25%;max-width:25%}.col-lg-4{flex:0 0 33.33333%;max-width:33.33333%}.col-lg-5{flex:0 0 41.66667%;max-width:41.66667%}.col-lg-6{flex:0 0 50%;max-width:50%}.col-lg-7{flex:0 0 58.33333%;max-width:58.33333%}.col-lg-8{flex:0 0 66.66667%;max-width:66.66667%}.col-lg-9{flex:0 0 75%;max-width:75%}.col-lg-10{flex:0 0 83.33333%;max-width:83.33333%}.col-lg-11{flex:0 0 91.66667%;max-width:91.66667%}.col-lg-12{flex:0 0 100%;max-width:100%}.order-lg-first{order:-1}.order-lg-last{order:13}.order-lg-0{order:0}.order-lg-1{order:1}.order-lg-2{order:2}.order-lg-3{order:3}.order-lg-4{order:4}.order-lg-5{order:5}.order-lg-6{order:6}.order-lg-7{order:7}.order-lg-8{order:8}.order-lg-9{order:9}.order-lg-10{order:10}.order-lg-11{order:11}.order-lg-12{order:12}.offset-lg-0{margin-left:0}.offset-lg-1{margin-left:8.33333%}.offset-lg-2{margin-left:16.66667%}.offset-lg-3{margin-left:25%}.offset-lg-4{margin-left:33.33333%}.offset-lg-5{margin-left:41.66667%}.offset-lg-6{margin-left:50%}.offset-lg-7{margin-left:58.33333%}.offset-lg-8{margin-left:66.66667%}.offset-lg-9{margin-left:75%}.offset-lg-10{margin-left:83.33333%}.offset-lg-11{margin-left:91.66667%}}@media (min-width:1200px){.col-xl{flex-basis:0;flex-grow:1;min-width:0;max-width:100%}.row-cols-xl-1>*{flex:0 0 100%;max-width:100%}.row-cols-xl-2>*{flex:0 0 50%;max-width:50%}.row-cols-xl-3>*{flex:0 0 33.33333%;max-width:33.33333%}.row-cols-xl-4>*{flex:0 0 25%;max-width:25%}.row-cols-xl-5>*{flex:0 0 20%;max-width:20%}.row-cols-xl-6>*{flex:0 0 16.66667%;max-width:16.66667%}.col-xl-auto{flex:0 0 auto;width:auto;max-width:100%}.col-xl-1{flex:0 0 8.33333%;max-width:8.33333%}.col-xl-2{flex:0 0 16.66667%;max-width:16.66667%}.col-xl-3{flex:0 0 25%;max-width:25%}.col-xl-4{flex:0 0 33.33333%;max-width:33.33333%}.col-xl-5{flex:0 0 41.66667%;max-width:41.66667%}.col-xl-6{flex:0 0 50%;max-width:50%}.col-xl-7{flex:0 0 58.33333%;max-width:58.33333%}.col-xl-8{flex:0 0 66.66667%;max-width:66.66667%}.col-xl-9{flex:0 0 75%;max-width:75%}.col-xl-10{flex:0 0 83.33333%;max-width:83.33333%}.col-xl-11{flex:0 0 91.66667%;max-width:91.66667%}.col-xl-12{flex:0 0 100%;max-width:100%}.order-xl-first{order:-1}.order-xl-last{order:13}.order-xl-0{order:0}.order-xl-1{order:1}.order-xl-2{order:2}.order-xl-3{order:3}.order-xl-4{order:4}.order-xl-5{order:5}.order-xl-6{order:6}.order-xl-7{order:7}.order-xl-8{order:8}.order-xl-9{order:9}.order-xl-10{order:10}.order-xl-11{order:11}.order-xl-12{order:12}.offset-xl-0{margin-left:0}.offset-xl-1{margin-left:8.33333%}.offset-xl-2{margin-left:16.66667%}.offset-xl-3{margin-left:25%}.offset-xl-4{margin-left:33.33333%}.offset-xl-5{margin-left:41.66667%}.offset-xl-6{margin-left:50%}.offset-xl-7{margin-left:58.33333%}.offset-xl-8{margin-left:66.66667%}.offset-xl-9{margin-left:75%}.offset-xl-10{margin-left:83.33333%}.offset-xl-11{margin-left:91.66667%}}.table{width:100%;margin-bottom:1rem;color:#212529}.table td,.table th{padding:.75rem;vertical-align:top;border-top:1px solid #dee2e6}.table thead th{vertical-align:bottom;border-bottom:2px solid #dee2e6}.table tbody+tbody{border-top:2px solid #dee2e6}.table-sm td,.table-sm th{padding:.3rem}.table-bordered,.table-bordered td,.table-bordered th{border:1px solid #dee2e6}.table-bordered thead td,.table-bordered thead th{border-bottom-width:2px}.table-borderless tbody+tbody,.table-borderless td,.table-borderless th,.table-borderless thead th{border:0}.table-striped tbody tr:nth-of-type(odd){background-color:rgba(0,0,0,.05)}.table-hover tbody tr:hover{color:#212529;background-color:rgba(0,0,0,.075)}.table-primary,.table-primary>td,.table-primary>th{background-color:#b8daff}.table-primary tbody+tbody,.table-primary td,.table-primary th,.table-primary thead th{border-color:#7abaff}.table-hover .table-primary:hover,.table-hover .table-primary:hover>td,.table-hover .table-primary:hover>th{background-color:#9fcdff}.table-secondary,.table-secondary>td,.table-secondary>th{background-color:#d6d8db}.table-secondary tbody+tbody,.table-secondary td,.table-secondary th,.table-secondary thead th{border-color:#b3b7bb}.table-hover .table-secondary:hover,.table-hover .table-secondary:hover>td,.table-hover .table-secondary:hover>th{background-color:#c8cbcf}.table-success,.table-success>td,.table-success>th{background-color:#c3e6cb}.table-success tbody+tbody,.table-success td,.table-success th,.table-success thead th{border-color:#8fd19e}.table-hover .table-success:hover,.table-hover .table-success:hover>td,.table-hover .table-success:hover>th{background-color:#b1dfbb}.table-info,.table-info>td,.table-info>th{background-color:#bee5eb}.table-info tbody+tbody,.table-info td,.table-info th,.table-info thead th{border-color:#86cfda}.table-hover .table-info:hover,.table-hover .table-info:hover>td,.table-hover .table-info:hover>th{background-color:#abdde5}.table-warning,.table-warning>td,.table-warning>th{background-color:#ffeeba}.table-warning tbody+tbody,.table-warning td,.table-warning th,.table-warning thead th{border-color:#ffdf7e}.table-hover .table-warning:hover,.table-hover .table-warning:hover>td,.table-hover .table-warning:hover>th{background-color:#ffe8a1}.table-danger,.table-danger>td,.table-danger>th{background-color:#f5c6cb}.table-danger tbody+tbody,.table-danger td,.table-danger th,.table-danger thead th{border-color:#ed969e}.table-hover .table-danger:hover,.table-hover .table-danger:hover>td,.table-hover .table-danger:hover>th{background-color:#f1b0b7}.table-light,.table-light>td,.table-light>th{background-color:#fdfdfe}.table-light tbody+tbody,.table-light td,.table-light th,.table-light thead th{border-color:#fbfcfc}.table-hover .table-light:hover,.table-hover .table-light:hover>td,.table-hover .table-light:hover>th{background-color:#ececf6}.table-dark,.table-dark>td,.table-dark>th{background-color:#c6c8ca}.table-dark tbody+tbody,.table-dark td,.table-dark th,.table-dark thead th{border-color:#95999c}.table-hover .table-dark:hover,.table-hover .table-dark:hover>td,.table-hover .table-dark:hover>th{background-color:#b9bbbe}.table-active,.table-active>td,.table-active>th,.table-hover .table-active:hover,.table-hover .table-active:hover>td,.table-hover .table-active:hover>th{background-color:rgba(0,0,0,.075)}.table .thead-dark th{color:#fff;background-color:#343a40;border-color:#454d55}.table .thead-light th{color:#495057;background-color:#e9ecef;border-color:#dee2e6}.table-dark{color:#fff;background-color:#343a40}.table-dark td,.table-dark th,.table-dark thead th{border-color:#454d55}.table-dark.table-bordered{border:0}.table-dark.table-striped tbody tr:nth-of-type(odd){background-color:hsla(0,0%,100%,.05)}.table-dark.table-hover tbody tr:hover{color:#fff;background-color:hsla(0,0%,100%,.075)}@media (max-width:539.98px){.table-responsive-sm{display:block;width:100%;overflow-x:auto;-webkit-overflow-scrolling:touch}.table-responsive-sm>.table-bordered{border:0}}@media (max-width:719.98px){.table-responsive-md{display:block;width:100%;overflow-x:auto;-webkit-overflow-scrolling:touch}.table-responsive-md>.table-bordered{border:0}}@media (max-width:959.98px){.table-responsive-lg{display:block;width:100%;overflow-x:auto;-webkit-overflow-scrolling:touch}.table-responsive-lg>.table-bordered{border:0}}@media (max-width:1199.98px){.table-responsive-xl{display:block;width:100%;overflow-x:auto;-webkit-overflow-scrolling:touch}.table-responsive-xl>.table-bordered{border:0}}.table-responsive{display:block;width:100%;overflow-x:auto;-webkit-overflow-scrolling:touch}.table-responsive>.table-bordered{border:0}.form-control{display:block;width:100%;height:calc(1.5em + .75rem + 2px);padding:.375rem .75rem;font-size:1rem;font-weight:400;line-height:1.5;color:#495057;background-color:#fff;background-clip:padding-box;border:1px solid #ced4da;border-radius:.25rem;transition:border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media (prefers-reduced-motion:reduce){.form-control{transition:none}}.form-control::-ms-expand{background-color:transparent;border:0}.form-control:-moz-focusring{color:transparent;text-shadow:0 0 0 #495057}.form-control:focus{color:#495057;background-color:#fff;border-color:#80bdff;outline:0;box-shadow:0 0 0 .2rem rgba(0,123,255,.25)}.form-control::placeholder{color:#6c757d;opacity:1}.form-control:disabled,.form-control[readonly]{background-color:#e9ecef;opacity:1}input[type=date].form-control,input[type=datetime-local].form-control,input[type=month].form-control,input[type=time].form-control{appearance:none}select.form-control:focus::-ms-value{color:#495057;background-color:#fff}.form-control-file,.form-control-range{display:block;width:100%}.col-form-label{padding-top:calc(.375rem + 1px);padding-bottom:calc(.375rem + 1px);margin-bottom:0;font-size:inherit;line-height:1.5}.col-form-label-lg{padding-top:calc(.5rem + 1px);padding-bottom:calc(.5rem + 1px);font-size:1.25rem;line-height:1.5}.col-form-label-sm{padding-top:calc(.25rem + 1px);padding-bottom:calc(.25rem + 1px);font-size:.875rem;line-height:1.5}.form-control-plaintext{display:block;width:100%;padding:.375rem 0;margin-bottom:0;font-size:1rem;line-height:1.5;color:#212529;background-color:transparent;border:solid transparent;border-width:1px 0}.form-control-plaintext.form-control-lg,.form-control-plaintext.form-control-sm{padding-right:0;padding-left:0}.form-control-sm{height:calc(1.5em + .5rem + 2px);padding:.25rem .5rem;font-size:.875rem;line-height:1.5;border-radius:.2rem}.form-control-lg{height:calc(1.5em + 1rem + 2px);padding:.5rem 1rem;font-size:1.25rem;line-height:1.5;border-radius:.3rem}select.form-control[multiple],select.form-control[size],textarea.form-control{height:auto}.form-group{margin-bottom:1rem}.form-text{display:block;margin-top:.25rem}.form-row{display:flex;flex-wrap:wrap;margin-right:-5px;margin-left:-5px}.form-row>.col,.form-row>[class*=col-]{padding-right:5px;padding-left:5px}.form-check{position:relative;display:block;padding-left:1.25rem}.form-check-input{position:absolute;margin-top:.3rem;margin-left:-1.25rem}.form-check-input:disabled~.form-check-label,.form-check-input[disabled]~.form-check-label{color:#6c757d}.form-check-label{margin-bottom:0}.form-check-inline{display:inline-flex;align-items:center;padding-left:0;margin-right:.75rem}.form-check-inline .form-check-input{position:static;margin-top:0;margin-right:.3125rem;margin-left:0}.valid-feedback{display:none;width:100%;margin-top:.25rem;font-size:80%;color:#28a745}.valid-tooltip{position:absolute;top:100%;z-index:5;display:none;max-width:100%;padding:.25rem .5rem;margin-top:.1rem;font-size:.875rem;line-height:1.5;color:#fff;background-color:rgba(40,167,69,.9);border-radius:.25rem}.is-valid~.valid-feedback,.is-valid~.valid-tooltip,.was-validated :valid~.valid-feedback,.was-validated :valid~.valid-tooltip{display:block}.form-control.is-valid,.was-validated .form-control:valid{border-color:#28a745;padding-right:calc(1.5em + .75rem);background-image:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' width='8' height='8'%3E%3Cpath fill='%2328a745' d='M2.3 6.73L.6 4.53c-.4-1.04.46-1.4 1.1-.8l1.1 1.4 3.4-3.8c.6-.63 1.6-.27 1.2.7l-4 4.6c-.43.5-.8.4-1.1.1z'/%3E%3C/svg%3E");background-repeat:no-repeat;background-position:right calc(.375em + .1875rem) center;background-size:calc(.75em + .375rem) calc(.75em + .375rem)}.form-control.is-valid:focus,.was-validated .form-control:valid:focus{border-color:#28a745;box-shadow:0 0 0 .2rem rgba(40,167,69,.25)}.was-validated textarea.form-control:valid,textarea.form-control.is-valid{padding-right:calc(1.5em + .75rem);background-position:top calc(.375em + .1875rem) right calc(.375em + .1875rem)}.custom-select.is-valid,.was-validated .custom-select:valid{border-color:#28a745;padding-right:calc(.75em + 2.3125rem);background:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' width='4' height='5'%3E%3Cpath fill='%23343a40' d='M2 0L0 2h4zm0 5L0 3h4z'/%3E%3C/svg%3E") no-repeat right .75rem center/8px 10px,url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' width='8' height='8'%3E%3Cpath fill='%2328a745' d='M2.3 6.73L.6 4.53c-.4-1.04.46-1.4 1.1-.8l1.1 1.4 3.4-3.8c.6-.63 1.6-.27 1.2.7l-4 4.6c-.43.5-.8.4-1.1.1z'/%3E%3C/svg%3E") #fff no-repeat center right 1.75rem/calc(.75em + .375rem) calc(.75em + .375rem)}.custom-select.is-valid:focus,.was-validated .custom-select:valid:focus{border-color:#28a745;box-shadow:0 0 0 .2rem rgba(40,167,69,.25)}.form-check-input.is-valid~.form-check-label,.was-validated .form-check-input:valid~.form-check-label{color:#28a745}.form-check-input.is-valid~.valid-feedback,.form-check-input.is-valid~.valid-tooltip,.was-validated .form-check-input:valid~.valid-feedback,.was-validated .form-check-input:valid~.valid-tooltip{display:block}.custom-control-input.is-valid~.custom-control-label,.was-validated .custom-control-input:valid~.custom-control-label{color:#28a745}.custom-control-input.is-valid~.custom-control-label:before,.was-validated .custom-control-input:valid~.custom-control-label:before{border-color:#28a745}.custom-control-input.is-valid:checked~.custom-control-label:before,.was-validated .custom-control-input:valid:checked~.custom-control-label:before{border-color:#34ce57;background-color:#34ce57}.custom-control-input.is-valid:focus~.custom-control-label:before,.was-validated .custom-control-input:valid:focus~.custom-control-label:before{box-shadow:0 0 0 .2rem rgba(40,167,69,.25)}.custom-control-input.is-valid:focus:not(:checked)~.custom-control-label:before,.custom-file-input.is-valid~.custom-file-label,.was-validated .custom-control-input:valid:focus:not(:checked)~.custom-control-label:before,.was-validated .custom-file-input:valid~.custom-file-label{border-color:#28a745}.custom-file-input.is-valid:focus~.custom-file-label,.was-validated .custom-file-input:valid:focus~.custom-file-label{border-color:#28a745;box-shadow:0 0 0 .2rem rgba(40,167,69,.25)}.invalid-feedback{display:none;width:100%;margin-top:.25rem;font-size:80%;color:#dc3545}.invalid-tooltip{position:absolute;top:100%;z-index:5;display:none;max-width:100%;padding:.25rem .5rem;margin-top:.1rem;font-size:.875rem;line-height:1.5;color:#fff;background-color:rgba(220,53,69,.9);border-radius:.25rem}.is-invalid~.invalid-feedback,.is-invalid~.invalid-tooltip,.was-validated :invalid~.invalid-feedback,.was-validated :invalid~.invalid-tooltip{display:block}.form-control.is-invalid,.was-validated .form-control:invalid{border-color:#dc3545;padding-right:calc(1.5em + .75rem);background-image:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' width='12' height='12' fill='none' stroke='%23dc3545'%3E%3Ccircle cx='6' cy='6' r='4.5'/%3E%3Cpath stroke-linejoin='round' d='M5.8 3.6h.4L6 6.5z'/%3E%3Ccircle cx='6' cy='8.2' r='.6' fill='%23dc3545' stroke='none'/%3E%3C/svg%3E");background-repeat:no-repeat;background-position:right calc(.375em + .1875rem) center;background-size:calc(.75em + .375rem) calc(.75em + .375rem)}.form-control.is-invalid:focus,.was-validated .form-control:invalid:focus{border-color:#dc3545;box-shadow:0 0 0 .2rem rgba(220,53,69,.25)}.was-validated textarea.form-control:invalid,textarea.form-control.is-invalid{padding-right:calc(1.5em + .75rem);background-position:top calc(.375em + .1875rem) right calc(.375em + .1875rem)}.custom-select.is-invalid,.was-validated .custom-select:invalid{border-color:#dc3545;padding-right:calc(.75em + 2.3125rem);background:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' width='4' height='5'%3E%3Cpath fill='%23343a40' d='M2 0L0 2h4zm0 5L0 3h4z'/%3E%3C/svg%3E") no-repeat right .75rem center/8px 10px,url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' width='12' height='12' fill='none' stroke='%23dc3545'%3E%3Ccircle cx='6' cy='6' r='4.5'/%3E%3Cpath stroke-linejoin='round' d='M5.8 3.6h.4L6 6.5z'/%3E%3Ccircle cx='6' cy='8.2' r='.6' fill='%23dc3545' stroke='none'/%3E%3C/svg%3E") #fff no-repeat center right 1.75rem/calc(.75em + .375rem) calc(.75em + .375rem)}.custom-select.is-invalid:focus,.was-validated .custom-select:invalid:focus{border-color:#dc3545;box-shadow:0 0 0 .2rem rgba(220,53,69,.25)}.form-check-input.is-invalid~.form-check-label,.was-validated .form-check-input:invalid~.form-check-label{color:#dc3545}.form-check-input.is-invalid~.invalid-feedback,.form-check-input.is-invalid~.invalid-tooltip,.was-validated .form-check-input:invalid~.invalid-feedback,.was-validated .form-check-input:invalid~.invalid-tooltip{display:block}.custom-control-input.is-invalid~.custom-control-label,.was-validated .custom-control-input:invalid~.custom-control-label{color:#dc3545}.custom-control-input.is-invalid~.custom-control-label:before,.was-validated .custom-control-input:invalid~.custom-control-label:before{border-color:#dc3545}.custom-control-input.is-invalid:checked~.custom-control-label:before,.was-validated .custom-control-input:invalid:checked~.custom-control-label:before{border-color:#e4606d;background-color:#e4606d}.custom-control-input.is-invalid:focus~.custom-control-label:before,.was-validated .custom-control-input:invalid:focus~.custom-control-label:before{box-shadow:0 0 0 .2rem rgba(220,53,69,.25)}.custom-control-input.is-invalid:focus:not(:checked)~.custom-control-label:before,.custom-file-input.is-invalid~.custom-file-label,.was-validated .custom-control-input:invalid:focus:not(:checked)~.custom-control-label:before,.was-validated .custom-file-input:invalid~.custom-file-label{border-color:#dc3545}.custom-file-input.is-invalid:focus~.custom-file-label,.was-validated .custom-file-input:invalid:focus~.custom-file-label{border-color:#dc3545;box-shadow:0 0 0 .2rem rgba(220,53,69,.25)}.form-inline{display:flex;flex-flow:row wrap;align-items:center}.form-inline .form-check{width:100%}@media (min-width:540px){.form-inline label{justify-content:center}.form-inline .form-group,.form-inline label{display:flex;align-items:center;margin-bottom:0}.form-inline .form-group{flex:0 0 auto;flex-flow:row wrap}.form-inline .form-control{display:inline-block;width:auto;vertical-align:middle}.form-inline .form-control-plaintext{display:inline-block}.form-inline .custom-select,.form-inline .input-group{width:auto}.form-inline .form-check{display:flex;align-items:center;justify-content:center;width:auto;padding-left:0}.form-inline .form-check-input{position:relative;flex-shrink:0;margin-top:0;margin-right:.25rem;margin-left:0}.form-inline .custom-control{align-items:center;justify-content:center}.form-inline .custom-control-label{margin-bottom:0}}.btn{display:inline-block;font-weight:400;color:#212529;text-align:center;vertical-align:middle;user-select:none;background-color:transparent;border:1px solid transparent;padding:.375rem .75rem;font-size:1rem;line-height:1.5;border-radius:.25rem;transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media (prefers-reduced-motion:reduce){.btn{transition:none}}.btn:hover{color:#212529;text-decoration:none}.btn.focus,.btn:focus{outline:0;box-shadow:0 0 0 .2rem rgba(0,123,255,.25)}.btn.disabled,.btn:disabled{opacity:.65}.btn:not(:disabled):not(.disabled){cursor:pointer}a.btn.disabled,fieldset:disabled a.btn{pointer-events:none}.btn-primary{color:#fff;background-color:#007bff;border-color:#007bff}.btn-primary.focus,.btn-primary:focus,.btn-primary:hover{color:#fff;background-color:#0069d9;border-color:#0062cc}.btn-primary.focus,.btn-primary:focus{box-shadow:0 0 0 .2rem rgba(38,143,255,.5)}.btn-primary.disabled,.btn-primary:disabled{color:#fff;background-color:#007bff;border-color:#007bff}.btn-primary:not(:disabled):not(.disabled).active,.btn-primary:not(:disabled):not(.disabled):active,.show>.btn-primary.dropdown-toggle{color:#fff;background-color:#0062cc;border-color:#005cbf}.btn-primary:not(:disabled):not(.disabled).active:focus,.btn-primary:not(:disabled):not(.disabled):active:focus,.show>.btn-primary.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(38,143,255,.5)}.btn-secondary{color:#fff;background-color:#6c757d;border-color:#6c757d}.btn-secondary.focus,.btn-secondary:focus,.btn-secondary:hover{color:#fff;background-color:#5a6268;border-color:#545b62}.btn-secondary.focus,.btn-secondary:focus{box-shadow:0 0 0 .2rem rgba(130,138,145,.5)}.btn-secondary.disabled,.btn-secondary:disabled{color:#fff;background-color:#6c757d;border-color:#6c757d}.btn-secondary:not(:disabled):not(.disabled).active,.btn-secondary:not(:disabled):not(.disabled):active,.show>.btn-secondary.dropdown-toggle{color:#fff;background-color:#545b62;border-color:#4e555b}.btn-secondary:not(:disabled):not(.disabled).active:focus,.btn-secondary:not(:disabled):not(.disabled):active:focus,.show>.btn-secondary.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(130,138,145,.5)}.btn-success{color:#fff;background-color:#28a745;border-color:#28a745}.btn-success.focus,.btn-success:focus,.btn-success:hover{color:#fff;background-color:#218838;border-color:#1e7e34}.btn-success.focus,.btn-success:focus{box-shadow:0 0 0 .2rem rgba(72,180,97,.5)}.btn-success.disabled,.btn-success:disabled{color:#fff;background-color:#28a745;border-color:#28a745}.btn-success:not(:disabled):not(.disabled).active,.btn-success:not(:disabled):not(.disabled):active,.show>.btn-success.dropdown-toggle{color:#fff;background-color:#1e7e34;border-color:#1c7430}.btn-success:not(:disabled):not(.disabled).active:focus,.btn-success:not(:disabled):not(.disabled):active:focus,.show>.btn-success.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(72,180,97,.5)}.btn-info{color:#fff;background-color:#17a2b8;border-color:#17a2b8}.btn-info.focus,.btn-info:focus,.btn-info:hover{color:#fff;background-color:#138496;border-color:#117a8b}.btn-info.focus,.btn-info:focus{box-shadow:0 0 0 .2rem rgba(58,176,195,.5)}.btn-info.disabled,.btn-info:disabled{color:#fff;background-color:#17a2b8;border-color:#17a2b8}.btn-info:not(:disabled):not(.disabled).active,.btn-info:not(:disabled):not(.disabled):active,.show>.btn-info.dropdown-toggle{color:#fff;background-color:#117a8b;border-color:#10707f}.btn-info:not(:disabled):not(.disabled).active:focus,.btn-info:not(:disabled):not(.disabled):active:focus,.show>.btn-info.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(58,176,195,.5)}.btn-warning{color:#212529;background-color:#ffc107;border-color:#ffc107}.btn-warning.focus,.btn-warning:focus,.btn-warning:hover{color:#212529;background-color:#e0a800;border-color:#d39e00}.btn-warning.focus,.btn-warning:focus{box-shadow:0 0 0 .2rem rgba(222,170,12,.5)}.btn-warning.disabled,.btn-warning:disabled{color:#212529;background-color:#ffc107;border-color:#ffc107}.btn-warning:not(:disabled):not(.disabled).active,.btn-warning:not(:disabled):not(.disabled):active,.show>.btn-warning.dropdown-toggle{color:#212529;background-color:#d39e00;border-color:#c69500}.btn-warning:not(:disabled):not(.disabled).active:focus,.btn-warning:not(:disabled):not(.disabled):active:focus,.show>.btn-warning.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(222,170,12,.5)}.btn-danger{color:#fff;background-color:#dc3545;border-color:#dc3545}.btn-danger.focus,.btn-danger:focus,.btn-danger:hover{color:#fff;background-color:#c82333;border-color:#bd2130}.btn-danger.focus,.btn-danger:focus{box-shadow:0 0 0 .2rem rgba(225,83,97,.5)}.btn-danger.disabled,.btn-danger:disabled{color:#fff;background-color:#dc3545;border-color:#dc3545}.btn-danger:not(:disabled):not(.disabled).active,.btn-danger:not(:disabled):not(.disabled):active,.show>.btn-danger.dropdown-toggle{color:#fff;background-color:#bd2130;border-color:#b21f2d}.btn-danger:not(:disabled):not(.disabled).active:focus,.btn-danger:not(:disabled):not(.disabled):active:focus,.show>.btn-danger.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(225,83,97,.5)}.btn-light{color:#212529;background-color:#f8f9fa;border-color:#f8f9fa}.btn-light.focus,.btn-light:focus,.btn-light:hover{color:#212529;background-color:#e2e6ea;border-color:#dae0e5}.btn-light.focus,.btn-light:focus{box-shadow:0 0 0 .2rem rgba(216,217,219,.5)}.btn-light.disabled,.btn-light:disabled{color:#212529;background-color:#f8f9fa;border-color:#f8f9fa}.btn-light:not(:disabled):not(.disabled).active,.btn-light:not(:disabled):not(.disabled):active,.show>.btn-light.dropdown-toggle{color:#212529;background-color:#dae0e5;border-color:#d3d9df}.btn-light:not(:disabled):not(.disabled).active:focus,.btn-light:not(:disabled):not(.disabled):active:focus,.show>.btn-light.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(216,217,219,.5)}.btn-dark{color:#fff;background-color:#343a40;border-color:#343a40}.btn-dark.focus,.btn-dark:focus,.btn-dark:hover{color:#fff;background-color:#23272b;border-color:#1d2124}.btn-dark.focus,.btn-dark:focus{box-shadow:0 0 0 .2rem rgba(82,88,93,.5)}.btn-dark.disabled,.btn-dark:disabled{color:#fff;background-color:#343a40;border-color:#343a40}.btn-dark:not(:disabled):not(.disabled).active,.btn-dark:not(:disabled):not(.disabled):active,.show>.btn-dark.dropdown-toggle{color:#fff;background-color:#1d2124;border-color:#171a1d}.btn-dark:not(:disabled):not(.disabled).active:focus,.btn-dark:not(:disabled):not(.disabled):active:focus,.show>.btn-dark.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(82,88,93,.5)}.btn-outline-primary{color:#007bff;border-color:#007bff}.btn-outline-primary:hover{color:#fff;background-color:#007bff;border-color:#007bff}.btn-outline-primary.focus,.btn-outline-primary:focus{box-shadow:0 0 0 .2rem rgba(0,123,255,.5)}.btn-outline-primary.disabled,.btn-outline-primary:disabled{color:#007bff;background-color:transparent}.btn-outline-primary:not(:disabled):not(.disabled).active,.btn-outline-primary:not(:disabled):not(.disabled):active,.show>.btn-outline-primary.dropdown-toggle{color:#fff;background-color:#007bff;border-color:#007bff}.btn-outline-primary:not(:disabled):not(.disabled).active:focus,.btn-outline-primary:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-primary.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(0,123,255,.5)}.btn-outline-secondary{color:#6c757d;border-color:#6c757d}.btn-outline-secondary:hover{color:#fff;background-color:#6c757d;border-color:#6c757d}.btn-outline-secondary.focus,.btn-outline-secondary:focus{box-shadow:0 0 0 .2rem rgba(108,117,125,.5)}.btn-outline-secondary.disabled,.btn-outline-secondary:disabled{color:#6c757d;background-color:transparent}.btn-outline-secondary:not(:disabled):not(.disabled).active,.btn-outline-secondary:not(:disabled):not(.disabled):active,.show>.btn-outline-secondary.dropdown-toggle{color:#fff;background-color:#6c757d;border-color:#6c757d}.btn-outline-secondary:not(:disabled):not(.disabled).active:focus,.btn-outline-secondary:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-secondary.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(108,117,125,.5)}.btn-outline-success{color:#28a745;border-color:#28a745}.btn-outline-success:hover{color:#fff;background-color:#28a745;border-color:#28a745}.btn-outline-success.focus,.btn-outline-success:focus{box-shadow:0 0 0 .2rem rgba(40,167,69,.5)}.btn-outline-success.disabled,.btn-outline-success:disabled{color:#28a745;background-color:transparent}.btn-outline-success:not(:disabled):not(.disabled).active,.btn-outline-success:not(:disabled):not(.disabled):active,.show>.btn-outline-success.dropdown-toggle{color:#fff;background-color:#28a745;border-color:#28a745}.btn-outline-success:not(:disabled):not(.disabled).active:focus,.btn-outline-success:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-success.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(40,167,69,.5)}.btn-outline-info{color:#17a2b8;border-color:#17a2b8}.btn-outline-info:hover{color:#fff;background-color:#17a2b8;border-color:#17a2b8}.btn-outline-info.focus,.btn-outline-info:focus{box-shadow:0 0 0 .2rem rgba(23,162,184,.5)}.btn-outline-info.disabled,.btn-outline-info:disabled{color:#17a2b8;background-color:transparent}.btn-outline-info:not(:disabled):not(.disabled).active,.btn-outline-info:not(:disabled):not(.disabled):active,.show>.btn-outline-info.dropdown-toggle{color:#fff;background-color:#17a2b8;border-color:#17a2b8}.btn-outline-info:not(:disabled):not(.disabled).active:focus,.btn-outline-info:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-info.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(23,162,184,.5)}.btn-outline-warning{color:#ffc107;border-color:#ffc107}.btn-outline-warning:hover{color:#212529;background-color:#ffc107;border-color:#ffc107}.btn-outline-warning.focus,.btn-outline-warning:focus{box-shadow:0 0 0 .2rem rgba(255,193,7,.5)}.btn-outline-warning.disabled,.btn-outline-warning:disabled{color:#ffc107;background-color:transparent}.btn-outline-warning:not(:disabled):not(.disabled).active,.btn-outline-warning:not(:disabled):not(.disabled):active,.show>.btn-outline-warning.dropdown-toggle{color:#212529;background-color:#ffc107;border-color:#ffc107}.btn-outline-warning:not(:disabled):not(.disabled).active:focus,.btn-outline-warning:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-warning.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(255,193,7,.5)}.btn-outline-danger{color:#dc3545;border-color:#dc3545}.btn-outline-danger:hover{color:#fff;background-color:#dc3545;border-color:#dc3545}.btn-outline-danger.focus,.btn-outline-danger:focus{box-shadow:0 0 0 .2rem rgba(220,53,69,.5)}.btn-outline-danger.disabled,.btn-outline-danger:disabled{color:#dc3545;background-color:transparent}.btn-outline-danger:not(:disabled):not(.disabled).active,.btn-outline-danger:not(:disabled):not(.disabled):active,.show>.btn-outline-danger.dropdown-toggle{color:#fff;background-color:#dc3545;border-color:#dc3545}.btn-outline-danger:not(:disabled):not(.disabled).active:focus,.btn-outline-danger:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-danger.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(220,53,69,.5)}.btn-outline-light{color:#f8f9fa;border-color:#f8f9fa}.btn-outline-light:hover{color:#212529;background-color:#f8f9fa;border-color:#f8f9fa}.btn-outline-light.focus,.btn-outline-light:focus{box-shadow:0 0 0 .2rem rgba(248,249,250,.5)}.btn-outline-light.disabled,.btn-outline-light:disabled{color:#f8f9fa;background-color:transparent}.btn-outline-light:not(:disabled):not(.disabled).active,.btn-outline-light:not(:disabled):not(.disabled):active,.show>.btn-outline-light.dropdown-toggle{color:#212529;background-color:#f8f9fa;border-color:#f8f9fa}.btn-outline-light:not(:disabled):not(.disabled).active:focus,.btn-outline-light:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-light.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(248,249,250,.5)}.btn-outline-dark{color:#343a40;border-color:#343a40}.btn-outline-dark:hover{color:#fff;background-color:#343a40;border-color:#343a40}.btn-outline-dark.focus,.btn-outline-dark:focus{box-shadow:0 0 0 .2rem rgba(52,58,64,.5)}.btn-outline-dark.disabled,.btn-outline-dark:disabled{color:#343a40;background-color:transparent}.btn-outline-dark:not(:disabled):not(.disabled).active,.btn-outline-dark:not(:disabled):not(.disabled):active,.show>.btn-outline-dark.dropdown-toggle{color:#fff;background-color:#343a40;border-color:#343a40}.btn-outline-dark:not(:disabled):not(.disabled).active:focus,.btn-outline-dark:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-dark.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(52,58,64,.5)}.btn-link{font-weight:400;color:#007bff;text-decoration:none}.btn-link:hover{color:#0056b3}.btn-link.focus,.btn-link:focus,.btn-link:hover{text-decoration:underline}.btn-link.disabled,.btn-link:disabled{color:#6c757d;pointer-events:none}.btn-group-lg>.btn,.btn-lg{padding:.5rem 1rem;font-size:1.25rem;line-height:1.5;border-radius:.3rem}.btn-group-sm>.btn,.btn-sm{padding:.25rem .5rem;font-size:.875rem;line-height:1.5;border-radius:.2rem}.btn-block{display:block;width:100%}.btn-block+.btn-block{margin-top:.5rem}input[type=button].btn-block,input[type=reset].btn-block,input[type=submit].btn-block{width:100%}.fade{transition:opacity .15s linear}@media (prefers-reduced-motion:reduce){.fade{transition:none}}.fade:not(.show){opacity:0}.collapse:not(.show){display:none}.collapsing{position:relative;height:0;overflow:hidden;transition:height .35s ease}@media (prefers-reduced-motion:reduce){.collapsing{transition:none}}.dropdown,.dropleft,.dropright,.dropup{position:relative}.dropdown-toggle{white-space:nowrap}.dropdown-toggle:after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";border-top:.3em solid;border-right:.3em solid transparent;border-bottom:0;border-left:.3em solid transparent}.dropdown-toggle:empty:after{margin-left:0}.dropdown-menu{position:absolute;top:100%;left:0;z-index:1000;display:none;float:left;min-width:10rem;padding:.5rem 0;margin:.125rem 0 0;font-size:1rem;color:#212529;text-align:left;list-style:none;background-color:#fff;background-clip:padding-box;border:1px solid rgba(0,0,0,.15);border-radius:.25rem}.dropdown-menu-left{right:auto;left:0}.dropdown-menu-right{right:0;left:auto}@media (min-width:540px){.dropdown-menu-sm-left{right:auto;left:0}.dropdown-menu-sm-right{right:0;left:auto}}@media (min-width:720px){.dropdown-menu-md-left{right:auto;left:0}.dropdown-menu-md-right{right:0;left:auto}}@media (min-width:960px){.dropdown-menu-lg-left{right:auto;left:0}.dropdown-menu-lg-right{right:0;left:auto}}@media (min-width:1200px){.dropdown-menu-xl-left{right:auto;left:0}.dropdown-menu-xl-right{right:0;left:auto}}.dropup .dropdown-menu{top:auto;bottom:100%;margin-top:0;margin-bottom:.125rem}.dropup .dropdown-toggle:after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";border-top:0;border-right:.3em solid transparent;border-bottom:.3em solid;border-left:.3em solid transparent}.dropup .dropdown-toggle:empty:after{margin-left:0}.dropright .dropdown-menu{top:0;right:auto;left:100%;margin-top:0;margin-left:.125rem}.dropright .dropdown-toggle:after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";border-top:.3em solid transparent;border-right:0;border-bottom:.3em solid transparent;border-left:.3em solid}.dropright .dropdown-toggle:empty:after{margin-left:0}.dropright .dropdown-toggle:after{vertical-align:0}.dropleft .dropdown-menu{top:0;right:100%;left:auto;margin-top:0;margin-right:.125rem}.dropleft .dropdown-toggle:after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";display:none}.dropleft .dropdown-toggle:before{display:inline-block;margin-right:.255em;vertical-align:.255em;content:"";border-top:.3em solid transparent;border-right:.3em solid;border-bottom:.3em solid transparent}.dropleft .dropdown-toggle:empty:after{margin-left:0}.dropleft .dropdown-toggle:before{vertical-align:0}.dropdown-menu[x-placement^=bottom],.dropdown-menu[x-placement^=left],.dropdown-menu[x-placement^=right],.dropdown-menu[x-placement^=top]{right:auto;bottom:auto}.dropdown-divider{height:0;margin:.5rem 0;overflow:hidden;border-top:1px solid #e9ecef}.dropdown-item{display:block;width:100%;padding:.25rem 1.5rem;clear:both;font-weight:400;color:#212529;text-align:inherit;white-space:nowrap;background-color:transparent;border:0}.dropdown-item:focus,.dropdown-item:hover{color:#16181b;text-decoration:none;background-color:#f8f9fa}.dropdown-item.active,.dropdown-item:active{color:#fff;text-decoration:none;background-color:#007bff}.dropdown-item.disabled,.dropdown-item:disabled{color:#6c757d;pointer-events:none;background-color:transparent}.dropdown-menu.show{display:block}.dropdown-header{display:block;padding:.5rem 1.5rem;margin-bottom:0;font-size:.875rem;color:#6c757d;white-space:nowrap}.dropdown-item-text{display:block;padding:.25rem 1.5rem;color:#212529}.btn-group,.btn-group-vertical{position:relative;display:inline-flex;vertical-align:middle}.btn-group-vertical>.btn,.btn-group>.btn{position:relative;flex:1 1 auto}.btn-group-vertical>.btn.active,.btn-group-vertical>.btn:active,.btn-group-vertical>.btn:focus,.btn-group-vertical>.btn:hover,.btn-group>.btn.active,.btn-group>.btn:active,.btn-group>.btn:focus,.btn-group>.btn:hover{z-index:1}.btn-toolbar{display:flex;flex-wrap:wrap;justify-content:flex-start}.btn-toolbar .input-group{width:auto}.btn-group>.btn-group:not(:first-child),.btn-group>.btn:not(:first-child){margin-left:-1px}.btn-group>.btn-group:not(:last-child)>.btn,.btn-group>.btn:not(:last-child):not(.dropdown-toggle){border-top-right-radius:0;border-bottom-right-radius:0}.btn-group>.btn-group:not(:first-child)>.btn,.btn-group>.btn:not(:first-child){border-top-left-radius:0;border-bottom-left-radius:0}.dropdown-toggle-split{padding-right:.5625rem;padding-left:.5625rem}.dropdown-toggle-split:after,.dropright .dropdown-toggle-split:after,.dropup .dropdown-toggle-split:after{margin-left:0}.dropleft .dropdown-toggle-split:before{margin-right:0}.btn-group-sm>.btn+.dropdown-toggle-split,.btn-sm+.dropdown-toggle-split{padding-right:.375rem;padding-left:.375rem}.btn-group-lg>.btn+.dropdown-toggle-split,.btn-lg+.dropdown-toggle-split{padding-right:.75rem;padding-left:.75rem}.btn-group-vertical{flex-direction:column;align-items:flex-start;justify-content:center}.btn-group-vertical>.btn,.btn-group-vertical>.btn-group{width:100%}.btn-group-vertical>.btn-group:not(:first-child),.btn-group-vertical>.btn:not(:first-child){margin-top:-1px}.btn-group-vertical>.btn-group:not(:last-child)>.btn,.btn-group-vertical>.btn:not(:last-child):not(.dropdown-toggle){border-bottom-right-radius:0;border-bottom-left-radius:0}.btn-group-vertical>.btn-group:not(:first-child)>.btn,.btn-group-vertical>.btn:not(:first-child){border-top-left-radius:0;border-top-right-radius:0}.btn-group-toggle>.btn,.btn-group-toggle>.btn-group>.btn{margin-bottom:0}.btn-group-toggle>.btn-group>.btn input[type=checkbox],.btn-group-toggle>.btn-group>.btn input[type=radio],.btn-group-toggle>.btn input[type=checkbox],.btn-group-toggle>.btn input[type=radio]{position:absolute;clip:rect(0,0,0,0);pointer-events:none}.input-group{position:relative;display:flex;flex-wrap:wrap;align-items:stretch;width:100%}.input-group>.custom-file,.input-group>.custom-select,.input-group>.form-control,.input-group>.form-control-plaintext{position:relative;flex:1 1 auto;width:1%;min-width:0;margin-bottom:0}.input-group>.custom-file+.custom-file,.input-group>.custom-file+.custom-select,.input-group>.custom-file+.form-control,.input-group>.custom-select+.custom-file,.input-group>.custom-select+.custom-select,.input-group>.custom-select+.form-control,.input-group>.form-control+.custom-file,.input-group>.form-control+.custom-select,.input-group>.form-control+.form-control,.input-group>.form-control-plaintext+.custom-file,.input-group>.form-control-plaintext+.custom-select,.input-group>.form-control-plaintext+.form-control{margin-left:-1px}.input-group>.custom-file .custom-file-input:focus~.custom-file-label,.input-group>.custom-select:focus,.input-group>.form-control:focus{z-index:3}.input-group>.custom-file .custom-file-input:focus{z-index:4}.input-group>.custom-select:not(:last-child),.input-group>.form-control:not(:last-child){border-top-right-radius:0;border-bottom-right-radius:0}.input-group>.custom-select:not(:first-child),.input-group>.form-control:not(:first-child){border-top-left-radius:0;border-bottom-left-radius:0}.input-group>.custom-file{display:flex;align-items:center}.input-group>.custom-file:not(:last-child) .custom-file-label,.input-group>.custom-file:not(:last-child) .custom-file-label:after{border-top-right-radius:0;border-bottom-right-radius:0}.input-group>.custom-file:not(:first-child) .custom-file-label{border-top-left-radius:0;border-bottom-left-radius:0}.input-group-append,.input-group-prepend{display:flex}.input-group-append .btn,.input-group-prepend .btn{position:relative;z-index:2}.input-group-append .btn:focus,.input-group-prepend .btn:focus{z-index:3}.input-group-append .btn+.btn,.input-group-append .btn+.input-group-text,.input-group-append .input-group-text+.btn,.input-group-append .input-group-text+.input-group-text,.input-group-prepend .btn+.btn,.input-group-prepend .btn+.input-group-text,.input-group-prepend .input-group-text+.btn,.input-group-prepend .input-group-text+.input-group-text{margin-left:-1px}.input-group-prepend{margin-right:-1px}.input-group-append{margin-left:-1px}.input-group-text{display:flex;align-items:center;padding:.375rem .75rem;margin-bottom:0;font-size:1rem;font-weight:400;line-height:1.5;color:#495057;text-align:center;white-space:nowrap;background-color:#e9ecef;border:1px solid #ced4da;border-radius:.25rem}.input-group-text input[type=checkbox],.input-group-text input[type=radio]{margin-top:0}.input-group-lg>.custom-select,.input-group-lg>.form-control:not(textarea){height:calc(1.5em + 1rem + 2px)}.input-group-lg>.custom-select,.input-group-lg>.form-control,.input-group-lg>.input-group-append>.btn,.input-group-lg>.input-group-append>.input-group-text,.input-group-lg>.input-group-prepend>.btn,.input-group-lg>.input-group-prepend>.input-group-text{padding:.5rem 1rem;font-size:1.25rem;line-height:1.5;border-radius:.3rem}.input-group-sm>.custom-select,.input-group-sm>.form-control:not(textarea){height:calc(1.5em + .5rem + 2px)}.input-group-sm>.custom-select,.input-group-sm>.form-control,.input-group-sm>.input-group-append>.btn,.input-group-sm>.input-group-append>.input-group-text,.input-group-sm>.input-group-prepend>.btn,.input-group-sm>.input-group-prepend>.input-group-text{padding:.25rem .5rem;font-size:.875rem;line-height:1.5;border-radius:.2rem}.input-group-lg>.custom-select,.input-group-sm>.custom-select{padding-right:1.75rem}.input-group>.input-group-append:last-child>.btn:not(:last-child):not(.dropdown-toggle),.input-group>.input-group-append:last-child>.input-group-text:not(:last-child),.input-group>.input-group-append:not(:last-child)>.btn,.input-group>.input-group-append:not(:last-child)>.input-group-text,.input-group>.input-group-prepend>.btn,.input-group>.input-group-prepend>.input-group-text{border-top-right-radius:0;border-bottom-right-radius:0}.input-group>.input-group-append>.btn,.input-group>.input-group-append>.input-group-text,.input-group>.input-group-prepend:first-child>.btn:not(:first-child),.input-group>.input-group-prepend:first-child>.input-group-text:not(:first-child),.input-group>.input-group-prepend:not(:first-child)>.btn,.input-group>.input-group-prepend:not(:first-child)>.input-group-text{border-top-left-radius:0;border-bottom-left-radius:0}.custom-control{position:relative;display:block;min-height:1.5rem;padding-left:1.5rem}.custom-control-inline{display:inline-flex;margin-right:1rem}.custom-control-input{position:absolute;left:0;z-index:-1;width:1rem;height:1.25rem;opacity:0}.custom-control-input:checked~.custom-control-label:before{color:#fff;border-color:#007bff;background-color:#007bff}.custom-control-input:focus~.custom-control-label:before{box-shadow:0 0 0 .2rem rgba(0,123,255,.25)}.custom-control-input:focus:not(:checked)~.custom-control-label:before{border-color:#80bdff}.custom-control-input:not(:disabled):active~.custom-control-label:before{color:#fff;background-color:#b3d7ff;border-color:#b3d7ff}.custom-control-input:disabled~.custom-control-label,.custom-control-input[disabled]~.custom-control-label{color:#6c757d}.custom-control-input:disabled~.custom-control-label:before,.custom-control-input[disabled]~.custom-control-label:before{background-color:#e9ecef}.custom-control-label{position:relative;margin-bottom:0;vertical-align:top}.custom-control-label:before{pointer-events:none;background-color:#fff;border:1px solid #adb5bd}.custom-control-label:after,.custom-control-label:before{position:absolute;top:.25rem;left:-1.5rem;display:block;width:1rem;height:1rem;content:""}.custom-control-label:after{background:no-repeat 50%/50% 50%}.custom-checkbox .custom-control-label:before{border-radius:.25rem}.custom-checkbox .custom-control-input:checked~.custom-control-label:after{background-image:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' width='8' height='8'%3E%3Cpath fill='%23fff' d='M6.564.75l-3.59 3.612-1.538-1.55L0 4.26l2.974 2.99L8 2.193z'/%3E%3C/svg%3E")}.custom-checkbox .custom-control-input:indeterminate~.custom-control-label:before{border-color:#007bff;background-color:#007bff}.custom-checkbox .custom-control-input:indeterminate~.custom-control-label:after{background-image:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' width='4' height='4'%3E%3Cpath stroke='%23fff' d='M0 2h4'/%3E%3C/svg%3E")}.custom-checkbox .custom-control-input:disabled:checked~.custom-control-label:before{background-color:rgba(0,123,255,.5)}.custom-checkbox .custom-control-input:disabled:indeterminate~.custom-control-label:before{background-color:rgba(0,123,255,.5)}.custom-radio .custom-control-label:before{border-radius:50%}.custom-radio .custom-control-input:checked~.custom-control-label:after{background-image:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' width='12' height='12' viewBox='-4 -4 8 8'%3E%3Ccircle r='3' fill='%23fff'/%3E%3C/svg%3E")}.custom-radio .custom-control-input:disabled:checked~.custom-control-label:before{background-color:rgba(0,123,255,.5)}.custom-switch{padding-left:2.25rem}.custom-switch .custom-control-label:before{left:-2.25rem;width:1.75rem;pointer-events:all;border-radius:.5rem}.custom-switch .custom-control-label:after{top:calc(.25rem + 2px);left:calc(-2.25rem + 2px);width:calc(1rem - 4px);height:calc(1rem - 4px);background-color:#adb5bd;border-radius:.5rem;transition:transform .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media (prefers-reduced-motion:reduce){.custom-switch .custom-control-label:after{transition:none}}.custom-switch .custom-control-input:checked~.custom-control-label:after{background-color:#fff;transform:translateX(.75rem)}.custom-switch .custom-control-input:disabled:checked~.custom-control-label:before{background-color:rgba(0,123,255,.5)}.custom-select{display:inline-block;width:100%;height:calc(1.5em + .75rem + 2px);padding:.375rem 1.75rem .375rem .75rem;font-size:1rem;font-weight:400;line-height:1.5;color:#495057;vertical-align:middle;background:#fff url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' width='4' height='5'%3E%3Cpath fill='%23343a40' d='M2 0L0 2h4zm0 5L0 3h4z'/%3E%3C/svg%3E") no-repeat right .75rem center/8px 10px;border:1px solid #ced4da;border-radius:.25rem;appearance:none}.custom-select:focus{border-color:#80bdff;outline:0;box-shadow:0 0 0 .2rem rgba(0,123,255,.25)}.custom-select:focus::-ms-value{color:#495057;background-color:#fff}.custom-select[multiple],.custom-select[size]:not([size="1"]){height:auto;padding-right:.75rem;background-image:none}.custom-select:disabled{color:#6c757d;background-color:#e9ecef}.custom-select::-ms-expand{display:none}.custom-select:-moz-focusring{color:transparent;text-shadow:0 0 0 #495057}.custom-select-sm{height:calc(1.5em + .5rem + 2px);padding-top:.25rem;padding-bottom:.25rem;padding-left:.5rem;font-size:.875rem}.custom-select-lg{height:calc(1.5em + 1rem + 2px);padding-top:.5rem;padding-bottom:.5rem;padding-left:1rem;font-size:1.25rem}.custom-file{display:inline-block;margin-bottom:0}.custom-file,.custom-file-input{position:relative;width:100%;height:calc(1.5em + .75rem + 2px)}.custom-file-input{z-index:2;margin:0;opacity:0}.custom-file-input:focus~.custom-file-label{border-color:#80bdff;box-shadow:0 0 0 .2rem rgba(0,123,255,.25)}.custom-file-input:disabled~.custom-file-label,.custom-file-input[disabled]~.custom-file-label{background-color:#e9ecef}.custom-file-input:lang(en)~.custom-file-label:after{content:"Browse"}.custom-file-input~.custom-file-label[data-browse]:after{content:attr(data-browse)}.custom-file-label{left:0;z-index:1;height:calc(1.5em + .75rem + 2px);font-weight:400;background-color:#fff;border:1px solid #ced4da;border-radius:.25rem}.custom-file-label,.custom-file-label:after{position:absolute;top:0;right:0;padding:.375rem .75rem;line-height:1.5;color:#495057}.custom-file-label:after{bottom:0;z-index:3;display:block;height:calc(1.5em + .75rem);content:"Browse";background-color:#e9ecef;border-left:inherit;border-radius:0 .25rem .25rem 0}.custom-range{width:100%;height:1.4rem;padding:0;background-color:transparent;appearance:none}.custom-range:focus{outline:none}.custom-range:focus::-webkit-slider-thumb{box-shadow:0 0 0 1px #fff,0 0 0 .2rem rgba(0,123,255,.25)}.custom-range:focus::-moz-range-thumb{box-shadow:0 0 0 1px #fff,0 0 0 .2rem rgba(0,123,255,.25)}.custom-range:focus::-ms-thumb{box-shadow:0 0 0 1px #fff,0 0 0 .2rem rgba(0,123,255,.25)}.custom-range::-moz-focus-outer{border:0}.custom-range::-webkit-slider-thumb{width:1rem;height:1rem;margin-top:-.25rem;background-color:#007bff;border:0;border-radius:1rem;transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out;appearance:none}@media (prefers-reduced-motion:reduce){.custom-range::-webkit-slider-thumb{transition:none}}.custom-range::-webkit-slider-thumb:active{background-color:#b3d7ff}.custom-range::-webkit-slider-runnable-track{width:100%;height:.5rem;color:transparent;cursor:pointer;background-color:#dee2e6;border-color:transparent;border-radius:1rem}.custom-range::-moz-range-thumb{width:1rem;height:1rem;background-color:#007bff;border:0;border-radius:1rem;transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out;appearance:none}@media (prefers-reduced-motion:reduce){.custom-range::-moz-range-thumb{transition:none}}.custom-range::-moz-range-thumb:active{background-color:#b3d7ff}.custom-range::-moz-range-track{width:100%;height:.5rem;color:transparent;cursor:pointer;background-color:#dee2e6;border-color:transparent;border-radius:1rem}.custom-range::-ms-thumb{width:1rem;height:1rem;margin-top:0;margin-right:.2rem;margin-left:.2rem;background-color:#007bff;border:0;border-radius:1rem;transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out;appearance:none}@media (prefers-reduced-motion:reduce){.custom-range::-ms-thumb{transition:none}}.custom-range::-ms-thumb:active{background-color:#b3d7ff}.custom-range::-ms-track{width:100%;height:.5rem;color:transparent;cursor:pointer;background-color:transparent;border-color:transparent;border-width:.5rem}.custom-range::-ms-fill-lower,.custom-range::-ms-fill-upper{background-color:#dee2e6;border-radius:1rem}.custom-range::-ms-fill-upper{margin-right:15px}.custom-range:disabled::-webkit-slider-thumb{background-color:#adb5bd}.custom-range:disabled::-webkit-slider-runnable-track{cursor:default}.custom-range:disabled::-moz-range-thumb{background-color:#adb5bd}.custom-range:disabled::-moz-range-track{cursor:default}.custom-range:disabled::-ms-thumb{background-color:#adb5bd}.custom-control-label:before,.custom-file-label,.custom-select{transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media (prefers-reduced-motion:reduce){.custom-control-label:before,.custom-file-label,.custom-select{transition:none}}.nav{display:flex;flex-wrap:wrap;padding-left:0;margin-bottom:0;list-style:none}.nav-link{display:block;padding:.5rem 1rem}.nav-link:focus,.nav-link:hover{text-decoration:none}.nav-link.disabled{color:#6c757d;pointer-events:none;cursor:default}.nav-tabs{border-bottom:1px solid #dee2e6}.nav-tabs .nav-item{margin-bottom:-1px}.nav-tabs .nav-link{border:1px solid transparent;border-top-left-radius:.25rem;border-top-right-radius:.25rem}.nav-tabs .nav-link:focus,.nav-tabs .nav-link:hover{border-color:#e9ecef #e9ecef #dee2e6}.nav-tabs .nav-link.disabled{color:#6c757d;background-color:transparent;border-color:transparent}.nav-tabs .nav-item.show .nav-link,.nav-tabs .nav-link.active{color:#495057;background-color:#fff;border-color:#dee2e6 #dee2e6 #fff}.nav-tabs .dropdown-menu{margin-top:-1px;border-top-left-radius:0;border-top-right-radius:0}.nav-pills .nav-link{border-radius:.25rem}.nav-pills .nav-link.active,.nav-pills .show>.nav-link{color:#fff;background-color:#007bff}.nav-fill .nav-item{flex:1 1 auto;text-align:center}.nav-justified .nav-item{flex-basis:0;flex-grow:1;text-align:center}.tab-content>.tab-pane{display:none}.tab-content>.active{display:block}.navbar{position:relative;padding:.5rem 1rem}.navbar,.navbar .container,.navbar .container-fluid,.navbar .container-lg,.navbar .container-md,.navbar .container-sm,.navbar .container-xl{display:flex;flex-wrap:wrap;align-items:center;justify-content:space-between}.navbar-brand{display:inline-block;padding-top:.3125rem;padding-bottom:.3125rem;margin-right:1rem;font-size:1.25rem;line-height:inherit;white-space:nowrap}.navbar-brand:focus,.navbar-brand:hover{text-decoration:none}.navbar-nav{display:flex;flex-direction:column;padding-left:0;margin-bottom:0;list-style:none}.navbar-nav .nav-link{padding-right:0;padding-left:0}.navbar-nav .dropdown-menu{position:static;float:none}.navbar-text{display:inline-block;padding-top:.5rem;padding-bottom:.5rem}.navbar-collapse{flex-basis:100%;flex-grow:1;align-items:center}.navbar-toggler{padding:.25rem .75rem;font-size:1.25rem;line-height:1;background-color:transparent;border:1px solid transparent;border-radius:.25rem}.navbar-toggler:focus,.navbar-toggler:hover{text-decoration:none}.navbar-toggler-icon{display:inline-block;width:1.5em;height:1.5em;vertical-align:middle;content:"";background:no-repeat 50%;background-size:100% 100%}@media (max-width:539.98px){.navbar-expand-sm>.container,.navbar-expand-sm>.container-fluid,.navbar-expand-sm>.container-lg,.navbar-expand-sm>.container-md,.navbar-expand-sm>.container-sm,.navbar-expand-sm>.container-xl{padding-right:0;padding-left:0}}@media (min-width:540px){.navbar-expand-sm{flex-flow:row nowrap;justify-content:flex-start}.navbar-expand-sm .navbar-nav{flex-direction:row}.navbar-expand-sm .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-sm .navbar-nav .nav-link{padding-right:.5rem;padding-left:.5rem}.navbar-expand-sm>.container,.navbar-expand-sm>.container-fluid,.navbar-expand-sm>.container-lg,.navbar-expand-sm>.container-md,.navbar-expand-sm>.container-sm,.navbar-expand-sm>.container-xl{flex-wrap:nowrap}.navbar-expand-sm .navbar-collapse{display:flex!important;flex-basis:auto}.navbar-expand-sm .navbar-toggler{display:none}}@media (max-width:719.98px){.navbar-expand-md>.container,.navbar-expand-md>.container-fluid,.navbar-expand-md>.container-lg,.navbar-expand-md>.container-md,.navbar-expand-md>.container-sm,.navbar-expand-md>.container-xl{padding-right:0;padding-left:0}}@media (min-width:720px){.navbar-expand-md{flex-flow:row nowrap;justify-content:flex-start}.navbar-expand-md .navbar-nav{flex-direction:row}.navbar-expand-md .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-md .navbar-nav .nav-link{padding-right:.5rem;padding-left:.5rem}.navbar-expand-md>.container,.navbar-expand-md>.container-fluid,.navbar-expand-md>.container-lg,.navbar-expand-md>.container-md,.navbar-expand-md>.container-sm,.navbar-expand-md>.container-xl{flex-wrap:nowrap}.navbar-expand-md .navbar-collapse{display:flex!important;flex-basis:auto}.navbar-expand-md .navbar-toggler{display:none}}@media (max-width:959.98px){.navbar-expand-lg>.container,.navbar-expand-lg>.container-fluid,.navbar-expand-lg>.container-lg,.navbar-expand-lg>.container-md,.navbar-expand-lg>.container-sm,.navbar-expand-lg>.container-xl{padding-right:0;padding-left:0}}@media (min-width:960px){.navbar-expand-lg{flex-flow:row nowrap;justify-content:flex-start}.navbar-expand-lg .navbar-nav{flex-direction:row}.navbar-expand-lg .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-lg .navbar-nav .nav-link{padding-right:.5rem;padding-left:.5rem}.navbar-expand-lg>.container,.navbar-expand-lg>.container-fluid,.navbar-expand-lg>.container-lg,.navbar-expand-lg>.container-md,.navbar-expand-lg>.container-sm,.navbar-expand-lg>.container-xl{flex-wrap:nowrap}.navbar-expand-lg .navbar-collapse{display:flex!important;flex-basis:auto}.navbar-expand-lg .navbar-toggler{display:none}}@media (max-width:1199.98px){.navbar-expand-xl>.container,.navbar-expand-xl>.container-fluid,.navbar-expand-xl>.container-lg,.navbar-expand-xl>.container-md,.navbar-expand-xl>.container-sm,.navbar-expand-xl>.container-xl{padding-right:0;padding-left:0}}@media (min-width:1200px){.navbar-expand-xl{flex-flow:row nowrap;justify-content:flex-start}.navbar-expand-xl .navbar-nav{flex-direction:row}.navbar-expand-xl .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-xl .navbar-nav .nav-link{padding-right:.5rem;padding-left:.5rem}.navbar-expand-xl>.container,.navbar-expand-xl>.container-fluid,.navbar-expand-xl>.container-lg,.navbar-expand-xl>.container-md,.navbar-expand-xl>.container-sm,.navbar-expand-xl>.container-xl{flex-wrap:nowrap}.navbar-expand-xl .navbar-collapse{display:flex!important;flex-basis:auto}.navbar-expand-xl .navbar-toggler{display:none}}.navbar-expand{flex-flow:row nowrap;justify-content:flex-start}.navbar-expand>.container,.navbar-expand>.container-fluid,.navbar-expand>.container-lg,.navbar-expand>.container-md,.navbar-expand>.container-sm,.navbar-expand>.container-xl{padding-right:0;padding-left:0}.navbar-expand .navbar-nav{flex-direction:row}.navbar-expand .navbar-nav .dropdown-menu{position:absolute}.navbar-expand .navbar-nav .nav-link{padding-right:.5rem;padding-left:.5rem}.navbar-expand>.container,.navbar-expand>.container-fluid,.navbar-expand>.container-lg,.navbar-expand>.container-md,.navbar-expand>.container-sm,.navbar-expand>.container-xl{flex-wrap:nowrap}.navbar-expand .navbar-collapse{display:flex!important;flex-basis:auto}.navbar-expand .navbar-toggler{display:none}.navbar-light .navbar-brand,.navbar-light .navbar-brand:focus,.navbar-light .navbar-brand:hover{color:rgba(0,0,0,.9)}.navbar-light .navbar-nav .nav-link{color:rgba(0,0,0,.5)}.navbar-light .navbar-nav .nav-link:focus,.navbar-light .navbar-nav .nav-link:hover{color:rgba(0,0,0,.7)}.navbar-light .navbar-nav .nav-link.disabled{color:rgba(0,0,0,.3)}.navbar-light .navbar-nav .active>.nav-link,.navbar-light .navbar-nav .nav-link.active,.navbar-light .navbar-nav .nav-link.show,.navbar-light .navbar-nav .show>.nav-link{color:rgba(0,0,0,.9)}.navbar-light .navbar-toggler{color:rgba(0,0,0,.5);border-color:rgba(0,0,0,.1)}.navbar-light .navbar-toggler-icon{background-image:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' width='30' height='30'%3E%3Cpath stroke='rgba(0,0,0,0.5)' stroke-linecap='round' stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/%3E%3C/svg%3E")}.navbar-light .navbar-text{color:rgba(0,0,0,.5)}.navbar-light .navbar-text a,.navbar-light .navbar-text a:focus,.navbar-light .navbar-text a:hover{color:rgba(0,0,0,.9)}.navbar-dark .navbar-brand,.navbar-dark .navbar-brand:focus,.navbar-dark .navbar-brand:hover{color:#fff}.navbar-dark .navbar-nav .nav-link{color:hsla(0,0%,100%,.5)}.navbar-dark .navbar-nav .nav-link:focus,.navbar-dark .navbar-nav .nav-link:hover{color:hsla(0,0%,100%,.75)}.navbar-dark .navbar-nav .nav-link.disabled{color:hsla(0,0%,100%,.25)}.navbar-dark .navbar-nav .active>.nav-link,.navbar-dark .navbar-nav .nav-link.active,.navbar-dark .navbar-nav .nav-link.show,.navbar-dark .navbar-nav .show>.nav-link{color:#fff}.navbar-dark .navbar-toggler{color:hsla(0,0%,100%,.5);border-color:hsla(0,0%,100%,.1)}.navbar-dark .navbar-toggler-icon{background-image:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' width='30' height='30'%3E%3Cpath stroke='rgba(255,255,255,0.5)' stroke-linecap='round' stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/%3E%3C/svg%3E")}.navbar-dark .navbar-text{color:hsla(0,0%,100%,.5)}.navbar-dark .navbar-text a,.navbar-dark .navbar-text a:focus,.navbar-dark .navbar-text a:hover{color:#fff}.card{position:relative;display:flex;flex-direction:column;min-width:0;word-wrap:break-word;background-color:#fff;background-clip:border-box;border:1px solid rgba(0,0,0,.125);border-radius:.25rem}.card>hr{margin-right:0;margin-left:0}.card>.list-group{border-top:inherit;border-bottom:inherit}.card>.list-group:first-child{border-top-width:0;border-top-left-radius:calc(.25rem - 1px);border-top-right-radius:calc(.25rem - 1px)}.card>.list-group:last-child{border-bottom-width:0;border-bottom-right-radius:calc(.25rem - 1px);border-bottom-left-radius:calc(.25rem - 1px)}.card-body{flex:1 1 auto;min-height:1px;padding:1.25rem}.card-title{margin-bottom:.75rem}.card-subtitle{margin-top:-.375rem}.card-subtitle,.card-text:last-child{margin-bottom:0}.card-link:hover{text-decoration:none}.card-link+.card-link{margin-left:1.25rem}.card-header{padding:.75rem 1.25rem;margin-bottom:0;background-color:rgba(0,0,0,.03);border-bottom:1px solid rgba(0,0,0,.125)}.card-header:first-child{border-radius:calc(.25rem - 1px) calc(.25rem - 1px) 0 0}.card-header+.list-group .list-group-item:first-child{border-top:0}.card-footer{padding:.75rem 1.25rem;background-color:rgba(0,0,0,.03);border-top:1px solid rgba(0,0,0,.125)}.card-footer:last-child{border-radius:0 0 calc(.25rem - 1px) calc(.25rem - 1px)}.card-header-tabs{margin-bottom:-.75rem;border-bottom:0}.card-header-pills,.card-header-tabs{margin-right:-.625rem;margin-left:-.625rem}.card-img-overlay{position:absolute;top:0;right:0;bottom:0;left:0;padding:1.25rem}.card-img,.card-img-bottom,.card-img-top{flex-shrink:0;width:100%}.card-img,.card-img-top{border-top-left-radius:calc(.25rem - 1px);border-top-right-radius:calc(.25rem - 1px)}.card-img,.card-img-bottom{border-bottom-right-radius:calc(.25rem - 1px);border-bottom-left-radius:calc(.25rem - 1px)}.card-deck .card{margin-bottom:15px}@media (min-width:540px){.card-deck{display:flex;flex-flow:row wrap;margin-right:-15px;margin-left:-15px}.card-deck .card{flex:1 0 0%;margin-right:15px;margin-bottom:0;margin-left:15px}}.card-group>.card{margin-bottom:15px}@media (min-width:540px){.card-group{display:flex;flex-flow:row wrap}.card-group>.card{flex:1 0 0%;margin-bottom:0}.card-group>.card+.card{margin-left:0;border-left:0}.card-group>.card:not(:last-child){border-top-right-radius:0;border-bottom-right-radius:0}.card-group>.card:not(:last-child) .card-header,.card-group>.card:not(:last-child) .card-img-top{border-top-right-radius:0}.card-group>.card:not(:last-child) .card-footer,.card-group>.card:not(:last-child) .card-img-bottom{border-bottom-right-radius:0}.card-group>.card:not(:first-child){border-top-left-radius:0;border-bottom-left-radius:0}.card-group>.card:not(:first-child) .card-header,.card-group>.card:not(:first-child) .card-img-top{border-top-left-radius:0}.card-group>.card:not(:first-child) .card-footer,.card-group>.card:not(:first-child) .card-img-bottom{border-bottom-left-radius:0}}.card-columns .card{margin-bottom:.75rem}@media (min-width:540px){.card-columns{column-count:3;column-gap:1.25rem;orphans:1;widows:1}.card-columns .card{display:inline-block;width:100%}}.accordion>.card{overflow:hidden}.accordion>.card:not(:last-of-type){border-bottom:0;border-bottom-right-radius:0;border-bottom-left-radius:0}.accordion>.card:not(:first-of-type){border-top-left-radius:0;border-top-right-radius:0}.accordion>.card>.card-header{border-radius:0;margin-bottom:-1px}.breadcrumb{flex-wrap:wrap;padding:.75rem 1rem;margin-bottom:1rem;list-style:none;background-color:#e9ecef;border-radius:.25rem}.breadcrumb,.breadcrumb-item{display:flex}.breadcrumb-item+.breadcrumb-item{padding-left:.5rem}.breadcrumb-item+.breadcrumb-item:before{display:inline-block;padding-right:.5rem;color:#6c757d;content:"/"}.breadcrumb-item+.breadcrumb-item:hover:before{text-decoration:underline;text-decoration:none}.breadcrumb-item.active{color:#6c757d}.pagination{display:flex;padding-left:0;list-style:none;border-radius:.25rem}.page-link{position:relative;display:block;padding:.5rem .75rem;margin-left:-1px;line-height:1.25;color:#007bff;background-color:#fff;border:1px solid #dee2e6}.page-link:hover{z-index:2;color:#0056b3;text-decoration:none;background-color:#e9ecef;border-color:#dee2e6}.page-link:focus{z-index:3;outline:0;box-shadow:0 0 0 .2rem rgba(0,123,255,.25)}.page-item:first-child .page-link{margin-left:0;border-top-left-radius:.25rem;border-bottom-left-radius:.25rem}.page-item:last-child .page-link{border-top-right-radius:.25rem;border-bottom-right-radius:.25rem}.page-item.active .page-link{z-index:3;color:#fff;background-color:#007bff;border-color:#007bff}.page-item.disabled .page-link{color:#6c757d;pointer-events:none;cursor:auto;background-color:#fff;border-color:#dee2e6}.pagination-lg .page-link{padding:.75rem 1.5rem;font-size:1.25rem;line-height:1.5}.pagination-lg .page-item:first-child .page-link{border-top-left-radius:.3rem;border-bottom-left-radius:.3rem}.pagination-lg .page-item:last-child .page-link{border-top-right-radius:.3rem;border-bottom-right-radius:.3rem}.pagination-sm .page-link{padding:.25rem .5rem;font-size:.875rem;line-height:1.5}.pagination-sm .page-item:first-child .page-link{border-top-left-radius:.2rem;border-bottom-left-radius:.2rem}.pagination-sm .page-item:last-child .page-link{border-top-right-radius:.2rem;border-bottom-right-radius:.2rem}.badge{display:inline-block;padding:.25em .4em;font-size:75%;font-weight:700;line-height:1;text-align:center;white-space:nowrap;vertical-align:baseline;border-radius:.25rem;transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media (prefers-reduced-motion:reduce){.badge{transition:none}}a.badge:focus,a.badge:hover{text-decoration:none}.badge:empty{display:none}.btn .badge{position:relative;top:-1px}.badge-pill{padding-right:.6em;padding-left:.6em;border-radius:10rem}.badge-primary{color:#fff;background-color:#007bff}a.badge-primary:focus,a.badge-primary:hover{color:#fff;background-color:#0062cc}a.badge-primary.focus,a.badge-primary:focus{outline:0;box-shadow:0 0 0 .2rem rgba(0,123,255,.5)}.badge-secondary{color:#fff;background-color:#6c757d}a.badge-secondary:focus,a.badge-secondary:hover{color:#fff;background-color:#545b62}a.badge-secondary.focus,a.badge-secondary:focus{outline:0;box-shadow:0 0 0 .2rem rgba(108,117,125,.5)}.badge-success{color:#fff;background-color:#28a745}a.badge-success:focus,a.badge-success:hover{color:#fff;background-color:#1e7e34}a.badge-success.focus,a.badge-success:focus{outline:0;box-shadow:0 0 0 .2rem rgba(40,167,69,.5)}.badge-info{color:#fff;background-color:#17a2b8}a.badge-info:focus,a.badge-info:hover{color:#fff;background-color:#117a8b}a.badge-info.focus,a.badge-info:focus{outline:0;box-shadow:0 0 0 .2rem rgba(23,162,184,.5)}.badge-warning{color:#212529;background-color:#ffc107}a.badge-warning:focus,a.badge-warning:hover{color:#212529;background-color:#d39e00}a.badge-warning.focus,a.badge-warning:focus{outline:0;box-shadow:0 0 0 .2rem rgba(255,193,7,.5)}.badge-danger{color:#fff;background-color:#dc3545}a.badge-danger:focus,a.badge-danger:hover{color:#fff;background-color:#bd2130}a.badge-danger.focus,a.badge-danger:focus{outline:0;box-shadow:0 0 0 .2rem rgba(220,53,69,.5)}.badge-light{color:#212529;background-color:#f8f9fa}a.badge-light:focus,a.badge-light:hover{color:#212529;background-color:#dae0e5}a.badge-light.focus,a.badge-light:focus{outline:0;box-shadow:0 0 0 .2rem rgba(248,249,250,.5)}.badge-dark{color:#fff;background-color:#343a40}a.badge-dark:focus,a.badge-dark:hover{color:#fff;background-color:#1d2124}a.badge-dark.focus,a.badge-dark:focus{outline:0;box-shadow:0 0 0 .2rem rgba(52,58,64,.5)}.jumbotron{padding:2rem 1rem;margin-bottom:2rem;background-color:#e9ecef;border-radius:.3rem}@media (min-width:540px){.jumbotron{padding:4rem 2rem}}.jumbotron-fluid{padding-right:0;padding-left:0;border-radius:0}.alert{position:relative;padding:.75rem 1.25rem;margin-bottom:1rem;border:1px solid transparent;border-radius:.25rem}.alert-heading{color:inherit}.alert-link{font-weight:700}.alert-dismissible{padding-right:4rem}.alert-dismissible .close{position:absolute;top:0;right:0;padding:.75rem 1.25rem;color:inherit}.alert-primary{color:#004085;background-color:#cce5ff;border-color:#b8daff}.alert-primary hr{border-top-color:#9fcdff}.alert-primary .alert-link{color:#002752}.alert-secondary{color:#383d41;background-color:#e2e3e5;border-color:#d6d8db}.alert-secondary hr{border-top-color:#c8cbcf}.alert-secondary .alert-link{color:#202326}.alert-success{color:#155724;background-color:#d4edda;border-color:#c3e6cb}.alert-success hr{border-top-color:#b1dfbb}.alert-success .alert-link{color:#0b2e13}.alert-info{color:#0c5460;background-color:#d1ecf1;border-color:#bee5eb}.alert-info hr{border-top-color:#abdde5}.alert-info .alert-link{color:#062c33}.alert-warning{color:#856404;background-color:#fff3cd;border-color:#ffeeba}.alert-warning hr{border-top-color:#ffe8a1}.alert-warning .alert-link{color:#533f03}.alert-danger{color:#721c24;background-color:#f8d7da;border-color:#f5c6cb}.alert-danger hr{border-top-color:#f1b0b7}.alert-danger .alert-link{color:#491217}.alert-light{color:#818182;background-color:#fefefe;border-color:#fdfdfe}.alert-light hr{border-top-color:#ececf6}.alert-light .alert-link{color:#686868}.alert-dark{color:#1b1e21;background-color:#d6d8d9;border-color:#c6c8ca}.alert-dark hr{border-top-color:#b9bbbe}.alert-dark .alert-link{color:#040505}@keyframes progress-bar-stripes{0%{background-position:1rem 0}to{background-position:0 0}}.progress{height:1rem;line-height:0;font-size:.75rem;background-color:#e9ecef;border-radius:.25rem}.progress,.progress-bar{display:flex;overflow:hidden}.progress-bar{flex-direction:column;justify-content:center;color:#fff;text-align:center;white-space:nowrap;background-color:#007bff;transition:width .6s ease}@media (prefers-reduced-motion:reduce){.progress-bar{transition:none}}.progress-bar-striped{background-image:linear-gradient(45deg,hsla(0,0%,100%,.15) 25%,transparent 0,transparent 50%,hsla(0,0%,100%,.15) 0,hsla(0,0%,100%,.15) 75%,transparent 0,transparent);background-size:1rem 1rem}.progress-bar-animated{animation:progress-bar-stripes 1s linear infinite}@media (prefers-reduced-motion:reduce){.progress-bar-animated{animation:none}}.media{display:flex;align-items:flex-start}.media-body{flex:1}.list-group{display:flex;flex-direction:column;padding-left:0;margin-bottom:0;border-radius:.25rem}.list-group-item-action{width:100%;color:#495057;text-align:inherit}.list-group-item-action:focus,.list-group-item-action:hover{z-index:1;color:#495057;text-decoration:none;background-color:#f8f9fa}.list-group-item-action:active{color:#212529;background-color:#e9ecef}.list-group-item{position:relative;display:block;padding:.75rem 1.25rem;background-color:#fff;border:1px solid rgba(0,0,0,.125)}.list-group-item:first-child{border-top-left-radius:inherit;border-top-right-radius:inherit}.list-group-item:last-child{border-bottom-right-radius:inherit;border-bottom-left-radius:inherit}.list-group-item.disabled,.list-group-item:disabled{color:#6c757d;pointer-events:none;background-color:#fff}.list-group-item.active{z-index:2;color:#fff;background-color:#007bff;border-color:#007bff}.list-group-item+.list-group-item{border-top-width:0}.list-group-item+.list-group-item.active{margin-top:-1px;border-top-width:1px}.list-group-horizontal{flex-direction:row}.list-group-horizontal>.list-group-item:first-child{border-bottom-left-radius:.25rem;border-top-right-radius:0}.list-group-horizontal>.list-group-item:last-child{border-top-right-radius:.25rem;border-bottom-left-radius:0}.list-group-horizontal>.list-group-item.active{margin-top:0}.list-group-horizontal>.list-group-item+.list-group-item{border-top-width:1px;border-left-width:0}.list-group-horizontal>.list-group-item+.list-group-item.active{margin-left:-1px;border-left-width:1px}@media (min-width:540px){.list-group-horizontal-sm{flex-direction:row}.list-group-horizontal-sm>.list-group-item:first-child{border-bottom-left-radius:.25rem;border-top-right-radius:0}.list-group-horizontal-sm>.list-group-item:last-child{border-top-right-radius:.25rem;border-bottom-left-radius:0}.list-group-horizontal-sm>.list-group-item.active{margin-top:0}.list-group-horizontal-sm>.list-group-item+.list-group-item{border-top-width:1px;border-left-width:0}.list-group-horizontal-sm>.list-group-item+.list-group-item.active{margin-left:-1px;border-left-width:1px}}@media (min-width:720px){.list-group-horizontal-md{flex-direction:row}.list-group-horizontal-md>.list-group-item:first-child{border-bottom-left-radius:.25rem;border-top-right-radius:0}.list-group-horizontal-md>.list-group-item:last-child{border-top-right-radius:.25rem;border-bottom-left-radius:0}.list-group-horizontal-md>.list-group-item.active{margin-top:0}.list-group-horizontal-md>.list-group-item+.list-group-item{border-top-width:1px;border-left-width:0}.list-group-horizontal-md>.list-group-item+.list-group-item.active{margin-left:-1px;border-left-width:1px}}@media (min-width:960px){.list-group-horizontal-lg{flex-direction:row}.list-group-horizontal-lg>.list-group-item:first-child{border-bottom-left-radius:.25rem;border-top-right-radius:0}.list-group-horizontal-lg>.list-group-item:last-child{border-top-right-radius:.25rem;border-bottom-left-radius:0}.list-group-horizontal-lg>.list-group-item.active{margin-top:0}.list-group-horizontal-lg>.list-group-item+.list-group-item{border-top-width:1px;border-left-width:0}.list-group-horizontal-lg>.list-group-item+.list-group-item.active{margin-left:-1px;border-left-width:1px}}@media (min-width:1200px){.list-group-horizontal-xl{flex-direction:row}.list-group-horizontal-xl>.list-group-item:first-child{border-bottom-left-radius:.25rem;border-top-right-radius:0}.list-group-horizontal-xl>.list-group-item:last-child{border-top-right-radius:.25rem;border-bottom-left-radius:0}.list-group-horizontal-xl>.list-group-item.active{margin-top:0}.list-group-horizontal-xl>.list-group-item+.list-group-item{border-top-width:1px;border-left-width:0}.list-group-horizontal-xl>.list-group-item+.list-group-item.active{margin-left:-1px;border-left-width:1px}}.list-group-flush{border-radius:0}.list-group-flush>.list-group-item{border-width:0 0 1px}.list-group-flush>.list-group-item:last-child{border-bottom-width:0}.list-group-item-primary{color:#004085;background-color:#b8daff}.list-group-item-primary.list-group-item-action:focus,.list-group-item-primary.list-group-item-action:hover{color:#004085;background-color:#9fcdff}.list-group-item-primary.list-group-item-action.active{color:#fff;background-color:#004085;border-color:#004085}.list-group-item-secondary{color:#383d41;background-color:#d6d8db}.list-group-item-secondary.list-group-item-action:focus,.list-group-item-secondary.list-group-item-action:hover{color:#383d41;background-color:#c8cbcf}.list-group-item-secondary.list-group-item-action.active{color:#fff;background-color:#383d41;border-color:#383d41}.list-group-item-success{color:#155724;background-color:#c3e6cb}.list-group-item-success.list-group-item-action:focus,.list-group-item-success.list-group-item-action:hover{color:#155724;background-color:#b1dfbb}.list-group-item-success.list-group-item-action.active{color:#fff;background-color:#155724;border-color:#155724}.list-group-item-info{color:#0c5460;background-color:#bee5eb}.list-group-item-info.list-group-item-action:focus,.list-group-item-info.list-group-item-action:hover{color:#0c5460;background-color:#abdde5}.list-group-item-info.list-group-item-action.active{color:#fff;background-color:#0c5460;border-color:#0c5460}.list-group-item-warning{color:#856404;background-color:#ffeeba}.list-group-item-warning.list-group-item-action:focus,.list-group-item-warning.list-group-item-action:hover{color:#856404;background-color:#ffe8a1}.list-group-item-warning.list-group-item-action.active{color:#fff;background-color:#856404;border-color:#856404}.list-group-item-danger{color:#721c24;background-color:#f5c6cb}.list-group-item-danger.list-group-item-action:focus,.list-group-item-danger.list-group-item-action:hover{color:#721c24;background-color:#f1b0b7}.list-group-item-danger.list-group-item-action.active{color:#fff;background-color:#721c24;border-color:#721c24}.list-group-item-light{color:#818182;background-color:#fdfdfe}.list-group-item-light.list-group-item-action:focus,.list-group-item-light.list-group-item-action:hover{color:#818182;background-color:#ececf6}.list-group-item-light.list-group-item-action.active{color:#fff;background-color:#818182;border-color:#818182}.list-group-item-dark{color:#1b1e21;background-color:#c6c8ca}.list-group-item-dark.list-group-item-action:focus,.list-group-item-dark.list-group-item-action:hover{color:#1b1e21;background-color:#b9bbbe}.list-group-item-dark.list-group-item-action.active{color:#fff;background-color:#1b1e21;border-color:#1b1e21}.close{float:right;font-size:1.5rem;font-weight:700;line-height:1;color:#000;text-shadow:0 1px 0 #fff;opacity:.5}.close:hover{color:#000;text-decoration:none}.close:not(:disabled):not(.disabled):focus,.close:not(:disabled):not(.disabled):hover{opacity:.75}button.close{padding:0;background-color:transparent;border:0}a.close.disabled{pointer-events:none}.toast{max-width:350px;overflow:hidden;font-size:.875rem;background-color:hsla(0,0%,100%,.85);background-clip:padding-box;border:1px solid rgba(0,0,0,.1);box-shadow:0 .25rem .75rem rgba(0,0,0,.1);backdrop-filter:blur(10px);opacity:0;border-radius:.25rem}.toast:not(:last-child){margin-bottom:.75rem}.toast.showing{opacity:1}.toast.show{display:block;opacity:1}.toast.hide{display:none}.toast-header{display:flex;align-items:center;padding:.25rem .75rem;color:#6c757d;background-color:hsla(0,0%,100%,.85);background-clip:padding-box;border-bottom:1px solid rgba(0,0,0,.05)}.toast-body{padding:.75rem}.modal-open{overflow:hidden}.modal-open .modal{overflow-x:hidden;overflow-y:auto}.modal{position:fixed;top:0;left:0;z-index:1050;display:none;width:100%;height:100%;overflow:hidden;outline:0}.modal-dialog{position:relative;width:auto;margin:.5rem;pointer-events:none}.modal.fade .modal-dialog{transition:transform .3s ease-out;transform:translateY(-50px)}@media (prefers-reduced-motion:reduce){.modal.fade .modal-dialog{transition:none}}.modal.show .modal-dialog{transform:none}.modal.modal-static .modal-dialog{transform:scale(1.02)}.modal-dialog-scrollable{display:flex;max-height:calc(100% - 1rem)}.modal-dialog-scrollable .modal-content{max-height:calc(100vh - 1rem);overflow:hidden}.modal-dialog-scrollable .modal-footer,.modal-dialog-scrollable .modal-header{flex-shrink:0}.modal-dialog-scrollable .modal-body{overflow-y:auto}.modal-dialog-centered{display:flex;align-items:center;min-height:calc(100% - 1rem)}.modal-dialog-centered:before{display:block;height:calc(100vh - 1rem);height:min-content;content:""}.modal-dialog-centered.modal-dialog-scrollable{flex-direction:column;justify-content:center;height:100%}.modal-dialog-centered.modal-dialog-scrollable .modal-content{max-height:none}.modal-dialog-centered.modal-dialog-scrollable:before{content:none}.modal-content{position:relative;display:flex;flex-direction:column;width:100%;pointer-events:auto;background-color:#fff;background-clip:padding-box;border:1px solid rgba(0,0,0,.2);border-radius:.3rem;outline:0}.modal-backdrop{position:fixed;top:0;left:0;z-index:1040;width:100vw;height:100vh;background-color:#000}.modal-backdrop.fade{opacity:0}.modal-backdrop.show{opacity:.5}.modal-header{display:flex;align-items:flex-start;justify-content:space-between;padding:1rem;border-bottom:1px solid #dee2e6;border-top-left-radius:calc(.3rem - 1px);border-top-right-radius:calc(.3rem - 1px)}.modal-header .close{padding:1rem;margin:-1rem -1rem -1rem auto}.modal-title{margin-bottom:0;line-height:1.5}.modal-body{position:relative;flex:1 1 auto;padding:1rem}.modal-footer{display:flex;flex-wrap:wrap;align-items:center;justify-content:flex-end;padding:.75rem;border-top:1px solid #dee2e6;border-bottom-right-radius:calc(.3rem - 1px);border-bottom-left-radius:calc(.3rem - 1px)}.modal-footer>*{margin:.25rem}.modal-scrollbar-measure{position:absolute;top:-9999px;width:50px;height:50px;overflow:scroll}@media (min-width:540px){.modal-dialog{max-width:500px;margin:1.75rem auto}.modal-dialog-scrollable{max-height:calc(100% - 3.5rem)}.modal-dialog-scrollable .modal-content{max-height:calc(100vh - 3.5rem)}.modal-dialog-centered{min-height:calc(100% - 3.5rem)}.modal-dialog-centered:before{height:calc(100vh - 3.5rem);height:min-content}.modal-sm{max-width:300px}}@media (min-width:960px){.modal-lg,.modal-xl{max-width:800px}}@media (min-width:1200px){.modal-xl{max-width:1140px}}.tooltip{position:absolute;z-index:1070;display:block;margin:0;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Helvetica Neue,Arial,Noto Sans,sans-serif,Apple Color Emoji,Segoe UI Emoji,Segoe UI Symbol,Noto Color Emoji;font-style:normal;font-weight:400;line-height:1.5;text-align:left;text-align:start;text-decoration:none;text-shadow:none;text-transform:none;letter-spacing:normal;word-break:normal;word-spacing:normal;white-space:normal;line-break:auto;font-size:.875rem;word-wrap:break-word;opacity:0}.tooltip.show{opacity:.9}.tooltip .arrow{position:absolute;display:block;width:.8rem;height:.4rem}.tooltip .arrow:before{position:absolute;content:"";border-color:transparent;border-style:solid}.bs-tooltip-auto[x-placement^=top],.bs-tooltip-top{padding:.4rem 0}.bs-tooltip-auto[x-placement^=top] .arrow,.bs-tooltip-top .arrow{bottom:0}.bs-tooltip-auto[x-placement^=top] .arrow:before,.bs-tooltip-top .arrow:before{top:0;border-width:.4rem .4rem 0;border-top-color:#000}.bs-tooltip-auto[x-placement^=right],.bs-tooltip-right{padding:0 .4rem}.bs-tooltip-auto[x-placement^=right] .arrow,.bs-tooltip-right .arrow{left:0;width:.4rem;height:.8rem}.bs-tooltip-auto[x-placement^=right] .arrow:before,.bs-tooltip-right .arrow:before{right:0;border-width:.4rem .4rem .4rem 0;border-right-color:#000}.bs-tooltip-auto[x-placement^=bottom],.bs-tooltip-bottom{padding:.4rem 0}.bs-tooltip-auto[x-placement^=bottom] .arrow,.bs-tooltip-bottom .arrow{top:0}.bs-tooltip-auto[x-placement^=bottom] .arrow:before,.bs-tooltip-bottom .arrow:before{bottom:0;border-width:0 .4rem .4rem;border-bottom-color:#000}.bs-tooltip-auto[x-placement^=left],.bs-tooltip-left{padding:0 .4rem}.bs-tooltip-auto[x-placement^=left] .arrow,.bs-tooltip-left .arrow{right:0;width:.4rem;height:.8rem}.bs-tooltip-auto[x-placement^=left] .arrow:before,.bs-tooltip-left .arrow:before{left:0;border-width:.4rem 0 .4rem .4rem;border-left-color:#000}.tooltip-inner{max-width:200px;padding:.25rem .5rem;color:#fff;text-align:center;background-color:#000;border-radius:.25rem}.popover{top:0;left:0;z-index:1060;max-width:276px;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Helvetica Neue,Arial,Noto Sans,sans-serif,Apple Color Emoji,Segoe UI Emoji,Segoe UI Symbol,Noto Color Emoji;font-style:normal;font-weight:400;line-height:1.5;text-align:left;text-align:start;text-decoration:none;text-shadow:none;text-transform:none;letter-spacing:normal;word-break:normal;word-spacing:normal;white-space:normal;line-break:auto;font-size:.875rem;word-wrap:break-word;background-color:#fff;background-clip:padding-box;border:1px solid rgba(0,0,0,.2);border-radius:.3rem}.popover,.popover .arrow{position:absolute;display:block}.popover .arrow{width:1rem;height:.5rem;margin:0 .3rem}.popover .arrow:after,.popover .arrow:before{position:absolute;display:block;content:"";border-color:transparent;border-style:solid}.bs-popover-auto[x-placement^=top],.bs-popover-top{margin-bottom:.5rem}.bs-popover-auto[x-placement^=top]>.arrow,.bs-popover-top>.arrow{bottom:calc(-.5rem - 1px)}.bs-popover-auto[x-placement^=top]>.arrow:before,.bs-popover-top>.arrow:before{bottom:0;border-width:.5rem .5rem 0;border-top-color:rgba(0,0,0,.25)}.bs-popover-auto[x-placement^=top]>.arrow:after,.bs-popover-top>.arrow:after{bottom:1px;border-width:.5rem .5rem 0;border-top-color:#fff}.bs-popover-auto[x-placement^=right],.bs-popover-right{margin-left:.5rem}.bs-popover-auto[x-placement^=right]>.arrow,.bs-popover-right>.arrow{left:calc(-.5rem - 1px);width:.5rem;height:1rem;margin:.3rem 0}.bs-popover-auto[x-placement^=right]>.arrow:before,.bs-popover-right>.arrow:before{left:0;border-width:.5rem .5rem .5rem 0;border-right-color:rgba(0,0,0,.25)}.bs-popover-auto[x-placement^=right]>.arrow:after,.bs-popover-right>.arrow:after{left:1px;border-width:.5rem .5rem .5rem 0;border-right-color:#fff}.bs-popover-auto[x-placement^=bottom],.bs-popover-bottom{margin-top:.5rem}.bs-popover-auto[x-placement^=bottom]>.arrow,.bs-popover-bottom>.arrow{top:calc(-.5rem - 1px)}.bs-popover-auto[x-placement^=bottom]>.arrow:before,.bs-popover-bottom>.arrow:before{top:0;border-width:0 .5rem .5rem;border-bottom-color:rgba(0,0,0,.25)}.bs-popover-auto[x-placement^=bottom]>.arrow:after,.bs-popover-bottom>.arrow:after{top:1px;border-width:0 .5rem .5rem;border-bottom-color:#fff}.bs-popover-auto[x-placement^=bottom] .popover-header:before,.bs-popover-bottom .popover-header:before{position:absolute;top:0;left:50%;display:block;width:1rem;margin-left:-.5rem;content:"";border-bottom:1px solid #f7f7f7}.bs-popover-auto[x-placement^=left],.bs-popover-left{margin-right:.5rem}.bs-popover-auto[x-placement^=left]>.arrow,.bs-popover-left>.arrow{right:calc(-.5rem - 1px);width:.5rem;height:1rem;margin:.3rem 0}.bs-popover-auto[x-placement^=left]>.arrow:before,.bs-popover-left>.arrow:before{right:0;border-width:.5rem 0 .5rem .5rem;border-left-color:rgba(0,0,0,.25)}.bs-popover-auto[x-placement^=left]>.arrow:after,.bs-popover-left>.arrow:after{right:1px;border-width:.5rem 0 .5rem .5rem;border-left-color:#fff}.popover-header{padding:.5rem .75rem;margin-bottom:0;font-size:1rem;background-color:#f7f7f7;border-bottom:1px solid #ebebeb;border-top-left-radius:calc(.3rem - 1px);border-top-right-radius:calc(.3rem - 1px)}.popover-header:empty{display:none}.popover-body{padding:.5rem .75rem;color:#212529}.carousel{position:relative}.carousel.pointer-event{touch-action:pan-y}.carousel-inner{position:relative;width:100%;overflow:hidden}.carousel-inner:after{display:block;clear:both;content:""}.carousel-item{position:relative;display:none;float:left;width:100%;margin-right:-100%;backface-visibility:hidden;transition:transform .6s ease-in-out}@media (prefers-reduced-motion:reduce){.carousel-item{transition:none}}.carousel-item-next,.carousel-item-prev,.carousel-item.active{display:block}.active.carousel-item-right,.carousel-item-next:not(.carousel-item-left){transform:translateX(100%)}.active.carousel-item-left,.carousel-item-prev:not(.carousel-item-right){transform:translateX(-100%)}.carousel-fade .carousel-item{opacity:0;transition-property:opacity;transform:none}.carousel-fade .carousel-item-next.carousel-item-left,.carousel-fade .carousel-item-prev.carousel-item-right,.carousel-fade .carousel-item.active{z-index:1;opacity:1}.carousel-fade .active.carousel-item-left,.carousel-fade .active.carousel-item-right{z-index:0;opacity:0;transition:opacity 0s .6s}@media (prefers-reduced-motion:reduce){.carousel-fade .active.carousel-item-left,.carousel-fade .active.carousel-item-right{transition:none}}.carousel-control-next,.carousel-control-prev{position:absolute;top:0;bottom:0;z-index:1;display:flex;align-items:center;justify-content:center;width:15%;color:#fff;text-align:center;opacity:.5;transition:opacity .15s ease}@media (prefers-reduced-motion:reduce){.carousel-control-next,.carousel-control-prev{transition:none}}.carousel-control-next:focus,.carousel-control-next:hover,.carousel-control-prev:focus,.carousel-control-prev:hover{color:#fff;text-decoration:none;outline:0;opacity:.9}.carousel-control-prev{left:0}.carousel-control-next{right:0}.carousel-control-next-icon,.carousel-control-prev-icon{display:inline-block;width:20px;height:20px;background:no-repeat 50%/100% 100%}.carousel-control-prev-icon{background-image:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' fill='%23fff' width='8' height='8'%3E%3Cpath d='M5.25 0l-4 4 4 4 1.5-1.5L4.25 4l2.5-2.5L5.25 0z'/%3E%3C/svg%3E")}.carousel-control-next-icon{background-image:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' fill='%23fff' width='8' height='8'%3E%3Cpath d='M2.75 0l-1.5 1.5L3.75 4l-2.5 2.5L2.75 8l4-4-4-4z'/%3E%3C/svg%3E")}.carousel-indicators{position:absolute;right:0;bottom:0;left:0;z-index:15;display:flex;justify-content:center;padding-left:0;margin-right:15%;margin-left:15%;list-style:none}.carousel-indicators li{box-sizing:content-box;flex:0 1 auto;width:30px;height:3px;margin-right:3px;margin-left:3px;text-indent:-999px;cursor:pointer;background-color:#fff;background-clip:padding-box;border-top:10px solid transparent;border-bottom:10px solid transparent;opacity:.5;transition:opacity .6s ease}@media (prefers-reduced-motion:reduce){.carousel-indicators li{transition:none}}.carousel-indicators .active{opacity:1}.carousel-caption{position:absolute;right:15%;bottom:20px;left:15%;z-index:10;padding-top:20px;padding-bottom:20px;color:#fff;text-align:center}@keyframes spinner-border{to{transform:rotate(1turn)}}.spinner-border{display:inline-block;width:2rem;height:2rem;vertical-align:text-bottom;border:.25em solid;border-right:.25em solid transparent;border-radius:50%;animation:spinner-border .75s linear infinite}.spinner-border-sm{width:1rem;height:1rem;border-width:.2em}@keyframes spinner-grow{0%{transform:scale(0)}50%{opacity:1;transform:none}}.spinner-grow{display:inline-block;width:2rem;height:2rem;vertical-align:text-bottom;background-color:currentColor;border-radius:50%;opacity:0;animation:spinner-grow .75s linear infinite}.spinner-grow-sm{width:1rem;height:1rem}.align-baseline{vertical-align:baseline!important}.align-top{vertical-align:top!important}.align-middle{vertical-align:middle!important}.align-bottom{vertical-align:bottom!important}.align-text-bottom{vertical-align:text-bottom!important}.align-text-top{vertical-align:text-top!important}.bg-primary{background-color:#007bff!important}a.bg-primary:focus,a.bg-primary:hover,button.bg-primary:focus,button.bg-primary:hover{background-color:#0062cc!important}.bg-secondary{background-color:#6c757d!important}a.bg-secondary:focus,a.bg-secondary:hover,button.bg-secondary:focus,button.bg-secondary:hover{background-color:#545b62!important}.bg-success{background-color:#28a745!important}a.bg-success:focus,a.bg-success:hover,button.bg-success:focus,button.bg-success:hover{background-color:#1e7e34!important}.bg-info{background-color:#17a2b8!important}a.bg-info:focus,a.bg-info:hover,button.bg-info:focus,button.bg-info:hover{background-color:#117a8b!important}.bg-warning{background-color:#ffc107!important}a.bg-warning:focus,a.bg-warning:hover,button.bg-warning:focus,button.bg-warning:hover{background-color:#d39e00!important}.bg-danger{background-color:#dc3545!important}a.bg-danger:focus,a.bg-danger:hover,button.bg-danger:focus,button.bg-danger:hover{background-color:#bd2130!important}.bg-light{background-color:#f8f9fa!important}a.bg-light:focus,a.bg-light:hover,button.bg-light:focus,button.bg-light:hover{background-color:#dae0e5!important}.bg-dark{background-color:#343a40!important}a.bg-dark:focus,a.bg-dark:hover,button.bg-dark:focus,button.bg-dark:hover{background-color:#1d2124!important}.bg-white{background-color:#fff!important}.bg-transparent{background-color:transparent!important}.border{border:1px solid #dee2e6!important}.border-top{border-top:1px solid #dee2e6!important}.border-right{border-right:1px solid #dee2e6!important}.border-bottom{border-bottom:1px solid #dee2e6!important}.border-left{border-left:1px solid #dee2e6!important}.border-0{border:0!important}.border-top-0{border-top:0!important}.border-right-0{border-right:0!important}.border-bottom-0{border-bottom:0!important}.border-left-0{border-left:0!important}.border-primary{border-color:#007bff!important}.border-secondary{border-color:#6c757d!important}.border-success{border-color:#28a745!important}.border-info{border-color:#17a2b8!important}.border-warning{border-color:#ffc107!important}.border-danger{border-color:#dc3545!important}.border-light{border-color:#f8f9fa!important}.border-dark{border-color:#343a40!important}.border-white{border-color:#fff!important}.rounded-sm{border-radius:.2rem!important}.rounded{border-radius:.25rem!important}.rounded-top{border-top-left-radius:.25rem!important}.rounded-right,.rounded-top{border-top-right-radius:.25rem!important}.rounded-bottom,.rounded-right{border-bottom-right-radius:.25rem!important}.rounded-bottom,.rounded-left{border-bottom-left-radius:.25rem!important}.rounded-left{border-top-left-radius:.25rem!important}.rounded-lg{border-radius:.3rem!important}.rounded-circle{border-radius:50%!important}.rounded-pill{border-radius:50rem!important}.rounded-0{border-radius:0!important}.clearfix:after{display:block;clear:both;content:""}.d-none{display:none!important}.d-inline{display:inline!important}.d-inline-block{display:inline-block!important}.d-block{display:block!important}.d-table{display:table!important}.d-table-row{display:table-row!important}.d-table-cell{display:table-cell!important}.d-flex{display:flex!important}.d-inline-flex{display:inline-flex!important}@media (min-width:540px){.d-sm-none{display:none!important}.d-sm-inline{display:inline!important}.d-sm-inline-block{display:inline-block!important}.d-sm-block{display:block!important}.d-sm-table{display:table!important}.d-sm-table-row{display:table-row!important}.d-sm-table-cell{display:table-cell!important}.d-sm-flex{display:flex!important}.d-sm-inline-flex{display:inline-flex!important}}@media (min-width:720px){.d-md-none{display:none!important}.d-md-inline{display:inline!important}.d-md-inline-block{display:inline-block!important}.d-md-block{display:block!important}.d-md-table{display:table!important}.d-md-table-row{display:table-row!important}.d-md-table-cell{display:table-cell!important}.d-md-flex{display:flex!important}.d-md-inline-flex{display:inline-flex!important}}@media (min-width:960px){.d-lg-none{display:none!important}.d-lg-inline{display:inline!important}.d-lg-inline-block{display:inline-block!important}.d-lg-block{display:block!important}.d-lg-table{display:table!important}.d-lg-table-row{display:table-row!important}.d-lg-table-cell{display:table-cell!important}.d-lg-flex{display:flex!important}.d-lg-inline-flex{display:inline-flex!important}}@media (min-width:1200px){.d-xl-none{display:none!important}.d-xl-inline{display:inline!important}.d-xl-inline-block{display:inline-block!important}.d-xl-block{display:block!important}.d-xl-table{display:table!important}.d-xl-table-row{display:table-row!important}.d-xl-table-cell{display:table-cell!important}.d-xl-flex{display:flex!important}.d-xl-inline-flex{display:inline-flex!important}}@media print{.d-print-none{display:none!important}.d-print-inline{display:inline!important}.d-print-inline-block{display:inline-block!important}.d-print-block{display:block!important}.d-print-table{display:table!important}.d-print-table-row{display:table-row!important}.d-print-table-cell{display:table-cell!important}.d-print-flex{display:flex!important}.d-print-inline-flex{display:inline-flex!important}}.embed-responsive{position:relative;display:block;width:100%;padding:0;overflow:hidden}.embed-responsive:before{display:block;content:""}.embed-responsive .embed-responsive-item,.embed-responsive embed,.embed-responsive iframe,.embed-responsive object,.embed-responsive video{position:absolute;top:0;bottom:0;left:0;width:100%;height:100%;border:0}.embed-responsive-21by9:before{padding-top:42.85714%}.embed-responsive-16by9:before{padding-top:56.25%}.embed-responsive-4by3:before{padding-top:75%}.embed-responsive-1by1:before{padding-top:100%}.flex-row{flex-direction:row!important}.flex-column{flex-direction:column!important}.flex-row-reverse{flex-direction:row-reverse!important}.flex-column-reverse{flex-direction:column-reverse!important}.flex-wrap{flex-wrap:wrap!important}.flex-nowrap{flex-wrap:nowrap!important}.flex-wrap-reverse{flex-wrap:wrap-reverse!important}.flex-fill{flex:1 1 auto!important}.flex-grow-0{flex-grow:0!important}.flex-grow-1{flex-grow:1!important}.flex-shrink-0{flex-shrink:0!important}.flex-shrink-1{flex-shrink:1!important}.justify-content-start{justify-content:flex-start!important}.justify-content-end{justify-content:flex-end!important}.justify-content-center{justify-content:center!important}.justify-content-between{justify-content:space-between!important}.justify-content-around{justify-content:space-around!important}.align-items-start{align-items:flex-start!important}.align-items-end{align-items:flex-end!important}.align-items-center{align-items:center!important}.align-items-baseline{align-items:baseline!important}.align-items-stretch{align-items:stretch!important}.align-content-start{align-content:flex-start!important}.align-content-end{align-content:flex-end!important}.align-content-center{align-content:center!important}.align-content-between{align-content:space-between!important}.align-content-around{align-content:space-around!important}.align-content-stretch{align-content:stretch!important}.align-self-auto{align-self:auto!important}.align-self-start{align-self:flex-start!important}.align-self-end{align-self:flex-end!important}.align-self-center{align-self:center!important}.align-self-baseline{align-self:baseline!important}.align-self-stretch{align-self:stretch!important}@media (min-width:540px){.flex-sm-row{flex-direction:row!important}.flex-sm-column{flex-direction:column!important}.flex-sm-row-reverse{flex-direction:row-reverse!important}.flex-sm-column-reverse{flex-direction:column-reverse!important}.flex-sm-wrap{flex-wrap:wrap!important}.flex-sm-nowrap{flex-wrap:nowrap!important}.flex-sm-wrap-reverse{flex-wrap:wrap-reverse!important}.flex-sm-fill{flex:1 1 auto!important}.flex-sm-grow-0{flex-grow:0!important}.flex-sm-grow-1{flex-grow:1!important}.flex-sm-shrink-0{flex-shrink:0!important}.flex-sm-shrink-1{flex-shrink:1!important}.justify-content-sm-start{justify-content:flex-start!important}.justify-content-sm-end{justify-content:flex-end!important}.justify-content-sm-center{justify-content:center!important}.justify-content-sm-between{justify-content:space-between!important}.justify-content-sm-around{justify-content:space-around!important}.align-items-sm-start{align-items:flex-start!important}.align-items-sm-end{align-items:flex-end!important}.align-items-sm-center{align-items:center!important}.align-items-sm-baseline{align-items:baseline!important}.align-items-sm-stretch{align-items:stretch!important}.align-content-sm-start{align-content:flex-start!important}.align-content-sm-end{align-content:flex-end!important}.align-content-sm-center{align-content:center!important}.align-content-sm-between{align-content:space-between!important}.align-content-sm-around{align-content:space-around!important}.align-content-sm-stretch{align-content:stretch!important}.align-self-sm-auto{align-self:auto!important}.align-self-sm-start{align-self:flex-start!important}.align-self-sm-end{align-self:flex-end!important}.align-self-sm-center{align-self:center!important}.align-self-sm-baseline{align-self:baseline!important}.align-self-sm-stretch{align-self:stretch!important}}@media (min-width:720px){.flex-md-row{flex-direction:row!important}.flex-md-column{flex-direction:column!important}.flex-md-row-reverse{flex-direction:row-reverse!important}.flex-md-column-reverse{flex-direction:column-reverse!important}.flex-md-wrap{flex-wrap:wrap!important}.flex-md-nowrap{flex-wrap:nowrap!important}.flex-md-wrap-reverse{flex-wrap:wrap-reverse!important}.flex-md-fill{flex:1 1 auto!important}.flex-md-grow-0{flex-grow:0!important}.flex-md-grow-1{flex-grow:1!important}.flex-md-shrink-0{flex-shrink:0!important}.flex-md-shrink-1{flex-shrink:1!important}.justify-content-md-start{justify-content:flex-start!important}.justify-content-md-end{justify-content:flex-end!important}.justify-content-md-center{justify-content:center!important}.justify-content-md-between{justify-content:space-between!important}.justify-content-md-around{justify-content:space-around!important}.align-items-md-start{align-items:flex-start!important}.align-items-md-end{align-items:flex-end!important}.align-items-md-center{align-items:center!important}.align-items-md-baseline{align-items:baseline!important}.align-items-md-stretch{align-items:stretch!important}.align-content-md-start{align-content:flex-start!important}.align-content-md-end{align-content:flex-end!important}.align-content-md-center{align-content:center!important}.align-content-md-between{align-content:space-between!important}.align-content-md-around{align-content:space-around!important}.align-content-md-stretch{align-content:stretch!important}.align-self-md-auto{align-self:auto!important}.align-self-md-start{align-self:flex-start!important}.align-self-md-end{align-self:flex-end!important}.align-self-md-center{align-self:center!important}.align-self-md-baseline{align-self:baseline!important}.align-self-md-stretch{align-self:stretch!important}}@media (min-width:960px){.flex-lg-row{flex-direction:row!important}.flex-lg-column{flex-direction:column!important}.flex-lg-row-reverse{flex-direction:row-reverse!important}.flex-lg-column-reverse{flex-direction:column-reverse!important}.flex-lg-wrap{flex-wrap:wrap!important}.flex-lg-nowrap{flex-wrap:nowrap!important}.flex-lg-wrap-reverse{flex-wrap:wrap-reverse!important}.flex-lg-fill{flex:1 1 auto!important}.flex-lg-grow-0{flex-grow:0!important}.flex-lg-grow-1{flex-grow:1!important}.flex-lg-shrink-0{flex-shrink:0!important}.flex-lg-shrink-1{flex-shrink:1!important}.justify-content-lg-start{justify-content:flex-start!important}.justify-content-lg-end{justify-content:flex-end!important}.justify-content-lg-center{justify-content:center!important}.justify-content-lg-between{justify-content:space-between!important}.justify-content-lg-around{justify-content:space-around!important}.align-items-lg-start{align-items:flex-start!important}.align-items-lg-end{align-items:flex-end!important}.align-items-lg-center{align-items:center!important}.align-items-lg-baseline{align-items:baseline!important}.align-items-lg-stretch{align-items:stretch!important}.align-content-lg-start{align-content:flex-start!important}.align-content-lg-end{align-content:flex-end!important}.align-content-lg-center{align-content:center!important}.align-content-lg-between{align-content:space-between!important}.align-content-lg-around{align-content:space-around!important}.align-content-lg-stretch{align-content:stretch!important}.align-self-lg-auto{align-self:auto!important}.align-self-lg-start{align-self:flex-start!important}.align-self-lg-end{align-self:flex-end!important}.align-self-lg-center{align-self:center!important}.align-self-lg-baseline{align-self:baseline!important}.align-self-lg-stretch{align-self:stretch!important}}@media (min-width:1200px){.flex-xl-row{flex-direction:row!important}.flex-xl-column{flex-direction:column!important}.flex-xl-row-reverse{flex-direction:row-reverse!important}.flex-xl-column-reverse{flex-direction:column-reverse!important}.flex-xl-wrap{flex-wrap:wrap!important}.flex-xl-nowrap{flex-wrap:nowrap!important}.flex-xl-wrap-reverse{flex-wrap:wrap-reverse!important}.flex-xl-fill{flex:1 1 auto!important}.flex-xl-grow-0{flex-grow:0!important}.flex-xl-grow-1{flex-grow:1!important}.flex-xl-shrink-0{flex-shrink:0!important}.flex-xl-shrink-1{flex-shrink:1!important}.justify-content-xl-start{justify-content:flex-start!important}.justify-content-xl-end{justify-content:flex-end!important}.justify-content-xl-center{justify-content:center!important}.justify-content-xl-between{justify-content:space-between!important}.justify-content-xl-around{justify-content:space-around!important}.align-items-xl-start{align-items:flex-start!important}.align-items-xl-end{align-items:flex-end!important}.align-items-xl-center{align-items:center!important}.align-items-xl-baseline{align-items:baseline!important}.align-items-xl-stretch{align-items:stretch!important}.align-content-xl-start{align-content:flex-start!important}.align-content-xl-end{align-content:flex-end!important}.align-content-xl-center{align-content:center!important}.align-content-xl-between{align-content:space-between!important}.align-content-xl-around{align-content:space-around!important}.align-content-xl-stretch{align-content:stretch!important}.align-self-xl-auto{align-self:auto!important}.align-self-xl-start{align-self:flex-start!important}.align-self-xl-end{align-self:flex-end!important}.align-self-xl-center{align-self:center!important}.align-self-xl-baseline{align-self:baseline!important}.align-self-xl-stretch{align-self:stretch!important}}.float-left{float:left!important}.float-right{float:right!important}.float-none{float:none!important}@media (min-width:540px){.float-sm-left{float:left!important}.float-sm-right{float:right!important}.float-sm-none{float:none!important}}@media (min-width:720px){.float-md-left{float:left!important}.float-md-right{float:right!important}.float-md-none{float:none!important}}@media (min-width:960px){.float-lg-left{float:left!important}.float-lg-right{float:right!important}.float-lg-none{float:none!important}}@media (min-width:1200px){.float-xl-left{float:left!important}.float-xl-right{float:right!important}.float-xl-none{float:none!important}}.user-select-all{user-select:all!important}.user-select-auto{user-select:auto!important}.user-select-none{user-select:none!important}.overflow-auto{overflow:auto!important}.overflow-hidden{overflow:hidden!important}.position-static{position:static!important}.position-relative{position:relative!important}.position-absolute{position:absolute!important}.position-fixed{position:fixed!important}.position-sticky{position:sticky!important}.fixed-top{top:0}.fixed-bottom,.fixed-top{position:fixed;right:0;left:0;z-index:1030}.fixed-bottom{bottom:0}@supports (position:sticky){.sticky-top{position:sticky;top:0;z-index:1020}}.sr-only{position:absolute;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;clip:rect(0,0,0,0);white-space:nowrap;border:0}.sr-only-focusable:active,.sr-only-focusable:focus{position:static;width:auto;height:auto;overflow:visible;clip:auto;white-space:normal}.shadow-sm{box-shadow:0 .125rem .25rem rgba(0,0,0,.075)!important}.shadow{box-shadow:0 .5rem 1rem rgba(0,0,0,.15)!important}.shadow-lg{box-shadow:0 1rem 3rem rgba(0,0,0,.175)!important}.shadow-none{box-shadow:none!important}.w-25{width:25%!important}.w-50{width:50%!important}.w-75{width:75%!important}.w-100{width:100%!important}.w-auto{width:auto!important}.h-25{height:25%!important}.h-50{height:50%!important}.h-75{height:75%!important}.h-100{height:100%!important}.h-auto{height:auto!important}.mw-100{max-width:100%!important}.mh-100{max-height:100%!important}.min-vw-100{min-width:100vw!important}.min-vh-100{min-height:100vh!important}.vw-100{width:100vw!important}.vh-100{height:100vh!important}.m-0{margin:0!important}.mt-0,.my-0{margin-top:0!important}.mr-0,.mx-0{margin-right:0!important}.mb-0,.my-0{margin-bottom:0!important}.ml-0,.mx-0{margin-left:0!important}.m-1{margin:.25rem!important}.mt-1,.my-1{margin-top:.25rem!important}.mr-1,.mx-1{margin-right:.25rem!important}.mb-1,.my-1{margin-bottom:.25rem!important}.ml-1,.mx-1{margin-left:.25rem!important}.m-2{margin:.5rem!important}.mt-2,.my-2{margin-top:.5rem!important}.mr-2,.mx-2{margin-right:.5rem!important}.mb-2,.my-2{margin-bottom:.5rem!important}.ml-2,.mx-2{margin-left:.5rem!important}.m-3{margin:1rem!important}.mt-3,.my-3{margin-top:1rem!important}.mr-3,.mx-3{margin-right:1rem!important}.mb-3,.my-3{margin-bottom:1rem!important}.ml-3,.mx-3{margin-left:1rem!important}.m-4{margin:1.5rem!important}.mt-4,.my-4{margin-top:1.5rem!important}.mr-4,.mx-4{margin-right:1.5rem!important}.mb-4,.my-4{margin-bottom:1.5rem!important}.ml-4,.mx-4{margin-left:1.5rem!important}.m-5{margin:3rem!important}.mt-5,.my-5{margin-top:3rem!important}.mr-5,.mx-5{margin-right:3rem!important}.mb-5,.my-5{margin-bottom:3rem!important}.ml-5,.mx-5{margin-left:3rem!important}.p-0{padding:0!important}.pt-0,.py-0{padding-top:0!important}.pr-0,.px-0{padding-right:0!important}.pb-0,.py-0{padding-bottom:0!important}.pl-0,.px-0{padding-left:0!important}.p-1{padding:.25rem!important}.pt-1,.py-1{padding-top:.25rem!important}.pr-1,.px-1{padding-right:.25rem!important}.pb-1,.py-1{padding-bottom:.25rem!important}.pl-1,.px-1{padding-left:.25rem!important}.p-2{padding:.5rem!important}.pt-2,.py-2{padding-top:.5rem!important}.pr-2,.px-2{padding-right:.5rem!important}.pb-2,.py-2{padding-bottom:.5rem!important}.pl-2,.px-2{padding-left:.5rem!important}.p-3{padding:1rem!important}.pt-3,.py-3{padding-top:1rem!important}.pr-3,.px-3{padding-right:1rem!important}.pb-3,.py-3{padding-bottom:1rem!important}.pl-3,.px-3{padding-left:1rem!important}.p-4{padding:1.5rem!important}.pt-4,.py-4{padding-top:1.5rem!important}.pr-4,.px-4{padding-right:1.5rem!important}.pb-4,.py-4{padding-bottom:1.5rem!important}.pl-4,.px-4{padding-left:1.5rem!important}.p-5{padding:3rem!important}.pt-5,.py-5{padding-top:3rem!important}.pr-5,.px-5{padding-right:3rem!important}.pb-5,.py-5{padding-bottom:3rem!important}.pl-5,.px-5{padding-left:3rem!important}.m-n1{margin:-.25rem!important}.mt-n1,.my-n1{margin-top:-.25rem!important}.mr-n1,.mx-n1{margin-right:-.25rem!important}.mb-n1,.my-n1{margin-bottom:-.25rem!important}.ml-n1,.mx-n1{margin-left:-.25rem!important}.m-n2{margin:-.5rem!important}.mt-n2,.my-n2{margin-top:-.5rem!important}.mr-n2,.mx-n2{margin-right:-.5rem!important}.mb-n2,.my-n2{margin-bottom:-.5rem!important}.ml-n2,.mx-n2{margin-left:-.5rem!important}.m-n3{margin:-1rem!important}.mt-n3,.my-n3{margin-top:-1rem!important}.mr-n3,.mx-n3{margin-right:-1rem!important}.mb-n3,.my-n3{margin-bottom:-1rem!important}.ml-n3,.mx-n3{margin-left:-1rem!important}.m-n4{margin:-1.5rem!important}.mt-n4,.my-n4{margin-top:-1.5rem!important}.mr-n4,.mx-n4{margin-right:-1.5rem!important}.mb-n4,.my-n4{margin-bottom:-1.5rem!important}.ml-n4,.mx-n4{margin-left:-1.5rem!important}.m-n5{margin:-3rem!important}.mt-n5,.my-n5{margin-top:-3rem!important}.mr-n5,.mx-n5{margin-right:-3rem!important}.mb-n5,.my-n5{margin-bottom:-3rem!important}.ml-n5,.mx-n5{margin-left:-3rem!important}.m-auto{margin:auto!important}.mt-auto,.my-auto{margin-top:auto!important}.mr-auto,.mx-auto{margin-right:auto!important}.mb-auto,.my-auto{margin-bottom:auto!important}.ml-auto,.mx-auto{margin-left:auto!important}@media (min-width:540px){.m-sm-0{margin:0!important}.mt-sm-0,.my-sm-0{margin-top:0!important}.mr-sm-0,.mx-sm-0{margin-right:0!important}.mb-sm-0,.my-sm-0{margin-bottom:0!important}.ml-sm-0,.mx-sm-0{margin-left:0!important}.m-sm-1{margin:.25rem!important}.mt-sm-1,.my-sm-1{margin-top:.25rem!important}.mr-sm-1,.mx-sm-1{margin-right:.25rem!important}.mb-sm-1,.my-sm-1{margin-bottom:.25rem!important}.ml-sm-1,.mx-sm-1{margin-left:.25rem!important}.m-sm-2{margin:.5rem!important}.mt-sm-2,.my-sm-2{margin-top:.5rem!important}.mr-sm-2,.mx-sm-2{margin-right:.5rem!important}.mb-sm-2,.my-sm-2{margin-bottom:.5rem!important}.ml-sm-2,.mx-sm-2{margin-left:.5rem!important}.m-sm-3{margin:1rem!important}.mt-sm-3,.my-sm-3{margin-top:1rem!important}.mr-sm-3,.mx-sm-3{margin-right:1rem!important}.mb-sm-3,.my-sm-3{margin-bottom:1rem!important}.ml-sm-3,.mx-sm-3{margin-left:1rem!important}.m-sm-4{margin:1.5rem!important}.mt-sm-4,.my-sm-4{margin-top:1.5rem!important}.mr-sm-4,.mx-sm-4{margin-right:1.5rem!important}.mb-sm-4,.my-sm-4{margin-bottom:1.5rem!important}.ml-sm-4,.mx-sm-4{margin-left:1.5rem!important}.m-sm-5{margin:3rem!important}.mt-sm-5,.my-sm-5{margin-top:3rem!important}.mr-sm-5,.mx-sm-5{margin-right:3rem!important}.mb-sm-5,.my-sm-5{margin-bottom:3rem!important}.ml-sm-5,.mx-sm-5{margin-left:3rem!important}.p-sm-0{padding:0!important}.pt-sm-0,.py-sm-0{padding-top:0!important}.pr-sm-0,.px-sm-0{padding-right:0!important}.pb-sm-0,.py-sm-0{padding-bottom:0!important}.pl-sm-0,.px-sm-0{padding-left:0!important}.p-sm-1{padding:.25rem!important}.pt-sm-1,.py-sm-1{padding-top:.25rem!important}.pr-sm-1,.px-sm-1{padding-right:.25rem!important}.pb-sm-1,.py-sm-1{padding-bottom:.25rem!important}.pl-sm-1,.px-sm-1{padding-left:.25rem!important}.p-sm-2{padding:.5rem!important}.pt-sm-2,.py-sm-2{padding-top:.5rem!important}.pr-sm-2,.px-sm-2{padding-right:.5rem!important}.pb-sm-2,.py-sm-2{padding-bottom:.5rem!important}.pl-sm-2,.px-sm-2{padding-left:.5rem!important}.p-sm-3{padding:1rem!important}.pt-sm-3,.py-sm-3{padding-top:1rem!important}.pr-sm-3,.px-sm-3{padding-right:1rem!important}.pb-sm-3,.py-sm-3{padding-bottom:1rem!important}.pl-sm-3,.px-sm-3{padding-left:1rem!important}.p-sm-4{padding:1.5rem!important}.pt-sm-4,.py-sm-4{padding-top:1.5rem!important}.pr-sm-4,.px-sm-4{padding-right:1.5rem!important}.pb-sm-4,.py-sm-4{padding-bottom:1.5rem!important}.pl-sm-4,.px-sm-4{padding-left:1.5rem!important}.p-sm-5{padding:3rem!important}.pt-sm-5,.py-sm-5{padding-top:3rem!important}.pr-sm-5,.px-sm-5{padding-right:3rem!important}.pb-sm-5,.py-sm-5{padding-bottom:3rem!important}.pl-sm-5,.px-sm-5{padding-left:3rem!important}.m-sm-n1{margin:-.25rem!important}.mt-sm-n1,.my-sm-n1{margin-top:-.25rem!important}.mr-sm-n1,.mx-sm-n1{margin-right:-.25rem!important}.mb-sm-n1,.my-sm-n1{margin-bottom:-.25rem!important}.ml-sm-n1,.mx-sm-n1{margin-left:-.25rem!important}.m-sm-n2{margin:-.5rem!important}.mt-sm-n2,.my-sm-n2{margin-top:-.5rem!important}.mr-sm-n2,.mx-sm-n2{margin-right:-.5rem!important}.mb-sm-n2,.my-sm-n2{margin-bottom:-.5rem!important}.ml-sm-n2,.mx-sm-n2{margin-left:-.5rem!important}.m-sm-n3{margin:-1rem!important}.mt-sm-n3,.my-sm-n3{margin-top:-1rem!important}.mr-sm-n3,.mx-sm-n3{margin-right:-1rem!important}.mb-sm-n3,.my-sm-n3{margin-bottom:-1rem!important}.ml-sm-n3,.mx-sm-n3{margin-left:-1rem!important}.m-sm-n4{margin:-1.5rem!important}.mt-sm-n4,.my-sm-n4{margin-top:-1.5rem!important}.mr-sm-n4,.mx-sm-n4{margin-right:-1.5rem!important}.mb-sm-n4,.my-sm-n4{margin-bottom:-1.5rem!important}.ml-sm-n4,.mx-sm-n4{margin-left:-1.5rem!important}.m-sm-n5{margin:-3rem!important}.mt-sm-n5,.my-sm-n5{margin-top:-3rem!important}.mr-sm-n5,.mx-sm-n5{margin-right:-3rem!important}.mb-sm-n5,.my-sm-n5{margin-bottom:-3rem!important}.ml-sm-n5,.mx-sm-n5{margin-left:-3rem!important}.m-sm-auto{margin:auto!important}.mt-sm-auto,.my-sm-auto{margin-top:auto!important}.mr-sm-auto,.mx-sm-auto{margin-right:auto!important}.mb-sm-auto,.my-sm-auto{margin-bottom:auto!important}.ml-sm-auto,.mx-sm-auto{margin-left:auto!important}}@media (min-width:720px){.m-md-0{margin:0!important}.mt-md-0,.my-md-0{margin-top:0!important}.mr-md-0,.mx-md-0{margin-right:0!important}.mb-md-0,.my-md-0{margin-bottom:0!important}.ml-md-0,.mx-md-0{margin-left:0!important}.m-md-1{margin:.25rem!important}.mt-md-1,.my-md-1{margin-top:.25rem!important}.mr-md-1,.mx-md-1{margin-right:.25rem!important}.mb-md-1,.my-md-1{margin-bottom:.25rem!important}.ml-md-1,.mx-md-1{margin-left:.25rem!important}.m-md-2{margin:.5rem!important}.mt-md-2,.my-md-2{margin-top:.5rem!important}.mr-md-2,.mx-md-2{margin-right:.5rem!important}.mb-md-2,.my-md-2{margin-bottom:.5rem!important}.ml-md-2,.mx-md-2{margin-left:.5rem!important}.m-md-3{margin:1rem!important}.mt-md-3,.my-md-3{margin-top:1rem!important}.mr-md-3,.mx-md-3{margin-right:1rem!important}.mb-md-3,.my-md-3{margin-bottom:1rem!important}.ml-md-3,.mx-md-3{margin-left:1rem!important}.m-md-4{margin:1.5rem!important}.mt-md-4,.my-md-4{margin-top:1.5rem!important}.mr-md-4,.mx-md-4{margin-right:1.5rem!important}.mb-md-4,.my-md-4{margin-bottom:1.5rem!important}.ml-md-4,.mx-md-4{margin-left:1.5rem!important}.m-md-5{margin:3rem!important}.mt-md-5,.my-md-5{margin-top:3rem!important}.mr-md-5,.mx-md-5{margin-right:3rem!important}.mb-md-5,.my-md-5{margin-bottom:3rem!important}.ml-md-5,.mx-md-5{margin-left:3rem!important}.p-md-0{padding:0!important}.pt-md-0,.py-md-0{padding-top:0!important}.pr-md-0,.px-md-0{padding-right:0!important}.pb-md-0,.py-md-0{padding-bottom:0!important}.pl-md-0,.px-md-0{padding-left:0!important}.p-md-1{padding:.25rem!important}.pt-md-1,.py-md-1{padding-top:.25rem!important}.pr-md-1,.px-md-1{padding-right:.25rem!important}.pb-md-1,.py-md-1{padding-bottom:.25rem!important}.pl-md-1,.px-md-1{padding-left:.25rem!important}.p-md-2{padding:.5rem!important}.pt-md-2,.py-md-2{padding-top:.5rem!important}.pr-md-2,.px-md-2{padding-right:.5rem!important}.pb-md-2,.py-md-2{padding-bottom:.5rem!important}.pl-md-2,.px-md-2{padding-left:.5rem!important}.p-md-3{padding:1rem!important}.pt-md-3,.py-md-3{padding-top:1rem!important}.pr-md-3,.px-md-3{padding-right:1rem!important}.pb-md-3,.py-md-3{padding-bottom:1rem!important}.pl-md-3,.px-md-3{padding-left:1rem!important}.p-md-4{padding:1.5rem!important}.pt-md-4,.py-md-4{padding-top:1.5rem!important}.pr-md-4,.px-md-4{padding-right:1.5rem!important}.pb-md-4,.py-md-4{padding-bottom:1.5rem!important}.pl-md-4,.px-md-4{padding-left:1.5rem!important}.p-md-5{padding:3rem!important}.pt-md-5,.py-md-5{padding-top:3rem!important}.pr-md-5,.px-md-5{padding-right:3rem!important}.pb-md-5,.py-md-5{padding-bottom:3rem!important}.pl-md-5,.px-md-5{padding-left:3rem!important}.m-md-n1{margin:-.25rem!important}.mt-md-n1,.my-md-n1{margin-top:-.25rem!important}.mr-md-n1,.mx-md-n1{margin-right:-.25rem!important}.mb-md-n1,.my-md-n1{margin-bottom:-.25rem!important}.ml-md-n1,.mx-md-n1{margin-left:-.25rem!important}.m-md-n2{margin:-.5rem!important}.mt-md-n2,.my-md-n2{margin-top:-.5rem!important}.mr-md-n2,.mx-md-n2{margin-right:-.5rem!important}.mb-md-n2,.my-md-n2{margin-bottom:-.5rem!important}.ml-md-n2,.mx-md-n2{margin-left:-.5rem!important}.m-md-n3{margin:-1rem!important}.mt-md-n3,.my-md-n3{margin-top:-1rem!important}.mr-md-n3,.mx-md-n3{margin-right:-1rem!important}.mb-md-n3,.my-md-n3{margin-bottom:-1rem!important}.ml-md-n3,.mx-md-n3{margin-left:-1rem!important}.m-md-n4{margin:-1.5rem!important}.mt-md-n4,.my-md-n4{margin-top:-1.5rem!important}.mr-md-n4,.mx-md-n4{margin-right:-1.5rem!important}.mb-md-n4,.my-md-n4{margin-bottom:-1.5rem!important}.ml-md-n4,.mx-md-n4{margin-left:-1.5rem!important}.m-md-n5{margin:-3rem!important}.mt-md-n5,.my-md-n5{margin-top:-3rem!important}.mr-md-n5,.mx-md-n5{margin-right:-3rem!important}.mb-md-n5,.my-md-n5{margin-bottom:-3rem!important}.ml-md-n5,.mx-md-n5{margin-left:-3rem!important}.m-md-auto{margin:auto!important}.mt-md-auto,.my-md-auto{margin-top:auto!important}.mr-md-auto,.mx-md-auto{margin-right:auto!important}.mb-md-auto,.my-md-auto{margin-bottom:auto!important}.ml-md-auto,.mx-md-auto{margin-left:auto!important}}@media (min-width:960px){.m-lg-0{margin:0!important}.mt-lg-0,.my-lg-0{margin-top:0!important}.mr-lg-0,.mx-lg-0{margin-right:0!important}.mb-lg-0,.my-lg-0{margin-bottom:0!important}.ml-lg-0,.mx-lg-0{margin-left:0!important}.m-lg-1{margin:.25rem!important}.mt-lg-1,.my-lg-1{margin-top:.25rem!important}.mr-lg-1,.mx-lg-1{margin-right:.25rem!important}.mb-lg-1,.my-lg-1{margin-bottom:.25rem!important}.ml-lg-1,.mx-lg-1{margin-left:.25rem!important}.m-lg-2{margin:.5rem!important}.mt-lg-2,.my-lg-2{margin-top:.5rem!important}.mr-lg-2,.mx-lg-2{margin-right:.5rem!important}.mb-lg-2,.my-lg-2{margin-bottom:.5rem!important}.ml-lg-2,.mx-lg-2{margin-left:.5rem!important}.m-lg-3{margin:1rem!important}.mt-lg-3,.my-lg-3{margin-top:1rem!important}.mr-lg-3,.mx-lg-3{margin-right:1rem!important}.mb-lg-3,.my-lg-3{margin-bottom:1rem!important}.ml-lg-3,.mx-lg-3{margin-left:1rem!important}.m-lg-4{margin:1.5rem!important}.mt-lg-4,.my-lg-4{margin-top:1.5rem!important}.mr-lg-4,.mx-lg-4{margin-right:1.5rem!important}.mb-lg-4,.my-lg-4{margin-bottom:1.5rem!important}.ml-lg-4,.mx-lg-4{margin-left:1.5rem!important}.m-lg-5{margin:3rem!important}.mt-lg-5,.my-lg-5{margin-top:3rem!important}.mr-lg-5,.mx-lg-5{margin-right:3rem!important}.mb-lg-5,.my-lg-5{margin-bottom:3rem!important}.ml-lg-5,.mx-lg-5{margin-left:3rem!important}.p-lg-0{padding:0!important}.pt-lg-0,.py-lg-0{padding-top:0!important}.pr-lg-0,.px-lg-0{padding-right:0!important}.pb-lg-0,.py-lg-0{padding-bottom:0!important}.pl-lg-0,.px-lg-0{padding-left:0!important}.p-lg-1{padding:.25rem!important}.pt-lg-1,.py-lg-1{padding-top:.25rem!important}.pr-lg-1,.px-lg-1{padding-right:.25rem!important}.pb-lg-1,.py-lg-1{padding-bottom:.25rem!important}.pl-lg-1,.px-lg-1{padding-left:.25rem!important}.p-lg-2{padding:.5rem!important}.pt-lg-2,.py-lg-2{padding-top:.5rem!important}.pr-lg-2,.px-lg-2{padding-right:.5rem!important}.pb-lg-2,.py-lg-2{padding-bottom:.5rem!important}.pl-lg-2,.px-lg-2{padding-left:.5rem!important}.p-lg-3{padding:1rem!important}.pt-lg-3,.py-lg-3{padding-top:1rem!important}.pr-lg-3,.px-lg-3{padding-right:1rem!important}.pb-lg-3,.py-lg-3{padding-bottom:1rem!important}.pl-lg-3,.px-lg-3{padding-left:1rem!important}.p-lg-4{padding:1.5rem!important}.pt-lg-4,.py-lg-4{padding-top:1.5rem!important}.pr-lg-4,.px-lg-4{padding-right:1.5rem!important}.pb-lg-4,.py-lg-4{padding-bottom:1.5rem!important}.pl-lg-4,.px-lg-4{padding-left:1.5rem!important}.p-lg-5{padding:3rem!important}.pt-lg-5,.py-lg-5{padding-top:3rem!important}.pr-lg-5,.px-lg-5{padding-right:3rem!important}.pb-lg-5,.py-lg-5{padding-bottom:3rem!important}.pl-lg-5,.px-lg-5{padding-left:3rem!important}.m-lg-n1{margin:-.25rem!important}.mt-lg-n1,.my-lg-n1{margin-top:-.25rem!important}.mr-lg-n1,.mx-lg-n1{margin-right:-.25rem!important}.mb-lg-n1,.my-lg-n1{margin-bottom:-.25rem!important}.ml-lg-n1,.mx-lg-n1{margin-left:-.25rem!important}.m-lg-n2{margin:-.5rem!important}.mt-lg-n2,.my-lg-n2{margin-top:-.5rem!important}.mr-lg-n2,.mx-lg-n2{margin-right:-.5rem!important}.mb-lg-n2,.my-lg-n2{margin-bottom:-.5rem!important}.ml-lg-n2,.mx-lg-n2{margin-left:-.5rem!important}.m-lg-n3{margin:-1rem!important}.mt-lg-n3,.my-lg-n3{margin-top:-1rem!important}.mr-lg-n3,.mx-lg-n3{margin-right:-1rem!important}.mb-lg-n3,.my-lg-n3{margin-bottom:-1rem!important}.ml-lg-n3,.mx-lg-n3{margin-left:-1rem!important}.m-lg-n4{margin:-1.5rem!important}.mt-lg-n4,.my-lg-n4{margin-top:-1.5rem!important}.mr-lg-n4,.mx-lg-n4{margin-right:-1.5rem!important}.mb-lg-n4,.my-lg-n4{margin-bottom:-1.5rem!important}.ml-lg-n4,.mx-lg-n4{margin-left:-1.5rem!important}.m-lg-n5{margin:-3rem!important}.mt-lg-n5,.my-lg-n5{margin-top:-3rem!important}.mr-lg-n5,.mx-lg-n5{margin-right:-3rem!important}.mb-lg-n5,.my-lg-n5{margin-bottom:-3rem!important}.ml-lg-n5,.mx-lg-n5{margin-left:-3rem!important}.m-lg-auto{margin:auto!important}.mt-lg-auto,.my-lg-auto{margin-top:auto!important}.mr-lg-auto,.mx-lg-auto{margin-right:auto!important}.mb-lg-auto,.my-lg-auto{margin-bottom:auto!important}.ml-lg-auto,.mx-lg-auto{margin-left:auto!important}}@media (min-width:1200px){.m-xl-0{margin:0!important}.mt-xl-0,.my-xl-0{margin-top:0!important}.mr-xl-0,.mx-xl-0{margin-right:0!important}.mb-xl-0,.my-xl-0{margin-bottom:0!important}.ml-xl-0,.mx-xl-0{margin-left:0!important}.m-xl-1{margin:.25rem!important}.mt-xl-1,.my-xl-1{margin-top:.25rem!important}.mr-xl-1,.mx-xl-1{margin-right:.25rem!important}.mb-xl-1,.my-xl-1{margin-bottom:.25rem!important}.ml-xl-1,.mx-xl-1{margin-left:.25rem!important}.m-xl-2{margin:.5rem!important}.mt-xl-2,.my-xl-2{margin-top:.5rem!important}.mr-xl-2,.mx-xl-2{margin-right:.5rem!important}.mb-xl-2,.my-xl-2{margin-bottom:.5rem!important}.ml-xl-2,.mx-xl-2{margin-left:.5rem!important}.m-xl-3{margin:1rem!important}.mt-xl-3,.my-xl-3{margin-top:1rem!important}.mr-xl-3,.mx-xl-3{margin-right:1rem!important}.mb-xl-3,.my-xl-3{margin-bottom:1rem!important}.ml-xl-3,.mx-xl-3{margin-left:1rem!important}.m-xl-4{margin:1.5rem!important}.mt-xl-4,.my-xl-4{margin-top:1.5rem!important}.mr-xl-4,.mx-xl-4{margin-right:1.5rem!important}.mb-xl-4,.my-xl-4{margin-bottom:1.5rem!important}.ml-xl-4,.mx-xl-4{margin-left:1.5rem!important}.m-xl-5{margin:3rem!important}.mt-xl-5,.my-xl-5{margin-top:3rem!important}.mr-xl-5,.mx-xl-5{margin-right:3rem!important}.mb-xl-5,.my-xl-5{margin-bottom:3rem!important}.ml-xl-5,.mx-xl-5{margin-left:3rem!important}.p-xl-0{padding:0!important}.pt-xl-0,.py-xl-0{padding-top:0!important}.pr-xl-0,.px-xl-0{padding-right:0!important}.pb-xl-0,.py-xl-0{padding-bottom:0!important}.pl-xl-0,.px-xl-0{padding-left:0!important}.p-xl-1{padding:.25rem!important}.pt-xl-1,.py-xl-1{padding-top:.25rem!important}.pr-xl-1,.px-xl-1{padding-right:.25rem!important}.pb-xl-1,.py-xl-1{padding-bottom:.25rem!important}.pl-xl-1,.px-xl-1{padding-left:.25rem!important}.p-xl-2{padding:.5rem!important}.pt-xl-2,.py-xl-2{padding-top:.5rem!important}.pr-xl-2,.px-xl-2{padding-right:.5rem!important}.pb-xl-2,.py-xl-2{padding-bottom:.5rem!important}.pl-xl-2,.px-xl-2{padding-left:.5rem!important}.p-xl-3{padding:1rem!important}.pt-xl-3,.py-xl-3{padding-top:1rem!important}.pr-xl-3,.px-xl-3{padding-right:1rem!important}.pb-xl-3,.py-xl-3{padding-bottom:1rem!important}.pl-xl-3,.px-xl-3{padding-left:1rem!important}.p-xl-4{padding:1.5rem!important}.pt-xl-4,.py-xl-4{padding-top:1.5rem!important}.pr-xl-4,.px-xl-4{padding-right:1.5rem!important}.pb-xl-4,.py-xl-4{padding-bottom:1.5rem!important}.pl-xl-4,.px-xl-4{padding-left:1.5rem!important}.p-xl-5{padding:3rem!important}.pt-xl-5,.py-xl-5{padding-top:3rem!important}.pr-xl-5,.px-xl-5{padding-right:3rem!important}.pb-xl-5,.py-xl-5{padding-bottom:3rem!important}.pl-xl-5,.px-xl-5{padding-left:3rem!important}.m-xl-n1{margin:-.25rem!important}.mt-xl-n1,.my-xl-n1{margin-top:-.25rem!important}.mr-xl-n1,.mx-xl-n1{margin-right:-.25rem!important}.mb-xl-n1,.my-xl-n1{margin-bottom:-.25rem!important}.ml-xl-n1,.mx-xl-n1{margin-left:-.25rem!important}.m-xl-n2{margin:-.5rem!important}.mt-xl-n2,.my-xl-n2{margin-top:-.5rem!important}.mr-xl-n2,.mx-xl-n2{margin-right:-.5rem!important}.mb-xl-n2,.my-xl-n2{margin-bottom:-.5rem!important}.ml-xl-n2,.mx-xl-n2{margin-left:-.5rem!important}.m-xl-n3{margin:-1rem!important}.mt-xl-n3,.my-xl-n3{margin-top:-1rem!important}.mr-xl-n3,.mx-xl-n3{margin-right:-1rem!important}.mb-xl-n3,.my-xl-n3{margin-bottom:-1rem!important}.ml-xl-n3,.mx-xl-n3{margin-left:-1rem!important}.m-xl-n4{margin:-1.5rem!important}.mt-xl-n4,.my-xl-n4{margin-top:-1.5rem!important}.mr-xl-n4,.mx-xl-n4{margin-right:-1.5rem!important}.mb-xl-n4,.my-xl-n4{margin-bottom:-1.5rem!important}.ml-xl-n4,.mx-xl-n4{margin-left:-1.5rem!important}.m-xl-n5{margin:-3rem!important}.mt-xl-n5,.my-xl-n5{margin-top:-3rem!important}.mr-xl-n5,.mx-xl-n5{margin-right:-3rem!important}.mb-xl-n5,.my-xl-n5{margin-bottom:-3rem!important}.ml-xl-n5,.mx-xl-n5{margin-left:-3rem!important}.m-xl-auto{margin:auto!important}.mt-xl-auto,.my-xl-auto{margin-top:auto!important}.mr-xl-auto,.mx-xl-auto{margin-right:auto!important}.mb-xl-auto,.my-xl-auto{margin-bottom:auto!important}.ml-xl-auto,.mx-xl-auto{margin-left:auto!important}}.stretched-link:after{position:absolute;top:0;right:0;bottom:0;left:0;z-index:1;pointer-events:auto;content:"";background-color:transparent}.text-monospace{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,monospace!important}.text-justify{text-align:justify!important}.text-wrap{white-space:normal!important}.text-nowrap{white-space:nowrap!important}.text-truncate{overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.text-left{text-align:left!important}.text-right{text-align:right!important}.text-center{text-align:center!important}@media (min-width:540px){.text-sm-left{text-align:left!important}.text-sm-right{text-align:right!important}.text-sm-center{text-align:center!important}}@media (min-width:720px){.text-md-left{text-align:left!important}.text-md-right{text-align:right!important}.text-md-center{text-align:center!important}}@media (min-width:960px){.text-lg-left{text-align:left!important}.text-lg-right{text-align:right!important}.text-lg-center{text-align:center!important}}@media (min-width:1200px){.text-xl-left{text-align:left!important}.text-xl-right{text-align:right!important}.text-xl-center{text-align:center!important}}.text-lowercase{text-transform:lowercase!important}.text-uppercase{text-transform:uppercase!important}.text-capitalize{text-transform:capitalize!important}.font-weight-light{font-weight:300!important}.font-weight-lighter{font-weight:lighter!important}.font-weight-normal{font-weight:400!important}.font-weight-bold{font-weight:700!important}.font-weight-bolder{font-weight:bolder!important}.font-italic{font-style:italic!important}.text-white{color:#fff!important}.text-primary{color:#007bff!important}a.text-primary:focus,a.text-primary:hover{color:#0056b3!important}.text-secondary{color:#6c757d!important}a.text-secondary:focus,a.text-secondary:hover{color:#494f54!important}.text-success{color:#28a745!important}a.text-success:focus,a.text-success:hover{color:#19692c!important}.text-info{color:#17a2b8!important}a.text-info:focus,a.text-info:hover{color:#0f6674!important}.text-warning{color:#ffc107!important}a.text-warning:focus,a.text-warning:hover{color:#ba8b00!important}.text-danger{color:#dc3545!important}a.text-danger:focus,a.text-danger:hover{color:#a71d2a!important}.text-light{color:#f8f9fa!important}a.text-light:focus,a.text-light:hover{color:#cbd3da!important}.text-dark{color:#343a40!important}a.text-dark:focus,a.text-dark:hover{color:#121416!important}.text-body{color:#212529!important}.text-muted{color:#6c757d!important}.text-black-50{color:rgba(0,0,0,.5)!important}.text-white-50{color:hsla(0,0%,100%,.5)!important}.text-hide{font:0/0 a;color:transparent;text-shadow:none;background-color:transparent;border:0}.text-decoration-none{text-decoration:none!important}.text-break{word-wrap:break-word!important}.text-reset{color:inherit!important}.visible{visibility:visible!important}.invisible{visibility:hidden!important}@media print{*,:after,:before{text-shadow:none!important;box-shadow:none!important}a:not(.btn){text-decoration:underline}abbr[title]:after{content:" (" attr(title) ")"}pre{white-space:pre-wrap!important}blockquote,pre{border:1px solid #adb5bd;page-break-inside:avoid}thead{display:table-header-group}img,tr{page-break-inside:avoid}h2,h3,p{orphans:3;widows:3}h2,h3{page-break-after:avoid}@page{size:a3}.container,body{min-width:960px!important}.navbar{display:none}.badge{border:1px solid #000}.table{border-collapse:collapse!important}.table td,.table th{background-color:#fff!important}.table-bordered td,.table-bordered th{border:1px solid #dee2e6!important}.table-dark{color:inherit}.table-dark tbody+tbody,.table-dark td,.table-dark th,.table-dark thead th{border-color:#dee2e6}.table .thead-dark th{color:inherit;border-color:#dee2e6}}html{font-size:var(--pst-font-size-base);scroll-padding-top:calc(var(--pst-header-height) + 12px)}body{padding-top:calc(var(--pst-header-height) + 20px);background-color:#fff;font-family:var(--pst-font-family-base);font-weight:400;line-height:1.65;color:rgba(var(--pst-color-text-base),1)}p{margin-bottom:1.15rem;font-size:1em;color:rgba(var(--pst-color-paragraph),1)}p.rubric{border-bottom:1px solid #c9c9c9}a{color:rgba(var(--pst-color-link),1);text-decoration:none}a:hover{color:rgba(var(--pst-color-link-hover),1);text-decoration:underline}a.headerlink{color:rgba(var(--pst-color-headerlink),1);font-size:.8em;padding:0 4px;text-decoration:none}a.headerlink:hover{background-color:rgba(var(--pst-color-headerlink),1);color:rgba(var(--pst-color-headerlink-hover),1)}.heading-style,h1,h2,h3,h4,h5,h6{margin:2.75rem 0 1.05rem;font-family:var(--pst-font-family-heading);font-weight:400;line-height:1.15}h1{margin-top:0;font-size:var(--pst-font-size-h1);color:rgba(var(--pst-color-h1),1)}h2{font-size:var(--pst-font-size-h2);color:rgba(var(--pst-color-h2),1)}h3{font-size:var(--pst-font-size-h3);color:rgba(var(--pst-color-h3),1)}h4{font-size:var(--pst-font-size-h4);color:rgba(var(--pst-color-h4),1)}h5{font-size:var(--pst-font-size-h5);color:rgba(var(--pst-color-h5),1)}h6{font-size:var(--pst-font-size-h6);color:rgba(var(--pst-color-h6),1)}.text_small,small{font-size:var(--pst-font-size-milli)}hr{border:0;border-top:1px solid #e5e5e5}code,kbd,pre,samp{font-family:var(--pst-font-family-monospace)}code{color:rgba(var(--pst-color-inline-code),1)}pre{margin:1.5em 0;padding:10px;background-color:rgba(var(--pst-color-preformatted-background),1);color:rgba(var(--pst-color-preformatted-text),1);line-height:1.2em;border:1px solid #c9c9c9;border-radius:.2rem;box-shadow:1px 1px 1px #d8d8d8}dd{margin-top:3px;margin-bottom:10px;margin-left:30px}.navbar{position:fixed;min-height:var(--pst-header-height);width:100%;padding:0}.navbar .container-xl{height:100%}@media (min-width:960px){.navbar #navbar-end>.navbar-end-item{display:inline-block}}.navbar-brand{position:relative;height:var(--pst-header-height);width:auto;padding:.5rem 0}.navbar-brand img{max-width:100%;height:100%;width:auto}.navbar-light{background:#fff!important;box-shadow:0 .125rem .25rem 0 rgba(0,0,0,.11)}.navbar-light .navbar-nav li a.nav-link{padding:0 .5rem;color:rgba(var(--pst-color-navbar-link),1)}.navbar-light .navbar-nav li a.nav-link:hover{color:rgba(var(--pst-color-navbar-link-hover),1)}.navbar-light .navbar-nav>.active>.nav-link{font-weight:600;color:rgba(var(--pst-color-navbar-link-active),1)}.navbar-header a{padding:0 15px}.admonition,div.admonition{margin:1.5625em auto;padding:0 .6rem .8rem;overflow:hidden;page-break-inside:avoid;border-left:.2rem solid;border-left-color:rgba(var(--pst-color-admonition-default),1);border-bottom-color:rgba(var(--pst-color-admonition-default),1);border-right-color:rgba(var(--pst-color-admonition-default),1);border-top-color:rgba(var(--pst-color-admonition-default),1);border-radius:.2rem;box-shadow:0 .2rem .5rem rgba(0,0,0,.05),0 0 .0625rem rgba(0,0,0,.1);transition:color .25s,background-color .25s,border-color .25s}.admonition :last-child,div.admonition :last-child{margin-bottom:0}.admonition p.admonition-title~*,div.admonition p.admonition-title~*{padding:0 1.4rem}.admonition>ol,.admonition>ul,div.admonition>ol,div.admonition>ul{margin-left:1em}.admonition>.admonition-title,div.admonition>.admonition-title{position:relative;margin:0 -.6rem;padding:.4rem .6rem .4rem 2rem;font-weight:700;background-color:rgba(var(--pst-color-admonition-default),.1)}.admonition>.admonition-title:before,div.admonition>.admonition-title:before{position:absolute;left:.6rem;width:1rem;height:1rem;color:rgba(var(--pst-color-admonition-default),1);font-family:Font Awesome\ 5 Free;font-weight:900;content:var(--pst-icon-admonition-default)}.admonition>.admonition-title+*,div.admonition>.admonition-title+*{margin-top:.4em}.admonition.attention,div.admonition.attention{border-color:rgba(var(--pst-color-admonition-attention),1)}.admonition.attention>.admonition-title,div.admonition.attention>.admonition-title{background-color:rgba(var(--pst-color-admonition-attention),.1)}.admonition.attention>.admonition-title:before,div.admonition.attention>.admonition-title:before{color:rgba(var(--pst-color-admonition-attention),1);content:var(--pst-icon-admonition-attention)}.admonition.caution,div.admonition.caution{border-color:rgba(var(--pst-color-admonition-caution),1)}.admonition.caution>.admonition-title,div.admonition.caution>.admonition-title{background-color:rgba(var(--pst-color-admonition-caution),.1)}.admonition.caution>.admonition-title:before,div.admonition.caution>.admonition-title:before{color:rgba(var(--pst-color-admonition-caution),1);content:var(--pst-icon-admonition-caution)}.admonition.warning,div.admonition.warning{border-color:rgba(var(--pst-color-admonition-warning),1)}.admonition.warning>.admonition-title,div.admonition.warning>.admonition-title{background-color:rgba(var(--pst-color-admonition-warning),.1)}.admonition.warning>.admonition-title:before,div.admonition.warning>.admonition-title:before{color:rgba(var(--pst-color-admonition-warning),1);content:var(--pst-icon-admonition-warning)}.admonition.danger,div.admonition.danger{border-color:rgba(var(--pst-color-admonition-danger),1)}.admonition.danger>.admonition-title,div.admonition.danger>.admonition-title{background-color:rgba(var(--pst-color-admonition-danger),.1)}.admonition.danger>.admonition-title:before,div.admonition.danger>.admonition-title:before{color:rgba(var(--pst-color-admonition-danger),1);content:var(--pst-icon-admonition-danger)}.admonition.error,div.admonition.error{border-color:rgba(var(--pst-color-admonition-error),1)}.admonition.error>.admonition-title,div.admonition.error>.admonition-title{background-color:rgba(var(--pst-color-admonition-error),.1)}.admonition.error>.admonition-title:before,div.admonition.error>.admonition-title:before{color:rgba(var(--pst-color-admonition-error),1);content:var(--pst-icon-admonition-error)}.admonition.hint,div.admonition.hint{border-color:rgba(var(--pst-color-admonition-hint),1)}.admonition.hint>.admonition-title,div.admonition.hint>.admonition-title{background-color:rgba(var(--pst-color-admonition-hint),.1)}.admonition.hint>.admonition-title:before,div.admonition.hint>.admonition-title:before{color:rgba(var(--pst-color-admonition-hint),1);content:var(--pst-icon-admonition-hint)}.admonition.tip,div.admonition.tip{border-color:rgba(var(--pst-color-admonition-tip),1)}.admonition.tip>.admonition-title,div.admonition.tip>.admonition-title{background-color:rgba(var(--pst-color-admonition-tip),.1)}.admonition.tip>.admonition-title:before,div.admonition.tip>.admonition-title:before{color:rgba(var(--pst-color-admonition-tip),1);content:var(--pst-icon-admonition-tip)}.admonition.important,div.admonition.important{border-color:rgba(var(--pst-color-admonition-important),1)}.admonition.important>.admonition-title,div.admonition.important>.admonition-title{background-color:rgba(var(--pst-color-admonition-important),.1)}.admonition.important>.admonition-title:before,div.admonition.important>.admonition-title:before{color:rgba(var(--pst-color-admonition-important),1);content:var(--pst-icon-admonition-important)}.admonition.note,div.admonition.note{border-color:rgba(var(--pst-color-admonition-note),1)}.admonition.note>.admonition-title,div.admonition.note>.admonition-title{background-color:rgba(var(--pst-color-admonition-note),.1)}.admonition.note>.admonition-title:before,div.admonition.note>.admonition-title:before{color:rgba(var(--pst-color-admonition-note),1);content:var(--pst-icon-admonition-note)}table.field-list{border-collapse:separate;border-spacing:10px;margin-left:1px}table.field-list th.field-name{padding:1px 8px 1px 5px;white-space:nowrap;background-color:#eee}table.field-list td.field-body p{font-style:italic}table.field-list td.field-body p>strong{font-style:normal}table.field-list td.field-body blockquote{border-left:none;margin:0 0 .3em;padding-left:30px}.table.autosummary td:first-child{white-space:nowrap}.sig{font-family:var(--pst-font-family-monospace)}.sig-inline.c-texpr,.sig-inline.cpp-texpr{font-family:unset}.sig.c .k,.sig.c .kt,.sig.c .m,.sig.c .s,.sig.c .sc,.sig.cpp .k,.sig.cpp .kt,.sig.cpp .m,.sig.cpp .s,.sig.cpp .sc{color:rgba(var(--pst-color-text-base),1)}.sig-name{color:rgba(var(--pst-color-inline-code),1)}blockquote{padding:0 1em;color:#6a737d;border-left:.25em solid #dfe2e5}dt.label>span.brackets:not(:only-child):before{content:"["}dt.label>span.brackets:not(:only-child):after{content:"]"}a.footnote-reference{vertical-align:super;font-size:small}div.deprecated{margin-bottom:10px;margin-top:10px;padding:7px;background-color:#f3e5e5;border:1px solid #eed3d7;border-radius:.5rem}div.deprecated p{color:#b94a48;display:inline}.topic{background-color:#eee}.seealso dd{margin-top:0;margin-bottom:0}.viewcode-back{font-family:var(--pst-font-family-base)}.viewcode-block:target{background-color:#f4debf;border-top:1px solid #ac9;border-bottom:1px solid #ac9}span.guilabel{border:1px solid #7fbbe3;background:#e7f2fa;font-size:80%;font-weight:700;border-radius:4px;padding:2.4px 6px;margin:auto 2px}footer{width:100%;border-top:1px solid #ccc;padding:10px}footer .footer-item p{margin-bottom:0}.bd-search{position:relative;padding:1rem 15px;margin-right:-15px;margin-left:-15px}.bd-search .icon{position:absolute;color:#a4a6a7;left:25px;top:25px}.bd-search input{border-radius:0;border:0;border-bottom:1px solid #e5e5e5;padding-left:35px}.bd-toc{-ms-flex-order:2;order:2;height:calc(100vh - 2rem);overflow-y:auto}@supports (position:-webkit-sticky) or (position:sticky){.bd-toc{position:-webkit-sticky;position:sticky;top:calc(var(--pst-header-height) + 20px);height:calc(100vh - 5rem);overflow-y:auto}}.bd-toc .onthispage{color:#a4a6a7}.section-nav{padding-left:0;border-left:1px solid #eee;border-bottom:none}.section-nav ul{padding-left:1rem}.toc-entry,.toc-entry a{display:block}.toc-entry a{padding:.125rem 1.5rem;color:rgba(var(--pst-color-toc-link),1)}@media (min-width:1200px){.toc-entry a{padding-right:0}}.toc-entry a:hover{color:rgba(var(--pst-color-toc-link-hover),1);text-decoration:none}.bd-sidebar{padding-top:1em}@media (min-width:720px){.bd-sidebar{border-right:1px solid rgba(0,0,0,.1)}@supports (position:-webkit-sticky) or (position:sticky){.bd-sidebar{position:-webkit-sticky;position:sticky;top:calc(var(--pst-header-height) + 20px);z-index:1000;height:calc(100vh - var(--pst-header-height) - 20px)}}}.bd-sidebar.no-sidebar{border-right:0}.bd-links{padding-top:1rem;padding-bottom:1rem;margin-right:-15px;margin-left:-15px}@media (min-width:720px){.bd-links{display:block}@supports (position:-webkit-sticky) or (position:sticky){.bd-links{max-height:calc(100vh - 11rem);overflow-y:auto}}}.bd-sidenav{display:none}.bd-content{padding-top:20px}.bd-content .section{max-width:100%}.bd-content .section table{display:block;overflow:auto}.bd-toc-link{display:block;padding:.25rem 1.5rem;font-weight:600;color:rgba(0,0,0,.65)}.bd-toc-link:hover{color:rgba(0,0,0,.85);text-decoration:none}.bd-toc-item.active{margin-bottom:1rem}.bd-toc-item.active:not(:first-child){margin-top:1rem}.bd-toc-item.active>.bd-toc-link{color:rgba(0,0,0,.85)}.bd-toc-item.active>.bd-toc-link:hover{background-color:transparent}.bd-toc-item.active>.bd-sidenav{display:block}nav.bd-links p.caption{font-size:var(--pst-sidebar-caption-font-size);text-transform:uppercase;font-weight:700;position:relative;margin-top:1.25em;margin-bottom:.5em;padding:0 1.5rem;color:rgba(var(--pst-color-sidebar-caption),1)}nav.bd-links p.caption:first-child{margin-top:0}.bd-sidebar .nav{font-size:var(--pst-sidebar-font-size)}.bd-sidebar .nav ul{list-style:none;padding:0 0 0 1.5rem}.bd-sidebar .nav li>a{display:block;padding:.25rem 1.5rem;color:rgba(var(--pst-color-sidebar-link),1)}.bd-sidebar .nav li>a:hover{color:rgba(var(--pst-color-sidebar-link-hover),1);text-decoration:none;background-color:transparent}.bd-sidebar .nav li>a.reference.external:after{font-family:Font Awesome\ 5 Free;font-weight:900;content:"\f35d";font-size:.75em;margin-left:.3em}.bd-sidebar .nav .active:hover>a,.bd-sidebar .nav .active>a{font-weight:600;color:rgba(var(--pst-color-sidebar-link-active),1)}.toc-h2{font-size:.85rem}.toc-h3{font-size:.75rem}.toc-h4{font-size:.65rem}.toc-entry>.nav-link.active{font-weight:600;color:#130654;color:rgba(var(--pst-color-toc-link-active),1);background-color:transparent;border-left:2px solid rgba(var(--pst-color-toc-link-active),1)}.nav-link:hover{border-style:none}#navbar-main-elements li.nav-item i{font-size:.7rem;padding-left:2px;vertical-align:middle}.bd-toc .nav .nav{display:none}.bd-toc .nav .nav.visible,.bd-toc .nav>.active>ul{display:block}.prev-next-area{margin:20px 0}.prev-next-area p{margin:0 .3em;line-height:1.3em}.prev-next-area i{font-size:1.2em}.prev-next-area a{display:flex;align-items:center;border:none;padding:10px;max-width:45%;overflow-x:hidden;color:rgba(0,0,0,.65);text-decoration:none}.prev-next-area a p.prev-next-title{color:rgba(var(--pst-color-link),1);font-weight:600;font-size:1.1em}.prev-next-area a:hover p.prev-next-title{text-decoration:underline}.prev-next-area a .prev-next-info{flex-direction:column;margin:0 .5em}.prev-next-area a .prev-next-info .prev-next-subtitle{text-transform:capitalize}.prev-next-area a.left-prev{float:left}.prev-next-area a.right-next{float:right}.prev-next-area a.right-next div.prev-next-info{text-align:right}.alert{padding-bottom:0}.alert-info a{color:#e83e8c}#navbar-icon-links i.fa,#navbar-icon-links i.fab,#navbar-icon-links i.far,#navbar-icon-links i.fas{vertical-align:middle;font-style:normal;font-size:1.5rem;line-height:1.25}#navbar-icon-links i.fa-github-square:before{color:#333}#navbar-icon-links i.fa-twitter-square:before{color:#55acee}#navbar-icon-links i.fa-gitlab:before{color:#548}#navbar-icon-links i.fa-bitbucket:before{color:#0052cc}.tocsection{border-left:1px solid #eee;padding:.3rem 1.5rem}.tocsection i{padding-right:.5rem}.editthispage{padding-top:2rem}.editthispage a{color:var(--pst-color-sidebar-link-active)}.xr-wrap[hidden]{display:block!important}.toctree-checkbox{position:absolute;display:none}.toctree-checkbox~ul{display:none}.toctree-checkbox~label i{transform:rotate(0deg)}.toctree-checkbox:checked~ul{display:block}.toctree-checkbox:checked~label i{transform:rotate(180deg)}.bd-sidebar li{position:relative}.bd-sidebar label{position:absolute;top:0;right:0;height:30px;width:30px;cursor:pointer;display:flex;justify-content:center;align-items:center}.bd-sidebar label:hover{background:rgba(var(--pst-color-sidebar-expander-background-hover),1)}.bd-sidebar label i{display:inline-block;font-size:.75rem;text-align:center}.bd-sidebar label i:hover{color:rgba(var(--pst-color-sidebar-link-hover),1)}.bd-sidebar li.has-children>.reference{padding-right:30px}div.doctest>div.highlight span.gp,span.linenos,table.highlighttable td.linenos{user-select:none;-webkit-user-select:text;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none}.docutils.container{padding-left:unset;padding-right:unset} \ No newline at end of file diff --git a/_preview/44/_static/css/theme.css b/_preview/44/_static/css/theme.css deleted file mode 100644 index 2e03fe3..0000000 --- a/_preview/44/_static/css/theme.css +++ /dev/null @@ -1,120 +0,0 @@ -/* Provided by the Sphinx base theme template at build time */ -@import "../basic.css"; - -:root { - /***************************************************************************** - * Theme config - **/ - --pst-header-height: 60px; - - /***************************************************************************** - * Font size - **/ - --pst-font-size-base: 15px; /* base font size - applied at body / html level */ - - /* heading font sizes */ - --pst-font-size-h1: 36px; - --pst-font-size-h2: 32px; - --pst-font-size-h3: 26px; - --pst-font-size-h4: 21px; - --pst-font-size-h5: 18px; - --pst-font-size-h6: 16px; - - /* smaller then heading font sizes*/ - --pst-font-size-milli: 12px; - - --pst-sidebar-font-size: .9em; - --pst-sidebar-caption-font-size: .9em; - - /***************************************************************************** - * Font family - **/ - /* These are adapted from https://systemfontstack.com/ */ - --pst-font-family-base-system: -apple-system, BlinkMacSystemFont, Segoe UI, "Helvetica Neue", - Arial, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol; - --pst-font-family-monospace-system: "SFMono-Regular", Menlo, Consolas, Monaco, - Liberation Mono, Lucida Console, monospace; - - --pst-font-family-base: var(--pst-font-family-base-system); - --pst-font-family-heading: var(--pst-font-family-base); - --pst-font-family-monospace: var(--pst-font-family-monospace-system); - - /***************************************************************************** - * Color - * - * Colors are defined in rgb string way, "red, green, blue" - **/ - --pst-color-primary: 19, 6, 84; - --pst-color-success: 40, 167, 69; - --pst-color-info: 0, 123, 255; /*23, 162, 184;*/ - --pst-color-warning: 255, 193, 7; - --pst-color-danger: 220, 53, 69; - --pst-color-text-base: 51, 51, 51; - - --pst-color-h1: var(--pst-color-primary); - --pst-color-h2: var(--pst-color-primary); - --pst-color-h3: var(--pst-color-text-base); - --pst-color-h4: var(--pst-color-text-base); - --pst-color-h5: var(--pst-color-text-base); - --pst-color-h6: var(--pst-color-text-base); - --pst-color-paragraph: var(--pst-color-text-base); - --pst-color-link: 0, 91, 129; - --pst-color-link-hover: 227, 46, 0; - --pst-color-headerlink: 198, 15, 15; - --pst-color-headerlink-hover: 255, 255, 255; - --pst-color-preformatted-text: 34, 34, 34; - --pst-color-preformatted-background: 250, 250, 250; - --pst-color-inline-code: 232, 62, 140; - - --pst-color-active-navigation: 19, 6, 84; - --pst-color-navbar-link: 77, 77, 77; - --pst-color-navbar-link-hover: var(--pst-color-active-navigation); - --pst-color-navbar-link-active: var(--pst-color-active-navigation); - --pst-color-sidebar-link: 77, 77, 77; - --pst-color-sidebar-link-hover: var(--pst-color-active-navigation); - --pst-color-sidebar-link-active: var(--pst-color-active-navigation); - --pst-color-sidebar-expander-background-hover: 244, 244, 244; - --pst-color-sidebar-caption: 77, 77, 77; - --pst-color-toc-link: 119, 117, 122; - --pst-color-toc-link-hover: var(--pst-color-active-navigation); - --pst-color-toc-link-active: var(--pst-color-active-navigation); - - /***************************************************************************** - * Icon - **/ - - /* font awesome icons*/ - --pst-icon-check-circle: '\f058'; - --pst-icon-info-circle: '\f05a'; - --pst-icon-exclamation-triangle: '\f071'; - --pst-icon-exclamation-circle: '\f06a'; - --pst-icon-times-circle: '\f057'; - --pst-icon-lightbulb: '\f0eb'; - - /***************************************************************************** - * Admonitions - **/ - - --pst-color-admonition-default: var(--pst-color-info); - --pst-color-admonition-note: var(--pst-color-info); - --pst-color-admonition-attention: var(--pst-color-warning); - --pst-color-admonition-caution: var(--pst-color-warning); - --pst-color-admonition-warning: var(--pst-color-warning); - --pst-color-admonition-danger: var(--pst-color-danger); - --pst-color-admonition-error: var(--pst-color-danger); - --pst-color-admonition-hint: var(--pst-color-success); - --pst-color-admonition-tip: var(--pst-color-success); - --pst-color-admonition-important: var(--pst-color-success); - - --pst-icon-admonition-default: var(--pst-icon-info-circle); - --pst-icon-admonition-note: var(--pst-icon-info-circle); - --pst-icon-admonition-attention: var(--pst-icon-exclamation-circle); - --pst-icon-admonition-caution: var(--pst-icon-exclamation-triangle); - --pst-icon-admonition-warning: var(--pst-icon-exclamation-triangle); - --pst-icon-admonition-danger: var(--pst-icon-exclamation-triangle); - --pst-icon-admonition-error: var(--pst-icon-times-circle); - --pst-icon-admonition-hint: var(--pst-icon-lightbulb); - --pst-icon-admonition-tip: var(--pst-icon-lightbulb); - --pst-icon-admonition-important: var(--pst-icon-exclamation-circle); - -} diff --git a/_preview/44/_static/design-tabs.js b/_preview/44/_static/design-tabs.js deleted file mode 100644 index b25bd6a..0000000 --- a/_preview/44/_static/design-tabs.js +++ /dev/null @@ -1,101 +0,0 @@ -// @ts-check - -// Extra JS capability for selected tabs to be synced -// The selection is stored in local storage so that it persists across page loads. - -/** - * @type {Record} - */ -let sd_id_to_elements = {}; -const storageKeyPrefix = "sphinx-design-tab-id-"; - -/** - * Create a key for a tab element. - * @param {HTMLElement} el - The tab element. - * @returns {[string, string, string] | null} - The key. - * - */ -function create_key(el) { - let syncId = el.getAttribute("data-sync-id"); - let syncGroup = el.getAttribute("data-sync-group"); - if (!syncId || !syncGroup) return null; - return [syncGroup, syncId, syncGroup + "--" + syncId]; -} - -/** - * Initialize the tab selection. - * - */ -function ready() { - // Find all tabs with sync data - - /** @type {string[]} */ - let groups = []; - - document.querySelectorAll(".sd-tab-label").forEach((label) => { - if (label instanceof HTMLElement) { - let data = create_key(label); - if (data) { - let [group, id, key] = data; - - // add click event listener - // @ts-ignore - label.onclick = onSDLabelClick; - - // store map of key to elements - if (!sd_id_to_elements[key]) { - sd_id_to_elements[key] = []; - } - sd_id_to_elements[key].push(label); - - if (groups.indexOf(group) === -1) { - groups.push(group); - // Check if a specific tab has been selected via URL parameter - const tabParam = new URLSearchParams(window.location.search).get( - group - ); - if (tabParam) { - console.log( - "sphinx-design: Selecting tab id for group '" + - group + - "' from URL parameter: " + - tabParam - ); - window.sessionStorage.setItem(storageKeyPrefix + group, tabParam); - } - } - - // Check is a specific tab has been selected previously - let previousId = window.sessionStorage.getItem( - storageKeyPrefix + group - ); - if (previousId === id) { - // console.log( - // "sphinx-design: Selecting tab from session storage: " + id - // ); - // @ts-ignore - label.previousElementSibling.checked = true; - } - } - } - }); -} - -/** - * Activate other tabs with the same sync id. - * - * @this {HTMLElement} - The element that was clicked. - */ -function onSDLabelClick() { - let data = create_key(this); - if (!data) return; - let [group, id, key] = data; - for (const label of sd_id_to_elements[key]) { - if (label === this) continue; - // @ts-ignore - label.previousElementSibling.checked = true; - } - window.sessionStorage.setItem(storageKeyPrefix + group, id); -} - -document.addEventListener("DOMContentLoaded", ready, false); diff --git a/_preview/44/_static/doctools.js b/_preview/44/_static/doctools.js deleted file mode 100644 index e1bfd70..0000000 --- a/_preview/44/_static/doctools.js +++ /dev/null @@ -1,358 +0,0 @@ -/* - * doctools.js - * ~~~~~~~~~~~ - * - * Sphinx JavaScript utilities for all documentation. - * - * :copyright: Copyright 2007-2022 by the Sphinx team, see AUTHORS. - * :license: BSD, see LICENSE for details. - * - */ - -/** - * select a different prefix for underscore - */ -$u = _.noConflict(); - -/** - * make the code below compatible with browsers without - * an installed firebug like debugger -if (!window.console || !console.firebug) { - var names = ["log", "debug", "info", "warn", "error", "assert", "dir", - "dirxml", "group", "groupEnd", "time", "timeEnd", "count", "trace", - "profile", "profileEnd"]; - window.console = {}; - for (var i = 0; i < names.length; ++i) - window.console[names[i]] = function() {}; -} - */ - -/** - * small helper function to urldecode strings - * - * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent#Decoding_query_parameters_from_a_URL - */ -jQuery.urldecode = function(x) { - if (!x) { - return x - } - return decodeURIComponent(x.replace(/\+/g, ' ')); -}; - -/** - * small helper function to urlencode strings - */ -jQuery.urlencode = encodeURIComponent; - -/** - * This function returns the parsed url parameters of the - * current request. Multiple values per key are supported, - * it will always return arrays of strings for the value parts. - */ -jQuery.getQueryParameters = function(s) { - if (typeof s === 'undefined') - s = document.location.search; - var parts = s.substr(s.indexOf('?') + 1).split('&'); - var result = {}; - for (var i = 0; i < parts.length; i++) { - var tmp = parts[i].split('=', 2); - var key = jQuery.urldecode(tmp[0]); - var value = jQuery.urldecode(tmp[1]); - if (key in result) - result[key].push(value); - else - result[key] = [value]; - } - return result; -}; - -/** - * highlight a given string on a jquery object by wrapping it in - * span elements with the given class name. - */ -jQuery.fn.highlightText = function(text, className) { - function highlight(node, addItems) { - if (node.nodeType === 3) { - var val = node.nodeValue; - var pos = val.toLowerCase().indexOf(text); - if (pos >= 0 && - !jQuery(node.parentNode).hasClass(className) && - !jQuery(node.parentNode).hasClass("nohighlight")) { - var span; - var isInSVG = jQuery(node).closest("body, svg, foreignObject").is("svg"); - if (isInSVG) { - span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); - } else { - span = document.createElement("span"); - span.className = className; - } - span.appendChild(document.createTextNode(val.substr(pos, text.length))); - node.parentNode.insertBefore(span, node.parentNode.insertBefore( - document.createTextNode(val.substr(pos + text.length)), - node.nextSibling)); - node.nodeValue = val.substr(0, pos); - if (isInSVG) { - var rect = document.createElementNS("http://www.w3.org/2000/svg", "rect"); - var bbox = node.parentElement.getBBox(); - rect.x.baseVal.value = bbox.x; - rect.y.baseVal.value = bbox.y; - rect.width.baseVal.value = bbox.width; - rect.height.baseVal.value = bbox.height; - rect.setAttribute('class', className); - addItems.push({ - "parent": node.parentNode, - "target": rect}); - } - } - } - else if (!jQuery(node).is("button, select, textarea")) { - jQuery.each(node.childNodes, function() { - highlight(this, addItems); - }); - } - } - var addItems = []; - var result = this.each(function() { - highlight(this, addItems); - }); - for (var i = 0; i < addItems.length; ++i) { - jQuery(addItems[i].parent).before(addItems[i].target); - } - return result; -}; - -/* - * backward compatibility for jQuery.browser - * This will be supported until firefox bug is fixed. - */ -if (!jQuery.browser) { - jQuery.uaMatch = function(ua) { - ua = ua.toLowerCase(); - - var match = /(chrome)[ \/]([\w.]+)/.exec(ua) || - /(webkit)[ \/]([\w.]+)/.exec(ua) || - /(opera)(?:.*version|)[ \/]([\w.]+)/.exec(ua) || - /(msie) ([\w.]+)/.exec(ua) || - ua.indexOf("compatible") < 0 && /(mozilla)(?:.*? rv:([\w.]+)|)/.exec(ua) || - []; - - return { - browser: match[ 1 ] || "", - version: match[ 2 ] || "0" - }; - }; - jQuery.browser = {}; - jQuery.browser[jQuery.uaMatch(navigator.userAgent).browser] = true; -} - -/** - * Small JavaScript module for the documentation. - */ -var Documentation = { - - init : function() { - this.fixFirefoxAnchorBug(); - this.highlightSearchWords(); - this.initIndexTable(); - this.initOnKeyListeners(); - }, - - /** - * i18n support - */ - TRANSLATIONS : {}, - PLURAL_EXPR : function(n) { return n === 1 ? 0 : 1; }, - LOCALE : 'unknown', - - // gettext and ngettext don't access this so that the functions - // can safely bound to a different name (_ = Documentation.gettext) - gettext : function(string) { - var translated = Documentation.TRANSLATIONS[string]; - if (typeof translated === 'undefined') - return string; - return (typeof translated === 'string') ? translated : translated[0]; - }, - - ngettext : function(singular, plural, n) { - var translated = Documentation.TRANSLATIONS[singular]; - if (typeof translated === 'undefined') - return (n == 1) ? singular : plural; - return translated[Documentation.PLURALEXPR(n)]; - }, - - addTranslations : function(catalog) { - for (var key in catalog.messages) - this.TRANSLATIONS[key] = catalog.messages[key]; - this.PLURAL_EXPR = new Function('n', 'return +(' + catalog.plural_expr + ')'); - this.LOCALE = catalog.locale; - }, - - /** - * add context elements like header anchor links - */ - addContextElements : function() { - $('div[id] > :header:first').each(function() { - $('\u00B6'). - attr('href', '#' + this.id). - attr('title', _('Permalink to this headline')). - appendTo(this); - }); - $('dt[id]').each(function() { - $('\u00B6'). - attr('href', '#' + this.id). - attr('title', _('Permalink to this definition')). - appendTo(this); - }); - }, - - /** - * workaround a firefox stupidity - * see: https://bugzilla.mozilla.org/show_bug.cgi?id=645075 - */ - fixFirefoxAnchorBug : function() { - if (document.location.hash && $.browser.mozilla) - window.setTimeout(function() { - document.location.href += ''; - }, 10); - }, - - /** - * highlight the search words provided in the url in the text - */ - highlightSearchWords : function() { - var params = $.getQueryParameters(); - var terms = (params.highlight) ? params.highlight[0].split(/\s+/) : []; - if (terms.length) { - var body = $('div.body'); - if (!body.length) { - body = $('body'); - } - window.setTimeout(function() { - $.each(terms, function() { - body.highlightText(this.toLowerCase(), 'highlighted'); - }); - }, 10); - $('') - .appendTo($('#searchbox')); - } - }, - - /** - * init the domain index toggle buttons - */ - initIndexTable : function() { - var togglers = $('img.toggler').click(function() { - var src = $(this).attr('src'); - var idnum = $(this).attr('id').substr(7); - $('tr.cg-' + idnum).toggle(); - if (src.substr(-9) === 'minus.png') - $(this).attr('src', src.substr(0, src.length-9) + 'plus.png'); - else - $(this).attr('src', src.substr(0, src.length-8) + 'minus.png'); - }).css('display', ''); - if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) { - togglers.click(); - } - }, - - /** - * helper function to hide the search marks again - */ - hideSearchWords : function() { - $('#searchbox .highlight-link').fadeOut(300); - $('span.highlighted').removeClass('highlighted'); - var url = new URL(window.location); - url.searchParams.delete('highlight'); - window.history.replaceState({}, '', url); - }, - - /** - * helper function to focus on search bar - */ - focusSearchBar : function() { - $('input[name=q]').first().focus(); - }, - - /** - * make the url absolute - */ - makeURL : function(relativeURL) { - return DOCUMENTATION_OPTIONS.URL_ROOT + '/' + relativeURL; - }, - - /** - * get the current relative url - */ - getCurrentURL : function() { - var path = document.location.pathname; - var parts = path.split(/\//); - $.each(DOCUMENTATION_OPTIONS.URL_ROOT.split(/\//), function() { - if (this === '..') - parts.pop(); - }); - var url = parts.join('/'); - return path.substring(url.lastIndexOf('/') + 1, path.length - 1); - }, - - initOnKeyListeners: function() { - // only install a listener if it is really needed - if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS && - !DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) - return; - - $(document).keydown(function(event) { - var activeElementType = document.activeElement.tagName; - // don't navigate when in search box, textarea, dropdown or button - if (activeElementType !== 'TEXTAREA' && activeElementType !== 'INPUT' && activeElementType !== 'SELECT' - && activeElementType !== 'BUTTON') { - if (event.altKey || event.ctrlKey || event.metaKey) - return; - - if (!event.shiftKey) { - switch (event.key) { - case 'ArrowLeft': - if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) - break; - var prevHref = $('link[rel="prev"]').prop('href'); - if (prevHref) { - window.location.href = prevHref; - return false; - } - break; - case 'ArrowRight': - if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) - break; - var nextHref = $('link[rel="next"]').prop('href'); - if (nextHref) { - window.location.href = nextHref; - return false; - } - break; - case 'Escape': - if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) - break; - Documentation.hideSearchWords(); - return false; - } - } - - // some keyboard layouts may need Shift to get / - switch (event.key) { - case '/': - if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) - break; - Documentation.focusSearchBar(); - return false; - } - } - }); - } -}; - -// quick alias for translations -_ = Documentation.gettext; - -$(document).ready(function() { - Documentation.init(); -}); diff --git a/_preview/44/_static/documentation_options.js b/_preview/44/_static/documentation_options.js deleted file mode 100644 index 877e3c3..0000000 --- a/_preview/44/_static/documentation_options.js +++ /dev/null @@ -1,14 +0,0 @@ -var DOCUMENTATION_OPTIONS = { - URL_ROOT: document.getElementById("documentation_options").getAttribute('data-url_root'), - VERSION: '', - LANGUAGE: 'None', - COLLAPSE_INDEX: false, - BUILDER: 'html', - FILE_SUFFIX: '.html', - LINK_SUFFIX: '.html', - HAS_SOURCE: true, - SOURCELINK_SUFFIX: '', - NAVIGATION_WITH_KEYS: true, - SHOW_SEARCH_SUMMARY: true, - ENABLE_SEARCH_SHORTCUTS: true, -}; \ No newline at end of file diff --git a/_preview/44/_static/esgf2-us.png b/_preview/44/_static/esgf2-us.png deleted file mode 100644 index fad229c..0000000 Binary files a/_preview/44/_static/esgf2-us.png and /dev/null differ diff --git a/_preview/44/_static/favicon.ico b/_preview/44/_static/favicon.ico deleted file mode 100644 index da6ac73..0000000 Binary files a/_preview/44/_static/favicon.ico and /dev/null differ diff --git a/_preview/44/_static/file.png b/_preview/44/_static/file.png deleted file mode 100644 index a858a41..0000000 Binary files a/_preview/44/_static/file.png and /dev/null differ diff --git a/_preview/44/_static/images/logo_binder.svg b/_preview/44/_static/images/logo_binder.svg deleted file mode 100644 index 45fecf7..0000000 --- a/_preview/44/_static/images/logo_binder.svg +++ /dev/null @@ -1,19 +0,0 @@ - - - - -logo - - - - - - - - diff --git a/_preview/44/_static/images/logo_colab.png b/_preview/44/_static/images/logo_colab.png deleted file mode 100644 index b7560ec..0000000 Binary files a/_preview/44/_static/images/logo_colab.png and /dev/null differ diff --git a/_preview/44/_static/images/logo_jupyterhub.svg b/_preview/44/_static/images/logo_jupyterhub.svg deleted file mode 100644 index 60cfe9f..0000000 --- a/_preview/44/_static/images/logo_jupyterhub.svg +++ /dev/null @@ -1 +0,0 @@ -logo_jupyterhubHub diff --git a/_preview/44/_static/jquery-3.5.1.js b/_preview/44/_static/jquery-3.5.1.js deleted file mode 100644 index 5093733..0000000 --- a/_preview/44/_static/jquery-3.5.1.js +++ /dev/null @@ -1,10872 +0,0 @@ -/*! - * jQuery JavaScript Library v3.5.1 - * https://jquery.com/ - * - * Includes Sizzle.js - * https://sizzlejs.com/ - * - * Copyright JS Foundation and other contributors - * Released under the MIT license - * https://jquery.org/license - * - * Date: 2020-05-04T22:49Z - */ -( function( global, factory ) { - - "use strict"; - - if ( typeof module === "object" && typeof module.exports === "object" ) { - - // For CommonJS and CommonJS-like environments where a proper `window` - // is present, execute the factory and get jQuery. - // For environments that do not have a `window` with a `document` - // (such as Node.js), expose a factory as module.exports. - // This accentuates the need for the creation of a real `window`. - // e.g. var jQuery = require("jquery")(window); - // See ticket #14549 for more info. - module.exports = global.document ? - factory( global, true ) : - function( w ) { - if ( !w.document ) { - throw new Error( "jQuery requires a window with a document" ); - } - return factory( w ); - }; - } else { - factory( global ); - } - -// Pass this if window is not defined yet -} )( typeof window !== "undefined" ? window : this, function( window, noGlobal ) { - -// Edge <= 12 - 13+, Firefox <=18 - 45+, IE 10 - 11, Safari 5.1 - 9+, iOS 6 - 9.1 -// throw exceptions when non-strict code (e.g., ASP.NET 4.5) accesses strict mode -// arguments.callee.caller (trac-13335). But as of jQuery 3.0 (2016), strict mode should be common -// enough that all such attempts are guarded in a try block. -"use strict"; - -var arr = []; - -var getProto = Object.getPrototypeOf; - -var slice = arr.slice; - -var flat = arr.flat ? function( array ) { - return arr.flat.call( array ); -} : function( array ) { - return arr.concat.apply( [], array ); -}; - - -var push = arr.push; - -var indexOf = arr.indexOf; - -var class2type = {}; - -var toString = class2type.toString; - -var hasOwn = class2type.hasOwnProperty; - -var fnToString = hasOwn.toString; - -var ObjectFunctionString = fnToString.call( Object ); - -var support = {}; - -var isFunction = function isFunction( obj ) { - - // Support: Chrome <=57, Firefox <=52 - // In some browsers, typeof returns "function" for HTML elements - // (i.e., `typeof document.createElement( "object" ) === "function"`). - // We don't want to classify *any* DOM node as a function. - return typeof obj === "function" && typeof obj.nodeType !== "number"; - }; - - -var isWindow = function isWindow( obj ) { - return obj != null && obj === obj.window; - }; - - -var document = window.document; - - - - var preservedScriptAttributes = { - type: true, - src: true, - nonce: true, - noModule: true - }; - - function DOMEval( code, node, doc ) { - doc = doc || document; - - var i, val, - script = doc.createElement( "script" ); - - script.text = code; - if ( node ) { - for ( i in preservedScriptAttributes ) { - - // Support: Firefox 64+, Edge 18+ - // Some browsers don't support the "nonce" property on scripts. - // On the other hand, just using `getAttribute` is not enough as - // the `nonce` attribute is reset to an empty string whenever it - // becomes browsing-context connected. - // See https://github.com/whatwg/html/issues/2369 - // See https://html.spec.whatwg.org/#nonce-attributes - // The `node.getAttribute` check was added for the sake of - // `jQuery.globalEval` so that it can fake a nonce-containing node - // via an object. - val = node[ i ] || node.getAttribute && node.getAttribute( i ); - if ( val ) { - script.setAttribute( i, val ); - } - } - } - doc.head.appendChild( script ).parentNode.removeChild( script ); - } - - -function toType( obj ) { - if ( obj == null ) { - return obj + ""; - } - - // Support: Android <=2.3 only (functionish RegExp) - return typeof obj === "object" || typeof obj === "function" ? - class2type[ toString.call( obj ) ] || "object" : - typeof obj; -} -/* global Symbol */ -// Defining this global in .eslintrc.json would create a danger of using the global -// unguarded in another place, it seems safer to define global only for this module - - - -var - version = "3.5.1", - - // Define a local copy of jQuery - jQuery = function( selector, context ) { - - // The jQuery object is actually just the init constructor 'enhanced' - // Need init if jQuery is called (just allow error to be thrown if not included) - return new jQuery.fn.init( selector, context ); - }; - -jQuery.fn = jQuery.prototype = { - - // The current version of jQuery being used - jquery: version, - - constructor: jQuery, - - // The default length of a jQuery object is 0 - length: 0, - - toArray: function() { - return slice.call( this ); - }, - - // Get the Nth element in the matched element set OR - // Get the whole matched element set as a clean array - get: function( num ) { - - // Return all the elements in a clean array - if ( num == null ) { - return slice.call( this ); - } - - // Return just the one element from the set - return num < 0 ? this[ num + this.length ] : this[ num ]; - }, - - // Take an array of elements and push it onto the stack - // (returning the new matched element set) - pushStack: function( elems ) { - - // Build a new jQuery matched element set - var ret = jQuery.merge( this.constructor(), elems ); - - // Add the old object onto the stack (as a reference) - ret.prevObject = this; - - // Return the newly-formed element set - return ret; - }, - - // Execute a callback for every element in the matched set. - each: function( callback ) { - return jQuery.each( this, callback ); - }, - - map: function( callback ) { - return this.pushStack( jQuery.map( this, function( elem, i ) { - return callback.call( elem, i, elem ); - } ) ); - }, - - slice: function() { - return this.pushStack( slice.apply( this, arguments ) ); - }, - - first: function() { - return this.eq( 0 ); - }, - - last: function() { - return this.eq( -1 ); - }, - - even: function() { - return this.pushStack( jQuery.grep( this, function( _elem, i ) { - return ( i + 1 ) % 2; - } ) ); - }, - - odd: function() { - return this.pushStack( jQuery.grep( this, function( _elem, i ) { - return i % 2; - } ) ); - }, - - eq: function( i ) { - var len = this.length, - j = +i + ( i < 0 ? len : 0 ); - return this.pushStack( j >= 0 && j < len ? [ this[ j ] ] : [] ); - }, - - end: function() { - return this.prevObject || this.constructor(); - }, - - // For internal use only. - // Behaves like an Array's method, not like a jQuery method. - push: push, - sort: arr.sort, - splice: arr.splice -}; - -jQuery.extend = jQuery.fn.extend = function() { - var options, name, src, copy, copyIsArray, clone, - target = arguments[ 0 ] || {}, - i = 1, - length = arguments.length, - deep = false; - - // Handle a deep copy situation - if ( typeof target === "boolean" ) { - deep = target; - - // Skip the boolean and the target - target = arguments[ i ] || {}; - i++; - } - - // Handle case when target is a string or something (possible in deep copy) - if ( typeof target !== "object" && !isFunction( target ) ) { - target = {}; - } - - // Extend jQuery itself if only one argument is passed - if ( i === length ) { - target = this; - i--; - } - - for ( ; i < length; i++ ) { - - // Only deal with non-null/undefined values - if ( ( options = arguments[ i ] ) != null ) { - - // Extend the base object - for ( name in options ) { - copy = options[ name ]; - - // Prevent Object.prototype pollution - // Prevent never-ending loop - if ( name === "__proto__" || target === copy ) { - continue; - } - - // Recurse if we're merging plain objects or arrays - if ( deep && copy && ( jQuery.isPlainObject( copy ) || - ( copyIsArray = Array.isArray( copy ) ) ) ) { - src = target[ name ]; - - // Ensure proper type for the source value - if ( copyIsArray && !Array.isArray( src ) ) { - clone = []; - } else if ( !copyIsArray && !jQuery.isPlainObject( src ) ) { - clone = {}; - } else { - clone = src; - } - copyIsArray = false; - - // Never move original objects, clone them - target[ name ] = jQuery.extend( deep, clone, copy ); - - // Don't bring in undefined values - } else if ( copy !== undefined ) { - target[ name ] = copy; - } - } - } - } - - // Return the modified object - return target; -}; - -jQuery.extend( { - - // Unique for each copy of jQuery on the page - expando: "jQuery" + ( version + Math.random() ).replace( /\D/g, "" ), - - // Assume jQuery is ready without the ready module - isReady: true, - - error: function( msg ) { - throw new Error( msg ); - }, - - noop: function() {}, - - isPlainObject: function( obj ) { - var proto, Ctor; - - // Detect obvious negatives - // Use toString instead of jQuery.type to catch host objects - if ( !obj || toString.call( obj ) !== "[object Object]" ) { - return false; - } - - proto = getProto( obj ); - - // Objects with no prototype (e.g., `Object.create( null )`) are plain - if ( !proto ) { - return true; - } - - // Objects with prototype are plain iff they were constructed by a global Object function - Ctor = hasOwn.call( proto, "constructor" ) && proto.constructor; - return typeof Ctor === "function" && fnToString.call( Ctor ) === ObjectFunctionString; - }, - - isEmptyObject: function( obj ) { - var name; - - for ( name in obj ) { - return false; - } - return true; - }, - - // Evaluates a script in a provided context; falls back to the global one - // if not specified. - globalEval: function( code, options, doc ) { - DOMEval( code, { nonce: options && options.nonce }, doc ); - }, - - each: function( obj, callback ) { - var length, i = 0; - - if ( isArrayLike( obj ) ) { - length = obj.length; - for ( ; i < length; i++ ) { - if ( callback.call( obj[ i ], i, obj[ i ] ) === false ) { - break; - } - } - } else { - for ( i in obj ) { - if ( callback.call( obj[ i ], i, obj[ i ] ) === false ) { - break; - } - } - } - - return obj; - }, - - // results is for internal usage only - makeArray: function( arr, results ) { - var ret = results || []; - - if ( arr != null ) { - if ( isArrayLike( Object( arr ) ) ) { - jQuery.merge( ret, - typeof arr === "string" ? - [ arr ] : arr - ); - } else { - push.call( ret, arr ); - } - } - - return ret; - }, - - inArray: function( elem, arr, i ) { - return arr == null ? -1 : indexOf.call( arr, elem, i ); - }, - - // Support: Android <=4.0 only, PhantomJS 1 only - // push.apply(_, arraylike) throws on ancient WebKit - merge: function( first, second ) { - var len = +second.length, - j = 0, - i = first.length; - - for ( ; j < len; j++ ) { - first[ i++ ] = second[ j ]; - } - - first.length = i; - - return first; - }, - - grep: function( elems, callback, invert ) { - var callbackInverse, - matches = [], - i = 0, - length = elems.length, - callbackExpect = !invert; - - // Go through the array, only saving the items - // that pass the validator function - for ( ; i < length; i++ ) { - callbackInverse = !callback( elems[ i ], i ); - if ( callbackInverse !== callbackExpect ) { - matches.push( elems[ i ] ); - } - } - - return matches; - }, - - // arg is for internal usage only - map: function( elems, callback, arg ) { - var length, value, - i = 0, - ret = []; - - // Go through the array, translating each of the items to their new values - if ( isArrayLike( elems ) ) { - length = elems.length; - for ( ; i < length; i++ ) { - value = callback( elems[ i ], i, arg ); - - if ( value != null ) { - ret.push( value ); - } - } - - // Go through every key on the object, - } else { - for ( i in elems ) { - value = callback( elems[ i ], i, arg ); - - if ( value != null ) { - ret.push( value ); - } - } - } - - // Flatten any nested arrays - return flat( ret ); - }, - - // A global GUID counter for objects - guid: 1, - - // jQuery.support is not used in Core but other projects attach their - // properties to it so it needs to exist. - support: support -} ); - -if ( typeof Symbol === "function" ) { - jQuery.fn[ Symbol.iterator ] = arr[ Symbol.iterator ]; -} - -// Populate the class2type map -jQuery.each( "Boolean Number String Function Array Date RegExp Object Error Symbol".split( " " ), -function( _i, name ) { - class2type[ "[object " + name + "]" ] = name.toLowerCase(); -} ); - -function isArrayLike( obj ) { - - // Support: real iOS 8.2 only (not reproducible in simulator) - // `in` check used to prevent JIT error (gh-2145) - // hasOwn isn't used here due to false negatives - // regarding Nodelist length in IE - var length = !!obj && "length" in obj && obj.length, - type = toType( obj ); - - if ( isFunction( obj ) || isWindow( obj ) ) { - return false; - } - - return type === "array" || length === 0 || - typeof length === "number" && length > 0 && ( length - 1 ) in obj; -} -var Sizzle = -/*! - * Sizzle CSS Selector Engine v2.3.5 - * https://sizzlejs.com/ - * - * Copyright JS Foundation and other contributors - * Released under the MIT license - * https://js.foundation/ - * - * Date: 2020-03-14 - */ -( function( window ) { -var i, - support, - Expr, - getText, - isXML, - tokenize, - compile, - select, - outermostContext, - sortInput, - hasDuplicate, - - // Local document vars - setDocument, - document, - docElem, - documentIsHTML, - rbuggyQSA, - rbuggyMatches, - matches, - contains, - - // Instance-specific data - expando = "sizzle" + 1 * new Date(), - preferredDoc = window.document, - dirruns = 0, - done = 0, - classCache = createCache(), - tokenCache = createCache(), - compilerCache = createCache(), - nonnativeSelectorCache = createCache(), - sortOrder = function( a, b ) { - if ( a === b ) { - hasDuplicate = true; - } - return 0; - }, - - // Instance methods - hasOwn = ( {} ).hasOwnProperty, - arr = [], - pop = arr.pop, - pushNative = arr.push, - push = arr.push, - slice = arr.slice, - - // Use a stripped-down indexOf as it's faster than native - // https://jsperf.com/thor-indexof-vs-for/5 - indexOf = function( list, elem ) { - var i = 0, - len = list.length; - for ( ; i < len; i++ ) { - if ( list[ i ] === elem ) { - return i; - } - } - return -1; - }, - - booleans = "checked|selected|async|autofocus|autoplay|controls|defer|disabled|hidden|" + - "ismap|loop|multiple|open|readonly|required|scoped", - - // Regular expressions - - // http://www.w3.org/TR/css3-selectors/#whitespace - whitespace = "[\\x20\\t\\r\\n\\f]", - - // https://www.w3.org/TR/css-syntax-3/#ident-token-diagram - identifier = "(?:\\\\[\\da-fA-F]{1,6}" + whitespace + - "?|\\\\[^\\r\\n\\f]|[\\w-]|[^\0-\\x7f])+", - - // Attribute selectors: http://www.w3.org/TR/selectors/#attribute-selectors - attributes = "\\[" + whitespace + "*(" + identifier + ")(?:" + whitespace + - - // Operator (capture 2) - "*([*^$|!~]?=)" + whitespace + - - // "Attribute values must be CSS identifiers [capture 5] - // or strings [capture 3 or capture 4]" - "*(?:'((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\"|(" + identifier + "))|)" + - whitespace + "*\\]", - - pseudos = ":(" + identifier + ")(?:\\((" + - - // To reduce the number of selectors needing tokenize in the preFilter, prefer arguments: - // 1. quoted (capture 3; capture 4 or capture 5) - "('((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\")|" + - - // 2. simple (capture 6) - "((?:\\\\.|[^\\\\()[\\]]|" + attributes + ")*)|" + - - // 3. anything else (capture 2) - ".*" + - ")\\)|)", - - // Leading and non-escaped trailing whitespace, capturing some non-whitespace characters preceding the latter - rwhitespace = new RegExp( whitespace + "+", "g" ), - rtrim = new RegExp( "^" + whitespace + "+|((?:^|[^\\\\])(?:\\\\.)*)" + - whitespace + "+$", "g" ), - - rcomma = new RegExp( "^" + whitespace + "*," + whitespace + "*" ), - rcombinators = new RegExp( "^" + whitespace + "*([>+~]|" + whitespace + ")" + whitespace + - "*" ), - rdescend = new RegExp( whitespace + "|>" ), - - rpseudo = new RegExp( pseudos ), - ridentifier = new RegExp( "^" + identifier + "$" ), - - matchExpr = { - "ID": new RegExp( "^#(" + identifier + ")" ), - "CLASS": new RegExp( "^\\.(" + identifier + ")" ), - "TAG": new RegExp( "^(" + identifier + "|[*])" ), - "ATTR": new RegExp( "^" + attributes ), - "PSEUDO": new RegExp( "^" + pseudos ), - "CHILD": new RegExp( "^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\(" + - whitespace + "*(even|odd|(([+-]|)(\\d*)n|)" + whitespace + "*(?:([+-]|)" + - whitespace + "*(\\d+)|))" + whitespace + "*\\)|)", "i" ), - "bool": new RegExp( "^(?:" + booleans + ")$", "i" ), - - // For use in libraries implementing .is() - // We use this for POS matching in `select` - "needsContext": new RegExp( "^" + whitespace + - "*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\(" + whitespace + - "*((?:-\\d)?\\d*)" + whitespace + "*\\)|)(?=[^-]|$)", "i" ) - }, - - rhtml = /HTML$/i, - rinputs = /^(?:input|select|textarea|button)$/i, - rheader = /^h\d$/i, - - rnative = /^[^{]+\{\s*\[native \w/, - - // Easily-parseable/retrievable ID or TAG or CLASS selectors - rquickExpr = /^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/, - - rsibling = /[+~]/, - - // CSS escapes - // http://www.w3.org/TR/CSS21/syndata.html#escaped-characters - runescape = new RegExp( "\\\\[\\da-fA-F]{1,6}" + whitespace + "?|\\\\([^\\r\\n\\f])", "g" ), - funescape = function( escape, nonHex ) { - var high = "0x" + escape.slice( 1 ) - 0x10000; - - return nonHex ? - - // Strip the backslash prefix from a non-hex escape sequence - nonHex : - - // Replace a hexadecimal escape sequence with the encoded Unicode code point - // Support: IE <=11+ - // For values outside the Basic Multilingual Plane (BMP), manually construct a - // surrogate pair - high < 0 ? - String.fromCharCode( high + 0x10000 ) : - String.fromCharCode( high >> 10 | 0xD800, high & 0x3FF | 0xDC00 ); - }, - - // CSS string/identifier serialization - // https://drafts.csswg.org/cssom/#common-serializing-idioms - rcssescape = /([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g, - fcssescape = function( ch, asCodePoint ) { - if ( asCodePoint ) { - - // U+0000 NULL becomes U+FFFD REPLACEMENT CHARACTER - if ( ch === "\0" ) { - return "\uFFFD"; - } - - // Control characters and (dependent upon position) numbers get escaped as code points - return ch.slice( 0, -1 ) + "\\" + - ch.charCodeAt( ch.length - 1 ).toString( 16 ) + " "; - } - - // Other potentially-special ASCII characters get backslash-escaped - return "\\" + ch; - }, - - // Used for iframes - // See setDocument() - // Removing the function wrapper causes a "Permission Denied" - // error in IE - unloadHandler = function() { - setDocument(); - }, - - inDisabledFieldset = addCombinator( - function( elem ) { - return elem.disabled === true && elem.nodeName.toLowerCase() === "fieldset"; - }, - { dir: "parentNode", next: "legend" } - ); - -// Optimize for push.apply( _, NodeList ) -try { - push.apply( - ( arr = slice.call( preferredDoc.childNodes ) ), - preferredDoc.childNodes - ); - - // Support: Android<4.0 - // Detect silently failing push.apply - // eslint-disable-next-line no-unused-expressions - arr[ preferredDoc.childNodes.length ].nodeType; -} catch ( e ) { - push = { apply: arr.length ? - - // Leverage slice if possible - function( target, els ) { - pushNative.apply( target, slice.call( els ) ); - } : - - // Support: IE<9 - // Otherwise append directly - function( target, els ) { - var j = target.length, - i = 0; - - // Can't trust NodeList.length - while ( ( target[ j++ ] = els[ i++ ] ) ) {} - target.length = j - 1; - } - }; -} - -function Sizzle( selector, context, results, seed ) { - var m, i, elem, nid, match, groups, newSelector, - newContext = context && context.ownerDocument, - - // nodeType defaults to 9, since context defaults to document - nodeType = context ? context.nodeType : 9; - - results = results || []; - - // Return early from calls with invalid selector or context - if ( typeof selector !== "string" || !selector || - nodeType !== 1 && nodeType !== 9 && nodeType !== 11 ) { - - return results; - } - - // Try to shortcut find operations (as opposed to filters) in HTML documents - if ( !seed ) { - setDocument( context ); - context = context || document; - - if ( documentIsHTML ) { - - // If the selector is sufficiently simple, try using a "get*By*" DOM method - // (excepting DocumentFragment context, where the methods don't exist) - if ( nodeType !== 11 && ( match = rquickExpr.exec( selector ) ) ) { - - // ID selector - if ( ( m = match[ 1 ] ) ) { - - // Document context - if ( nodeType === 9 ) { - if ( ( elem = context.getElementById( m ) ) ) { - - // Support: IE, Opera, Webkit - // TODO: identify versions - // getElementById can match elements by name instead of ID - if ( elem.id === m ) { - results.push( elem ); - return results; - } - } else { - return results; - } - - // Element context - } else { - - // Support: IE, Opera, Webkit - // TODO: identify versions - // getElementById can match elements by name instead of ID - if ( newContext && ( elem = newContext.getElementById( m ) ) && - contains( context, elem ) && - elem.id === m ) { - - results.push( elem ); - return results; - } - } - - // Type selector - } else if ( match[ 2 ] ) { - push.apply( results, context.getElementsByTagName( selector ) ); - return results; - - // Class selector - } else if ( ( m = match[ 3 ] ) && support.getElementsByClassName && - context.getElementsByClassName ) { - - push.apply( results, context.getElementsByClassName( m ) ); - return results; - } - } - - // Take advantage of querySelectorAll - if ( support.qsa && - !nonnativeSelectorCache[ selector + " " ] && - ( !rbuggyQSA || !rbuggyQSA.test( selector ) ) && - - // Support: IE 8 only - // Exclude object elements - ( nodeType !== 1 || context.nodeName.toLowerCase() !== "object" ) ) { - - newSelector = selector; - newContext = context; - - // qSA considers elements outside a scoping root when evaluating child or - // descendant combinators, which is not what we want. - // In such cases, we work around the behavior by prefixing every selector in the - // list with an ID selector referencing the scope context. - // The technique has to be used as well when a leading combinator is used - // as such selectors are not recognized by querySelectorAll. - // Thanks to Andrew Dupont for this technique. - if ( nodeType === 1 && - ( rdescend.test( selector ) || rcombinators.test( selector ) ) ) { - - // Expand context for sibling selectors - newContext = rsibling.test( selector ) && testContext( context.parentNode ) || - context; - - // We can use :scope instead of the ID hack if the browser - // supports it & if we're not changing the context. - if ( newContext !== context || !support.scope ) { - - // Capture the context ID, setting it first if necessary - if ( ( nid = context.getAttribute( "id" ) ) ) { - nid = nid.replace( rcssescape, fcssescape ); - } else { - context.setAttribute( "id", ( nid = expando ) ); - } - } - - // Prefix every selector in the list - groups = tokenize( selector ); - i = groups.length; - while ( i-- ) { - groups[ i ] = ( nid ? "#" + nid : ":scope" ) + " " + - toSelector( groups[ i ] ); - } - newSelector = groups.join( "," ); - } - - try { - push.apply( results, - newContext.querySelectorAll( newSelector ) - ); - return results; - } catch ( qsaError ) { - nonnativeSelectorCache( selector, true ); - } finally { - if ( nid === expando ) { - context.removeAttribute( "id" ); - } - } - } - } - } - - // All others - return select( selector.replace( rtrim, "$1" ), context, results, seed ); -} - -/** - * Create key-value caches of limited size - * @returns {function(string, object)} Returns the Object data after storing it on itself with - * property name the (space-suffixed) string and (if the cache is larger than Expr.cacheLength) - * deleting the oldest entry - */ -function createCache() { - var keys = []; - - function cache( key, value ) { - - // Use (key + " ") to avoid collision with native prototype properties (see Issue #157) - if ( keys.push( key + " " ) > Expr.cacheLength ) { - - // Only keep the most recent entries - delete cache[ keys.shift() ]; - } - return ( cache[ key + " " ] = value ); - } - return cache; -} - -/** - * Mark a function for special use by Sizzle - * @param {Function} fn The function to mark - */ -function markFunction( fn ) { - fn[ expando ] = true; - return fn; -} - -/** - * Support testing using an element - * @param {Function} fn Passed the created element and returns a boolean result - */ -function assert( fn ) { - var el = document.createElement( "fieldset" ); - - try { - return !!fn( el ); - } catch ( e ) { - return false; - } finally { - - // Remove from its parent by default - if ( el.parentNode ) { - el.parentNode.removeChild( el ); - } - - // release memory in IE - el = null; - } -} - -/** - * Adds the same handler for all of the specified attrs - * @param {String} attrs Pipe-separated list of attributes - * @param {Function} handler The method that will be applied - */ -function addHandle( attrs, handler ) { - var arr = attrs.split( "|" ), - i = arr.length; - - while ( i-- ) { - Expr.attrHandle[ arr[ i ] ] = handler; - } -} - -/** - * Checks document order of two siblings - * @param {Element} a - * @param {Element} b - * @returns {Number} Returns less than 0 if a precedes b, greater than 0 if a follows b - */ -function siblingCheck( a, b ) { - var cur = b && a, - diff = cur && a.nodeType === 1 && b.nodeType === 1 && - a.sourceIndex - b.sourceIndex; - - // Use IE sourceIndex if available on both nodes - if ( diff ) { - return diff; - } - - // Check if b follows a - if ( cur ) { - while ( ( cur = cur.nextSibling ) ) { - if ( cur === b ) { - return -1; - } - } - } - - return a ? 1 : -1; -} - -/** - * Returns a function to use in pseudos for input types - * @param {String} type - */ -function createInputPseudo( type ) { - return function( elem ) { - var name = elem.nodeName.toLowerCase(); - return name === "input" && elem.type === type; - }; -} - -/** - * Returns a function to use in pseudos for buttons - * @param {String} type - */ -function createButtonPseudo( type ) { - return function( elem ) { - var name = elem.nodeName.toLowerCase(); - return ( name === "input" || name === "button" ) && elem.type === type; - }; -} - -/** - * Returns a function to use in pseudos for :enabled/:disabled - * @param {Boolean} disabled true for :disabled; false for :enabled - */ -function createDisabledPseudo( disabled ) { - - // Known :disabled false positives: fieldset[disabled] > legend:nth-of-type(n+2) :can-disable - return function( elem ) { - - // Only certain elements can match :enabled or :disabled - // https://html.spec.whatwg.org/multipage/scripting.html#selector-enabled - // https://html.spec.whatwg.org/multipage/scripting.html#selector-disabled - if ( "form" in elem ) { - - // Check for inherited disabledness on relevant non-disabled elements: - // * listed form-associated elements in a disabled fieldset - // https://html.spec.whatwg.org/multipage/forms.html#category-listed - // https://html.spec.whatwg.org/multipage/forms.html#concept-fe-disabled - // * option elements in a disabled optgroup - // https://html.spec.whatwg.org/multipage/forms.html#concept-option-disabled - // All such elements have a "form" property. - if ( elem.parentNode && elem.disabled === false ) { - - // Option elements defer to a parent optgroup if present - if ( "label" in elem ) { - if ( "label" in elem.parentNode ) { - return elem.parentNode.disabled === disabled; - } else { - return elem.disabled === disabled; - } - } - - // Support: IE 6 - 11 - // Use the isDisabled shortcut property to check for disabled fieldset ancestors - return elem.isDisabled === disabled || - - // Where there is no isDisabled, check manually - /* jshint -W018 */ - elem.isDisabled !== !disabled && - inDisabledFieldset( elem ) === disabled; - } - - return elem.disabled === disabled; - - // Try to winnow out elements that can't be disabled before trusting the disabled property. - // Some victims get caught in our net (label, legend, menu, track), but it shouldn't - // even exist on them, let alone have a boolean value. - } else if ( "label" in elem ) { - return elem.disabled === disabled; - } - - // Remaining elements are neither :enabled nor :disabled - return false; - }; -} - -/** - * Returns a function to use in pseudos for positionals - * @param {Function} fn - */ -function createPositionalPseudo( fn ) { - return markFunction( function( argument ) { - argument = +argument; - return markFunction( function( seed, matches ) { - var j, - matchIndexes = fn( [], seed.length, argument ), - i = matchIndexes.length; - - // Match elements found at the specified indexes - while ( i-- ) { - if ( seed[ ( j = matchIndexes[ i ] ) ] ) { - seed[ j ] = !( matches[ j ] = seed[ j ] ); - } - } - } ); - } ); -} - -/** - * Checks a node for validity as a Sizzle context - * @param {Element|Object=} context - * @returns {Element|Object|Boolean} The input node if acceptable, otherwise a falsy value - */ -function testContext( context ) { - return context && typeof context.getElementsByTagName !== "undefined" && context; -} - -// Expose support vars for convenience -support = Sizzle.support = {}; - -/** - * Detects XML nodes - * @param {Element|Object} elem An element or a document - * @returns {Boolean} True iff elem is a non-HTML XML node - */ -isXML = Sizzle.isXML = function( elem ) { - var namespace = elem.namespaceURI, - docElem = ( elem.ownerDocument || elem ).documentElement; - - // Support: IE <=8 - // Assume HTML when documentElement doesn't yet exist, such as inside loading iframes - // https://bugs.jquery.com/ticket/4833 - return !rhtml.test( namespace || docElem && docElem.nodeName || "HTML" ); -}; - -/** - * Sets document-related variables once based on the current document - * @param {Element|Object} [doc] An element or document object to use to set the document - * @returns {Object} Returns the current document - */ -setDocument = Sizzle.setDocument = function( node ) { - var hasCompare, subWindow, - doc = node ? node.ownerDocument || node : preferredDoc; - - // Return early if doc is invalid or already selected - // Support: IE 11+, Edge 17 - 18+ - // IE/Edge sometimes throw a "Permission denied" error when strict-comparing - // two documents; shallow comparisons work. - // eslint-disable-next-line eqeqeq - if ( doc == document || doc.nodeType !== 9 || !doc.documentElement ) { - return document; - } - - // Update global variables - document = doc; - docElem = document.documentElement; - documentIsHTML = !isXML( document ); - - // Support: IE 9 - 11+, Edge 12 - 18+ - // Accessing iframe documents after unload throws "permission denied" errors (jQuery #13936) - // Support: IE 11+, Edge 17 - 18+ - // IE/Edge sometimes throw a "Permission denied" error when strict-comparing - // two documents; shallow comparisons work. - // eslint-disable-next-line eqeqeq - if ( preferredDoc != document && - ( subWindow = document.defaultView ) && subWindow.top !== subWindow ) { - - // Support: IE 11, Edge - if ( subWindow.addEventListener ) { - subWindow.addEventListener( "unload", unloadHandler, false ); - - // Support: IE 9 - 10 only - } else if ( subWindow.attachEvent ) { - subWindow.attachEvent( "onunload", unloadHandler ); - } - } - - // Support: IE 8 - 11+, Edge 12 - 18+, Chrome <=16 - 25 only, Firefox <=3.6 - 31 only, - // Safari 4 - 5 only, Opera <=11.6 - 12.x only - // IE/Edge & older browsers don't support the :scope pseudo-class. - // Support: Safari 6.0 only - // Safari 6.0 supports :scope but it's an alias of :root there. - support.scope = assert( function( el ) { - docElem.appendChild( el ).appendChild( document.createElement( "div" ) ); - return typeof el.querySelectorAll !== "undefined" && - !el.querySelectorAll( ":scope fieldset div" ).length; - } ); - - /* Attributes - ---------------------------------------------------------------------- */ - - // Support: IE<8 - // Verify that getAttribute really returns attributes and not properties - // (excepting IE8 booleans) - support.attributes = assert( function( el ) { - el.className = "i"; - return !el.getAttribute( "className" ); - } ); - - /* getElement(s)By* - ---------------------------------------------------------------------- */ - - // Check if getElementsByTagName("*") returns only elements - support.getElementsByTagName = assert( function( el ) { - el.appendChild( document.createComment( "" ) ); - return !el.getElementsByTagName( "*" ).length; - } ); - - // Support: IE<9 - support.getElementsByClassName = rnative.test( document.getElementsByClassName ); - - // Support: IE<10 - // Check if getElementById returns elements by name - // The broken getElementById methods don't pick up programmatically-set names, - // so use a roundabout getElementsByName test - support.getById = assert( function( el ) { - docElem.appendChild( el ).id = expando; - return !document.getElementsByName || !document.getElementsByName( expando ).length; - } ); - - // ID filter and find - if ( support.getById ) { - Expr.filter[ "ID" ] = function( id ) { - var attrId = id.replace( runescape, funescape ); - return function( elem ) { - return elem.getAttribute( "id" ) === attrId; - }; - }; - Expr.find[ "ID" ] = function( id, context ) { - if ( typeof context.getElementById !== "undefined" && documentIsHTML ) { - var elem = context.getElementById( id ); - return elem ? [ elem ] : []; - } - }; - } else { - Expr.filter[ "ID" ] = function( id ) { - var attrId = id.replace( runescape, funescape ); - return function( elem ) { - var node = typeof elem.getAttributeNode !== "undefined" && - elem.getAttributeNode( "id" ); - return node && node.value === attrId; - }; - }; - - // Support: IE 6 - 7 only - // getElementById is not reliable as a find shortcut - Expr.find[ "ID" ] = function( id, context ) { - if ( typeof context.getElementById !== "undefined" && documentIsHTML ) { - var node, i, elems, - elem = context.getElementById( id ); - - if ( elem ) { - - // Verify the id attribute - node = elem.getAttributeNode( "id" ); - if ( node && node.value === id ) { - return [ elem ]; - } - - // Fall back on getElementsByName - elems = context.getElementsByName( id ); - i = 0; - while ( ( elem = elems[ i++ ] ) ) { - node = elem.getAttributeNode( "id" ); - if ( node && node.value === id ) { - return [ elem ]; - } - } - } - - return []; - } - }; - } - - // Tag - Expr.find[ "TAG" ] = support.getElementsByTagName ? - function( tag, context ) { - if ( typeof context.getElementsByTagName !== "undefined" ) { - return context.getElementsByTagName( tag ); - - // DocumentFragment nodes don't have gEBTN - } else if ( support.qsa ) { - return context.querySelectorAll( tag ); - } - } : - - function( tag, context ) { - var elem, - tmp = [], - i = 0, - - // By happy coincidence, a (broken) gEBTN appears on DocumentFragment nodes too - results = context.getElementsByTagName( tag ); - - // Filter out possible comments - if ( tag === "*" ) { - while ( ( elem = results[ i++ ] ) ) { - if ( elem.nodeType === 1 ) { - tmp.push( elem ); - } - } - - return tmp; - } - return results; - }; - - // Class - Expr.find[ "CLASS" ] = support.getElementsByClassName && function( className, context ) { - if ( typeof context.getElementsByClassName !== "undefined" && documentIsHTML ) { - return context.getElementsByClassName( className ); - } - }; - - /* QSA/matchesSelector - ---------------------------------------------------------------------- */ - - // QSA and matchesSelector support - - // matchesSelector(:active) reports false when true (IE9/Opera 11.5) - rbuggyMatches = []; - - // qSa(:focus) reports false when true (Chrome 21) - // We allow this because of a bug in IE8/9 that throws an error - // whenever `document.activeElement` is accessed on an iframe - // So, we allow :focus to pass through QSA all the time to avoid the IE error - // See https://bugs.jquery.com/ticket/13378 - rbuggyQSA = []; - - if ( ( support.qsa = rnative.test( document.querySelectorAll ) ) ) { - - // Build QSA regex - // Regex strategy adopted from Diego Perini - assert( function( el ) { - - var input; - - // Select is set to empty string on purpose - // This is to test IE's treatment of not explicitly - // setting a boolean content attribute, - // since its presence should be enough - // https://bugs.jquery.com/ticket/12359 - docElem.appendChild( el ).innerHTML = "" + - ""; - - // Support: IE8, Opera 11-12.16 - // Nothing should be selected when empty strings follow ^= or $= or *= - // The test attribute must be unknown in Opera but "safe" for WinRT - // https://msdn.microsoft.com/en-us/library/ie/hh465388.aspx#attribute_section - if ( el.querySelectorAll( "[msallowcapture^='']" ).length ) { - rbuggyQSA.push( "[*^$]=" + whitespace + "*(?:''|\"\")" ); - } - - // Support: IE8 - // Boolean attributes and "value" are not treated correctly - if ( !el.querySelectorAll( "[selected]" ).length ) { - rbuggyQSA.push( "\\[" + whitespace + "*(?:value|" + booleans + ")" ); - } - - // Support: Chrome<29, Android<4.4, Safari<7.0+, iOS<7.0+, PhantomJS<1.9.8+ - if ( !el.querySelectorAll( "[id~=" + expando + "-]" ).length ) { - rbuggyQSA.push( "~=" ); - } - - // Support: IE 11+, Edge 15 - 18+ - // IE 11/Edge don't find elements on a `[name='']` query in some cases. - // Adding a temporary attribute to the document before the selection works - // around the issue. - // Interestingly, IE 10 & older don't seem to have the issue. - input = document.createElement( "input" ); - input.setAttribute( "name", "" ); - el.appendChild( input ); - if ( !el.querySelectorAll( "[name='']" ).length ) { - rbuggyQSA.push( "\\[" + whitespace + "*name" + whitespace + "*=" + - whitespace + "*(?:''|\"\")" ); - } - - // Webkit/Opera - :checked should return selected option elements - // http://www.w3.org/TR/2011/REC-css3-selectors-20110929/#checked - // IE8 throws error here and will not see later tests - if ( !el.querySelectorAll( ":checked" ).length ) { - rbuggyQSA.push( ":checked" ); - } - - // Support: Safari 8+, iOS 8+ - // https://bugs.webkit.org/show_bug.cgi?id=136851 - // In-page `selector#id sibling-combinator selector` fails - if ( !el.querySelectorAll( "a#" + expando + "+*" ).length ) { - rbuggyQSA.push( ".#.+[+~]" ); - } - - // Support: Firefox <=3.6 - 5 only - // Old Firefox doesn't throw on a badly-escaped identifier. - el.querySelectorAll( "\\\f" ); - rbuggyQSA.push( "[\\r\\n\\f]" ); - } ); - - assert( function( el ) { - el.innerHTML = "" + - ""; - - // Support: Windows 8 Native Apps - // The type and name attributes are restricted during .innerHTML assignment - var input = document.createElement( "input" ); - input.setAttribute( "type", "hidden" ); - el.appendChild( input ).setAttribute( "name", "D" ); - - // Support: IE8 - // Enforce case-sensitivity of name attribute - if ( el.querySelectorAll( "[name=d]" ).length ) { - rbuggyQSA.push( "name" + whitespace + "*[*^$|!~]?=" ); - } - - // FF 3.5 - :enabled/:disabled and hidden elements (hidden elements are still enabled) - // IE8 throws error here and will not see later tests - if ( el.querySelectorAll( ":enabled" ).length !== 2 ) { - rbuggyQSA.push( ":enabled", ":disabled" ); - } - - // Support: IE9-11+ - // IE's :disabled selector does not pick up the children of disabled fieldsets - docElem.appendChild( el ).disabled = true; - if ( el.querySelectorAll( ":disabled" ).length !== 2 ) { - rbuggyQSA.push( ":enabled", ":disabled" ); - } - - // Support: Opera 10 - 11 only - // Opera 10-11 does not throw on post-comma invalid pseudos - el.querySelectorAll( "*,:x" ); - rbuggyQSA.push( ",.*:" ); - } ); - } - - if ( ( support.matchesSelector = rnative.test( ( matches = docElem.matches || - docElem.webkitMatchesSelector || - docElem.mozMatchesSelector || - docElem.oMatchesSelector || - docElem.msMatchesSelector ) ) ) ) { - - assert( function( el ) { - - // Check to see if it's possible to do matchesSelector - // on a disconnected node (IE 9) - support.disconnectedMatch = matches.call( el, "*" ); - - // This should fail with an exception - // Gecko does not error, returns false instead - matches.call( el, "[s!='']:x" ); - rbuggyMatches.push( "!=", pseudos ); - } ); - } - - rbuggyQSA = rbuggyQSA.length && new RegExp( rbuggyQSA.join( "|" ) ); - rbuggyMatches = rbuggyMatches.length && new RegExp( rbuggyMatches.join( "|" ) ); - - /* Contains - ---------------------------------------------------------------------- */ - hasCompare = rnative.test( docElem.compareDocumentPosition ); - - // Element contains another - // Purposefully self-exclusive - // As in, an element does not contain itself - contains = hasCompare || rnative.test( docElem.contains ) ? - function( a, b ) { - var adown = a.nodeType === 9 ? a.documentElement : a, - bup = b && b.parentNode; - return a === bup || !!( bup && bup.nodeType === 1 && ( - adown.contains ? - adown.contains( bup ) : - a.compareDocumentPosition && a.compareDocumentPosition( bup ) & 16 - ) ); - } : - function( a, b ) { - if ( b ) { - while ( ( b = b.parentNode ) ) { - if ( b === a ) { - return true; - } - } - } - return false; - }; - - /* Sorting - ---------------------------------------------------------------------- */ - - // Document order sorting - sortOrder = hasCompare ? - function( a, b ) { - - // Flag for duplicate removal - if ( a === b ) { - hasDuplicate = true; - return 0; - } - - // Sort on method existence if only one input has compareDocumentPosition - var compare = !a.compareDocumentPosition - !b.compareDocumentPosition; - if ( compare ) { - return compare; - } - - // Calculate position if both inputs belong to the same document - // Support: IE 11+, Edge 17 - 18+ - // IE/Edge sometimes throw a "Permission denied" error when strict-comparing - // two documents; shallow comparisons work. - // eslint-disable-next-line eqeqeq - compare = ( a.ownerDocument || a ) == ( b.ownerDocument || b ) ? - a.compareDocumentPosition( b ) : - - // Otherwise we know they are disconnected - 1; - - // Disconnected nodes - if ( compare & 1 || - ( !support.sortDetached && b.compareDocumentPosition( a ) === compare ) ) { - - // Choose the first element that is related to our preferred document - // Support: IE 11+, Edge 17 - 18+ - // IE/Edge sometimes throw a "Permission denied" error when strict-comparing - // two documents; shallow comparisons work. - // eslint-disable-next-line eqeqeq - if ( a == document || a.ownerDocument == preferredDoc && - contains( preferredDoc, a ) ) { - return -1; - } - - // Support: IE 11+, Edge 17 - 18+ - // IE/Edge sometimes throw a "Permission denied" error when strict-comparing - // two documents; shallow comparisons work. - // eslint-disable-next-line eqeqeq - if ( b == document || b.ownerDocument == preferredDoc && - contains( preferredDoc, b ) ) { - return 1; - } - - // Maintain original order - return sortInput ? - ( indexOf( sortInput, a ) - indexOf( sortInput, b ) ) : - 0; - } - - return compare & 4 ? -1 : 1; - } : - function( a, b ) { - - // Exit early if the nodes are identical - if ( a === b ) { - hasDuplicate = true; - return 0; - } - - var cur, - i = 0, - aup = a.parentNode, - bup = b.parentNode, - ap = [ a ], - bp = [ b ]; - - // Parentless nodes are either documents or disconnected - if ( !aup || !bup ) { - - // Support: IE 11+, Edge 17 - 18+ - // IE/Edge sometimes throw a "Permission denied" error when strict-comparing - // two documents; shallow comparisons work. - /* eslint-disable eqeqeq */ - return a == document ? -1 : - b == document ? 1 : - /* eslint-enable eqeqeq */ - aup ? -1 : - bup ? 1 : - sortInput ? - ( indexOf( sortInput, a ) - indexOf( sortInput, b ) ) : - 0; - - // If the nodes are siblings, we can do a quick check - } else if ( aup === bup ) { - return siblingCheck( a, b ); - } - - // Otherwise we need full lists of their ancestors for comparison - cur = a; - while ( ( cur = cur.parentNode ) ) { - ap.unshift( cur ); - } - cur = b; - while ( ( cur = cur.parentNode ) ) { - bp.unshift( cur ); - } - - // Walk down the tree looking for a discrepancy - while ( ap[ i ] === bp[ i ] ) { - i++; - } - - return i ? - - // Do a sibling check if the nodes have a common ancestor - siblingCheck( ap[ i ], bp[ i ] ) : - - // Otherwise nodes in our document sort first - // Support: IE 11+, Edge 17 - 18+ - // IE/Edge sometimes throw a "Permission denied" error when strict-comparing - // two documents; shallow comparisons work. - /* eslint-disable eqeqeq */ - ap[ i ] == preferredDoc ? -1 : - bp[ i ] == preferredDoc ? 1 : - /* eslint-enable eqeqeq */ - 0; - }; - - return document; -}; - -Sizzle.matches = function( expr, elements ) { - return Sizzle( expr, null, null, elements ); -}; - -Sizzle.matchesSelector = function( elem, expr ) { - setDocument( elem ); - - if ( support.matchesSelector && documentIsHTML && - !nonnativeSelectorCache[ expr + " " ] && - ( !rbuggyMatches || !rbuggyMatches.test( expr ) ) && - ( !rbuggyQSA || !rbuggyQSA.test( expr ) ) ) { - - try { - var ret = matches.call( elem, expr ); - - // IE 9's matchesSelector returns false on disconnected nodes - if ( ret || support.disconnectedMatch || - - // As well, disconnected nodes are said to be in a document - // fragment in IE 9 - elem.document && elem.document.nodeType !== 11 ) { - return ret; - } - } catch ( e ) { - nonnativeSelectorCache( expr, true ); - } - } - - return Sizzle( expr, document, null, [ elem ] ).length > 0; -}; - -Sizzle.contains = function( context, elem ) { - - // Set document vars if needed - // Support: IE 11+, Edge 17 - 18+ - // IE/Edge sometimes throw a "Permission denied" error when strict-comparing - // two documents; shallow comparisons work. - // eslint-disable-next-line eqeqeq - if ( ( context.ownerDocument || context ) != document ) { - setDocument( context ); - } - return contains( context, elem ); -}; - -Sizzle.attr = function( elem, name ) { - - // Set document vars if needed - // Support: IE 11+, Edge 17 - 18+ - // IE/Edge sometimes throw a "Permission denied" error when strict-comparing - // two documents; shallow comparisons work. - // eslint-disable-next-line eqeqeq - if ( ( elem.ownerDocument || elem ) != document ) { - setDocument( elem ); - } - - var fn = Expr.attrHandle[ name.toLowerCase() ], - - // Don't get fooled by Object.prototype properties (jQuery #13807) - val = fn && hasOwn.call( Expr.attrHandle, name.toLowerCase() ) ? - fn( elem, name, !documentIsHTML ) : - undefined; - - return val !== undefined ? - val : - support.attributes || !documentIsHTML ? - elem.getAttribute( name ) : - ( val = elem.getAttributeNode( name ) ) && val.specified ? - val.value : - null; -}; - -Sizzle.escape = function( sel ) { - return ( sel + "" ).replace( rcssescape, fcssescape ); -}; - -Sizzle.error = function( msg ) { - throw new Error( "Syntax error, unrecognized expression: " + msg ); -}; - -/** - * Document sorting and removing duplicates - * @param {ArrayLike} results - */ -Sizzle.uniqueSort = function( results ) { - var elem, - duplicates = [], - j = 0, - i = 0; - - // Unless we *know* we can detect duplicates, assume their presence - hasDuplicate = !support.detectDuplicates; - sortInput = !support.sortStable && results.slice( 0 ); - results.sort( sortOrder ); - - if ( hasDuplicate ) { - while ( ( elem = results[ i++ ] ) ) { - if ( elem === results[ i ] ) { - j = duplicates.push( i ); - } - } - while ( j-- ) { - results.splice( duplicates[ j ], 1 ); - } - } - - // Clear input after sorting to release objects - // See https://github.com/jquery/sizzle/pull/225 - sortInput = null; - - return results; -}; - -/** - * Utility function for retrieving the text value of an array of DOM nodes - * @param {Array|Element} elem - */ -getText = Sizzle.getText = function( elem ) { - var node, - ret = "", - i = 0, - nodeType = elem.nodeType; - - if ( !nodeType ) { - - // If no nodeType, this is expected to be an array - while ( ( node = elem[ i++ ] ) ) { - - // Do not traverse comment nodes - ret += getText( node ); - } - } else if ( nodeType === 1 || nodeType === 9 || nodeType === 11 ) { - - // Use textContent for elements - // innerText usage removed for consistency of new lines (jQuery #11153) - if ( typeof elem.textContent === "string" ) { - return elem.textContent; - } else { - - // Traverse its children - for ( elem = elem.firstChild; elem; elem = elem.nextSibling ) { - ret += getText( elem ); - } - } - } else if ( nodeType === 3 || nodeType === 4 ) { - return elem.nodeValue; - } - - // Do not include comment or processing instruction nodes - - return ret; -}; - -Expr = Sizzle.selectors = { - - // Can be adjusted by the user - cacheLength: 50, - - createPseudo: markFunction, - - match: matchExpr, - - attrHandle: {}, - - find: {}, - - relative: { - ">": { dir: "parentNode", first: true }, - " ": { dir: "parentNode" }, - "+": { dir: "previousSibling", first: true }, - "~": { dir: "previousSibling" } - }, - - preFilter: { - "ATTR": function( match ) { - match[ 1 ] = match[ 1 ].replace( runescape, funescape ); - - // Move the given value to match[3] whether quoted or unquoted - match[ 3 ] = ( match[ 3 ] || match[ 4 ] || - match[ 5 ] || "" ).replace( runescape, funescape ); - - if ( match[ 2 ] === "~=" ) { - match[ 3 ] = " " + match[ 3 ] + " "; - } - - return match.slice( 0, 4 ); - }, - - "CHILD": function( match ) { - - /* matches from matchExpr["CHILD"] - 1 type (only|nth|...) - 2 what (child|of-type) - 3 argument (even|odd|\d*|\d*n([+-]\d+)?|...) - 4 xn-component of xn+y argument ([+-]?\d*n|) - 5 sign of xn-component - 6 x of xn-component - 7 sign of y-component - 8 y of y-component - */ - match[ 1 ] = match[ 1 ].toLowerCase(); - - if ( match[ 1 ].slice( 0, 3 ) === "nth" ) { - - // nth-* requires argument - if ( !match[ 3 ] ) { - Sizzle.error( match[ 0 ] ); - } - - // numeric x and y parameters for Expr.filter.CHILD - // remember that false/true cast respectively to 0/1 - match[ 4 ] = +( match[ 4 ] ? - match[ 5 ] + ( match[ 6 ] || 1 ) : - 2 * ( match[ 3 ] === "even" || match[ 3 ] === "odd" ) ); - match[ 5 ] = +( ( match[ 7 ] + match[ 8 ] ) || match[ 3 ] === "odd" ); - - // other types prohibit arguments - } else if ( match[ 3 ] ) { - Sizzle.error( match[ 0 ] ); - } - - return match; - }, - - "PSEUDO": function( match ) { - var excess, - unquoted = !match[ 6 ] && match[ 2 ]; - - if ( matchExpr[ "CHILD" ].test( match[ 0 ] ) ) { - return null; - } - - // Accept quoted arguments as-is - if ( match[ 3 ] ) { - match[ 2 ] = match[ 4 ] || match[ 5 ] || ""; - - // Strip excess characters from unquoted arguments - } else if ( unquoted && rpseudo.test( unquoted ) && - - // Get excess from tokenize (recursively) - ( excess = tokenize( unquoted, true ) ) && - - // advance to the next closing parenthesis - ( excess = unquoted.indexOf( ")", unquoted.length - excess ) - unquoted.length ) ) { - - // excess is a negative index - match[ 0 ] = match[ 0 ].slice( 0, excess ); - match[ 2 ] = unquoted.slice( 0, excess ); - } - - // Return only captures needed by the pseudo filter method (type and argument) - return match.slice( 0, 3 ); - } - }, - - filter: { - - "TAG": function( nodeNameSelector ) { - var nodeName = nodeNameSelector.replace( runescape, funescape ).toLowerCase(); - return nodeNameSelector === "*" ? - function() { - return true; - } : - function( elem ) { - return elem.nodeName && elem.nodeName.toLowerCase() === nodeName; - }; - }, - - "CLASS": function( className ) { - var pattern = classCache[ className + " " ]; - - return pattern || - ( pattern = new RegExp( "(^|" + whitespace + - ")" + className + "(" + whitespace + "|$)" ) ) && classCache( - className, function( elem ) { - return pattern.test( - typeof elem.className === "string" && elem.className || - typeof elem.getAttribute !== "undefined" && - elem.getAttribute( "class" ) || - "" - ); - } ); - }, - - "ATTR": function( name, operator, check ) { - return function( elem ) { - var result = Sizzle.attr( elem, name ); - - if ( result == null ) { - return operator === "!="; - } - if ( !operator ) { - return true; - } - - result += ""; - - /* eslint-disable max-len */ - - return operator === "=" ? result === check : - operator === "!=" ? result !== check : - operator === "^=" ? check && result.indexOf( check ) === 0 : - operator === "*=" ? check && result.indexOf( check ) > -1 : - operator === "$=" ? check && result.slice( -check.length ) === check : - operator === "~=" ? ( " " + result.replace( rwhitespace, " " ) + " " ).indexOf( check ) > -1 : - operator === "|=" ? result === check || result.slice( 0, check.length + 1 ) === check + "-" : - false; - /* eslint-enable max-len */ - - }; - }, - - "CHILD": function( type, what, _argument, first, last ) { - var simple = type.slice( 0, 3 ) !== "nth", - forward = type.slice( -4 ) !== "last", - ofType = what === "of-type"; - - return first === 1 && last === 0 ? - - // Shortcut for :nth-*(n) - function( elem ) { - return !!elem.parentNode; - } : - - function( elem, _context, xml ) { - var cache, uniqueCache, outerCache, node, nodeIndex, start, - dir = simple !== forward ? "nextSibling" : "previousSibling", - parent = elem.parentNode, - name = ofType && elem.nodeName.toLowerCase(), - useCache = !xml && !ofType, - diff = false; - - if ( parent ) { - - // :(first|last|only)-(child|of-type) - if ( simple ) { - while ( dir ) { - node = elem; - while ( ( node = node[ dir ] ) ) { - if ( ofType ? - node.nodeName.toLowerCase() === name : - node.nodeType === 1 ) { - - return false; - } - } - - // Reverse direction for :only-* (if we haven't yet done so) - start = dir = type === "only" && !start && "nextSibling"; - } - return true; - } - - start = [ forward ? parent.firstChild : parent.lastChild ]; - - // non-xml :nth-child(...) stores cache data on `parent` - if ( forward && useCache ) { - - // Seek `elem` from a previously-cached index - - // ...in a gzip-friendly way - node = parent; - outerCache = node[ expando ] || ( node[ expando ] = {} ); - - // Support: IE <9 only - // Defend against cloned attroperties (jQuery gh-1709) - uniqueCache = outerCache[ node.uniqueID ] || - ( outerCache[ node.uniqueID ] = {} ); - - cache = uniqueCache[ type ] || []; - nodeIndex = cache[ 0 ] === dirruns && cache[ 1 ]; - diff = nodeIndex && cache[ 2 ]; - node = nodeIndex && parent.childNodes[ nodeIndex ]; - - while ( ( node = ++nodeIndex && node && node[ dir ] || - - // Fallback to seeking `elem` from the start - ( diff = nodeIndex = 0 ) || start.pop() ) ) { - - // When found, cache indexes on `parent` and break - if ( node.nodeType === 1 && ++diff && node === elem ) { - uniqueCache[ type ] = [ dirruns, nodeIndex, diff ]; - break; - } - } - - } else { - - // Use previously-cached element index if available - if ( useCache ) { - - // ...in a gzip-friendly way - node = elem; - outerCache = node[ expando ] || ( node[ expando ] = {} ); - - // Support: IE <9 only - // Defend against cloned attroperties (jQuery gh-1709) - uniqueCache = outerCache[ node.uniqueID ] || - ( outerCache[ node.uniqueID ] = {} ); - - cache = uniqueCache[ type ] || []; - nodeIndex = cache[ 0 ] === dirruns && cache[ 1 ]; - diff = nodeIndex; - } - - // xml :nth-child(...) - // or :nth-last-child(...) or :nth(-last)?-of-type(...) - if ( diff === false ) { - - // Use the same loop as above to seek `elem` from the start - while ( ( node = ++nodeIndex && node && node[ dir ] || - ( diff = nodeIndex = 0 ) || start.pop() ) ) { - - if ( ( ofType ? - node.nodeName.toLowerCase() === name : - node.nodeType === 1 ) && - ++diff ) { - - // Cache the index of each encountered element - if ( useCache ) { - outerCache = node[ expando ] || - ( node[ expando ] = {} ); - - // Support: IE <9 only - // Defend against cloned attroperties (jQuery gh-1709) - uniqueCache = outerCache[ node.uniqueID ] || - ( outerCache[ node.uniqueID ] = {} ); - - uniqueCache[ type ] = [ dirruns, diff ]; - } - - if ( node === elem ) { - break; - } - } - } - } - } - - // Incorporate the offset, then check against cycle size - diff -= last; - return diff === first || ( diff % first === 0 && diff / first >= 0 ); - } - }; - }, - - "PSEUDO": function( pseudo, argument ) { - - // pseudo-class names are case-insensitive - // http://www.w3.org/TR/selectors/#pseudo-classes - // Prioritize by case sensitivity in case custom pseudos are added with uppercase letters - // Remember that setFilters inherits from pseudos - var args, - fn = Expr.pseudos[ pseudo ] || Expr.setFilters[ pseudo.toLowerCase() ] || - Sizzle.error( "unsupported pseudo: " + pseudo ); - - // The user may use createPseudo to indicate that - // arguments are needed to create the filter function - // just as Sizzle does - if ( fn[ expando ] ) { - return fn( argument ); - } - - // But maintain support for old signatures - if ( fn.length > 1 ) { - args = [ pseudo, pseudo, "", argument ]; - return Expr.setFilters.hasOwnProperty( pseudo.toLowerCase() ) ? - markFunction( function( seed, matches ) { - var idx, - matched = fn( seed, argument ), - i = matched.length; - while ( i-- ) { - idx = indexOf( seed, matched[ i ] ); - seed[ idx ] = !( matches[ idx ] = matched[ i ] ); - } - } ) : - function( elem ) { - return fn( elem, 0, args ); - }; - } - - return fn; - } - }, - - pseudos: { - - // Potentially complex pseudos - "not": markFunction( function( selector ) { - - // Trim the selector passed to compile - // to avoid treating leading and trailing - // spaces as combinators - var input = [], - results = [], - matcher = compile( selector.replace( rtrim, "$1" ) ); - - return matcher[ expando ] ? - markFunction( function( seed, matches, _context, xml ) { - var elem, - unmatched = matcher( seed, null, xml, [] ), - i = seed.length; - - // Match elements unmatched by `matcher` - while ( i-- ) { - if ( ( elem = unmatched[ i ] ) ) { - seed[ i ] = !( matches[ i ] = elem ); - } - } - } ) : - function( elem, _context, xml ) { - input[ 0 ] = elem; - matcher( input, null, xml, results ); - - // Don't keep the element (issue #299) - input[ 0 ] = null; - return !results.pop(); - }; - } ), - - "has": markFunction( function( selector ) { - return function( elem ) { - return Sizzle( selector, elem ).length > 0; - }; - } ), - - "contains": markFunction( function( text ) { - text = text.replace( runescape, funescape ); - return function( elem ) { - return ( elem.textContent || getText( elem ) ).indexOf( text ) > -1; - }; - } ), - - // "Whether an element is represented by a :lang() selector - // is based solely on the element's language value - // being equal to the identifier C, - // or beginning with the identifier C immediately followed by "-". - // The matching of C against the element's language value is performed case-insensitively. - // The identifier C does not have to be a valid language name." - // http://www.w3.org/TR/selectors/#lang-pseudo - "lang": markFunction( function( lang ) { - - // lang value must be a valid identifier - if ( !ridentifier.test( lang || "" ) ) { - Sizzle.error( "unsupported lang: " + lang ); - } - lang = lang.replace( runescape, funescape ).toLowerCase(); - return function( elem ) { - var elemLang; - do { - if ( ( elemLang = documentIsHTML ? - elem.lang : - elem.getAttribute( "xml:lang" ) || elem.getAttribute( "lang" ) ) ) { - - elemLang = elemLang.toLowerCase(); - return elemLang === lang || elemLang.indexOf( lang + "-" ) === 0; - } - } while ( ( elem = elem.parentNode ) && elem.nodeType === 1 ); - return false; - }; - } ), - - // Miscellaneous - "target": function( elem ) { - var hash = window.location && window.location.hash; - return hash && hash.slice( 1 ) === elem.id; - }, - - "root": function( elem ) { - return elem === docElem; - }, - - "focus": function( elem ) { - return elem === document.activeElement && - ( !document.hasFocus || document.hasFocus() ) && - !!( elem.type || elem.href || ~elem.tabIndex ); - }, - - // Boolean properties - "enabled": createDisabledPseudo( false ), - "disabled": createDisabledPseudo( true ), - - "checked": function( elem ) { - - // In CSS3, :checked should return both checked and selected elements - // http://www.w3.org/TR/2011/REC-css3-selectors-20110929/#checked - var nodeName = elem.nodeName.toLowerCase(); - return ( nodeName === "input" && !!elem.checked ) || - ( nodeName === "option" && !!elem.selected ); - }, - - "selected": function( elem ) { - - // Accessing this property makes selected-by-default - // options in Safari work properly - if ( elem.parentNode ) { - // eslint-disable-next-line no-unused-expressions - elem.parentNode.selectedIndex; - } - - return elem.selected === true; - }, - - // Contents - "empty": function( elem ) { - - // http://www.w3.org/TR/selectors/#empty-pseudo - // :empty is negated by element (1) or content nodes (text: 3; cdata: 4; entity ref: 5), - // but not by others (comment: 8; processing instruction: 7; etc.) - // nodeType < 6 works because attributes (2) do not appear as children - for ( elem = elem.firstChild; elem; elem = elem.nextSibling ) { - if ( elem.nodeType < 6 ) { - return false; - } - } - return true; - }, - - "parent": function( elem ) { - return !Expr.pseudos[ "empty" ]( elem ); - }, - - // Element/input types - "header": function( elem ) { - return rheader.test( elem.nodeName ); - }, - - "input": function( elem ) { - return rinputs.test( elem.nodeName ); - }, - - "button": function( elem ) { - var name = elem.nodeName.toLowerCase(); - return name === "input" && elem.type === "button" || name === "button"; - }, - - "text": function( elem ) { - var attr; - return elem.nodeName.toLowerCase() === "input" && - elem.type === "text" && - - // Support: IE<8 - // New HTML5 attribute values (e.g., "search") appear with elem.type === "text" - ( ( attr = elem.getAttribute( "type" ) ) == null || - attr.toLowerCase() === "text" ); - }, - - // Position-in-collection - "first": createPositionalPseudo( function() { - return [ 0 ]; - } ), - - "last": createPositionalPseudo( function( _matchIndexes, length ) { - return [ length - 1 ]; - } ), - - "eq": createPositionalPseudo( function( _matchIndexes, length, argument ) { - return [ argument < 0 ? argument + length : argument ]; - } ), - - "even": createPositionalPseudo( function( matchIndexes, length ) { - var i = 0; - for ( ; i < length; i += 2 ) { - matchIndexes.push( i ); - } - return matchIndexes; - } ), - - "odd": createPositionalPseudo( function( matchIndexes, length ) { - var i = 1; - for ( ; i < length; i += 2 ) { - matchIndexes.push( i ); - } - return matchIndexes; - } ), - - "lt": createPositionalPseudo( function( matchIndexes, length, argument ) { - var i = argument < 0 ? - argument + length : - argument > length ? - length : - argument; - for ( ; --i >= 0; ) { - matchIndexes.push( i ); - } - return matchIndexes; - } ), - - "gt": createPositionalPseudo( function( matchIndexes, length, argument ) { - var i = argument < 0 ? argument + length : argument; - for ( ; ++i < length; ) { - matchIndexes.push( i ); - } - return matchIndexes; - } ) - } -}; - -Expr.pseudos[ "nth" ] = Expr.pseudos[ "eq" ]; - -// Add button/input type pseudos -for ( i in { radio: true, checkbox: true, file: true, password: true, image: true } ) { - Expr.pseudos[ i ] = createInputPseudo( i ); -} -for ( i in { submit: true, reset: true } ) { - Expr.pseudos[ i ] = createButtonPseudo( i ); -} - -// Easy API for creating new setFilters -function setFilters() {} -setFilters.prototype = Expr.filters = Expr.pseudos; -Expr.setFilters = new setFilters(); - -tokenize = Sizzle.tokenize = function( selector, parseOnly ) { - var matched, match, tokens, type, - soFar, groups, preFilters, - cached = tokenCache[ selector + " " ]; - - if ( cached ) { - return parseOnly ? 0 : cached.slice( 0 ); - } - - soFar = selector; - groups = []; - preFilters = Expr.preFilter; - - while ( soFar ) { - - // Comma and first run - if ( !matched || ( match = rcomma.exec( soFar ) ) ) { - if ( match ) { - - // Don't consume trailing commas as valid - soFar = soFar.slice( match[ 0 ].length ) || soFar; - } - groups.push( ( tokens = [] ) ); - } - - matched = false; - - // Combinators - if ( ( match = rcombinators.exec( soFar ) ) ) { - matched = match.shift(); - tokens.push( { - value: matched, - - // Cast descendant combinators to space - type: match[ 0 ].replace( rtrim, " " ) - } ); - soFar = soFar.slice( matched.length ); - } - - // Filters - for ( type in Expr.filter ) { - if ( ( match = matchExpr[ type ].exec( soFar ) ) && ( !preFilters[ type ] || - ( match = preFilters[ type ]( match ) ) ) ) { - matched = match.shift(); - tokens.push( { - value: matched, - type: type, - matches: match - } ); - soFar = soFar.slice( matched.length ); - } - } - - if ( !matched ) { - break; - } - } - - // Return the length of the invalid excess - // if we're just parsing - // Otherwise, throw an error or return tokens - return parseOnly ? - soFar.length : - soFar ? - Sizzle.error( selector ) : - - // Cache the tokens - tokenCache( selector, groups ).slice( 0 ); -}; - -function toSelector( tokens ) { - var i = 0, - len = tokens.length, - selector = ""; - for ( ; i < len; i++ ) { - selector += tokens[ i ].value; - } - return selector; -} - -function addCombinator( matcher, combinator, base ) { - var dir = combinator.dir, - skip = combinator.next, - key = skip || dir, - checkNonElements = base && key === "parentNode", - doneName = done++; - - return combinator.first ? - - // Check against closest ancestor/preceding element - function( elem, context, xml ) { - while ( ( elem = elem[ dir ] ) ) { - if ( elem.nodeType === 1 || checkNonElements ) { - return matcher( elem, context, xml ); - } - } - return false; - } : - - // Check against all ancestor/preceding elements - function( elem, context, xml ) { - var oldCache, uniqueCache, outerCache, - newCache = [ dirruns, doneName ]; - - // We can't set arbitrary data on XML nodes, so they don't benefit from combinator caching - if ( xml ) { - while ( ( elem = elem[ dir ] ) ) { - if ( elem.nodeType === 1 || checkNonElements ) { - if ( matcher( elem, context, xml ) ) { - return true; - } - } - } - } else { - while ( ( elem = elem[ dir ] ) ) { - if ( elem.nodeType === 1 || checkNonElements ) { - outerCache = elem[ expando ] || ( elem[ expando ] = {} ); - - // Support: IE <9 only - // Defend against cloned attroperties (jQuery gh-1709) - uniqueCache = outerCache[ elem.uniqueID ] || - ( outerCache[ elem.uniqueID ] = {} ); - - if ( skip && skip === elem.nodeName.toLowerCase() ) { - elem = elem[ dir ] || elem; - } else if ( ( oldCache = uniqueCache[ key ] ) && - oldCache[ 0 ] === dirruns && oldCache[ 1 ] === doneName ) { - - // Assign to newCache so results back-propagate to previous elements - return ( newCache[ 2 ] = oldCache[ 2 ] ); - } else { - - // Reuse newcache so results back-propagate to previous elements - uniqueCache[ key ] = newCache; - - // A match means we're done; a fail means we have to keep checking - if ( ( newCache[ 2 ] = matcher( elem, context, xml ) ) ) { - return true; - } - } - } - } - } - return false; - }; -} - -function elementMatcher( matchers ) { - return matchers.length > 1 ? - function( elem, context, xml ) { - var i = matchers.length; - while ( i-- ) { - if ( !matchers[ i ]( elem, context, xml ) ) { - return false; - } - } - return true; - } : - matchers[ 0 ]; -} - -function multipleContexts( selector, contexts, results ) { - var i = 0, - len = contexts.length; - for ( ; i < len; i++ ) { - Sizzle( selector, contexts[ i ], results ); - } - return results; -} - -function condense( unmatched, map, filter, context, xml ) { - var elem, - newUnmatched = [], - i = 0, - len = unmatched.length, - mapped = map != null; - - for ( ; i < len; i++ ) { - if ( ( elem = unmatched[ i ] ) ) { - if ( !filter || filter( elem, context, xml ) ) { - newUnmatched.push( elem ); - if ( mapped ) { - map.push( i ); - } - } - } - } - - return newUnmatched; -} - -function setMatcher( preFilter, selector, matcher, postFilter, postFinder, postSelector ) { - if ( postFilter && !postFilter[ expando ] ) { - postFilter = setMatcher( postFilter ); - } - if ( postFinder && !postFinder[ expando ] ) { - postFinder = setMatcher( postFinder, postSelector ); - } - return markFunction( function( seed, results, context, xml ) { - var temp, i, elem, - preMap = [], - postMap = [], - preexisting = results.length, - - // Get initial elements from seed or context - elems = seed || multipleContexts( - selector || "*", - context.nodeType ? [ context ] : context, - [] - ), - - // Prefilter to get matcher input, preserving a map for seed-results synchronization - matcherIn = preFilter && ( seed || !selector ) ? - condense( elems, preMap, preFilter, context, xml ) : - elems, - - matcherOut = matcher ? - - // If we have a postFinder, or filtered seed, or non-seed postFilter or preexisting results, - postFinder || ( seed ? preFilter : preexisting || postFilter ) ? - - // ...intermediate processing is necessary - [] : - - // ...otherwise use results directly - results : - matcherIn; - - // Find primary matches - if ( matcher ) { - matcher( matcherIn, matcherOut, context, xml ); - } - - // Apply postFilter - if ( postFilter ) { - temp = condense( matcherOut, postMap ); - postFilter( temp, [], context, xml ); - - // Un-match failing elements by moving them back to matcherIn - i = temp.length; - while ( i-- ) { - if ( ( elem = temp[ i ] ) ) { - matcherOut[ postMap[ i ] ] = !( matcherIn[ postMap[ i ] ] = elem ); - } - } - } - - if ( seed ) { - if ( postFinder || preFilter ) { - if ( postFinder ) { - - // Get the final matcherOut by condensing this intermediate into postFinder contexts - temp = []; - i = matcherOut.length; - while ( i-- ) { - if ( ( elem = matcherOut[ i ] ) ) { - - // Restore matcherIn since elem is not yet a final match - temp.push( ( matcherIn[ i ] = elem ) ); - } - } - postFinder( null, ( matcherOut = [] ), temp, xml ); - } - - // Move matched elements from seed to results to keep them synchronized - i = matcherOut.length; - while ( i-- ) { - if ( ( elem = matcherOut[ i ] ) && - ( temp = postFinder ? indexOf( seed, elem ) : preMap[ i ] ) > -1 ) { - - seed[ temp ] = !( results[ temp ] = elem ); - } - } - } - - // Add elements to results, through postFinder if defined - } else { - matcherOut = condense( - matcherOut === results ? - matcherOut.splice( preexisting, matcherOut.length ) : - matcherOut - ); - if ( postFinder ) { - postFinder( null, results, matcherOut, xml ); - } else { - push.apply( results, matcherOut ); - } - } - } ); -} - -function matcherFromTokens( tokens ) { - var checkContext, matcher, j, - len = tokens.length, - leadingRelative = Expr.relative[ tokens[ 0 ].type ], - implicitRelative = leadingRelative || Expr.relative[ " " ], - i = leadingRelative ? 1 : 0, - - // The foundational matcher ensures that elements are reachable from top-level context(s) - matchContext = addCombinator( function( elem ) { - return elem === checkContext; - }, implicitRelative, true ), - matchAnyContext = addCombinator( function( elem ) { - return indexOf( checkContext, elem ) > -1; - }, implicitRelative, true ), - matchers = [ function( elem, context, xml ) { - var ret = ( !leadingRelative && ( xml || context !== outermostContext ) ) || ( - ( checkContext = context ).nodeType ? - matchContext( elem, context, xml ) : - matchAnyContext( elem, context, xml ) ); - - // Avoid hanging onto element (issue #299) - checkContext = null; - return ret; - } ]; - - for ( ; i < len; i++ ) { - if ( ( matcher = Expr.relative[ tokens[ i ].type ] ) ) { - matchers = [ addCombinator( elementMatcher( matchers ), matcher ) ]; - } else { - matcher = Expr.filter[ tokens[ i ].type ].apply( null, tokens[ i ].matches ); - - // Return special upon seeing a positional matcher - if ( matcher[ expando ] ) { - - // Find the next relative operator (if any) for proper handling - j = ++i; - for ( ; j < len; j++ ) { - if ( Expr.relative[ tokens[ j ].type ] ) { - break; - } - } - return setMatcher( - i > 1 && elementMatcher( matchers ), - i > 1 && toSelector( - - // If the preceding token was a descendant combinator, insert an implicit any-element `*` - tokens - .slice( 0, i - 1 ) - .concat( { value: tokens[ i - 2 ].type === " " ? "*" : "" } ) - ).replace( rtrim, "$1" ), - matcher, - i < j && matcherFromTokens( tokens.slice( i, j ) ), - j < len && matcherFromTokens( ( tokens = tokens.slice( j ) ) ), - j < len && toSelector( tokens ) - ); - } - matchers.push( matcher ); - } - } - - return elementMatcher( matchers ); -} - -function matcherFromGroupMatchers( elementMatchers, setMatchers ) { - var bySet = setMatchers.length > 0, - byElement = elementMatchers.length > 0, - superMatcher = function( seed, context, xml, results, outermost ) { - var elem, j, matcher, - matchedCount = 0, - i = "0", - unmatched = seed && [], - setMatched = [], - contextBackup = outermostContext, - - // We must always have either seed elements or outermost context - elems = seed || byElement && Expr.find[ "TAG" ]( "*", outermost ), - - // Use integer dirruns iff this is the outermost matcher - dirrunsUnique = ( dirruns += contextBackup == null ? 1 : Math.random() || 0.1 ), - len = elems.length; - - if ( outermost ) { - - // Support: IE 11+, Edge 17 - 18+ - // IE/Edge sometimes throw a "Permission denied" error when strict-comparing - // two documents; shallow comparisons work. - // eslint-disable-next-line eqeqeq - outermostContext = context == document || context || outermost; - } - - // Add elements passing elementMatchers directly to results - // Support: IE<9, Safari - // Tolerate NodeList properties (IE: "length"; Safari: ) matching elements by id - for ( ; i !== len && ( elem = elems[ i ] ) != null; i++ ) { - if ( byElement && elem ) { - j = 0; - - // Support: IE 11+, Edge 17 - 18+ - // IE/Edge sometimes throw a "Permission denied" error when strict-comparing - // two documents; shallow comparisons work. - // eslint-disable-next-line eqeqeq - if ( !context && elem.ownerDocument != document ) { - setDocument( elem ); - xml = !documentIsHTML; - } - while ( ( matcher = elementMatchers[ j++ ] ) ) { - if ( matcher( elem, context || document, xml ) ) { - results.push( elem ); - break; - } - } - if ( outermost ) { - dirruns = dirrunsUnique; - } - } - - // Track unmatched elements for set filters - if ( bySet ) { - - // They will have gone through all possible matchers - if ( ( elem = !matcher && elem ) ) { - matchedCount--; - } - - // Lengthen the array for every element, matched or not - if ( seed ) { - unmatched.push( elem ); - } - } - } - - // `i` is now the count of elements visited above, and adding it to `matchedCount` - // makes the latter nonnegative. - matchedCount += i; - - // Apply set filters to unmatched elements - // NOTE: This can be skipped if there are no unmatched elements (i.e., `matchedCount` - // equals `i`), unless we didn't visit _any_ elements in the above loop because we have - // no element matchers and no seed. - // Incrementing an initially-string "0" `i` allows `i` to remain a string only in that - // case, which will result in a "00" `matchedCount` that differs from `i` but is also - // numerically zero. - if ( bySet && i !== matchedCount ) { - j = 0; - while ( ( matcher = setMatchers[ j++ ] ) ) { - matcher( unmatched, setMatched, context, xml ); - } - - if ( seed ) { - - // Reintegrate element matches to eliminate the need for sorting - if ( matchedCount > 0 ) { - while ( i-- ) { - if ( !( unmatched[ i ] || setMatched[ i ] ) ) { - setMatched[ i ] = pop.call( results ); - } - } - } - - // Discard index placeholder values to get only actual matches - setMatched = condense( setMatched ); - } - - // Add matches to results - push.apply( results, setMatched ); - - // Seedless set matches succeeding multiple successful matchers stipulate sorting - if ( outermost && !seed && setMatched.length > 0 && - ( matchedCount + setMatchers.length ) > 1 ) { - - Sizzle.uniqueSort( results ); - } - } - - // Override manipulation of globals by nested matchers - if ( outermost ) { - dirruns = dirrunsUnique; - outermostContext = contextBackup; - } - - return unmatched; - }; - - return bySet ? - markFunction( superMatcher ) : - superMatcher; -} - -compile = Sizzle.compile = function( selector, match /* Internal Use Only */ ) { - var i, - setMatchers = [], - elementMatchers = [], - cached = compilerCache[ selector + " " ]; - - if ( !cached ) { - - // Generate a function of recursive functions that can be used to check each element - if ( !match ) { - match = tokenize( selector ); - } - i = match.length; - while ( i-- ) { - cached = matcherFromTokens( match[ i ] ); - if ( cached[ expando ] ) { - setMatchers.push( cached ); - } else { - elementMatchers.push( cached ); - } - } - - // Cache the compiled function - cached = compilerCache( - selector, - matcherFromGroupMatchers( elementMatchers, setMatchers ) - ); - - // Save selector and tokenization - cached.selector = selector; - } - return cached; -}; - -/** - * A low-level selection function that works with Sizzle's compiled - * selector functions - * @param {String|Function} selector A selector or a pre-compiled - * selector function built with Sizzle.compile - * @param {Element} context - * @param {Array} [results] - * @param {Array} [seed] A set of elements to match against - */ -select = Sizzle.select = function( selector, context, results, seed ) { - var i, tokens, token, type, find, - compiled = typeof selector === "function" && selector, - match = !seed && tokenize( ( selector = compiled.selector || selector ) ); - - results = results || []; - - // Try to minimize operations if there is only one selector in the list and no seed - // (the latter of which guarantees us context) - if ( match.length === 1 ) { - - // Reduce context if the leading compound selector is an ID - tokens = match[ 0 ] = match[ 0 ].slice( 0 ); - if ( tokens.length > 2 && ( token = tokens[ 0 ] ).type === "ID" && - context.nodeType === 9 && documentIsHTML && Expr.relative[ tokens[ 1 ].type ] ) { - - context = ( Expr.find[ "ID" ]( token.matches[ 0 ] - .replace( runescape, funescape ), context ) || [] )[ 0 ]; - if ( !context ) { - return results; - - // Precompiled matchers will still verify ancestry, so step up a level - } else if ( compiled ) { - context = context.parentNode; - } - - selector = selector.slice( tokens.shift().value.length ); - } - - // Fetch a seed set for right-to-left matching - i = matchExpr[ "needsContext" ].test( selector ) ? 0 : tokens.length; - while ( i-- ) { - token = tokens[ i ]; - - // Abort if we hit a combinator - if ( Expr.relative[ ( type = token.type ) ] ) { - break; - } - if ( ( find = Expr.find[ type ] ) ) { - - // Search, expanding context for leading sibling combinators - if ( ( seed = find( - token.matches[ 0 ].replace( runescape, funescape ), - rsibling.test( tokens[ 0 ].type ) && testContext( context.parentNode ) || - context - ) ) ) { - - // If seed is empty or no tokens remain, we can return early - tokens.splice( i, 1 ); - selector = seed.length && toSelector( tokens ); - if ( !selector ) { - push.apply( results, seed ); - return results; - } - - break; - } - } - } - } - - // Compile and execute a filtering function if one is not provided - // Provide `match` to avoid retokenization if we modified the selector above - ( compiled || compile( selector, match ) )( - seed, - context, - !documentIsHTML, - results, - !context || rsibling.test( selector ) && testContext( context.parentNode ) || context - ); - return results; -}; - -// One-time assignments - -// Sort stability -support.sortStable = expando.split( "" ).sort( sortOrder ).join( "" ) === expando; - -// Support: Chrome 14-35+ -// Always assume duplicates if they aren't passed to the comparison function -support.detectDuplicates = !!hasDuplicate; - -// Initialize against the default document -setDocument(); - -// Support: Webkit<537.32 - Safari 6.0.3/Chrome 25 (fixed in Chrome 27) -// Detached nodes confoundingly follow *each other* -support.sortDetached = assert( function( el ) { - - // Should return 1, but returns 4 (following) - return el.compareDocumentPosition( document.createElement( "fieldset" ) ) & 1; -} ); - -// Support: IE<8 -// Prevent attribute/property "interpolation" -// https://msdn.microsoft.com/en-us/library/ms536429%28VS.85%29.aspx -if ( !assert( function( el ) { - el.innerHTML = ""; - return el.firstChild.getAttribute( "href" ) === "#"; -} ) ) { - addHandle( "type|href|height|width", function( elem, name, isXML ) { - if ( !isXML ) { - return elem.getAttribute( name, name.toLowerCase() === "type" ? 1 : 2 ); - } - } ); -} - -// Support: IE<9 -// Use defaultValue in place of getAttribute("value") -if ( !support.attributes || !assert( function( el ) { - el.innerHTML = ""; - el.firstChild.setAttribute( "value", "" ); - return el.firstChild.getAttribute( "value" ) === ""; -} ) ) { - addHandle( "value", function( elem, _name, isXML ) { - if ( !isXML && elem.nodeName.toLowerCase() === "input" ) { - return elem.defaultValue; - } - } ); -} - -// Support: IE<9 -// Use getAttributeNode to fetch booleans when getAttribute lies -if ( !assert( function( el ) { - return el.getAttribute( "disabled" ) == null; -} ) ) { - addHandle( booleans, function( elem, name, isXML ) { - var val; - if ( !isXML ) { - return elem[ name ] === true ? name.toLowerCase() : - ( val = elem.getAttributeNode( name ) ) && val.specified ? - val.value : - null; - } - } ); -} - -return Sizzle; - -} )( window ); - - - -jQuery.find = Sizzle; -jQuery.expr = Sizzle.selectors; - -// Deprecated -jQuery.expr[ ":" ] = jQuery.expr.pseudos; -jQuery.uniqueSort = jQuery.unique = Sizzle.uniqueSort; -jQuery.text = Sizzle.getText; -jQuery.isXMLDoc = Sizzle.isXML; -jQuery.contains = Sizzle.contains; -jQuery.escapeSelector = Sizzle.escape; - - - - -var dir = function( elem, dir, until ) { - var matched = [], - truncate = until !== undefined; - - while ( ( elem = elem[ dir ] ) && elem.nodeType !== 9 ) { - if ( elem.nodeType === 1 ) { - if ( truncate && jQuery( elem ).is( until ) ) { - break; - } - matched.push( elem ); - } - } - return matched; -}; - - -var siblings = function( n, elem ) { - var matched = []; - - for ( ; n; n = n.nextSibling ) { - if ( n.nodeType === 1 && n !== elem ) { - matched.push( n ); - } - } - - return matched; -}; - - -var rneedsContext = jQuery.expr.match.needsContext; - - - -function nodeName( elem, name ) { - - return elem.nodeName && elem.nodeName.toLowerCase() === name.toLowerCase(); - -}; -var rsingleTag = ( /^<([a-z][^\/\0>:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i ); - - - -// Implement the identical functionality for filter and not -function winnow( elements, qualifier, not ) { - if ( isFunction( qualifier ) ) { - return jQuery.grep( elements, function( elem, i ) { - return !!qualifier.call( elem, i, elem ) !== not; - } ); - } - - // Single element - if ( qualifier.nodeType ) { - return jQuery.grep( elements, function( elem ) { - return ( elem === qualifier ) !== not; - } ); - } - - // Arraylike of elements (jQuery, arguments, Array) - if ( typeof qualifier !== "string" ) { - return jQuery.grep( elements, function( elem ) { - return ( indexOf.call( qualifier, elem ) > -1 ) !== not; - } ); - } - - // Filtered directly for both simple and complex selectors - return jQuery.filter( qualifier, elements, not ); -} - -jQuery.filter = function( expr, elems, not ) { - var elem = elems[ 0 ]; - - if ( not ) { - expr = ":not(" + expr + ")"; - } - - if ( elems.length === 1 && elem.nodeType === 1 ) { - return jQuery.find.matchesSelector( elem, expr ) ? [ elem ] : []; - } - - return jQuery.find.matches( expr, jQuery.grep( elems, function( elem ) { - return elem.nodeType === 1; - } ) ); -}; - -jQuery.fn.extend( { - find: function( selector ) { - var i, ret, - len = this.length, - self = this; - - if ( typeof selector !== "string" ) { - return this.pushStack( jQuery( selector ).filter( function() { - for ( i = 0; i < len; i++ ) { - if ( jQuery.contains( self[ i ], this ) ) { - return true; - } - } - } ) ); - } - - ret = this.pushStack( [] ); - - for ( i = 0; i < len; i++ ) { - jQuery.find( selector, self[ i ], ret ); - } - - return len > 1 ? jQuery.uniqueSort( ret ) : ret; - }, - filter: function( selector ) { - return this.pushStack( winnow( this, selector || [], false ) ); - }, - not: function( selector ) { - return this.pushStack( winnow( this, selector || [], true ) ); - }, - is: function( selector ) { - return !!winnow( - this, - - // If this is a positional/relative selector, check membership in the returned set - // so $("p:first").is("p:last") won't return true for a doc with two "p". - typeof selector === "string" && rneedsContext.test( selector ) ? - jQuery( selector ) : - selector || [], - false - ).length; - } -} ); - - -// Initialize a jQuery object - - -// A central reference to the root jQuery(document) -var rootjQuery, - - // A simple way to check for HTML strings - // Prioritize #id over to avoid XSS via location.hash (#9521) - // Strict HTML recognition (#11290: must start with <) - // Shortcut simple #id case for speed - rquickExpr = /^(?:\s*(<[\w\W]+>)[^>]*|#([\w-]+))$/, - - init = jQuery.fn.init = function( selector, context, root ) { - var match, elem; - - // HANDLE: $(""), $(null), $(undefined), $(false) - if ( !selector ) { - return this; - } - - // Method init() accepts an alternate rootjQuery - // so migrate can support jQuery.sub (gh-2101) - root = root || rootjQuery; - - // Handle HTML strings - if ( typeof selector === "string" ) { - if ( selector[ 0 ] === "<" && - selector[ selector.length - 1 ] === ">" && - selector.length >= 3 ) { - - // Assume that strings that start and end with <> are HTML and skip the regex check - match = [ null, selector, null ]; - - } else { - match = rquickExpr.exec( selector ); - } - - // Match html or make sure no context is specified for #id - if ( match && ( match[ 1 ] || !context ) ) { - - // HANDLE: $(html) -> $(array) - if ( match[ 1 ] ) { - context = context instanceof jQuery ? context[ 0 ] : context; - - // Option to run scripts is true for back-compat - // Intentionally let the error be thrown if parseHTML is not present - jQuery.merge( this, jQuery.parseHTML( - match[ 1 ], - context && context.nodeType ? context.ownerDocument || context : document, - true - ) ); - - // HANDLE: $(html, props) - if ( rsingleTag.test( match[ 1 ] ) && jQuery.isPlainObject( context ) ) { - for ( match in context ) { - - // Properties of context are called as methods if possible - if ( isFunction( this[ match ] ) ) { - this[ match ]( context[ match ] ); - - // ...and otherwise set as attributes - } else { - this.attr( match, context[ match ] ); - } - } - } - - return this; - - // HANDLE: $(#id) - } else { - elem = document.getElementById( match[ 2 ] ); - - if ( elem ) { - - // Inject the element directly into the jQuery object - this[ 0 ] = elem; - this.length = 1; - } - return this; - } - - // HANDLE: $(expr, $(...)) - } else if ( !context || context.jquery ) { - return ( context || root ).find( selector ); - - // HANDLE: $(expr, context) - // (which is just equivalent to: $(context).find(expr) - } else { - return this.constructor( context ).find( selector ); - } - - // HANDLE: $(DOMElement) - } else if ( selector.nodeType ) { - this[ 0 ] = selector; - this.length = 1; - return this; - - // HANDLE: $(function) - // Shortcut for document ready - } else if ( isFunction( selector ) ) { - return root.ready !== undefined ? - root.ready( selector ) : - - // Execute immediately if ready is not present - selector( jQuery ); - } - - return jQuery.makeArray( selector, this ); - }; - -// Give the init function the jQuery prototype for later instantiation -init.prototype = jQuery.fn; - -// Initialize central reference -rootjQuery = jQuery( document ); - - -var rparentsprev = /^(?:parents|prev(?:Until|All))/, - - // Methods guaranteed to produce a unique set when starting from a unique set - guaranteedUnique = { - children: true, - contents: true, - next: true, - prev: true - }; - -jQuery.fn.extend( { - has: function( target ) { - var targets = jQuery( target, this ), - l = targets.length; - - return this.filter( function() { - var i = 0; - for ( ; i < l; i++ ) { - if ( jQuery.contains( this, targets[ i ] ) ) { - return true; - } - } - } ); - }, - - closest: function( selectors, context ) { - var cur, - i = 0, - l = this.length, - matched = [], - targets = typeof selectors !== "string" && jQuery( selectors ); - - // Positional selectors never match, since there's no _selection_ context - if ( !rneedsContext.test( selectors ) ) { - for ( ; i < l; i++ ) { - for ( cur = this[ i ]; cur && cur !== context; cur = cur.parentNode ) { - - // Always skip document fragments - if ( cur.nodeType < 11 && ( targets ? - targets.index( cur ) > -1 : - - // Don't pass non-elements to Sizzle - cur.nodeType === 1 && - jQuery.find.matchesSelector( cur, selectors ) ) ) { - - matched.push( cur ); - break; - } - } - } - } - - return this.pushStack( matched.length > 1 ? jQuery.uniqueSort( matched ) : matched ); - }, - - // Determine the position of an element within the set - index: function( elem ) { - - // No argument, return index in parent - if ( !elem ) { - return ( this[ 0 ] && this[ 0 ].parentNode ) ? this.first().prevAll().length : -1; - } - - // Index in selector - if ( typeof elem === "string" ) { - return indexOf.call( jQuery( elem ), this[ 0 ] ); - } - - // Locate the position of the desired element - return indexOf.call( this, - - // If it receives a jQuery object, the first element is used - elem.jquery ? elem[ 0 ] : elem - ); - }, - - add: function( selector, context ) { - return this.pushStack( - jQuery.uniqueSort( - jQuery.merge( this.get(), jQuery( selector, context ) ) - ) - ); - }, - - addBack: function( selector ) { - return this.add( selector == null ? - this.prevObject : this.prevObject.filter( selector ) - ); - } -} ); - -function sibling( cur, dir ) { - while ( ( cur = cur[ dir ] ) && cur.nodeType !== 1 ) {} - return cur; -} - -jQuery.each( { - parent: function( elem ) { - var parent = elem.parentNode; - return parent && parent.nodeType !== 11 ? parent : null; - }, - parents: function( elem ) { - return dir( elem, "parentNode" ); - }, - parentsUntil: function( elem, _i, until ) { - return dir( elem, "parentNode", until ); - }, - next: function( elem ) { - return sibling( elem, "nextSibling" ); - }, - prev: function( elem ) { - return sibling( elem, "previousSibling" ); - }, - nextAll: function( elem ) { - return dir( elem, "nextSibling" ); - }, - prevAll: function( elem ) { - return dir( elem, "previousSibling" ); - }, - nextUntil: function( elem, _i, until ) { - return dir( elem, "nextSibling", until ); - }, - prevUntil: function( elem, _i, until ) { - return dir( elem, "previousSibling", until ); - }, - siblings: function( elem ) { - return siblings( ( elem.parentNode || {} ).firstChild, elem ); - }, - children: function( elem ) { - return siblings( elem.firstChild ); - }, - contents: function( elem ) { - if ( elem.contentDocument != null && - - // Support: IE 11+ - // elements with no `data` attribute has an object - // `contentDocument` with a `null` prototype. - getProto( elem.contentDocument ) ) { - - return elem.contentDocument; - } - - // Support: IE 9 - 11 only, iOS 7 only, Android Browser <=4.3 only - // Treat the template element as a regular one in browsers that - // don't support it. - if ( nodeName( elem, "template" ) ) { - elem = elem.content || elem; - } - - return jQuery.merge( [], elem.childNodes ); - } -}, function( name, fn ) { - jQuery.fn[ name ] = function( until, selector ) { - var matched = jQuery.map( this, fn, until ); - - if ( name.slice( -5 ) !== "Until" ) { - selector = until; - } - - if ( selector && typeof selector === "string" ) { - matched = jQuery.filter( selector, matched ); - } - - if ( this.length > 1 ) { - - // Remove duplicates - if ( !guaranteedUnique[ name ] ) { - jQuery.uniqueSort( matched ); - } - - // Reverse order for parents* and prev-derivatives - if ( rparentsprev.test( name ) ) { - matched.reverse(); - } - } - - return this.pushStack( matched ); - }; -} ); -var rnothtmlwhite = ( /[^\x20\t\r\n\f]+/g ); - - - -// Convert String-formatted options into Object-formatted ones -function createOptions( options ) { - var object = {}; - jQuery.each( options.match( rnothtmlwhite ) || [], function( _, flag ) { - object[ flag ] = true; - } ); - return object; -} - -/* - * Create a callback list using the following parameters: - * - * options: an optional list of space-separated options that will change how - * the callback list behaves or a more traditional option object - * - * By default a callback list will act like an event callback list and can be - * "fired" multiple times. - * - * Possible options: - * - * once: will ensure the callback list can only be fired once (like a Deferred) - * - * memory: will keep track of previous values and will call any callback added - * after the list has been fired right away with the latest "memorized" - * values (like a Deferred) - * - * unique: will ensure a callback can only be added once (no duplicate in the list) - * - * stopOnFalse: interrupt callings when a callback returns false - * - */ -jQuery.Callbacks = function( options ) { - - // Convert options from String-formatted to Object-formatted if needed - // (we check in cache first) - options = typeof options === "string" ? - createOptions( options ) : - jQuery.extend( {}, options ); - - var // Flag to know if list is currently firing - firing, - - // Last fire value for non-forgettable lists - memory, - - // Flag to know if list was already fired - fired, - - // Flag to prevent firing - locked, - - // Actual callback list - list = [], - - // Queue of execution data for repeatable lists - queue = [], - - // Index of currently firing callback (modified by add/remove as needed) - firingIndex = -1, - - // Fire callbacks - fire = function() { - - // Enforce single-firing - locked = locked || options.once; - - // Execute callbacks for all pending executions, - // respecting firingIndex overrides and runtime changes - fired = firing = true; - for ( ; queue.length; firingIndex = -1 ) { - memory = queue.shift(); - while ( ++firingIndex < list.length ) { - - // Run callback and check for early termination - if ( list[ firingIndex ].apply( memory[ 0 ], memory[ 1 ] ) === false && - options.stopOnFalse ) { - - // Jump to end and forget the data so .add doesn't re-fire - firingIndex = list.length; - memory = false; - } - } - } - - // Forget the data if we're done with it - if ( !options.memory ) { - memory = false; - } - - firing = false; - - // Clean up if we're done firing for good - if ( locked ) { - - // Keep an empty list if we have data for future add calls - if ( memory ) { - list = []; - - // Otherwise, this object is spent - } else { - list = ""; - } - } - }, - - // Actual Callbacks object - self = { - - // Add a callback or a collection of callbacks to the list - add: function() { - if ( list ) { - - // If we have memory from a past run, we should fire after adding - if ( memory && !firing ) { - firingIndex = list.length - 1; - queue.push( memory ); - } - - ( function add( args ) { - jQuery.each( args, function( _, arg ) { - if ( isFunction( arg ) ) { - if ( !options.unique || !self.has( arg ) ) { - list.push( arg ); - } - } else if ( arg && arg.length && toType( arg ) !== "string" ) { - - // Inspect recursively - add( arg ); - } - } ); - } )( arguments ); - - if ( memory && !firing ) { - fire(); - } - } - return this; - }, - - // Remove a callback from the list - remove: function() { - jQuery.each( arguments, function( _, arg ) { - var index; - while ( ( index = jQuery.inArray( arg, list, index ) ) > -1 ) { - list.splice( index, 1 ); - - // Handle firing indexes - if ( index <= firingIndex ) { - firingIndex--; - } - } - } ); - return this; - }, - - // Check if a given callback is in the list. - // If no argument is given, return whether or not list has callbacks attached. - has: function( fn ) { - return fn ? - jQuery.inArray( fn, list ) > -1 : - list.length > 0; - }, - - // Remove all callbacks from the list - empty: function() { - if ( list ) { - list = []; - } - return this; - }, - - // Disable .fire and .add - // Abort any current/pending executions - // Clear all callbacks and values - disable: function() { - locked = queue = []; - list = memory = ""; - return this; - }, - disabled: function() { - return !list; - }, - - // Disable .fire - // Also disable .add unless we have memory (since it would have no effect) - // Abort any pending executions - lock: function() { - locked = queue = []; - if ( !memory && !firing ) { - list = memory = ""; - } - return this; - }, - locked: function() { - return !!locked; - }, - - // Call all callbacks with the given context and arguments - fireWith: function( context, args ) { - if ( !locked ) { - args = args || []; - args = [ context, args.slice ? args.slice() : args ]; - queue.push( args ); - if ( !firing ) { - fire(); - } - } - return this; - }, - - // Call all the callbacks with the given arguments - fire: function() { - self.fireWith( this, arguments ); - return this; - }, - - // To know if the callbacks have already been called at least once - fired: function() { - return !!fired; - } - }; - - return self; -}; - - -function Identity( v ) { - return v; -} -function Thrower( ex ) { - throw ex; -} - -function adoptValue( value, resolve, reject, noValue ) { - var method; - - try { - - // Check for promise aspect first to privilege synchronous behavior - if ( value && isFunction( ( method = value.promise ) ) ) { - method.call( value ).done( resolve ).fail( reject ); - - // Other thenables - } else if ( value && isFunction( ( method = value.then ) ) ) { - method.call( value, resolve, reject ); - - // Other non-thenables - } else { - - // Control `resolve` arguments by letting Array#slice cast boolean `noValue` to integer: - // * false: [ value ].slice( 0 ) => resolve( value ) - // * true: [ value ].slice( 1 ) => resolve() - resolve.apply( undefined, [ value ].slice( noValue ) ); - } - - // For Promises/A+, convert exceptions into rejections - // Since jQuery.when doesn't unwrap thenables, we can skip the extra checks appearing in - // Deferred#then to conditionally suppress rejection. - } catch ( value ) { - - // Support: Android 4.0 only - // Strict mode functions invoked without .call/.apply get global-object context - reject.apply( undefined, [ value ] ); - } -} - -jQuery.extend( { - - Deferred: function( func ) { - var tuples = [ - - // action, add listener, callbacks, - // ... .then handlers, argument index, [final state] - [ "notify", "progress", jQuery.Callbacks( "memory" ), - jQuery.Callbacks( "memory" ), 2 ], - [ "resolve", "done", jQuery.Callbacks( "once memory" ), - jQuery.Callbacks( "once memory" ), 0, "resolved" ], - [ "reject", "fail", jQuery.Callbacks( "once memory" ), - jQuery.Callbacks( "once memory" ), 1, "rejected" ] - ], - state = "pending", - promise = { - state: function() { - return state; - }, - always: function() { - deferred.done( arguments ).fail( arguments ); - return this; - }, - "catch": function( fn ) { - return promise.then( null, fn ); - }, - - // Keep pipe for back-compat - pipe: function( /* fnDone, fnFail, fnProgress */ ) { - var fns = arguments; - - return jQuery.Deferred( function( newDefer ) { - jQuery.each( tuples, function( _i, tuple ) { - - // Map tuples (progress, done, fail) to arguments (done, fail, progress) - var fn = isFunction( fns[ tuple[ 4 ] ] ) && fns[ tuple[ 4 ] ]; - - // deferred.progress(function() { bind to newDefer or newDefer.notify }) - // deferred.done(function() { bind to newDefer or newDefer.resolve }) - // deferred.fail(function() { bind to newDefer or newDefer.reject }) - deferred[ tuple[ 1 ] ]( function() { - var returned = fn && fn.apply( this, arguments ); - if ( returned && isFunction( returned.promise ) ) { - returned.promise() - .progress( newDefer.notify ) - .done( newDefer.resolve ) - .fail( newDefer.reject ); - } else { - newDefer[ tuple[ 0 ] + "With" ]( - this, - fn ? [ returned ] : arguments - ); - } - } ); - } ); - fns = null; - } ).promise(); - }, - then: function( onFulfilled, onRejected, onProgress ) { - var maxDepth = 0; - function resolve( depth, deferred, handler, special ) { - return function() { - var that = this, - args = arguments, - mightThrow = function() { - var returned, then; - - // Support: Promises/A+ section 2.3.3.3.3 - // https://promisesaplus.com/#point-59 - // Ignore double-resolution attempts - if ( depth < maxDepth ) { - return; - } - - returned = handler.apply( that, args ); - - // Support: Promises/A+ section 2.3.1 - // https://promisesaplus.com/#point-48 - if ( returned === deferred.promise() ) { - throw new TypeError( "Thenable self-resolution" ); - } - - // Support: Promises/A+ sections 2.3.3.1, 3.5 - // https://promisesaplus.com/#point-54 - // https://promisesaplus.com/#point-75 - // Retrieve `then` only once - then = returned && - - // Support: Promises/A+ section 2.3.4 - // https://promisesaplus.com/#point-64 - // Only check objects and functions for thenability - ( typeof returned === "object" || - typeof returned === "function" ) && - returned.then; - - // Handle a returned thenable - if ( isFunction( then ) ) { - - // Special processors (notify) just wait for resolution - if ( special ) { - then.call( - returned, - resolve( maxDepth, deferred, Identity, special ), - resolve( maxDepth, deferred, Thrower, special ) - ); - - // Normal processors (resolve) also hook into progress - } else { - - // ...and disregard older resolution values - maxDepth++; - - then.call( - returned, - resolve( maxDepth, deferred, Identity, special ), - resolve( maxDepth, deferred, Thrower, special ), - resolve( maxDepth, deferred, Identity, - deferred.notifyWith ) - ); - } - - // Handle all other returned values - } else { - - // Only substitute handlers pass on context - // and multiple values (non-spec behavior) - if ( handler !== Identity ) { - that = undefined; - args = [ returned ]; - } - - // Process the value(s) - // Default process is resolve - ( special || deferred.resolveWith )( that, args ); - } - }, - - // Only normal processors (resolve) catch and reject exceptions - process = special ? - mightThrow : - function() { - try { - mightThrow(); - } catch ( e ) { - - if ( jQuery.Deferred.exceptionHook ) { - jQuery.Deferred.exceptionHook( e, - process.stackTrace ); - } - - // Support: Promises/A+ section 2.3.3.3.4.1 - // https://promisesaplus.com/#point-61 - // Ignore post-resolution exceptions - if ( depth + 1 >= maxDepth ) { - - // Only substitute handlers pass on context - // and multiple values (non-spec behavior) - if ( handler !== Thrower ) { - that = undefined; - args = [ e ]; - } - - deferred.rejectWith( that, args ); - } - } - }; - - // Support: Promises/A+ section 2.3.3.3.1 - // https://promisesaplus.com/#point-57 - // Re-resolve promises immediately to dodge false rejection from - // subsequent errors - if ( depth ) { - process(); - } else { - - // Call an optional hook to record the stack, in case of exception - // since it's otherwise lost when execution goes async - if ( jQuery.Deferred.getStackHook ) { - process.stackTrace = jQuery.Deferred.getStackHook(); - } - window.setTimeout( process ); - } - }; - } - - return jQuery.Deferred( function( newDefer ) { - - // progress_handlers.add( ... ) - tuples[ 0 ][ 3 ].add( - resolve( - 0, - newDefer, - isFunction( onProgress ) ? - onProgress : - Identity, - newDefer.notifyWith - ) - ); - - // fulfilled_handlers.add( ... ) - tuples[ 1 ][ 3 ].add( - resolve( - 0, - newDefer, - isFunction( onFulfilled ) ? - onFulfilled : - Identity - ) - ); - - // rejected_handlers.add( ... ) - tuples[ 2 ][ 3 ].add( - resolve( - 0, - newDefer, - isFunction( onRejected ) ? - onRejected : - Thrower - ) - ); - } ).promise(); - }, - - // Get a promise for this deferred - // If obj is provided, the promise aspect is added to the object - promise: function( obj ) { - return obj != null ? jQuery.extend( obj, promise ) : promise; - } - }, - deferred = {}; - - // Add list-specific methods - jQuery.each( tuples, function( i, tuple ) { - var list = tuple[ 2 ], - stateString = tuple[ 5 ]; - - // promise.progress = list.add - // promise.done = list.add - // promise.fail = list.add - promise[ tuple[ 1 ] ] = list.add; - - // Handle state - if ( stateString ) { - list.add( - function() { - - // state = "resolved" (i.e., fulfilled) - // state = "rejected" - state = stateString; - }, - - // rejected_callbacks.disable - // fulfilled_callbacks.disable - tuples[ 3 - i ][ 2 ].disable, - - // rejected_handlers.disable - // fulfilled_handlers.disable - tuples[ 3 - i ][ 3 ].disable, - - // progress_callbacks.lock - tuples[ 0 ][ 2 ].lock, - - // progress_handlers.lock - tuples[ 0 ][ 3 ].lock - ); - } - - // progress_handlers.fire - // fulfilled_handlers.fire - // rejected_handlers.fire - list.add( tuple[ 3 ].fire ); - - // deferred.notify = function() { deferred.notifyWith(...) } - // deferred.resolve = function() { deferred.resolveWith(...) } - // deferred.reject = function() { deferred.rejectWith(...) } - deferred[ tuple[ 0 ] ] = function() { - deferred[ tuple[ 0 ] + "With" ]( this === deferred ? undefined : this, arguments ); - return this; - }; - - // deferred.notifyWith = list.fireWith - // deferred.resolveWith = list.fireWith - // deferred.rejectWith = list.fireWith - deferred[ tuple[ 0 ] + "With" ] = list.fireWith; - } ); - - // Make the deferred a promise - promise.promise( deferred ); - - // Call given func if any - if ( func ) { - func.call( deferred, deferred ); - } - - // All done! - return deferred; - }, - - // Deferred helper - when: function( singleValue ) { - var - - // count of uncompleted subordinates - remaining = arguments.length, - - // count of unprocessed arguments - i = remaining, - - // subordinate fulfillment data - resolveContexts = Array( i ), - resolveValues = slice.call( arguments ), - - // the master Deferred - master = jQuery.Deferred(), - - // subordinate callback factory - updateFunc = function( i ) { - return function( value ) { - resolveContexts[ i ] = this; - resolveValues[ i ] = arguments.length > 1 ? slice.call( arguments ) : value; - if ( !( --remaining ) ) { - master.resolveWith( resolveContexts, resolveValues ); - } - }; - }; - - // Single- and empty arguments are adopted like Promise.resolve - if ( remaining <= 1 ) { - adoptValue( singleValue, master.done( updateFunc( i ) ).resolve, master.reject, - !remaining ); - - // Use .then() to unwrap secondary thenables (cf. gh-3000) - if ( master.state() === "pending" || - isFunction( resolveValues[ i ] && resolveValues[ i ].then ) ) { - - return master.then(); - } - } - - // Multiple arguments are aggregated like Promise.all array elements - while ( i-- ) { - adoptValue( resolveValues[ i ], updateFunc( i ), master.reject ); - } - - return master.promise(); - } -} ); - - -// These usually indicate a programmer mistake during development, -// warn about them ASAP rather than swallowing them by default. -var rerrorNames = /^(Eval|Internal|Range|Reference|Syntax|Type|URI)Error$/; - -jQuery.Deferred.exceptionHook = function( error, stack ) { - - // Support: IE 8 - 9 only - // Console exists when dev tools are open, which can happen at any time - if ( window.console && window.console.warn && error && rerrorNames.test( error.name ) ) { - window.console.warn( "jQuery.Deferred exception: " + error.message, error.stack, stack ); - } -}; - - - - -jQuery.readyException = function( error ) { - window.setTimeout( function() { - throw error; - } ); -}; - - - - -// The deferred used on DOM ready -var readyList = jQuery.Deferred(); - -jQuery.fn.ready = function( fn ) { - - readyList - .then( fn ) - - // Wrap jQuery.readyException in a function so that the lookup - // happens at the time of error handling instead of callback - // registration. - .catch( function( error ) { - jQuery.readyException( error ); - } ); - - return this; -}; - -jQuery.extend( { - - // Is the DOM ready to be used? Set to true once it occurs. - isReady: false, - - // A counter to track how many items to wait for before - // the ready event fires. See #6781 - readyWait: 1, - - // Handle when the DOM is ready - ready: function( wait ) { - - // Abort if there are pending holds or we're already ready - if ( wait === true ? --jQuery.readyWait : jQuery.isReady ) { - return; - } - - // Remember that the DOM is ready - jQuery.isReady = true; - - // If a normal DOM Ready event fired, decrement, and wait if need be - if ( wait !== true && --jQuery.readyWait > 0 ) { - return; - } - - // If there are functions bound, to execute - readyList.resolveWith( document, [ jQuery ] ); - } -} ); - -jQuery.ready.then = readyList.then; - -// The ready event handler and self cleanup method -function completed() { - document.removeEventListener( "DOMContentLoaded", completed ); - window.removeEventListener( "load", completed ); - jQuery.ready(); -} - -// Catch cases where $(document).ready() is called -// after the browser event has already occurred. -// Support: IE <=9 - 10 only -// Older IE sometimes signals "interactive" too soon -if ( document.readyState === "complete" || - ( document.readyState !== "loading" && !document.documentElement.doScroll ) ) { - - // Handle it asynchronously to allow scripts the opportunity to delay ready - window.setTimeout( jQuery.ready ); - -} else { - - // Use the handy event callback - document.addEventListener( "DOMContentLoaded", completed ); - - // A fallback to window.onload, that will always work - window.addEventListener( "load", completed ); -} - - - - -// Multifunctional method to get and set values of a collection -// The value/s can optionally be executed if it's a function -var access = function( elems, fn, key, value, chainable, emptyGet, raw ) { - var i = 0, - len = elems.length, - bulk = key == null; - - // Sets many values - if ( toType( key ) === "object" ) { - chainable = true; - for ( i in key ) { - access( elems, fn, i, key[ i ], true, emptyGet, raw ); - } - - // Sets one value - } else if ( value !== undefined ) { - chainable = true; - - if ( !isFunction( value ) ) { - raw = true; - } - - if ( bulk ) { - - // Bulk operations run against the entire set - if ( raw ) { - fn.call( elems, value ); - fn = null; - - // ...except when executing function values - } else { - bulk = fn; - fn = function( elem, _key, value ) { - return bulk.call( jQuery( elem ), value ); - }; - } - } - - if ( fn ) { - for ( ; i < len; i++ ) { - fn( - elems[ i ], key, raw ? - value : - value.call( elems[ i ], i, fn( elems[ i ], key ) ) - ); - } - } - } - - if ( chainable ) { - return elems; - } - - // Gets - if ( bulk ) { - return fn.call( elems ); - } - - return len ? fn( elems[ 0 ], key ) : emptyGet; -}; - - -// Matches dashed string for camelizing -var rmsPrefix = /^-ms-/, - rdashAlpha = /-([a-z])/g; - -// Used by camelCase as callback to replace() -function fcamelCase( _all, letter ) { - return letter.toUpperCase(); -} - -// Convert dashed to camelCase; used by the css and data modules -// Support: IE <=9 - 11, Edge 12 - 15 -// Microsoft forgot to hump their vendor prefix (#9572) -function camelCase( string ) { - return string.replace( rmsPrefix, "ms-" ).replace( rdashAlpha, fcamelCase ); -} -var acceptData = function( owner ) { - - // Accepts only: - // - Node - // - Node.ELEMENT_NODE - // - Node.DOCUMENT_NODE - // - Object - // - Any - return owner.nodeType === 1 || owner.nodeType === 9 || !( +owner.nodeType ); -}; - - - - -function Data() { - this.expando = jQuery.expando + Data.uid++; -} - -Data.uid = 1; - -Data.prototype = { - - cache: function( owner ) { - - // Check if the owner object already has a cache - var value = owner[ this.expando ]; - - // If not, create one - if ( !value ) { - value = {}; - - // We can accept data for non-element nodes in modern browsers, - // but we should not, see #8335. - // Always return an empty object. - if ( acceptData( owner ) ) { - - // If it is a node unlikely to be stringify-ed or looped over - // use plain assignment - if ( owner.nodeType ) { - owner[ this.expando ] = value; - - // Otherwise secure it in a non-enumerable property - // configurable must be true to allow the property to be - // deleted when data is removed - } else { - Object.defineProperty( owner, this.expando, { - value: value, - configurable: true - } ); - } - } - } - - return value; - }, - set: function( owner, data, value ) { - var prop, - cache = this.cache( owner ); - - // Handle: [ owner, key, value ] args - // Always use camelCase key (gh-2257) - if ( typeof data === "string" ) { - cache[ camelCase( data ) ] = value; - - // Handle: [ owner, { properties } ] args - } else { - - // Copy the properties one-by-one to the cache object - for ( prop in data ) { - cache[ camelCase( prop ) ] = data[ prop ]; - } - } - return cache; - }, - get: function( owner, key ) { - return key === undefined ? - this.cache( owner ) : - - // Always use camelCase key (gh-2257) - owner[ this.expando ] && owner[ this.expando ][ camelCase( key ) ]; - }, - access: function( owner, key, value ) { - - // In cases where either: - // - // 1. No key was specified - // 2. A string key was specified, but no value provided - // - // Take the "read" path and allow the get method to determine - // which value to return, respectively either: - // - // 1. The entire cache object - // 2. The data stored at the key - // - if ( key === undefined || - ( ( key && typeof key === "string" ) && value === undefined ) ) { - - return this.get( owner, key ); - } - - // When the key is not a string, or both a key and value - // are specified, set or extend (existing objects) with either: - // - // 1. An object of properties - // 2. A key and value - // - this.set( owner, key, value ); - - // Since the "set" path can have two possible entry points - // return the expected data based on which path was taken[*] - return value !== undefined ? value : key; - }, - remove: function( owner, key ) { - var i, - cache = owner[ this.expando ]; - - if ( cache === undefined ) { - return; - } - - if ( key !== undefined ) { - - // Support array or space separated string of keys - if ( Array.isArray( key ) ) { - - // If key is an array of keys... - // We always set camelCase keys, so remove that. - key = key.map( camelCase ); - } else { - key = camelCase( key ); - - // If a key with the spaces exists, use it. - // Otherwise, create an array by matching non-whitespace - key = key in cache ? - [ key ] : - ( key.match( rnothtmlwhite ) || [] ); - } - - i = key.length; - - while ( i-- ) { - delete cache[ key[ i ] ]; - } - } - - // Remove the expando if there's no more data - if ( key === undefined || jQuery.isEmptyObject( cache ) ) { - - // Support: Chrome <=35 - 45 - // Webkit & Blink performance suffers when deleting properties - // from DOM nodes, so set to undefined instead - // https://bugs.chromium.org/p/chromium/issues/detail?id=378607 (bug restricted) - if ( owner.nodeType ) { - owner[ this.expando ] = undefined; - } else { - delete owner[ this.expando ]; - } - } - }, - hasData: function( owner ) { - var cache = owner[ this.expando ]; - return cache !== undefined && !jQuery.isEmptyObject( cache ); - } -}; -var dataPriv = new Data(); - -var dataUser = new Data(); - - - -// Implementation Summary -// -// 1. Enforce API surface and semantic compatibility with 1.9.x branch -// 2. Improve the module's maintainability by reducing the storage -// paths to a single mechanism. -// 3. Use the same single mechanism to support "private" and "user" data. -// 4. _Never_ expose "private" data to user code (TODO: Drop _data, _removeData) -// 5. Avoid exposing implementation details on user objects (eg. expando properties) -// 6. Provide a clear path for implementation upgrade to WeakMap in 2014 - -var rbrace = /^(?:\{[\w\W]*\}|\[[\w\W]*\])$/, - rmultiDash = /[A-Z]/g; - -function getData( data ) { - if ( data === "true" ) { - return true; - } - - if ( data === "false" ) { - return false; - } - - if ( data === "null" ) { - return null; - } - - // Only convert to a number if it doesn't change the string - if ( data === +data + "" ) { - return +data; - } - - if ( rbrace.test( data ) ) { - return JSON.parse( data ); - } - - return data; -} - -function dataAttr( elem, key, data ) { - var name; - - // If nothing was found internally, try to fetch any - // data from the HTML5 data-* attribute - if ( data === undefined && elem.nodeType === 1 ) { - name = "data-" + key.replace( rmultiDash, "-$&" ).toLowerCase(); - data = elem.getAttribute( name ); - - if ( typeof data === "string" ) { - try { - data = getData( data ); - } catch ( e ) {} - - // Make sure we set the data so it isn't changed later - dataUser.set( elem, key, data ); - } else { - data = undefined; - } - } - return data; -} - -jQuery.extend( { - hasData: function( elem ) { - return dataUser.hasData( elem ) || dataPriv.hasData( elem ); - }, - - data: function( elem, name, data ) { - return dataUser.access( elem, name, data ); - }, - - removeData: function( elem, name ) { - dataUser.remove( elem, name ); - }, - - // TODO: Now that all calls to _data and _removeData have been replaced - // with direct calls to dataPriv methods, these can be deprecated. - _data: function( elem, name, data ) { - return dataPriv.access( elem, name, data ); - }, - - _removeData: function( elem, name ) { - dataPriv.remove( elem, name ); - } -} ); - -jQuery.fn.extend( { - data: function( key, value ) { - var i, name, data, - elem = this[ 0 ], - attrs = elem && elem.attributes; - - // Gets all values - if ( key === undefined ) { - if ( this.length ) { - data = dataUser.get( elem ); - - if ( elem.nodeType === 1 && !dataPriv.get( elem, "hasDataAttrs" ) ) { - i = attrs.length; - while ( i-- ) { - - // Support: IE 11 only - // The attrs elements can be null (#14894) - if ( attrs[ i ] ) { - name = attrs[ i ].name; - if ( name.indexOf( "data-" ) === 0 ) { - name = camelCase( name.slice( 5 ) ); - dataAttr( elem, name, data[ name ] ); - } - } - } - dataPriv.set( elem, "hasDataAttrs", true ); - } - } - - return data; - } - - // Sets multiple values - if ( typeof key === "object" ) { - return this.each( function() { - dataUser.set( this, key ); - } ); - } - - return access( this, function( value ) { - var data; - - // The calling jQuery object (element matches) is not empty - // (and therefore has an element appears at this[ 0 ]) and the - // `value` parameter was not undefined. An empty jQuery object - // will result in `undefined` for elem = this[ 0 ] which will - // throw an exception if an attempt to read a data cache is made. - if ( elem && value === undefined ) { - - // Attempt to get data from the cache - // The key will always be camelCased in Data - data = dataUser.get( elem, key ); - if ( data !== undefined ) { - return data; - } - - // Attempt to "discover" the data in - // HTML5 custom data-* attrs - data = dataAttr( elem, key ); - if ( data !== undefined ) { - return data; - } - - // We tried really hard, but the data doesn't exist. - return; - } - - // Set the data... - this.each( function() { - - // We always store the camelCased key - dataUser.set( this, key, value ); - } ); - }, null, value, arguments.length > 1, null, true ); - }, - - removeData: function( key ) { - return this.each( function() { - dataUser.remove( this, key ); - } ); - } -} ); - - -jQuery.extend( { - queue: function( elem, type, data ) { - var queue; - - if ( elem ) { - type = ( type || "fx" ) + "queue"; - queue = dataPriv.get( elem, type ); - - // Speed up dequeue by getting out quickly if this is just a lookup - if ( data ) { - if ( !queue || Array.isArray( data ) ) { - queue = dataPriv.access( elem, type, jQuery.makeArray( data ) ); - } else { - queue.push( data ); - } - } - return queue || []; - } - }, - - dequeue: function( elem, type ) { - type = type || "fx"; - - var queue = jQuery.queue( elem, type ), - startLength = queue.length, - fn = queue.shift(), - hooks = jQuery._queueHooks( elem, type ), - next = function() { - jQuery.dequeue( elem, type ); - }; - - // If the fx queue is dequeued, always remove the progress sentinel - if ( fn === "inprogress" ) { - fn = queue.shift(); - startLength--; - } - - if ( fn ) { - - // Add a progress sentinel to prevent the fx queue from being - // automatically dequeued - if ( type === "fx" ) { - queue.unshift( "inprogress" ); - } - - // Clear up the last queue stop function - delete hooks.stop; - fn.call( elem, next, hooks ); - } - - if ( !startLength && hooks ) { - hooks.empty.fire(); - } - }, - - // Not public - generate a queueHooks object, or return the current one - _queueHooks: function( elem, type ) { - var key = type + "queueHooks"; - return dataPriv.get( elem, key ) || dataPriv.access( elem, key, { - empty: jQuery.Callbacks( "once memory" ).add( function() { - dataPriv.remove( elem, [ type + "queue", key ] ); - } ) - } ); - } -} ); - -jQuery.fn.extend( { - queue: function( type, data ) { - var setter = 2; - - if ( typeof type !== "string" ) { - data = type; - type = "fx"; - setter--; - } - - if ( arguments.length < setter ) { - return jQuery.queue( this[ 0 ], type ); - } - - return data === undefined ? - this : - this.each( function() { - var queue = jQuery.queue( this, type, data ); - - // Ensure a hooks for this queue - jQuery._queueHooks( this, type ); - - if ( type === "fx" && queue[ 0 ] !== "inprogress" ) { - jQuery.dequeue( this, type ); - } - } ); - }, - dequeue: function( type ) { - return this.each( function() { - jQuery.dequeue( this, type ); - } ); - }, - clearQueue: function( type ) { - return this.queue( type || "fx", [] ); - }, - - // Get a promise resolved when queues of a certain type - // are emptied (fx is the type by default) - promise: function( type, obj ) { - var tmp, - count = 1, - defer = jQuery.Deferred(), - elements = this, - i = this.length, - resolve = function() { - if ( !( --count ) ) { - defer.resolveWith( elements, [ elements ] ); - } - }; - - if ( typeof type !== "string" ) { - obj = type; - type = undefined; - } - type = type || "fx"; - - while ( i-- ) { - tmp = dataPriv.get( elements[ i ], type + "queueHooks" ); - if ( tmp && tmp.empty ) { - count++; - tmp.empty.add( resolve ); - } - } - resolve(); - return defer.promise( obj ); - } -} ); -var pnum = ( /[+-]?(?:\d*\.|)\d+(?:[eE][+-]?\d+|)/ ).source; - -var rcssNum = new RegExp( "^(?:([+-])=|)(" + pnum + ")([a-z%]*)$", "i" ); - - -var cssExpand = [ "Top", "Right", "Bottom", "Left" ]; - -var documentElement = document.documentElement; - - - - var isAttached = function( elem ) { - return jQuery.contains( elem.ownerDocument, elem ); - }, - composed = { composed: true }; - - // Support: IE 9 - 11+, Edge 12 - 18+, iOS 10.0 - 10.2 only - // Check attachment across shadow DOM boundaries when possible (gh-3504) - // Support: iOS 10.0-10.2 only - // Early iOS 10 versions support `attachShadow` but not `getRootNode`, - // leading to errors. We need to check for `getRootNode`. - if ( documentElement.getRootNode ) { - isAttached = function( elem ) { - return jQuery.contains( elem.ownerDocument, elem ) || - elem.getRootNode( composed ) === elem.ownerDocument; - }; - } -var isHiddenWithinTree = function( elem, el ) { - - // isHiddenWithinTree might be called from jQuery#filter function; - // in that case, element will be second argument - elem = el || elem; - - // Inline style trumps all - return elem.style.display === "none" || - elem.style.display === "" && - - // Otherwise, check computed style - // Support: Firefox <=43 - 45 - // Disconnected elements can have computed display: none, so first confirm that elem is - // in the document. - isAttached( elem ) && - - jQuery.css( elem, "display" ) === "none"; - }; - - - -function adjustCSS( elem, prop, valueParts, tween ) { - var adjusted, scale, - maxIterations = 20, - currentValue = tween ? - function() { - return tween.cur(); - } : - function() { - return jQuery.css( elem, prop, "" ); - }, - initial = currentValue(), - unit = valueParts && valueParts[ 3 ] || ( jQuery.cssNumber[ prop ] ? "" : "px" ), - - // Starting value computation is required for potential unit mismatches - initialInUnit = elem.nodeType && - ( jQuery.cssNumber[ prop ] || unit !== "px" && +initial ) && - rcssNum.exec( jQuery.css( elem, prop ) ); - - if ( initialInUnit && initialInUnit[ 3 ] !== unit ) { - - // Support: Firefox <=54 - // Halve the iteration target value to prevent interference from CSS upper bounds (gh-2144) - initial = initial / 2; - - // Trust units reported by jQuery.css - unit = unit || initialInUnit[ 3 ]; - - // Iteratively approximate from a nonzero starting point - initialInUnit = +initial || 1; - - while ( maxIterations-- ) { - - // Evaluate and update our best guess (doubling guesses that zero out). - // Finish if the scale equals or crosses 1 (making the old*new product non-positive). - jQuery.style( elem, prop, initialInUnit + unit ); - if ( ( 1 - scale ) * ( 1 - ( scale = currentValue() / initial || 0.5 ) ) <= 0 ) { - maxIterations = 0; - } - initialInUnit = initialInUnit / scale; - - } - - initialInUnit = initialInUnit * 2; - jQuery.style( elem, prop, initialInUnit + unit ); - - // Make sure we update the tween properties later on - valueParts = valueParts || []; - } - - if ( valueParts ) { - initialInUnit = +initialInUnit || +initial || 0; - - // Apply relative offset (+=/-=) if specified - adjusted = valueParts[ 1 ] ? - initialInUnit + ( valueParts[ 1 ] + 1 ) * valueParts[ 2 ] : - +valueParts[ 2 ]; - if ( tween ) { - tween.unit = unit; - tween.start = initialInUnit; - tween.end = adjusted; - } - } - return adjusted; -} - - -var defaultDisplayMap = {}; - -function getDefaultDisplay( elem ) { - var temp, - doc = elem.ownerDocument, - nodeName = elem.nodeName, - display = defaultDisplayMap[ nodeName ]; - - if ( display ) { - return display; - } - - temp = doc.body.appendChild( doc.createElement( nodeName ) ); - display = jQuery.css( temp, "display" ); - - temp.parentNode.removeChild( temp ); - - if ( display === "none" ) { - display = "block"; - } - defaultDisplayMap[ nodeName ] = display; - - return display; -} - -function showHide( elements, show ) { - var display, elem, - values = [], - index = 0, - length = elements.length; - - // Determine new display value for elements that need to change - for ( ; index < length; index++ ) { - elem = elements[ index ]; - if ( !elem.style ) { - continue; - } - - display = elem.style.display; - if ( show ) { - - // Since we force visibility upon cascade-hidden elements, an immediate (and slow) - // check is required in this first loop unless we have a nonempty display value (either - // inline or about-to-be-restored) - if ( display === "none" ) { - values[ index ] = dataPriv.get( elem, "display" ) || null; - if ( !values[ index ] ) { - elem.style.display = ""; - } - } - if ( elem.style.display === "" && isHiddenWithinTree( elem ) ) { - values[ index ] = getDefaultDisplay( elem ); - } - } else { - if ( display !== "none" ) { - values[ index ] = "none"; - - // Remember what we're overwriting - dataPriv.set( elem, "display", display ); - } - } - } - - // Set the display of the elements in a second loop to avoid constant reflow - for ( index = 0; index < length; index++ ) { - if ( values[ index ] != null ) { - elements[ index ].style.display = values[ index ]; - } - } - - return elements; -} - -jQuery.fn.extend( { - show: function() { - return showHide( this, true ); - }, - hide: function() { - return showHide( this ); - }, - toggle: function( state ) { - if ( typeof state === "boolean" ) { - return state ? this.show() : this.hide(); - } - - return this.each( function() { - if ( isHiddenWithinTree( this ) ) { - jQuery( this ).show(); - } else { - jQuery( this ).hide(); - } - } ); - } -} ); -var rcheckableType = ( /^(?:checkbox|radio)$/i ); - -var rtagName = ( /<([a-z][^\/\0>\x20\t\r\n\f]*)/i ); - -var rscriptType = ( /^$|^module$|\/(?:java|ecma)script/i ); - - - -( function() { - var fragment = document.createDocumentFragment(), - div = fragment.appendChild( document.createElement( "div" ) ), - input = document.createElement( "input" ); - - // Support: Android 4.0 - 4.3 only - // Check state lost if the name is set (#11217) - // Support: Windows Web Apps (WWA) - // `name` and `type` must use .setAttribute for WWA (#14901) - input.setAttribute( "type", "radio" ); - input.setAttribute( "checked", "checked" ); - input.setAttribute( "name", "t" ); - - div.appendChild( input ); - - // Support: Android <=4.1 only - // Older WebKit doesn't clone checked state correctly in fragments - support.checkClone = div.cloneNode( true ).cloneNode( true ).lastChild.checked; - - // Support: IE <=11 only - // Make sure textarea (and checkbox) defaultValue is properly cloned - div.innerHTML = ""; - support.noCloneChecked = !!div.cloneNode( true ).lastChild.defaultValue; - - // Support: IE <=9 only - // IE <=9 replaces "; - support.option = !!div.lastChild; -} )(); - - -// We have to close these tags to support XHTML (#13200) -var wrapMap = { - - // XHTML parsers do not magically insert elements in the - // same way that tag soup parsers do. So we cannot shorten - // this by omitting or other required elements. - thead: [ 1, "", "
" ], - col: [ 2, "", "
" ], - tr: [ 2, "", "
" ], - td: [ 3, "", "
" ], - - _default: [ 0, "", "" ] -}; - -wrapMap.tbody = wrapMap.tfoot = wrapMap.colgroup = wrapMap.caption = wrapMap.thead; -wrapMap.th = wrapMap.td; - -// Support: IE <=9 only -if ( !support.option ) { - wrapMap.optgroup = wrapMap.option = [ 1, "" ]; -} - - -function getAll( context, tag ) { - - // Support: IE <=9 - 11 only - // Use typeof to avoid zero-argument method invocation on host objects (#15151) - var ret; - - if ( typeof context.getElementsByTagName !== "undefined" ) { - ret = context.getElementsByTagName( tag || "*" ); - - } else if ( typeof context.querySelectorAll !== "undefined" ) { - ret = context.querySelectorAll( tag || "*" ); - - } else { - ret = []; - } - - if ( tag === undefined || tag && nodeName( context, tag ) ) { - return jQuery.merge( [ context ], ret ); - } - - return ret; -} - - -// Mark scripts as having already been evaluated -function setGlobalEval( elems, refElements ) { - var i = 0, - l = elems.length; - - for ( ; i < l; i++ ) { - dataPriv.set( - elems[ i ], - "globalEval", - !refElements || dataPriv.get( refElements[ i ], "globalEval" ) - ); - } -} - - -var rhtml = /<|&#?\w+;/; - -function buildFragment( elems, context, scripts, selection, ignored ) { - var elem, tmp, tag, wrap, attached, j, - fragment = context.createDocumentFragment(), - nodes = [], - i = 0, - l = elems.length; - - for ( ; i < l; i++ ) { - elem = elems[ i ]; - - if ( elem || elem === 0 ) { - - // Add nodes directly - if ( toType( elem ) === "object" ) { - - // Support: Android <=4.0 only, PhantomJS 1 only - // push.apply(_, arraylike) throws on ancient WebKit - jQuery.merge( nodes, elem.nodeType ? [ elem ] : elem ); - - // Convert non-html into a text node - } else if ( !rhtml.test( elem ) ) { - nodes.push( context.createTextNode( elem ) ); - - // Convert html into DOM nodes - } else { - tmp = tmp || fragment.appendChild( context.createElement( "div" ) ); - - // Deserialize a standard representation - tag = ( rtagName.exec( elem ) || [ "", "" ] )[ 1 ].toLowerCase(); - wrap = wrapMap[ tag ] || wrapMap._default; - tmp.innerHTML = wrap[ 1 ] + jQuery.htmlPrefilter( elem ) + wrap[ 2 ]; - - // Descend through wrappers to the right content - j = wrap[ 0 ]; - while ( j-- ) { - tmp = tmp.lastChild; - } - - // Support: Android <=4.0 only, PhantomJS 1 only - // push.apply(_, arraylike) throws on ancient WebKit - jQuery.merge( nodes, tmp.childNodes ); - - // Remember the top-level container - tmp = fragment.firstChild; - - // Ensure the created nodes are orphaned (#12392) - tmp.textContent = ""; - } - } - } - - // Remove wrapper from fragment - fragment.textContent = ""; - - i = 0; - while ( ( elem = nodes[ i++ ] ) ) { - - // Skip elements already in the context collection (trac-4087) - if ( selection && jQuery.inArray( elem, selection ) > -1 ) { - if ( ignored ) { - ignored.push( elem ); - } - continue; - } - - attached = isAttached( elem ); - - // Append to fragment - tmp = getAll( fragment.appendChild( elem ), "script" ); - - // Preserve script evaluation history - if ( attached ) { - setGlobalEval( tmp ); - } - - // Capture executables - if ( scripts ) { - j = 0; - while ( ( elem = tmp[ j++ ] ) ) { - if ( rscriptType.test( elem.type || "" ) ) { - scripts.push( elem ); - } - } - } - } - - return fragment; -} - - -var - rkeyEvent = /^key/, - rmouseEvent = /^(?:mouse|pointer|contextmenu|drag|drop)|click/, - rtypenamespace = /^([^.]*)(?:\.(.+)|)/; - -function returnTrue() { - return true; -} - -function returnFalse() { - return false; -} - -// Support: IE <=9 - 11+ -// focus() and blur() are asynchronous, except when they are no-op. -// So expect focus to be synchronous when the element is already active, -// and blur to be synchronous when the element is not already active. -// (focus and blur are always synchronous in other supported browsers, -// this just defines when we can count on it). -function expectSync( elem, type ) { - return ( elem === safeActiveElement() ) === ( type === "focus" ); -} - -// Support: IE <=9 only -// Accessing document.activeElement can throw unexpectedly -// https://bugs.jquery.com/ticket/13393 -function safeActiveElement() { - try { - return document.activeElement; - } catch ( err ) { } -} - -function on( elem, types, selector, data, fn, one ) { - var origFn, type; - - // Types can be a map of types/handlers - if ( typeof types === "object" ) { - - // ( types-Object, selector, data ) - if ( typeof selector !== "string" ) { - - // ( types-Object, data ) - data = data || selector; - selector = undefined; - } - for ( type in types ) { - on( elem, type, selector, data, types[ type ], one ); - } - return elem; - } - - if ( data == null && fn == null ) { - - // ( types, fn ) - fn = selector; - data = selector = undefined; - } else if ( fn == null ) { - if ( typeof selector === "string" ) { - - // ( types, selector, fn ) - fn = data; - data = undefined; - } else { - - // ( types, data, fn ) - fn = data; - data = selector; - selector = undefined; - } - } - if ( fn === false ) { - fn = returnFalse; - } else if ( !fn ) { - return elem; - } - - if ( one === 1 ) { - origFn = fn; - fn = function( event ) { - - // Can use an empty set, since event contains the info - jQuery().off( event ); - return origFn.apply( this, arguments ); - }; - - // Use same guid so caller can remove using origFn - fn.guid = origFn.guid || ( origFn.guid = jQuery.guid++ ); - } - return elem.each( function() { - jQuery.event.add( this, types, fn, data, selector ); - } ); -} - -/* - * Helper functions for managing events -- not part of the public interface. - * Props to Dean Edwards' addEvent library for many of the ideas. - */ -jQuery.event = { - - global: {}, - - add: function( elem, types, handler, data, selector ) { - - var handleObjIn, eventHandle, tmp, - events, t, handleObj, - special, handlers, type, namespaces, origType, - elemData = dataPriv.get( elem ); - - // Only attach events to objects that accept data - if ( !acceptData( elem ) ) { - return; - } - - // Caller can pass in an object of custom data in lieu of the handler - if ( handler.handler ) { - handleObjIn = handler; - handler = handleObjIn.handler; - selector = handleObjIn.selector; - } - - // Ensure that invalid selectors throw exceptions at attach time - // Evaluate against documentElement in case elem is a non-element node (e.g., document) - if ( selector ) { - jQuery.find.matchesSelector( documentElement, selector ); - } - - // Make sure that the handler has a unique ID, used to find/remove it later - if ( !handler.guid ) { - handler.guid = jQuery.guid++; - } - - // Init the element's event structure and main handler, if this is the first - if ( !( events = elemData.events ) ) { - events = elemData.events = Object.create( null ); - } - if ( !( eventHandle = elemData.handle ) ) { - eventHandle = elemData.handle = function( e ) { - - // Discard the second event of a jQuery.event.trigger() and - // when an event is called after a page has unloaded - return typeof jQuery !== "undefined" && jQuery.event.triggered !== e.type ? - jQuery.event.dispatch.apply( elem, arguments ) : undefined; - }; - } - - // Handle multiple events separated by a space - types = ( types || "" ).match( rnothtmlwhite ) || [ "" ]; - t = types.length; - while ( t-- ) { - tmp = rtypenamespace.exec( types[ t ] ) || []; - type = origType = tmp[ 1 ]; - namespaces = ( tmp[ 2 ] || "" ).split( "." ).sort(); - - // There *must* be a type, no attaching namespace-only handlers - if ( !type ) { - continue; - } - - // If event changes its type, use the special event handlers for the changed type - special = jQuery.event.special[ type ] || {}; - - // If selector defined, determine special event api type, otherwise given type - type = ( selector ? special.delegateType : special.bindType ) || type; - - // Update special based on newly reset type - special = jQuery.event.special[ type ] || {}; - - // handleObj is passed to all event handlers - handleObj = jQuery.extend( { - type: type, - origType: origType, - data: data, - handler: handler, - guid: handler.guid, - selector: selector, - needsContext: selector && jQuery.expr.match.needsContext.test( selector ), - namespace: namespaces.join( "." ) - }, handleObjIn ); - - // Init the event handler queue if we're the first - if ( !( handlers = events[ type ] ) ) { - handlers = events[ type ] = []; - handlers.delegateCount = 0; - - // Only use addEventListener if the special events handler returns false - if ( !special.setup || - special.setup.call( elem, data, namespaces, eventHandle ) === false ) { - - if ( elem.addEventListener ) { - elem.addEventListener( type, eventHandle ); - } - } - } - - if ( special.add ) { - special.add.call( elem, handleObj ); - - if ( !handleObj.handler.guid ) { - handleObj.handler.guid = handler.guid; - } - } - - // Add to the element's handler list, delegates in front - if ( selector ) { - handlers.splice( handlers.delegateCount++, 0, handleObj ); - } else { - handlers.push( handleObj ); - } - - // Keep track of which events have ever been used, for event optimization - jQuery.event.global[ type ] = true; - } - - }, - - // Detach an event or set of events from an element - remove: function( elem, types, handler, selector, mappedTypes ) { - - var j, origCount, tmp, - events, t, handleObj, - special, handlers, type, namespaces, origType, - elemData = dataPriv.hasData( elem ) && dataPriv.get( elem ); - - if ( !elemData || !( events = elemData.events ) ) { - return; - } - - // Once for each type.namespace in types; type may be omitted - types = ( types || "" ).match( rnothtmlwhite ) || [ "" ]; - t = types.length; - while ( t-- ) { - tmp = rtypenamespace.exec( types[ t ] ) || []; - type = origType = tmp[ 1 ]; - namespaces = ( tmp[ 2 ] || "" ).split( "." ).sort(); - - // Unbind all events (on this namespace, if provided) for the element - if ( !type ) { - for ( type in events ) { - jQuery.event.remove( elem, type + types[ t ], handler, selector, true ); - } - continue; - } - - special = jQuery.event.special[ type ] || {}; - type = ( selector ? special.delegateType : special.bindType ) || type; - handlers = events[ type ] || []; - tmp = tmp[ 2 ] && - new RegExp( "(^|\\.)" + namespaces.join( "\\.(?:.*\\.|)" ) + "(\\.|$)" ); - - // Remove matching events - origCount = j = handlers.length; - while ( j-- ) { - handleObj = handlers[ j ]; - - if ( ( mappedTypes || origType === handleObj.origType ) && - ( !handler || handler.guid === handleObj.guid ) && - ( !tmp || tmp.test( handleObj.namespace ) ) && - ( !selector || selector === handleObj.selector || - selector === "**" && handleObj.selector ) ) { - handlers.splice( j, 1 ); - - if ( handleObj.selector ) { - handlers.delegateCount--; - } - if ( special.remove ) { - special.remove.call( elem, handleObj ); - } - } - } - - // Remove generic event handler if we removed something and no more handlers exist - // (avoids potential for endless recursion during removal of special event handlers) - if ( origCount && !handlers.length ) { - if ( !special.teardown || - special.teardown.call( elem, namespaces, elemData.handle ) === false ) { - - jQuery.removeEvent( elem, type, elemData.handle ); - } - - delete events[ type ]; - } - } - - // Remove data and the expando if it's no longer used - if ( jQuery.isEmptyObject( events ) ) { - dataPriv.remove( elem, "handle events" ); - } - }, - - dispatch: function( nativeEvent ) { - - var i, j, ret, matched, handleObj, handlerQueue, - args = new Array( arguments.length ), - - // Make a writable jQuery.Event from the native event object - event = jQuery.event.fix( nativeEvent ), - - handlers = ( - dataPriv.get( this, "events" ) || Object.create( null ) - )[ event.type ] || [], - special = jQuery.event.special[ event.type ] || {}; - - // Use the fix-ed jQuery.Event rather than the (read-only) native event - args[ 0 ] = event; - - for ( i = 1; i < arguments.length; i++ ) { - args[ i ] = arguments[ i ]; - } - - event.delegateTarget = this; - - // Call the preDispatch hook for the mapped type, and let it bail if desired - if ( special.preDispatch && special.preDispatch.call( this, event ) === false ) { - return; - } - - // Determine handlers - handlerQueue = jQuery.event.handlers.call( this, event, handlers ); - - // Run delegates first; they may want to stop propagation beneath us - i = 0; - while ( ( matched = handlerQueue[ i++ ] ) && !event.isPropagationStopped() ) { - event.currentTarget = matched.elem; - - j = 0; - while ( ( handleObj = matched.handlers[ j++ ] ) && - !event.isImmediatePropagationStopped() ) { - - // If the event is namespaced, then each handler is only invoked if it is - // specially universal or its namespaces are a superset of the event's. - if ( !event.rnamespace || handleObj.namespace === false || - event.rnamespace.test( handleObj.namespace ) ) { - - event.handleObj = handleObj; - event.data = handleObj.data; - - ret = ( ( jQuery.event.special[ handleObj.origType ] || {} ).handle || - handleObj.handler ).apply( matched.elem, args ); - - if ( ret !== undefined ) { - if ( ( event.result = ret ) === false ) { - event.preventDefault(); - event.stopPropagation(); - } - } - } - } - } - - // Call the postDispatch hook for the mapped type - if ( special.postDispatch ) { - special.postDispatch.call( this, event ); - } - - return event.result; - }, - - handlers: function( event, handlers ) { - var i, handleObj, sel, matchedHandlers, matchedSelectors, - handlerQueue = [], - delegateCount = handlers.delegateCount, - cur = event.target; - - // Find delegate handlers - if ( delegateCount && - - // Support: IE <=9 - // Black-hole SVG instance trees (trac-13180) - cur.nodeType && - - // Support: Firefox <=42 - // Suppress spec-violating clicks indicating a non-primary pointer button (trac-3861) - // https://www.w3.org/TR/DOM-Level-3-Events/#event-type-click - // Support: IE 11 only - // ...but not arrow key "clicks" of radio inputs, which can have `button` -1 (gh-2343) - !( event.type === "click" && event.button >= 1 ) ) { - - for ( ; cur !== this; cur = cur.parentNode || this ) { - - // Don't check non-elements (#13208) - // Don't process clicks on disabled elements (#6911, #8165, #11382, #11764) - if ( cur.nodeType === 1 && !( event.type === "click" && cur.disabled === true ) ) { - matchedHandlers = []; - matchedSelectors = {}; - for ( i = 0; i < delegateCount; i++ ) { - handleObj = handlers[ i ]; - - // Don't conflict with Object.prototype properties (#13203) - sel = handleObj.selector + " "; - - if ( matchedSelectors[ sel ] === undefined ) { - matchedSelectors[ sel ] = handleObj.needsContext ? - jQuery( sel, this ).index( cur ) > -1 : - jQuery.find( sel, this, null, [ cur ] ).length; - } - if ( matchedSelectors[ sel ] ) { - matchedHandlers.push( handleObj ); - } - } - if ( matchedHandlers.length ) { - handlerQueue.push( { elem: cur, handlers: matchedHandlers } ); - } - } - } - } - - // Add the remaining (directly-bound) handlers - cur = this; - if ( delegateCount < handlers.length ) { - handlerQueue.push( { elem: cur, handlers: handlers.slice( delegateCount ) } ); - } - - return handlerQueue; - }, - - addProp: function( name, hook ) { - Object.defineProperty( jQuery.Event.prototype, name, { - enumerable: true, - configurable: true, - - get: isFunction( hook ) ? - function() { - if ( this.originalEvent ) { - return hook( this.originalEvent ); - } - } : - function() { - if ( this.originalEvent ) { - return this.originalEvent[ name ]; - } - }, - - set: function( value ) { - Object.defineProperty( this, name, { - enumerable: true, - configurable: true, - writable: true, - value: value - } ); - } - } ); - }, - - fix: function( originalEvent ) { - return originalEvent[ jQuery.expando ] ? - originalEvent : - new jQuery.Event( originalEvent ); - }, - - special: { - load: { - - // Prevent triggered image.load events from bubbling to window.load - noBubble: true - }, - click: { - - // Utilize native event to ensure correct state for checkable inputs - setup: function( data ) { - - // For mutual compressibility with _default, replace `this` access with a local var. - // `|| data` is dead code meant only to preserve the variable through minification. - var el = this || data; - - // Claim the first handler - if ( rcheckableType.test( el.type ) && - el.click && nodeName( el, "input" ) ) { - - // dataPriv.set( el, "click", ... ) - leverageNative( el, "click", returnTrue ); - } - - // Return false to allow normal processing in the caller - return false; - }, - trigger: function( data ) { - - // For mutual compressibility with _default, replace `this` access with a local var. - // `|| data` is dead code meant only to preserve the variable through minification. - var el = this || data; - - // Force setup before triggering a click - if ( rcheckableType.test( el.type ) && - el.click && nodeName( el, "input" ) ) { - - leverageNative( el, "click" ); - } - - // Return non-false to allow normal event-path propagation - return true; - }, - - // For cross-browser consistency, suppress native .click() on links - // Also prevent it if we're currently inside a leveraged native-event stack - _default: function( event ) { - var target = event.target; - return rcheckableType.test( target.type ) && - target.click && nodeName( target, "input" ) && - dataPriv.get( target, "click" ) || - nodeName( target, "a" ); - } - }, - - beforeunload: { - postDispatch: function( event ) { - - // Support: Firefox 20+ - // Firefox doesn't alert if the returnValue field is not set. - if ( event.result !== undefined && event.originalEvent ) { - event.originalEvent.returnValue = event.result; - } - } - } - } -}; - -// Ensure the presence of an event listener that handles manually-triggered -// synthetic events by interrupting progress until reinvoked in response to -// *native* events that it fires directly, ensuring that state changes have -// already occurred before other listeners are invoked. -function leverageNative( el, type, expectSync ) { - - // Missing expectSync indicates a trigger call, which must force setup through jQuery.event.add - if ( !expectSync ) { - if ( dataPriv.get( el, type ) === undefined ) { - jQuery.event.add( el, type, returnTrue ); - } - return; - } - - // Register the controller as a special universal handler for all event namespaces - dataPriv.set( el, type, false ); - jQuery.event.add( el, type, { - namespace: false, - handler: function( event ) { - var notAsync, result, - saved = dataPriv.get( this, type ); - - if ( ( event.isTrigger & 1 ) && this[ type ] ) { - - // Interrupt processing of the outer synthetic .trigger()ed event - // Saved data should be false in such cases, but might be a leftover capture object - // from an async native handler (gh-4350) - if ( !saved.length ) { - - // Store arguments for use when handling the inner native event - // There will always be at least one argument (an event object), so this array - // will not be confused with a leftover capture object. - saved = slice.call( arguments ); - dataPriv.set( this, type, saved ); - - // Trigger the native event and capture its result - // Support: IE <=9 - 11+ - // focus() and blur() are asynchronous - notAsync = expectSync( this, type ); - this[ type ](); - result = dataPriv.get( this, type ); - if ( saved !== result || notAsync ) { - dataPriv.set( this, type, false ); - } else { - result = {}; - } - if ( saved !== result ) { - - // Cancel the outer synthetic event - event.stopImmediatePropagation(); - event.preventDefault(); - return result.value; - } - - // If this is an inner synthetic event for an event with a bubbling surrogate - // (focus or blur), assume that the surrogate already propagated from triggering the - // native event and prevent that from happening again here. - // This technically gets the ordering wrong w.r.t. to `.trigger()` (in which the - // bubbling surrogate propagates *after* the non-bubbling base), but that seems - // less bad than duplication. - } else if ( ( jQuery.event.special[ type ] || {} ).delegateType ) { - event.stopPropagation(); - } - - // If this is a native event triggered above, everything is now in order - // Fire an inner synthetic event with the original arguments - } else if ( saved.length ) { - - // ...and capture the result - dataPriv.set( this, type, { - value: jQuery.event.trigger( - - // Support: IE <=9 - 11+ - // Extend with the prototype to reset the above stopImmediatePropagation() - jQuery.extend( saved[ 0 ], jQuery.Event.prototype ), - saved.slice( 1 ), - this - ) - } ); - - // Abort handling of the native event - event.stopImmediatePropagation(); - } - } - } ); -} - -jQuery.removeEvent = function( elem, type, handle ) { - - // This "if" is needed for plain objects - if ( elem.removeEventListener ) { - elem.removeEventListener( type, handle ); - } -}; - -jQuery.Event = function( src, props ) { - - // Allow instantiation without the 'new' keyword - if ( !( this instanceof jQuery.Event ) ) { - return new jQuery.Event( src, props ); - } - - // Event object - if ( src && src.type ) { - this.originalEvent = src; - this.type = src.type; - - // Events bubbling up the document may have been marked as prevented - // by a handler lower down the tree; reflect the correct value. - this.isDefaultPrevented = src.defaultPrevented || - src.defaultPrevented === undefined && - - // Support: Android <=2.3 only - src.returnValue === false ? - returnTrue : - returnFalse; - - // Create target properties - // Support: Safari <=6 - 7 only - // Target should not be a text node (#504, #13143) - this.target = ( src.target && src.target.nodeType === 3 ) ? - src.target.parentNode : - src.target; - - this.currentTarget = src.currentTarget; - this.relatedTarget = src.relatedTarget; - - // Event type - } else { - this.type = src; - } - - // Put explicitly provided properties onto the event object - if ( props ) { - jQuery.extend( this, props ); - } - - // Create a timestamp if incoming event doesn't have one - this.timeStamp = src && src.timeStamp || Date.now(); - - // Mark it as fixed - this[ jQuery.expando ] = true; -}; - -// jQuery.Event is based on DOM3 Events as specified by the ECMAScript Language Binding -// https://www.w3.org/TR/2003/WD-DOM-Level-3-Events-20030331/ecma-script-binding.html -jQuery.Event.prototype = { - constructor: jQuery.Event, - isDefaultPrevented: returnFalse, - isPropagationStopped: returnFalse, - isImmediatePropagationStopped: returnFalse, - isSimulated: false, - - preventDefault: function() { - var e = this.originalEvent; - - this.isDefaultPrevented = returnTrue; - - if ( e && !this.isSimulated ) { - e.preventDefault(); - } - }, - stopPropagation: function() { - var e = this.originalEvent; - - this.isPropagationStopped = returnTrue; - - if ( e && !this.isSimulated ) { - e.stopPropagation(); - } - }, - stopImmediatePropagation: function() { - var e = this.originalEvent; - - this.isImmediatePropagationStopped = returnTrue; - - if ( e && !this.isSimulated ) { - e.stopImmediatePropagation(); - } - - this.stopPropagation(); - } -}; - -// Includes all common event props including KeyEvent and MouseEvent specific props -jQuery.each( { - altKey: true, - bubbles: true, - cancelable: true, - changedTouches: true, - ctrlKey: true, - detail: true, - eventPhase: true, - metaKey: true, - pageX: true, - pageY: true, - shiftKey: true, - view: true, - "char": true, - code: true, - charCode: true, - key: true, - keyCode: true, - button: true, - buttons: true, - clientX: true, - clientY: true, - offsetX: true, - offsetY: true, - pointerId: true, - pointerType: true, - screenX: true, - screenY: true, - targetTouches: true, - toElement: true, - touches: true, - - which: function( event ) { - var button = event.button; - - // Add which for key events - if ( event.which == null && rkeyEvent.test( event.type ) ) { - return event.charCode != null ? event.charCode : event.keyCode; - } - - // Add which for click: 1 === left; 2 === middle; 3 === right - if ( !event.which && button !== undefined && rmouseEvent.test( event.type ) ) { - if ( button & 1 ) { - return 1; - } - - if ( button & 2 ) { - return 3; - } - - if ( button & 4 ) { - return 2; - } - - return 0; - } - - return event.which; - } -}, jQuery.event.addProp ); - -jQuery.each( { focus: "focusin", blur: "focusout" }, function( type, delegateType ) { - jQuery.event.special[ type ] = { - - // Utilize native event if possible so blur/focus sequence is correct - setup: function() { - - // Claim the first handler - // dataPriv.set( this, "focus", ... ) - // dataPriv.set( this, "blur", ... ) - leverageNative( this, type, expectSync ); - - // Return false to allow normal processing in the caller - return false; - }, - trigger: function() { - - // Force setup before trigger - leverageNative( this, type ); - - // Return non-false to allow normal event-path propagation - return true; - }, - - delegateType: delegateType - }; -} ); - -// Create mouseenter/leave events using mouseover/out and event-time checks -// so that event delegation works in jQuery. -// Do the same for pointerenter/pointerleave and pointerover/pointerout -// -// Support: Safari 7 only -// Safari sends mouseenter too often; see: -// https://bugs.chromium.org/p/chromium/issues/detail?id=470258 -// for the description of the bug (it existed in older Chrome versions as well). -jQuery.each( { - mouseenter: "mouseover", - mouseleave: "mouseout", - pointerenter: "pointerover", - pointerleave: "pointerout" -}, function( orig, fix ) { - jQuery.event.special[ orig ] = { - delegateType: fix, - bindType: fix, - - handle: function( event ) { - var ret, - target = this, - related = event.relatedTarget, - handleObj = event.handleObj; - - // For mouseenter/leave call the handler if related is outside the target. - // NB: No relatedTarget if the mouse left/entered the browser window - if ( !related || ( related !== target && !jQuery.contains( target, related ) ) ) { - event.type = handleObj.origType; - ret = handleObj.handler.apply( this, arguments ); - event.type = fix; - } - return ret; - } - }; -} ); - -jQuery.fn.extend( { - - on: function( types, selector, data, fn ) { - return on( this, types, selector, data, fn ); - }, - one: function( types, selector, data, fn ) { - return on( this, types, selector, data, fn, 1 ); - }, - off: function( types, selector, fn ) { - var handleObj, type; - if ( types && types.preventDefault && types.handleObj ) { - - // ( event ) dispatched jQuery.Event - handleObj = types.handleObj; - jQuery( types.delegateTarget ).off( - handleObj.namespace ? - handleObj.origType + "." + handleObj.namespace : - handleObj.origType, - handleObj.selector, - handleObj.handler - ); - return this; - } - if ( typeof types === "object" ) { - - // ( types-object [, selector] ) - for ( type in types ) { - this.off( type, selector, types[ type ] ); - } - return this; - } - if ( selector === false || typeof selector === "function" ) { - - // ( types [, fn] ) - fn = selector; - selector = undefined; - } - if ( fn === false ) { - fn = returnFalse; - } - return this.each( function() { - jQuery.event.remove( this, types, fn, selector ); - } ); - } -} ); - - -var - - // Support: IE <=10 - 11, Edge 12 - 13 only - // In IE/Edge using regex groups here causes severe slowdowns. - // See https://connect.microsoft.com/IE/feedback/details/1736512/ - rnoInnerhtml = /\s*$/g; - -// Prefer a tbody over its parent table for containing new rows -function manipulationTarget( elem, content ) { - if ( nodeName( elem, "table" ) && - nodeName( content.nodeType !== 11 ? content : content.firstChild, "tr" ) ) { - - return jQuery( elem ).children( "tbody" )[ 0 ] || elem; - } - - return elem; -} - -// Replace/restore the type attribute of script elements for safe DOM manipulation -function disableScript( elem ) { - elem.type = ( elem.getAttribute( "type" ) !== null ) + "/" + elem.type; - return elem; -} -function restoreScript( elem ) { - if ( ( elem.type || "" ).slice( 0, 5 ) === "true/" ) { - elem.type = elem.type.slice( 5 ); - } else { - elem.removeAttribute( "type" ); - } - - return elem; -} - -function cloneCopyEvent( src, dest ) { - var i, l, type, pdataOld, udataOld, udataCur, events; - - if ( dest.nodeType !== 1 ) { - return; - } - - // 1. Copy private data: events, handlers, etc. - if ( dataPriv.hasData( src ) ) { - pdataOld = dataPriv.get( src ); - events = pdataOld.events; - - if ( events ) { - dataPriv.remove( dest, "handle events" ); - - for ( type in events ) { - for ( i = 0, l = events[ type ].length; i < l; i++ ) { - jQuery.event.add( dest, type, events[ type ][ i ] ); - } - } - } - } - - // 2. Copy user data - if ( dataUser.hasData( src ) ) { - udataOld = dataUser.access( src ); - udataCur = jQuery.extend( {}, udataOld ); - - dataUser.set( dest, udataCur ); - } -} - -// Fix IE bugs, see support tests -function fixInput( src, dest ) { - var nodeName = dest.nodeName.toLowerCase(); - - // Fails to persist the checked state of a cloned checkbox or radio button. - if ( nodeName === "input" && rcheckableType.test( src.type ) ) { - dest.checked = src.checked; - - // Fails to return the selected option to the default selected state when cloning options - } else if ( nodeName === "input" || nodeName === "textarea" ) { - dest.defaultValue = src.defaultValue; - } -} - -function domManip( collection, args, callback, ignored ) { - - // Flatten any nested arrays - args = flat( args ); - - var fragment, first, scripts, hasScripts, node, doc, - i = 0, - l = collection.length, - iNoClone = l - 1, - value = args[ 0 ], - valueIsFunction = isFunction( value ); - - // We can't cloneNode fragments that contain checked, in WebKit - if ( valueIsFunction || - ( l > 1 && typeof value === "string" && - !support.checkClone && rchecked.test( value ) ) ) { - return collection.each( function( index ) { - var self = collection.eq( index ); - if ( valueIsFunction ) { - args[ 0 ] = value.call( this, index, self.html() ); - } - domManip( self, args, callback, ignored ); - } ); - } - - if ( l ) { - fragment = buildFragment( args, collection[ 0 ].ownerDocument, false, collection, ignored ); - first = fragment.firstChild; - - if ( fragment.childNodes.length === 1 ) { - fragment = first; - } - - // Require either new content or an interest in ignored elements to invoke the callback - if ( first || ignored ) { - scripts = jQuery.map( getAll( fragment, "script" ), disableScript ); - hasScripts = scripts.length; - - // Use the original fragment for the last item - // instead of the first because it can end up - // being emptied incorrectly in certain situations (#8070). - for ( ; i < l; i++ ) { - node = fragment; - - if ( i !== iNoClone ) { - node = jQuery.clone( node, true, true ); - - // Keep references to cloned scripts for later restoration - if ( hasScripts ) { - - // Support: Android <=4.0 only, PhantomJS 1 only - // push.apply(_, arraylike) throws on ancient WebKit - jQuery.merge( scripts, getAll( node, "script" ) ); - } - } - - callback.call( collection[ i ], node, i ); - } - - if ( hasScripts ) { - doc = scripts[ scripts.length - 1 ].ownerDocument; - - // Reenable scripts - jQuery.map( scripts, restoreScript ); - - // Evaluate executable scripts on first document insertion - for ( i = 0; i < hasScripts; i++ ) { - node = scripts[ i ]; - if ( rscriptType.test( node.type || "" ) && - !dataPriv.access( node, "globalEval" ) && - jQuery.contains( doc, node ) ) { - - if ( node.src && ( node.type || "" ).toLowerCase() !== "module" ) { - - // Optional AJAX dependency, but won't run scripts if not present - if ( jQuery._evalUrl && !node.noModule ) { - jQuery._evalUrl( node.src, { - nonce: node.nonce || node.getAttribute( "nonce" ) - }, doc ); - } - } else { - DOMEval( node.textContent.replace( rcleanScript, "" ), node, doc ); - } - } - } - } - } - } - - return collection; -} - -function remove( elem, selector, keepData ) { - var node, - nodes = selector ? jQuery.filter( selector, elem ) : elem, - i = 0; - - for ( ; ( node = nodes[ i ] ) != null; i++ ) { - if ( !keepData && node.nodeType === 1 ) { - jQuery.cleanData( getAll( node ) ); - } - - if ( node.parentNode ) { - if ( keepData && isAttached( node ) ) { - setGlobalEval( getAll( node, "script" ) ); - } - node.parentNode.removeChild( node ); - } - } - - return elem; -} - -jQuery.extend( { - htmlPrefilter: function( html ) { - return html; - }, - - clone: function( elem, dataAndEvents, deepDataAndEvents ) { - var i, l, srcElements, destElements, - clone = elem.cloneNode( true ), - inPage = isAttached( elem ); - - // Fix IE cloning issues - if ( !support.noCloneChecked && ( elem.nodeType === 1 || elem.nodeType === 11 ) && - !jQuery.isXMLDoc( elem ) ) { - - // We eschew Sizzle here for performance reasons: https://jsperf.com/getall-vs-sizzle/2 - destElements = getAll( clone ); - srcElements = getAll( elem ); - - for ( i = 0, l = srcElements.length; i < l; i++ ) { - fixInput( srcElements[ i ], destElements[ i ] ); - } - } - - // Copy the events from the original to the clone - if ( dataAndEvents ) { - if ( deepDataAndEvents ) { - srcElements = srcElements || getAll( elem ); - destElements = destElements || getAll( clone ); - - for ( i = 0, l = srcElements.length; i < l; i++ ) { - cloneCopyEvent( srcElements[ i ], destElements[ i ] ); - } - } else { - cloneCopyEvent( elem, clone ); - } - } - - // Preserve script evaluation history - destElements = getAll( clone, "script" ); - if ( destElements.length > 0 ) { - setGlobalEval( destElements, !inPage && getAll( elem, "script" ) ); - } - - // Return the cloned set - return clone; - }, - - cleanData: function( elems ) { - var data, elem, type, - special = jQuery.event.special, - i = 0; - - for ( ; ( elem = elems[ i ] ) !== undefined; i++ ) { - if ( acceptData( elem ) ) { - if ( ( data = elem[ dataPriv.expando ] ) ) { - if ( data.events ) { - for ( type in data.events ) { - if ( special[ type ] ) { - jQuery.event.remove( elem, type ); - - // This is a shortcut to avoid jQuery.event.remove's overhead - } else { - jQuery.removeEvent( elem, type, data.handle ); - } - } - } - - // Support: Chrome <=35 - 45+ - // Assign undefined instead of using delete, see Data#remove - elem[ dataPriv.expando ] = undefined; - } - if ( elem[ dataUser.expando ] ) { - - // Support: Chrome <=35 - 45+ - // Assign undefined instead of using delete, see Data#remove - elem[ dataUser.expando ] = undefined; - } - } - } - } -} ); - -jQuery.fn.extend( { - detach: function( selector ) { - return remove( this, selector, true ); - }, - - remove: function( selector ) { - return remove( this, selector ); - }, - - text: function( value ) { - return access( this, function( value ) { - return value === undefined ? - jQuery.text( this ) : - this.empty().each( function() { - if ( this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9 ) { - this.textContent = value; - } - } ); - }, null, value, arguments.length ); - }, - - append: function() { - return domManip( this, arguments, function( elem ) { - if ( this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9 ) { - var target = manipulationTarget( this, elem ); - target.appendChild( elem ); - } - } ); - }, - - prepend: function() { - return domManip( this, arguments, function( elem ) { - if ( this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9 ) { - var target = manipulationTarget( this, elem ); - target.insertBefore( elem, target.firstChild ); - } - } ); - }, - - before: function() { - return domManip( this, arguments, function( elem ) { - if ( this.parentNode ) { - this.parentNode.insertBefore( elem, this ); - } - } ); - }, - - after: function() { - return domManip( this, arguments, function( elem ) { - if ( this.parentNode ) { - this.parentNode.insertBefore( elem, this.nextSibling ); - } - } ); - }, - - empty: function() { - var elem, - i = 0; - - for ( ; ( elem = this[ i ] ) != null; i++ ) { - if ( elem.nodeType === 1 ) { - - // Prevent memory leaks - jQuery.cleanData( getAll( elem, false ) ); - - // Remove any remaining nodes - elem.textContent = ""; - } - } - - return this; - }, - - clone: function( dataAndEvents, deepDataAndEvents ) { - dataAndEvents = dataAndEvents == null ? false : dataAndEvents; - deepDataAndEvents = deepDataAndEvents == null ? dataAndEvents : deepDataAndEvents; - - return this.map( function() { - return jQuery.clone( this, dataAndEvents, deepDataAndEvents ); - } ); - }, - - html: function( value ) { - return access( this, function( value ) { - var elem = this[ 0 ] || {}, - i = 0, - l = this.length; - - if ( value === undefined && elem.nodeType === 1 ) { - return elem.innerHTML; - } - - // See if we can take a shortcut and just use innerHTML - if ( typeof value === "string" && !rnoInnerhtml.test( value ) && - !wrapMap[ ( rtagName.exec( value ) || [ "", "" ] )[ 1 ].toLowerCase() ] ) { - - value = jQuery.htmlPrefilter( value ); - - try { - for ( ; i < l; i++ ) { - elem = this[ i ] || {}; - - // Remove element nodes and prevent memory leaks - if ( elem.nodeType === 1 ) { - jQuery.cleanData( getAll( elem, false ) ); - elem.innerHTML = value; - } - } - - elem = 0; - - // If using innerHTML throws an exception, use the fallback method - } catch ( e ) {} - } - - if ( elem ) { - this.empty().append( value ); - } - }, null, value, arguments.length ); - }, - - replaceWith: function() { - var ignored = []; - - // Make the changes, replacing each non-ignored context element with the new content - return domManip( this, arguments, function( elem ) { - var parent = this.parentNode; - - if ( jQuery.inArray( this, ignored ) < 0 ) { - jQuery.cleanData( getAll( this ) ); - if ( parent ) { - parent.replaceChild( elem, this ); - } - } - - // Force callback invocation - }, ignored ); - } -} ); - -jQuery.each( { - appendTo: "append", - prependTo: "prepend", - insertBefore: "before", - insertAfter: "after", - replaceAll: "replaceWith" -}, function( name, original ) { - jQuery.fn[ name ] = function( selector ) { - var elems, - ret = [], - insert = jQuery( selector ), - last = insert.length - 1, - i = 0; - - for ( ; i <= last; i++ ) { - elems = i === last ? this : this.clone( true ); - jQuery( insert[ i ] )[ original ]( elems ); - - // Support: Android <=4.0 only, PhantomJS 1 only - // .get() because push.apply(_, arraylike) throws on ancient WebKit - push.apply( ret, elems.get() ); - } - - return this.pushStack( ret ); - }; -} ); -var rnumnonpx = new RegExp( "^(" + pnum + ")(?!px)[a-z%]+$", "i" ); - -var getStyles = function( elem ) { - - // Support: IE <=11 only, Firefox <=30 (#15098, #14150) - // IE throws on elements created in popups - // FF meanwhile throws on frame elements through "defaultView.getComputedStyle" - var view = elem.ownerDocument.defaultView; - - if ( !view || !view.opener ) { - view = window; - } - - return view.getComputedStyle( elem ); - }; - -var swap = function( elem, options, callback ) { - var ret, name, - old = {}; - - // Remember the old values, and insert the new ones - for ( name in options ) { - old[ name ] = elem.style[ name ]; - elem.style[ name ] = options[ name ]; - } - - ret = callback.call( elem ); - - // Revert the old values - for ( name in options ) { - elem.style[ name ] = old[ name ]; - } - - return ret; -}; - - -var rboxStyle = new RegExp( cssExpand.join( "|" ), "i" ); - - - -( function() { - - // Executing both pixelPosition & boxSizingReliable tests require only one layout - // so they're executed at the same time to save the second computation. - function computeStyleTests() { - - // This is a singleton, we need to execute it only once - if ( !div ) { - return; - } - - container.style.cssText = "position:absolute;left:-11111px;width:60px;" + - "margin-top:1px;padding:0;border:0"; - div.style.cssText = - "position:relative;display:block;box-sizing:border-box;overflow:scroll;" + - "margin:auto;border:1px;padding:1px;" + - "width:60%;top:1%"; - documentElement.appendChild( container ).appendChild( div ); - - var divStyle = window.getComputedStyle( div ); - pixelPositionVal = divStyle.top !== "1%"; - - // Support: Android 4.0 - 4.3 only, Firefox <=3 - 44 - reliableMarginLeftVal = roundPixelMeasures( divStyle.marginLeft ) === 12; - - // Support: Android 4.0 - 4.3 only, Safari <=9.1 - 10.1, iOS <=7.0 - 9.3 - // Some styles come back with percentage values, even though they shouldn't - div.style.right = "60%"; - pixelBoxStylesVal = roundPixelMeasures( divStyle.right ) === 36; - - // Support: IE 9 - 11 only - // Detect misreporting of content dimensions for box-sizing:border-box elements - boxSizingReliableVal = roundPixelMeasures( divStyle.width ) === 36; - - // Support: IE 9 only - // Detect overflow:scroll screwiness (gh-3699) - // Support: Chrome <=64 - // Don't get tricked when zoom affects offsetWidth (gh-4029) - div.style.position = "absolute"; - scrollboxSizeVal = roundPixelMeasures( div.offsetWidth / 3 ) === 12; - - documentElement.removeChild( container ); - - // Nullify the div so it wouldn't be stored in the memory and - // it will also be a sign that checks already performed - div = null; - } - - function roundPixelMeasures( measure ) { - return Math.round( parseFloat( measure ) ); - } - - var pixelPositionVal, boxSizingReliableVal, scrollboxSizeVal, pixelBoxStylesVal, - reliableTrDimensionsVal, reliableMarginLeftVal, - container = document.createElement( "div" ), - div = document.createElement( "div" ); - - // Finish early in limited (non-browser) environments - if ( !div.style ) { - return; - } - - // Support: IE <=9 - 11 only - // Style of cloned element affects source element cloned (#8908) - div.style.backgroundClip = "content-box"; - div.cloneNode( true ).style.backgroundClip = ""; - support.clearCloneStyle = div.style.backgroundClip === "content-box"; - - jQuery.extend( support, { - boxSizingReliable: function() { - computeStyleTests(); - return boxSizingReliableVal; - }, - pixelBoxStyles: function() { - computeStyleTests(); - return pixelBoxStylesVal; - }, - pixelPosition: function() { - computeStyleTests(); - return pixelPositionVal; - }, - reliableMarginLeft: function() { - computeStyleTests(); - return reliableMarginLeftVal; - }, - scrollboxSize: function() { - computeStyleTests(); - return scrollboxSizeVal; - }, - - // Support: IE 9 - 11+, Edge 15 - 18+ - // IE/Edge misreport `getComputedStyle` of table rows with width/height - // set in CSS while `offset*` properties report correct values. - // Behavior in IE 9 is more subtle than in newer versions & it passes - // some versions of this test; make sure not to make it pass there! - reliableTrDimensions: function() { - var table, tr, trChild, trStyle; - if ( reliableTrDimensionsVal == null ) { - table = document.createElement( "table" ); - tr = document.createElement( "tr" ); - trChild = document.createElement( "div" ); - - table.style.cssText = "position:absolute;left:-11111px"; - tr.style.height = "1px"; - trChild.style.height = "9px"; - - documentElement - .appendChild( table ) - .appendChild( tr ) - .appendChild( trChild ); - - trStyle = window.getComputedStyle( tr ); - reliableTrDimensionsVal = parseInt( trStyle.height ) > 3; - - documentElement.removeChild( table ); - } - return reliableTrDimensionsVal; - } - } ); -} )(); - - -function curCSS( elem, name, computed ) { - var width, minWidth, maxWidth, ret, - - // Support: Firefox 51+ - // Retrieving style before computed somehow - // fixes an issue with getting wrong values - // on detached elements - style = elem.style; - - computed = computed || getStyles( elem ); - - // getPropertyValue is needed for: - // .css('filter') (IE 9 only, #12537) - // .css('--customProperty) (#3144) - if ( computed ) { - ret = computed.getPropertyValue( name ) || computed[ name ]; - - if ( ret === "" && !isAttached( elem ) ) { - ret = jQuery.style( elem, name ); - } - - // A tribute to the "awesome hack by Dean Edwards" - // Android Browser returns percentage for some values, - // but width seems to be reliably pixels. - // This is against the CSSOM draft spec: - // https://drafts.csswg.org/cssom/#resolved-values - if ( !support.pixelBoxStyles() && rnumnonpx.test( ret ) && rboxStyle.test( name ) ) { - - // Remember the original values - width = style.width; - minWidth = style.minWidth; - maxWidth = style.maxWidth; - - // Put in the new values to get a computed value out - style.minWidth = style.maxWidth = style.width = ret; - ret = computed.width; - - // Revert the changed values - style.width = width; - style.minWidth = minWidth; - style.maxWidth = maxWidth; - } - } - - return ret !== undefined ? - - // Support: IE <=9 - 11 only - // IE returns zIndex value as an integer. - ret + "" : - ret; -} - - -function addGetHookIf( conditionFn, hookFn ) { - - // Define the hook, we'll check on the first run if it's really needed. - return { - get: function() { - if ( conditionFn() ) { - - // Hook not needed (or it's not possible to use it due - // to missing dependency), remove it. - delete this.get; - return; - } - - // Hook needed; redefine it so that the support test is not executed again. - return ( this.get = hookFn ).apply( this, arguments ); - } - }; -} - - -var cssPrefixes = [ "Webkit", "Moz", "ms" ], - emptyStyle = document.createElement( "div" ).style, - vendorProps = {}; - -// Return a vendor-prefixed property or undefined -function vendorPropName( name ) { - - // Check for vendor prefixed names - var capName = name[ 0 ].toUpperCase() + name.slice( 1 ), - i = cssPrefixes.length; - - while ( i-- ) { - name = cssPrefixes[ i ] + capName; - if ( name in emptyStyle ) { - return name; - } - } -} - -// Return a potentially-mapped jQuery.cssProps or vendor prefixed property -function finalPropName( name ) { - var final = jQuery.cssProps[ name ] || vendorProps[ name ]; - - if ( final ) { - return final; - } - if ( name in emptyStyle ) { - return name; - } - return vendorProps[ name ] = vendorPropName( name ) || name; -} - - -var - - // Swappable if display is none or starts with table - // except "table", "table-cell", or "table-caption" - // See here for display values: https://developer.mozilla.org/en-US/docs/CSS/display - rdisplayswap = /^(none|table(?!-c[ea]).+)/, - rcustomProp = /^--/, - cssShow = { position: "absolute", visibility: "hidden", display: "block" }, - cssNormalTransform = { - letterSpacing: "0", - fontWeight: "400" - }; - -function setPositiveNumber( _elem, value, subtract ) { - - // Any relative (+/-) values have already been - // normalized at this point - var matches = rcssNum.exec( value ); - return matches ? - - // Guard against undefined "subtract", e.g., when used as in cssHooks - Math.max( 0, matches[ 2 ] - ( subtract || 0 ) ) + ( matches[ 3 ] || "px" ) : - value; -} - -function boxModelAdjustment( elem, dimension, box, isBorderBox, styles, computedVal ) { - var i = dimension === "width" ? 1 : 0, - extra = 0, - delta = 0; - - // Adjustment may not be necessary - if ( box === ( isBorderBox ? "border" : "content" ) ) { - return 0; - } - - for ( ; i < 4; i += 2 ) { - - // Both box models exclude margin - if ( box === "margin" ) { - delta += jQuery.css( elem, box + cssExpand[ i ], true, styles ); - } - - // If we get here with a content-box, we're seeking "padding" or "border" or "margin" - if ( !isBorderBox ) { - - // Add padding - delta += jQuery.css( elem, "padding" + cssExpand[ i ], true, styles ); - - // For "border" or "margin", add border - if ( box !== "padding" ) { - delta += jQuery.css( elem, "border" + cssExpand[ i ] + "Width", true, styles ); - - // But still keep track of it otherwise - } else { - extra += jQuery.css( elem, "border" + cssExpand[ i ] + "Width", true, styles ); - } - - // If we get here with a border-box (content + padding + border), we're seeking "content" or - // "padding" or "margin" - } else { - - // For "content", subtract padding - if ( box === "content" ) { - delta -= jQuery.css( elem, "padding" + cssExpand[ i ], true, styles ); - } - - // For "content" or "padding", subtract border - if ( box !== "margin" ) { - delta -= jQuery.css( elem, "border" + cssExpand[ i ] + "Width", true, styles ); - } - } - } - - // Account for positive content-box scroll gutter when requested by providing computedVal - if ( !isBorderBox && computedVal >= 0 ) { - - // offsetWidth/offsetHeight is a rounded sum of content, padding, scroll gutter, and border - // Assuming integer scroll gutter, subtract the rest and round down - delta += Math.max( 0, Math.ceil( - elem[ "offset" + dimension[ 0 ].toUpperCase() + dimension.slice( 1 ) ] - - computedVal - - delta - - extra - - 0.5 - - // If offsetWidth/offsetHeight is unknown, then we can't determine content-box scroll gutter - // Use an explicit zero to avoid NaN (gh-3964) - ) ) || 0; - } - - return delta; -} - -function getWidthOrHeight( elem, dimension, extra ) { - - // Start with computed style - var styles = getStyles( elem ), - - // To avoid forcing a reflow, only fetch boxSizing if we need it (gh-4322). - // Fake content-box until we know it's needed to know the true value. - boxSizingNeeded = !support.boxSizingReliable() || extra, - isBorderBox = boxSizingNeeded && - jQuery.css( elem, "boxSizing", false, styles ) === "border-box", - valueIsBorderBox = isBorderBox, - - val = curCSS( elem, dimension, styles ), - offsetProp = "offset" + dimension[ 0 ].toUpperCase() + dimension.slice( 1 ); - - // Support: Firefox <=54 - // Return a confounding non-pixel value or feign ignorance, as appropriate. - if ( rnumnonpx.test( val ) ) { - if ( !extra ) { - return val; - } - val = "auto"; - } - - - // Support: IE 9 - 11 only - // Use offsetWidth/offsetHeight for when box sizing is unreliable. - // In those cases, the computed value can be trusted to be border-box. - if ( ( !support.boxSizingReliable() && isBorderBox || - - // Support: IE 10 - 11+, Edge 15 - 18+ - // IE/Edge misreport `getComputedStyle` of table rows with width/height - // set in CSS while `offset*` properties report correct values. - // Interestingly, in some cases IE 9 doesn't suffer from this issue. - !support.reliableTrDimensions() && nodeName( elem, "tr" ) || - - // Fall back to offsetWidth/offsetHeight when value is "auto" - // This happens for inline elements with no explicit setting (gh-3571) - val === "auto" || - - // Support: Android <=4.1 - 4.3 only - // Also use offsetWidth/offsetHeight for misreported inline dimensions (gh-3602) - !parseFloat( val ) && jQuery.css( elem, "display", false, styles ) === "inline" ) && - - // Make sure the element is visible & connected - elem.getClientRects().length ) { - - isBorderBox = jQuery.css( elem, "boxSizing", false, styles ) === "border-box"; - - // Where available, offsetWidth/offsetHeight approximate border box dimensions. - // Where not available (e.g., SVG), assume unreliable box-sizing and interpret the - // retrieved value as a content box dimension. - valueIsBorderBox = offsetProp in elem; - if ( valueIsBorderBox ) { - val = elem[ offsetProp ]; - } - } - - // Normalize "" and auto - val = parseFloat( val ) || 0; - - // Adjust for the element's box model - return ( val + - boxModelAdjustment( - elem, - dimension, - extra || ( isBorderBox ? "border" : "content" ), - valueIsBorderBox, - styles, - - // Provide the current computed size to request scroll gutter calculation (gh-3589) - val - ) - ) + "px"; -} - -jQuery.extend( { - - // Add in style property hooks for overriding the default - // behavior of getting and setting a style property - cssHooks: { - opacity: { - get: function( elem, computed ) { - if ( computed ) { - - // We should always get a number back from opacity - var ret = curCSS( elem, "opacity" ); - return ret === "" ? "1" : ret; - } - } - } - }, - - // Don't automatically add "px" to these possibly-unitless properties - cssNumber: { - "animationIterationCount": true, - "columnCount": true, - "fillOpacity": true, - "flexGrow": true, - "flexShrink": true, - "fontWeight": true, - "gridArea": true, - "gridColumn": true, - "gridColumnEnd": true, - "gridColumnStart": true, - "gridRow": true, - "gridRowEnd": true, - "gridRowStart": true, - "lineHeight": true, - "opacity": true, - "order": true, - "orphans": true, - "widows": true, - "zIndex": true, - "zoom": true - }, - - // Add in properties whose names you wish to fix before - // setting or getting the value - cssProps: {}, - - // Get and set the style property on a DOM Node - style: function( elem, name, value, extra ) { - - // Don't set styles on text and comment nodes - if ( !elem || elem.nodeType === 3 || elem.nodeType === 8 || !elem.style ) { - return; - } - - // Make sure that we're working with the right name - var ret, type, hooks, - origName = camelCase( name ), - isCustomProp = rcustomProp.test( name ), - style = elem.style; - - // Make sure that we're working with the right name. We don't - // want to query the value if it is a CSS custom property - // since they are user-defined. - if ( !isCustomProp ) { - name = finalPropName( origName ); - } - - // Gets hook for the prefixed version, then unprefixed version - hooks = jQuery.cssHooks[ name ] || jQuery.cssHooks[ origName ]; - - // Check if we're setting a value - if ( value !== undefined ) { - type = typeof value; - - // Convert "+=" or "-=" to relative numbers (#7345) - if ( type === "string" && ( ret = rcssNum.exec( value ) ) && ret[ 1 ] ) { - value = adjustCSS( elem, name, ret ); - - // Fixes bug #9237 - type = "number"; - } - - // Make sure that null and NaN values aren't set (#7116) - if ( value == null || value !== value ) { - return; - } - - // If a number was passed in, add the unit (except for certain CSS properties) - // The isCustomProp check can be removed in jQuery 4.0 when we only auto-append - // "px" to a few hardcoded values. - if ( type === "number" && !isCustomProp ) { - value += ret && ret[ 3 ] || ( jQuery.cssNumber[ origName ] ? "" : "px" ); - } - - // background-* props affect original clone's values - if ( !support.clearCloneStyle && value === "" && name.indexOf( "background" ) === 0 ) { - style[ name ] = "inherit"; - } - - // If a hook was provided, use that value, otherwise just set the specified value - if ( !hooks || !( "set" in hooks ) || - ( value = hooks.set( elem, value, extra ) ) !== undefined ) { - - if ( isCustomProp ) { - style.setProperty( name, value ); - } else { - style[ name ] = value; - } - } - - } else { - - // If a hook was provided get the non-computed value from there - if ( hooks && "get" in hooks && - ( ret = hooks.get( elem, false, extra ) ) !== undefined ) { - - return ret; - } - - // Otherwise just get the value from the style object - return style[ name ]; - } - }, - - css: function( elem, name, extra, styles ) { - var val, num, hooks, - origName = camelCase( name ), - isCustomProp = rcustomProp.test( name ); - - // Make sure that we're working with the right name. We don't - // want to modify the value if it is a CSS custom property - // since they are user-defined. - if ( !isCustomProp ) { - name = finalPropName( origName ); - } - - // Try prefixed name followed by the unprefixed name - hooks = jQuery.cssHooks[ name ] || jQuery.cssHooks[ origName ]; - - // If a hook was provided get the computed value from there - if ( hooks && "get" in hooks ) { - val = hooks.get( elem, true, extra ); - } - - // Otherwise, if a way to get the computed value exists, use that - if ( val === undefined ) { - val = curCSS( elem, name, styles ); - } - - // Convert "normal" to computed value - if ( val === "normal" && name in cssNormalTransform ) { - val = cssNormalTransform[ name ]; - } - - // Make numeric if forced or a qualifier was provided and val looks numeric - if ( extra === "" || extra ) { - num = parseFloat( val ); - return extra === true || isFinite( num ) ? num || 0 : val; - } - - return val; - } -} ); - -jQuery.each( [ "height", "width" ], function( _i, dimension ) { - jQuery.cssHooks[ dimension ] = { - get: function( elem, computed, extra ) { - if ( computed ) { - - // Certain elements can have dimension info if we invisibly show them - // but it must have a current display style that would benefit - return rdisplayswap.test( jQuery.css( elem, "display" ) ) && - - // Support: Safari 8+ - // Table columns in Safari have non-zero offsetWidth & zero - // getBoundingClientRect().width unless display is changed. - // Support: IE <=11 only - // Running getBoundingClientRect on a disconnected node - // in IE throws an error. - ( !elem.getClientRects().length || !elem.getBoundingClientRect().width ) ? - swap( elem, cssShow, function() { - return getWidthOrHeight( elem, dimension, extra ); - } ) : - getWidthOrHeight( elem, dimension, extra ); - } - }, - - set: function( elem, value, extra ) { - var matches, - styles = getStyles( elem ), - - // Only read styles.position if the test has a chance to fail - // to avoid forcing a reflow. - scrollboxSizeBuggy = !support.scrollboxSize() && - styles.position === "absolute", - - // To avoid forcing a reflow, only fetch boxSizing if we need it (gh-3991) - boxSizingNeeded = scrollboxSizeBuggy || extra, - isBorderBox = boxSizingNeeded && - jQuery.css( elem, "boxSizing", false, styles ) === "border-box", - subtract = extra ? - boxModelAdjustment( - elem, - dimension, - extra, - isBorderBox, - styles - ) : - 0; - - // Account for unreliable border-box dimensions by comparing offset* to computed and - // faking a content-box to get border and padding (gh-3699) - if ( isBorderBox && scrollboxSizeBuggy ) { - subtract -= Math.ceil( - elem[ "offset" + dimension[ 0 ].toUpperCase() + dimension.slice( 1 ) ] - - parseFloat( styles[ dimension ] ) - - boxModelAdjustment( elem, dimension, "border", false, styles ) - - 0.5 - ); - } - - // Convert to pixels if value adjustment is needed - if ( subtract && ( matches = rcssNum.exec( value ) ) && - ( matches[ 3 ] || "px" ) !== "px" ) { - - elem.style[ dimension ] = value; - value = jQuery.css( elem, dimension ); - } - - return setPositiveNumber( elem, value, subtract ); - } - }; -} ); - -jQuery.cssHooks.marginLeft = addGetHookIf( support.reliableMarginLeft, - function( elem, computed ) { - if ( computed ) { - return ( parseFloat( curCSS( elem, "marginLeft" ) ) || - elem.getBoundingClientRect().left - - swap( elem, { marginLeft: 0 }, function() { - return elem.getBoundingClientRect().left; - } ) - ) + "px"; - } - } -); - -// These hooks are used by animate to expand properties -jQuery.each( { - margin: "", - padding: "", - border: "Width" -}, function( prefix, suffix ) { - jQuery.cssHooks[ prefix + suffix ] = { - expand: function( value ) { - var i = 0, - expanded = {}, - - // Assumes a single number if not a string - parts = typeof value === "string" ? value.split( " " ) : [ value ]; - - for ( ; i < 4; i++ ) { - expanded[ prefix + cssExpand[ i ] + suffix ] = - parts[ i ] || parts[ i - 2 ] || parts[ 0 ]; - } - - return expanded; - } - }; - - if ( prefix !== "margin" ) { - jQuery.cssHooks[ prefix + suffix ].set = setPositiveNumber; - } -} ); - -jQuery.fn.extend( { - css: function( name, value ) { - return access( this, function( elem, name, value ) { - var styles, len, - map = {}, - i = 0; - - if ( Array.isArray( name ) ) { - styles = getStyles( elem ); - len = name.length; - - for ( ; i < len; i++ ) { - map[ name[ i ] ] = jQuery.css( elem, name[ i ], false, styles ); - } - - return map; - } - - return value !== undefined ? - jQuery.style( elem, name, value ) : - jQuery.css( elem, name ); - }, name, value, arguments.length > 1 ); - } -} ); - - -function Tween( elem, options, prop, end, easing ) { - return new Tween.prototype.init( elem, options, prop, end, easing ); -} -jQuery.Tween = Tween; - -Tween.prototype = { - constructor: Tween, - init: function( elem, options, prop, end, easing, unit ) { - this.elem = elem; - this.prop = prop; - this.easing = easing || jQuery.easing._default; - this.options = options; - this.start = this.now = this.cur(); - this.end = end; - this.unit = unit || ( jQuery.cssNumber[ prop ] ? "" : "px" ); - }, - cur: function() { - var hooks = Tween.propHooks[ this.prop ]; - - return hooks && hooks.get ? - hooks.get( this ) : - Tween.propHooks._default.get( this ); - }, - run: function( percent ) { - var eased, - hooks = Tween.propHooks[ this.prop ]; - - if ( this.options.duration ) { - this.pos = eased = jQuery.easing[ this.easing ]( - percent, this.options.duration * percent, 0, 1, this.options.duration - ); - } else { - this.pos = eased = percent; - } - this.now = ( this.end - this.start ) * eased + this.start; - - if ( this.options.step ) { - this.options.step.call( this.elem, this.now, this ); - } - - if ( hooks && hooks.set ) { - hooks.set( this ); - } else { - Tween.propHooks._default.set( this ); - } - return this; - } -}; - -Tween.prototype.init.prototype = Tween.prototype; - -Tween.propHooks = { - _default: { - get: function( tween ) { - var result; - - // Use a property on the element directly when it is not a DOM element, - // or when there is no matching style property that exists. - if ( tween.elem.nodeType !== 1 || - tween.elem[ tween.prop ] != null && tween.elem.style[ tween.prop ] == null ) { - return tween.elem[ tween.prop ]; - } - - // Passing an empty string as a 3rd parameter to .css will automatically - // attempt a parseFloat and fallback to a string if the parse fails. - // Simple values such as "10px" are parsed to Float; - // complex values such as "rotate(1rad)" are returned as-is. - result = jQuery.css( tween.elem, tween.prop, "" ); - - // Empty strings, null, undefined and "auto" are converted to 0. - return !result || result === "auto" ? 0 : result; - }, - set: function( tween ) { - - // Use step hook for back compat. - // Use cssHook if its there. - // Use .style if available and use plain properties where available. - if ( jQuery.fx.step[ tween.prop ] ) { - jQuery.fx.step[ tween.prop ]( tween ); - } else if ( tween.elem.nodeType === 1 && ( - jQuery.cssHooks[ tween.prop ] || - tween.elem.style[ finalPropName( tween.prop ) ] != null ) ) { - jQuery.style( tween.elem, tween.prop, tween.now + tween.unit ); - } else { - tween.elem[ tween.prop ] = tween.now; - } - } - } -}; - -// Support: IE <=9 only -// Panic based approach to setting things on disconnected nodes -Tween.propHooks.scrollTop = Tween.propHooks.scrollLeft = { - set: function( tween ) { - if ( tween.elem.nodeType && tween.elem.parentNode ) { - tween.elem[ tween.prop ] = tween.now; - } - } -}; - -jQuery.easing = { - linear: function( p ) { - return p; - }, - swing: function( p ) { - return 0.5 - Math.cos( p * Math.PI ) / 2; - }, - _default: "swing" -}; - -jQuery.fx = Tween.prototype.init; - -// Back compat <1.8 extension point -jQuery.fx.step = {}; - - - - -var - fxNow, inProgress, - rfxtypes = /^(?:toggle|show|hide)$/, - rrun = /queueHooks$/; - -function schedule() { - if ( inProgress ) { - if ( document.hidden === false && window.requestAnimationFrame ) { - window.requestAnimationFrame( schedule ); - } else { - window.setTimeout( schedule, jQuery.fx.interval ); - } - - jQuery.fx.tick(); - } -} - -// Animations created synchronously will run synchronously -function createFxNow() { - window.setTimeout( function() { - fxNow = undefined; - } ); - return ( fxNow = Date.now() ); -} - -// Generate parameters to create a standard animation -function genFx( type, includeWidth ) { - var which, - i = 0, - attrs = { height: type }; - - // If we include width, step value is 1 to do all cssExpand values, - // otherwise step value is 2 to skip over Left and Right - includeWidth = includeWidth ? 1 : 0; - for ( ; i < 4; i += 2 - includeWidth ) { - which = cssExpand[ i ]; - attrs[ "margin" + which ] = attrs[ "padding" + which ] = type; - } - - if ( includeWidth ) { - attrs.opacity = attrs.width = type; - } - - return attrs; -} - -function createTween( value, prop, animation ) { - var tween, - collection = ( Animation.tweeners[ prop ] || [] ).concat( Animation.tweeners[ "*" ] ), - index = 0, - length = collection.length; - for ( ; index < length; index++ ) { - if ( ( tween = collection[ index ].call( animation, prop, value ) ) ) { - - // We're done with this property - return tween; - } - } -} - -function defaultPrefilter( elem, props, opts ) { - var prop, value, toggle, hooks, oldfire, propTween, restoreDisplay, display, - isBox = "width" in props || "height" in props, - anim = this, - orig = {}, - style = elem.style, - hidden = elem.nodeType && isHiddenWithinTree( elem ), - dataShow = dataPriv.get( elem, "fxshow" ); - - // Queue-skipping animations hijack the fx hooks - if ( !opts.queue ) { - hooks = jQuery._queueHooks( elem, "fx" ); - if ( hooks.unqueued == null ) { - hooks.unqueued = 0; - oldfire = hooks.empty.fire; - hooks.empty.fire = function() { - if ( !hooks.unqueued ) { - oldfire(); - } - }; - } - hooks.unqueued++; - - anim.always( function() { - - // Ensure the complete handler is called before this completes - anim.always( function() { - hooks.unqueued--; - if ( !jQuery.queue( elem, "fx" ).length ) { - hooks.empty.fire(); - } - } ); - } ); - } - - // Detect show/hide animations - for ( prop in props ) { - value = props[ prop ]; - if ( rfxtypes.test( value ) ) { - delete props[ prop ]; - toggle = toggle || value === "toggle"; - if ( value === ( hidden ? "hide" : "show" ) ) { - - // Pretend to be hidden if this is a "show" and - // there is still data from a stopped show/hide - if ( value === "show" && dataShow && dataShow[ prop ] !== undefined ) { - hidden = true; - - // Ignore all other no-op show/hide data - } else { - continue; - } - } - orig[ prop ] = dataShow && dataShow[ prop ] || jQuery.style( elem, prop ); - } - } - - // Bail out if this is a no-op like .hide().hide() - propTween = !jQuery.isEmptyObject( props ); - if ( !propTween && jQuery.isEmptyObject( orig ) ) { - return; - } - - // Restrict "overflow" and "display" styles during box animations - if ( isBox && elem.nodeType === 1 ) { - - // Support: IE <=9 - 11, Edge 12 - 15 - // Record all 3 overflow attributes because IE does not infer the shorthand - // from identically-valued overflowX and overflowY and Edge just mirrors - // the overflowX value there. - opts.overflow = [ style.overflow, style.overflowX, style.overflowY ]; - - // Identify a display type, preferring old show/hide data over the CSS cascade - restoreDisplay = dataShow && dataShow.display; - if ( restoreDisplay == null ) { - restoreDisplay = dataPriv.get( elem, "display" ); - } - display = jQuery.css( elem, "display" ); - if ( display === "none" ) { - if ( restoreDisplay ) { - display = restoreDisplay; - } else { - - // Get nonempty value(s) by temporarily forcing visibility - showHide( [ elem ], true ); - restoreDisplay = elem.style.display || restoreDisplay; - display = jQuery.css( elem, "display" ); - showHide( [ elem ] ); - } - } - - // Animate inline elements as inline-block - if ( display === "inline" || display === "inline-block" && restoreDisplay != null ) { - if ( jQuery.css( elem, "float" ) === "none" ) { - - // Restore the original display value at the end of pure show/hide animations - if ( !propTween ) { - anim.done( function() { - style.display = restoreDisplay; - } ); - if ( restoreDisplay == null ) { - display = style.display; - restoreDisplay = display === "none" ? "" : display; - } - } - style.display = "inline-block"; - } - } - } - - if ( opts.overflow ) { - style.overflow = "hidden"; - anim.always( function() { - style.overflow = opts.overflow[ 0 ]; - style.overflowX = opts.overflow[ 1 ]; - style.overflowY = opts.overflow[ 2 ]; - } ); - } - - // Implement show/hide animations - propTween = false; - for ( prop in orig ) { - - // General show/hide setup for this element animation - if ( !propTween ) { - if ( dataShow ) { - if ( "hidden" in dataShow ) { - hidden = dataShow.hidden; - } - } else { - dataShow = dataPriv.access( elem, "fxshow", { display: restoreDisplay } ); - } - - // Store hidden/visible for toggle so `.stop().toggle()` "reverses" - if ( toggle ) { - dataShow.hidden = !hidden; - } - - // Show elements before animating them - if ( hidden ) { - showHide( [ elem ], true ); - } - - /* eslint-disable no-loop-func */ - - anim.done( function() { - - /* eslint-enable no-loop-func */ - - // The final step of a "hide" animation is actually hiding the element - if ( !hidden ) { - showHide( [ elem ] ); - } - dataPriv.remove( elem, "fxshow" ); - for ( prop in orig ) { - jQuery.style( elem, prop, orig[ prop ] ); - } - } ); - } - - // Per-property setup - propTween = createTween( hidden ? dataShow[ prop ] : 0, prop, anim ); - if ( !( prop in dataShow ) ) { - dataShow[ prop ] = propTween.start; - if ( hidden ) { - propTween.end = propTween.start; - propTween.start = 0; - } - } - } -} - -function propFilter( props, specialEasing ) { - var index, name, easing, value, hooks; - - // camelCase, specialEasing and expand cssHook pass - for ( index in props ) { - name = camelCase( index ); - easing = specialEasing[ name ]; - value = props[ index ]; - if ( Array.isArray( value ) ) { - easing = value[ 1 ]; - value = props[ index ] = value[ 0 ]; - } - - if ( index !== name ) { - props[ name ] = value; - delete props[ index ]; - } - - hooks = jQuery.cssHooks[ name ]; - if ( hooks && "expand" in hooks ) { - value = hooks.expand( value ); - delete props[ name ]; - - // Not quite $.extend, this won't overwrite existing keys. - // Reusing 'index' because we have the correct "name" - for ( index in value ) { - if ( !( index in props ) ) { - props[ index ] = value[ index ]; - specialEasing[ index ] = easing; - } - } - } else { - specialEasing[ name ] = easing; - } - } -} - -function Animation( elem, properties, options ) { - var result, - stopped, - index = 0, - length = Animation.prefilters.length, - deferred = jQuery.Deferred().always( function() { - - // Don't match elem in the :animated selector - delete tick.elem; - } ), - tick = function() { - if ( stopped ) { - return false; - } - var currentTime = fxNow || createFxNow(), - remaining = Math.max( 0, animation.startTime + animation.duration - currentTime ), - - // Support: Android 2.3 only - // Archaic crash bug won't allow us to use `1 - ( 0.5 || 0 )` (#12497) - temp = remaining / animation.duration || 0, - percent = 1 - temp, - index = 0, - length = animation.tweens.length; - - for ( ; index < length; index++ ) { - animation.tweens[ index ].run( percent ); - } - - deferred.notifyWith( elem, [ animation, percent, remaining ] ); - - // If there's more to do, yield - if ( percent < 1 && length ) { - return remaining; - } - - // If this was an empty animation, synthesize a final progress notification - if ( !length ) { - deferred.notifyWith( elem, [ animation, 1, 0 ] ); - } - - // Resolve the animation and report its conclusion - deferred.resolveWith( elem, [ animation ] ); - return false; - }, - animation = deferred.promise( { - elem: elem, - props: jQuery.extend( {}, properties ), - opts: jQuery.extend( true, { - specialEasing: {}, - easing: jQuery.easing._default - }, options ), - originalProperties: properties, - originalOptions: options, - startTime: fxNow || createFxNow(), - duration: options.duration, - tweens: [], - createTween: function( prop, end ) { - var tween = jQuery.Tween( elem, animation.opts, prop, end, - animation.opts.specialEasing[ prop ] || animation.opts.easing ); - animation.tweens.push( tween ); - return tween; - }, - stop: function( gotoEnd ) { - var index = 0, - - // If we are going to the end, we want to run all the tweens - // otherwise we skip this part - length = gotoEnd ? animation.tweens.length : 0; - if ( stopped ) { - return this; - } - stopped = true; - for ( ; index < length; index++ ) { - animation.tweens[ index ].run( 1 ); - } - - // Resolve when we played the last frame; otherwise, reject - if ( gotoEnd ) { - deferred.notifyWith( elem, [ animation, 1, 0 ] ); - deferred.resolveWith( elem, [ animation, gotoEnd ] ); - } else { - deferred.rejectWith( elem, [ animation, gotoEnd ] ); - } - return this; - } - } ), - props = animation.props; - - propFilter( props, animation.opts.specialEasing ); - - for ( ; index < length; index++ ) { - result = Animation.prefilters[ index ].call( animation, elem, props, animation.opts ); - if ( result ) { - if ( isFunction( result.stop ) ) { - jQuery._queueHooks( animation.elem, animation.opts.queue ).stop = - result.stop.bind( result ); - } - return result; - } - } - - jQuery.map( props, createTween, animation ); - - if ( isFunction( animation.opts.start ) ) { - animation.opts.start.call( elem, animation ); - } - - // Attach callbacks from options - animation - .progress( animation.opts.progress ) - .done( animation.opts.done, animation.opts.complete ) - .fail( animation.opts.fail ) - .always( animation.opts.always ); - - jQuery.fx.timer( - jQuery.extend( tick, { - elem: elem, - anim: animation, - queue: animation.opts.queue - } ) - ); - - return animation; -} - -jQuery.Animation = jQuery.extend( Animation, { - - tweeners: { - "*": [ function( prop, value ) { - var tween = this.createTween( prop, value ); - adjustCSS( tween.elem, prop, rcssNum.exec( value ), tween ); - return tween; - } ] - }, - - tweener: function( props, callback ) { - if ( isFunction( props ) ) { - callback = props; - props = [ "*" ]; - } else { - props = props.match( rnothtmlwhite ); - } - - var prop, - index = 0, - length = props.length; - - for ( ; index < length; index++ ) { - prop = props[ index ]; - Animation.tweeners[ prop ] = Animation.tweeners[ prop ] || []; - Animation.tweeners[ prop ].unshift( callback ); - } - }, - - prefilters: [ defaultPrefilter ], - - prefilter: function( callback, prepend ) { - if ( prepend ) { - Animation.prefilters.unshift( callback ); - } else { - Animation.prefilters.push( callback ); - } - } -} ); - -jQuery.speed = function( speed, easing, fn ) { - var opt = speed && typeof speed === "object" ? jQuery.extend( {}, speed ) : { - complete: fn || !fn && easing || - isFunction( speed ) && speed, - duration: speed, - easing: fn && easing || easing && !isFunction( easing ) && easing - }; - - // Go to the end state if fx are off - if ( jQuery.fx.off ) { - opt.duration = 0; - - } else { - if ( typeof opt.duration !== "number" ) { - if ( opt.duration in jQuery.fx.speeds ) { - opt.duration = jQuery.fx.speeds[ opt.duration ]; - - } else { - opt.duration = jQuery.fx.speeds._default; - } - } - } - - // Normalize opt.queue - true/undefined/null -> "fx" - if ( opt.queue == null || opt.queue === true ) { - opt.queue = "fx"; - } - - // Queueing - opt.old = opt.complete; - - opt.complete = function() { - if ( isFunction( opt.old ) ) { - opt.old.call( this ); - } - - if ( opt.queue ) { - jQuery.dequeue( this, opt.queue ); - } - }; - - return opt; -}; - -jQuery.fn.extend( { - fadeTo: function( speed, to, easing, callback ) { - - // Show any hidden elements after setting opacity to 0 - return this.filter( isHiddenWithinTree ).css( "opacity", 0 ).show() - - // Animate to the value specified - .end().animate( { opacity: to }, speed, easing, callback ); - }, - animate: function( prop, speed, easing, callback ) { - var empty = jQuery.isEmptyObject( prop ), - optall = jQuery.speed( speed, easing, callback ), - doAnimation = function() { - - // Operate on a copy of prop so per-property easing won't be lost - var anim = Animation( this, jQuery.extend( {}, prop ), optall ); - - // Empty animations, or finishing resolves immediately - if ( empty || dataPriv.get( this, "finish" ) ) { - anim.stop( true ); - } - }; - doAnimation.finish = doAnimation; - - return empty || optall.queue === false ? - this.each( doAnimation ) : - this.queue( optall.queue, doAnimation ); - }, - stop: function( type, clearQueue, gotoEnd ) { - var stopQueue = function( hooks ) { - var stop = hooks.stop; - delete hooks.stop; - stop( gotoEnd ); - }; - - if ( typeof type !== "string" ) { - gotoEnd = clearQueue; - clearQueue = type; - type = undefined; - } - if ( clearQueue ) { - this.queue( type || "fx", [] ); - } - - return this.each( function() { - var dequeue = true, - index = type != null && type + "queueHooks", - timers = jQuery.timers, - data = dataPriv.get( this ); - - if ( index ) { - if ( data[ index ] && data[ index ].stop ) { - stopQueue( data[ index ] ); - } - } else { - for ( index in data ) { - if ( data[ index ] && data[ index ].stop && rrun.test( index ) ) { - stopQueue( data[ index ] ); - } - } - } - - for ( index = timers.length; index--; ) { - if ( timers[ index ].elem === this && - ( type == null || timers[ index ].queue === type ) ) { - - timers[ index ].anim.stop( gotoEnd ); - dequeue = false; - timers.splice( index, 1 ); - } - } - - // Start the next in the queue if the last step wasn't forced. - // Timers currently will call their complete callbacks, which - // will dequeue but only if they were gotoEnd. - if ( dequeue || !gotoEnd ) { - jQuery.dequeue( this, type ); - } - } ); - }, - finish: function( type ) { - if ( type !== false ) { - type = type || "fx"; - } - return this.each( function() { - var index, - data = dataPriv.get( this ), - queue = data[ type + "queue" ], - hooks = data[ type + "queueHooks" ], - timers = jQuery.timers, - length = queue ? queue.length : 0; - - // Enable finishing flag on private data - data.finish = true; - - // Empty the queue first - jQuery.queue( this, type, [] ); - - if ( hooks && hooks.stop ) { - hooks.stop.call( this, true ); - } - - // Look for any active animations, and finish them - for ( index = timers.length; index--; ) { - if ( timers[ index ].elem === this && timers[ index ].queue === type ) { - timers[ index ].anim.stop( true ); - timers.splice( index, 1 ); - } - } - - // Look for any animations in the old queue and finish them - for ( index = 0; index < length; index++ ) { - if ( queue[ index ] && queue[ index ].finish ) { - queue[ index ].finish.call( this ); - } - } - - // Turn off finishing flag - delete data.finish; - } ); - } -} ); - -jQuery.each( [ "toggle", "show", "hide" ], function( _i, name ) { - var cssFn = jQuery.fn[ name ]; - jQuery.fn[ name ] = function( speed, easing, callback ) { - return speed == null || typeof speed === "boolean" ? - cssFn.apply( this, arguments ) : - this.animate( genFx( name, true ), speed, easing, callback ); - }; -} ); - -// Generate shortcuts for custom animations -jQuery.each( { - slideDown: genFx( "show" ), - slideUp: genFx( "hide" ), - slideToggle: genFx( "toggle" ), - fadeIn: { opacity: "show" }, - fadeOut: { opacity: "hide" }, - fadeToggle: { opacity: "toggle" } -}, function( name, props ) { - jQuery.fn[ name ] = function( speed, easing, callback ) { - return this.animate( props, speed, easing, callback ); - }; -} ); - -jQuery.timers = []; -jQuery.fx.tick = function() { - var timer, - i = 0, - timers = jQuery.timers; - - fxNow = Date.now(); - - for ( ; i < timers.length; i++ ) { - timer = timers[ i ]; - - // Run the timer and safely remove it when done (allowing for external removal) - if ( !timer() && timers[ i ] === timer ) { - timers.splice( i--, 1 ); - } - } - - if ( !timers.length ) { - jQuery.fx.stop(); - } - fxNow = undefined; -}; - -jQuery.fx.timer = function( timer ) { - jQuery.timers.push( timer ); - jQuery.fx.start(); -}; - -jQuery.fx.interval = 13; -jQuery.fx.start = function() { - if ( inProgress ) { - return; - } - - inProgress = true; - schedule(); -}; - -jQuery.fx.stop = function() { - inProgress = null; -}; - -jQuery.fx.speeds = { - slow: 600, - fast: 200, - - // Default speed - _default: 400 -}; - - -// Based off of the plugin by Clint Helfers, with permission. -// https://web.archive.org/web/20100324014747/http://blindsignals.com/index.php/2009/07/jquery-delay/ -jQuery.fn.delay = function( time, type ) { - time = jQuery.fx ? jQuery.fx.speeds[ time ] || time : time; - type = type || "fx"; - - return this.queue( type, function( next, hooks ) { - var timeout = window.setTimeout( next, time ); - hooks.stop = function() { - window.clearTimeout( timeout ); - }; - } ); -}; - - -( function() { - var input = document.createElement( "input" ), - select = document.createElement( "select" ), - opt = select.appendChild( document.createElement( "option" ) ); - - input.type = "checkbox"; - - // Support: Android <=4.3 only - // Default value for a checkbox should be "on" - support.checkOn = input.value !== ""; - - // Support: IE <=11 only - // Must access selectedIndex to make default options select - support.optSelected = opt.selected; - - // Support: IE <=11 only - // An input loses its value after becoming a radio - input = document.createElement( "input" ); - input.value = "t"; - input.type = "radio"; - support.radioValue = input.value === "t"; -} )(); - - -var boolHook, - attrHandle = jQuery.expr.attrHandle; - -jQuery.fn.extend( { - attr: function( name, value ) { - return access( this, jQuery.attr, name, value, arguments.length > 1 ); - }, - - removeAttr: function( name ) { - return this.each( function() { - jQuery.removeAttr( this, name ); - } ); - } -} ); - -jQuery.extend( { - attr: function( elem, name, value ) { - var ret, hooks, - nType = elem.nodeType; - - // Don't get/set attributes on text, comment and attribute nodes - if ( nType === 3 || nType === 8 || nType === 2 ) { - return; - } - - // Fallback to prop when attributes are not supported - if ( typeof elem.getAttribute === "undefined" ) { - return jQuery.prop( elem, name, value ); - } - - // Attribute hooks are determined by the lowercase version - // Grab necessary hook if one is defined - if ( nType !== 1 || !jQuery.isXMLDoc( elem ) ) { - hooks = jQuery.attrHooks[ name.toLowerCase() ] || - ( jQuery.expr.match.bool.test( name ) ? boolHook : undefined ); - } - - if ( value !== undefined ) { - if ( value === null ) { - jQuery.removeAttr( elem, name ); - return; - } - - if ( hooks && "set" in hooks && - ( ret = hooks.set( elem, value, name ) ) !== undefined ) { - return ret; - } - - elem.setAttribute( name, value + "" ); - return value; - } - - if ( hooks && "get" in hooks && ( ret = hooks.get( elem, name ) ) !== null ) { - return ret; - } - - ret = jQuery.find.attr( elem, name ); - - // Non-existent attributes return null, we normalize to undefined - return ret == null ? undefined : ret; - }, - - attrHooks: { - type: { - set: function( elem, value ) { - if ( !support.radioValue && value === "radio" && - nodeName( elem, "input" ) ) { - var val = elem.value; - elem.setAttribute( "type", value ); - if ( val ) { - elem.value = val; - } - return value; - } - } - } - }, - - removeAttr: function( elem, value ) { - var name, - i = 0, - - // Attribute names can contain non-HTML whitespace characters - // https://html.spec.whatwg.org/multipage/syntax.html#attributes-2 - attrNames = value && value.match( rnothtmlwhite ); - - if ( attrNames && elem.nodeType === 1 ) { - while ( ( name = attrNames[ i++ ] ) ) { - elem.removeAttribute( name ); - } - } - } -} ); - -// Hooks for boolean attributes -boolHook = { - set: function( elem, value, name ) { - if ( value === false ) { - - // Remove boolean attributes when set to false - jQuery.removeAttr( elem, name ); - } else { - elem.setAttribute( name, name ); - } - return name; - } -}; - -jQuery.each( jQuery.expr.match.bool.source.match( /\w+/g ), function( _i, name ) { - var getter = attrHandle[ name ] || jQuery.find.attr; - - attrHandle[ name ] = function( elem, name, isXML ) { - var ret, handle, - lowercaseName = name.toLowerCase(); - - if ( !isXML ) { - - // Avoid an infinite loop by temporarily removing this function from the getter - handle = attrHandle[ lowercaseName ]; - attrHandle[ lowercaseName ] = ret; - ret = getter( elem, name, isXML ) != null ? - lowercaseName : - null; - attrHandle[ lowercaseName ] = handle; - } - return ret; - }; -} ); - - - - -var rfocusable = /^(?:input|select|textarea|button)$/i, - rclickable = /^(?:a|area)$/i; - -jQuery.fn.extend( { - prop: function( name, value ) { - return access( this, jQuery.prop, name, value, arguments.length > 1 ); - }, - - removeProp: function( name ) { - return this.each( function() { - delete this[ jQuery.propFix[ name ] || name ]; - } ); - } -} ); - -jQuery.extend( { - prop: function( elem, name, value ) { - var ret, hooks, - nType = elem.nodeType; - - // Don't get/set properties on text, comment and attribute nodes - if ( nType === 3 || nType === 8 || nType === 2 ) { - return; - } - - if ( nType !== 1 || !jQuery.isXMLDoc( elem ) ) { - - // Fix name and attach hooks - name = jQuery.propFix[ name ] || name; - hooks = jQuery.propHooks[ name ]; - } - - if ( value !== undefined ) { - if ( hooks && "set" in hooks && - ( ret = hooks.set( elem, value, name ) ) !== undefined ) { - return ret; - } - - return ( elem[ name ] = value ); - } - - if ( hooks && "get" in hooks && ( ret = hooks.get( elem, name ) ) !== null ) { - return ret; - } - - return elem[ name ]; - }, - - propHooks: { - tabIndex: { - get: function( elem ) { - - // Support: IE <=9 - 11 only - // elem.tabIndex doesn't always return the - // correct value when it hasn't been explicitly set - // https://web.archive.org/web/20141116233347/http://fluidproject.org/blog/2008/01/09/getting-setting-and-removing-tabindex-values-with-javascript/ - // Use proper attribute retrieval(#12072) - var tabindex = jQuery.find.attr( elem, "tabindex" ); - - if ( tabindex ) { - return parseInt( tabindex, 10 ); - } - - if ( - rfocusable.test( elem.nodeName ) || - rclickable.test( elem.nodeName ) && - elem.href - ) { - return 0; - } - - return -1; - } - } - }, - - propFix: { - "for": "htmlFor", - "class": "className" - } -} ); - -// Support: IE <=11 only -// Accessing the selectedIndex property -// forces the browser to respect setting selected -// on the option -// The getter ensures a default option is selected -// when in an optgroup -// eslint rule "no-unused-expressions" is disabled for this code -// since it considers such accessions noop -if ( !support.optSelected ) { - jQuery.propHooks.selected = { - get: function( elem ) { - - /* eslint no-unused-expressions: "off" */ - - var parent = elem.parentNode; - if ( parent && parent.parentNode ) { - parent.parentNode.selectedIndex; - } - return null; - }, - set: function( elem ) { - - /* eslint no-unused-expressions: "off" */ - - var parent = elem.parentNode; - if ( parent ) { - parent.selectedIndex; - - if ( parent.parentNode ) { - parent.parentNode.selectedIndex; - } - } - } - }; -} - -jQuery.each( [ - "tabIndex", - "readOnly", - "maxLength", - "cellSpacing", - "cellPadding", - "rowSpan", - "colSpan", - "useMap", - "frameBorder", - "contentEditable" -], function() { - jQuery.propFix[ this.toLowerCase() ] = this; -} ); - - - - - // Strip and collapse whitespace according to HTML spec - // https://infra.spec.whatwg.org/#strip-and-collapse-ascii-whitespace - function stripAndCollapse( value ) { - var tokens = value.match( rnothtmlwhite ) || []; - return tokens.join( " " ); - } - - -function getClass( elem ) { - return elem.getAttribute && elem.getAttribute( "class" ) || ""; -} - -function classesToArray( value ) { - if ( Array.isArray( value ) ) { - return value; - } - if ( typeof value === "string" ) { - return value.match( rnothtmlwhite ) || []; - } - return []; -} - -jQuery.fn.extend( { - addClass: function( value ) { - var classes, elem, cur, curValue, clazz, j, finalValue, - i = 0; - - if ( isFunction( value ) ) { - return this.each( function( j ) { - jQuery( this ).addClass( value.call( this, j, getClass( this ) ) ); - } ); - } - - classes = classesToArray( value ); - - if ( classes.length ) { - while ( ( elem = this[ i++ ] ) ) { - curValue = getClass( elem ); - cur = elem.nodeType === 1 && ( " " + stripAndCollapse( curValue ) + " " ); - - if ( cur ) { - j = 0; - while ( ( clazz = classes[ j++ ] ) ) { - if ( cur.indexOf( " " + clazz + " " ) < 0 ) { - cur += clazz + " "; - } - } - - // Only assign if different to avoid unneeded rendering. - finalValue = stripAndCollapse( cur ); - if ( curValue !== finalValue ) { - elem.setAttribute( "class", finalValue ); - } - } - } - } - - return this; - }, - - removeClass: function( value ) { - var classes, elem, cur, curValue, clazz, j, finalValue, - i = 0; - - if ( isFunction( value ) ) { - return this.each( function( j ) { - jQuery( this ).removeClass( value.call( this, j, getClass( this ) ) ); - } ); - } - - if ( !arguments.length ) { - return this.attr( "class", "" ); - } - - classes = classesToArray( value ); - - if ( classes.length ) { - while ( ( elem = this[ i++ ] ) ) { - curValue = getClass( elem ); - - // This expression is here for better compressibility (see addClass) - cur = elem.nodeType === 1 && ( " " + stripAndCollapse( curValue ) + " " ); - - if ( cur ) { - j = 0; - while ( ( clazz = classes[ j++ ] ) ) { - - // Remove *all* instances - while ( cur.indexOf( " " + clazz + " " ) > -1 ) { - cur = cur.replace( " " + clazz + " ", " " ); - } - } - - // Only assign if different to avoid unneeded rendering. - finalValue = stripAndCollapse( cur ); - if ( curValue !== finalValue ) { - elem.setAttribute( "class", finalValue ); - } - } - } - } - - return this; - }, - - toggleClass: function( value, stateVal ) { - var type = typeof value, - isValidValue = type === "string" || Array.isArray( value ); - - if ( typeof stateVal === "boolean" && isValidValue ) { - return stateVal ? this.addClass( value ) : this.removeClass( value ); - } - - if ( isFunction( value ) ) { - return this.each( function( i ) { - jQuery( this ).toggleClass( - value.call( this, i, getClass( this ), stateVal ), - stateVal - ); - } ); - } - - return this.each( function() { - var className, i, self, classNames; - - if ( isValidValue ) { - - // Toggle individual class names - i = 0; - self = jQuery( this ); - classNames = classesToArray( value ); - - while ( ( className = classNames[ i++ ] ) ) { - - // Check each className given, space separated list - if ( self.hasClass( className ) ) { - self.removeClass( className ); - } else { - self.addClass( className ); - } - } - - // Toggle whole class name - } else if ( value === undefined || type === "boolean" ) { - className = getClass( this ); - if ( className ) { - - // Store className if set - dataPriv.set( this, "__className__", className ); - } - - // If the element has a class name or if we're passed `false`, - // then remove the whole classname (if there was one, the above saved it). - // Otherwise bring back whatever was previously saved (if anything), - // falling back to the empty string if nothing was stored. - if ( this.setAttribute ) { - this.setAttribute( "class", - className || value === false ? - "" : - dataPriv.get( this, "__className__" ) || "" - ); - } - } - } ); - }, - - hasClass: function( selector ) { - var className, elem, - i = 0; - - className = " " + selector + " "; - while ( ( elem = this[ i++ ] ) ) { - if ( elem.nodeType === 1 && - ( " " + stripAndCollapse( getClass( elem ) ) + " " ).indexOf( className ) > -1 ) { - return true; - } - } - - return false; - } -} ); - - - - -var rreturn = /\r/g; - -jQuery.fn.extend( { - val: function( value ) { - var hooks, ret, valueIsFunction, - elem = this[ 0 ]; - - if ( !arguments.length ) { - if ( elem ) { - hooks = jQuery.valHooks[ elem.type ] || - jQuery.valHooks[ elem.nodeName.toLowerCase() ]; - - if ( hooks && - "get" in hooks && - ( ret = hooks.get( elem, "value" ) ) !== undefined - ) { - return ret; - } - - ret = elem.value; - - // Handle most common string cases - if ( typeof ret === "string" ) { - return ret.replace( rreturn, "" ); - } - - // Handle cases where value is null/undef or number - return ret == null ? "" : ret; - } - - return; - } - - valueIsFunction = isFunction( value ); - - return this.each( function( i ) { - var val; - - if ( this.nodeType !== 1 ) { - return; - } - - if ( valueIsFunction ) { - val = value.call( this, i, jQuery( this ).val() ); - } else { - val = value; - } - - // Treat null/undefined as ""; convert numbers to string - if ( val == null ) { - val = ""; - - } else if ( typeof val === "number" ) { - val += ""; - - } else if ( Array.isArray( val ) ) { - val = jQuery.map( val, function( value ) { - return value == null ? "" : value + ""; - } ); - } - - hooks = jQuery.valHooks[ this.type ] || jQuery.valHooks[ this.nodeName.toLowerCase() ]; - - // If set returns undefined, fall back to normal setting - if ( !hooks || !( "set" in hooks ) || hooks.set( this, val, "value" ) === undefined ) { - this.value = val; - } - } ); - } -} ); - -jQuery.extend( { - valHooks: { - option: { - get: function( elem ) { - - var val = jQuery.find.attr( elem, "value" ); - return val != null ? - val : - - // Support: IE <=10 - 11 only - // option.text throws exceptions (#14686, #14858) - // Strip and collapse whitespace - // https://html.spec.whatwg.org/#strip-and-collapse-whitespace - stripAndCollapse( jQuery.text( elem ) ); - } - }, - select: { - get: function( elem ) { - var value, option, i, - options = elem.options, - index = elem.selectedIndex, - one = elem.type === "select-one", - values = one ? null : [], - max = one ? index + 1 : options.length; - - if ( index < 0 ) { - i = max; - - } else { - i = one ? index : 0; - } - - // Loop through all the selected options - for ( ; i < max; i++ ) { - option = options[ i ]; - - // Support: IE <=9 only - // IE8-9 doesn't update selected after form reset (#2551) - if ( ( option.selected || i === index ) && - - // Don't return options that are disabled or in a disabled optgroup - !option.disabled && - ( !option.parentNode.disabled || - !nodeName( option.parentNode, "optgroup" ) ) ) { - - // Get the specific value for the option - value = jQuery( option ).val(); - - // We don't need an array for one selects - if ( one ) { - return value; - } - - // Multi-Selects return an array - values.push( value ); - } - } - - return values; - }, - - set: function( elem, value ) { - var optionSet, option, - options = elem.options, - values = jQuery.makeArray( value ), - i = options.length; - - while ( i-- ) { - option = options[ i ]; - - /* eslint-disable no-cond-assign */ - - if ( option.selected = - jQuery.inArray( jQuery.valHooks.option.get( option ), values ) > -1 - ) { - optionSet = true; - } - - /* eslint-enable no-cond-assign */ - } - - // Force browsers to behave consistently when non-matching value is set - if ( !optionSet ) { - elem.selectedIndex = -1; - } - return values; - } - } - } -} ); - -// Radios and checkboxes getter/setter -jQuery.each( [ "radio", "checkbox" ], function() { - jQuery.valHooks[ this ] = { - set: function( elem, value ) { - if ( Array.isArray( value ) ) { - return ( elem.checked = jQuery.inArray( jQuery( elem ).val(), value ) > -1 ); - } - } - }; - if ( !support.checkOn ) { - jQuery.valHooks[ this ].get = function( elem ) { - return elem.getAttribute( "value" ) === null ? "on" : elem.value; - }; - } -} ); - - - - -// Return jQuery for attributes-only inclusion - - -support.focusin = "onfocusin" in window; - - -var rfocusMorph = /^(?:focusinfocus|focusoutblur)$/, - stopPropagationCallback = function( e ) { - e.stopPropagation(); - }; - -jQuery.extend( jQuery.event, { - - trigger: function( event, data, elem, onlyHandlers ) { - - var i, cur, tmp, bubbleType, ontype, handle, special, lastElement, - eventPath = [ elem || document ], - type = hasOwn.call( event, "type" ) ? event.type : event, - namespaces = hasOwn.call( event, "namespace" ) ? event.namespace.split( "." ) : []; - - cur = lastElement = tmp = elem = elem || document; - - // Don't do events on text and comment nodes - if ( elem.nodeType === 3 || elem.nodeType === 8 ) { - return; - } - - // focus/blur morphs to focusin/out; ensure we're not firing them right now - if ( rfocusMorph.test( type + jQuery.event.triggered ) ) { - return; - } - - if ( type.indexOf( "." ) > -1 ) { - - // Namespaced trigger; create a regexp to match event type in handle() - namespaces = type.split( "." ); - type = namespaces.shift(); - namespaces.sort(); - } - ontype = type.indexOf( ":" ) < 0 && "on" + type; - - // Caller can pass in a jQuery.Event object, Object, or just an event type string - event = event[ jQuery.expando ] ? - event : - new jQuery.Event( type, typeof event === "object" && event ); - - // Trigger bitmask: & 1 for native handlers; & 2 for jQuery (always true) - event.isTrigger = onlyHandlers ? 2 : 3; - event.namespace = namespaces.join( "." ); - event.rnamespace = event.namespace ? - new RegExp( "(^|\\.)" + namespaces.join( "\\.(?:.*\\.|)" ) + "(\\.|$)" ) : - null; - - // Clean up the event in case it is being reused - event.result = undefined; - if ( !event.target ) { - event.target = elem; - } - - // Clone any incoming data and prepend the event, creating the handler arg list - data = data == null ? - [ event ] : - jQuery.makeArray( data, [ event ] ); - - // Allow special events to draw outside the lines - special = jQuery.event.special[ type ] || {}; - if ( !onlyHandlers && special.trigger && special.trigger.apply( elem, data ) === false ) { - return; - } - - // Determine event propagation path in advance, per W3C events spec (#9951) - // Bubble up to document, then to window; watch for a global ownerDocument var (#9724) - if ( !onlyHandlers && !special.noBubble && !isWindow( elem ) ) { - - bubbleType = special.delegateType || type; - if ( !rfocusMorph.test( bubbleType + type ) ) { - cur = cur.parentNode; - } - for ( ; cur; cur = cur.parentNode ) { - eventPath.push( cur ); - tmp = cur; - } - - // Only add window if we got to document (e.g., not plain obj or detached DOM) - if ( tmp === ( elem.ownerDocument || document ) ) { - eventPath.push( tmp.defaultView || tmp.parentWindow || window ); - } - } - - // Fire handlers on the event path - i = 0; - while ( ( cur = eventPath[ i++ ] ) && !event.isPropagationStopped() ) { - lastElement = cur; - event.type = i > 1 ? - bubbleType : - special.bindType || type; - - // jQuery handler - handle = ( - dataPriv.get( cur, "events" ) || Object.create( null ) - )[ event.type ] && - dataPriv.get( cur, "handle" ); - if ( handle ) { - handle.apply( cur, data ); - } - - // Native handler - handle = ontype && cur[ ontype ]; - if ( handle && handle.apply && acceptData( cur ) ) { - event.result = handle.apply( cur, data ); - if ( event.result === false ) { - event.preventDefault(); - } - } - } - event.type = type; - - // If nobody prevented the default action, do it now - if ( !onlyHandlers && !event.isDefaultPrevented() ) { - - if ( ( !special._default || - special._default.apply( eventPath.pop(), data ) === false ) && - acceptData( elem ) ) { - - // Call a native DOM method on the target with the same name as the event. - // Don't do default actions on window, that's where global variables be (#6170) - if ( ontype && isFunction( elem[ type ] ) && !isWindow( elem ) ) { - - // Don't re-trigger an onFOO event when we call its FOO() method - tmp = elem[ ontype ]; - - if ( tmp ) { - elem[ ontype ] = null; - } - - // Prevent re-triggering of the same event, since we already bubbled it above - jQuery.event.triggered = type; - - if ( event.isPropagationStopped() ) { - lastElement.addEventListener( type, stopPropagationCallback ); - } - - elem[ type ](); - - if ( event.isPropagationStopped() ) { - lastElement.removeEventListener( type, stopPropagationCallback ); - } - - jQuery.event.triggered = undefined; - - if ( tmp ) { - elem[ ontype ] = tmp; - } - } - } - } - - return event.result; - }, - - // Piggyback on a donor event to simulate a different one - // Used only for `focus(in | out)` events - simulate: function( type, elem, event ) { - var e = jQuery.extend( - new jQuery.Event(), - event, - { - type: type, - isSimulated: true - } - ); - - jQuery.event.trigger( e, null, elem ); - } - -} ); - -jQuery.fn.extend( { - - trigger: function( type, data ) { - return this.each( function() { - jQuery.event.trigger( type, data, this ); - } ); - }, - triggerHandler: function( type, data ) { - var elem = this[ 0 ]; - if ( elem ) { - return jQuery.event.trigger( type, data, elem, true ); - } - } -} ); - - -// Support: Firefox <=44 -// Firefox doesn't have focus(in | out) events -// Related ticket - https://bugzilla.mozilla.org/show_bug.cgi?id=687787 -// -// Support: Chrome <=48 - 49, Safari <=9.0 - 9.1 -// focus(in | out) events fire after focus & blur events, -// which is spec violation - http://www.w3.org/TR/DOM-Level-3-Events/#events-focusevent-event-order -// Related ticket - https://bugs.chromium.org/p/chromium/issues/detail?id=449857 -if ( !support.focusin ) { - jQuery.each( { focus: "focusin", blur: "focusout" }, function( orig, fix ) { - - // Attach a single capturing handler on the document while someone wants focusin/focusout - var handler = function( event ) { - jQuery.event.simulate( fix, event.target, jQuery.event.fix( event ) ); - }; - - jQuery.event.special[ fix ] = { - setup: function() { - - // Handle: regular nodes (via `this.ownerDocument`), window - // (via `this.document`) & document (via `this`). - var doc = this.ownerDocument || this.document || this, - attaches = dataPriv.access( doc, fix ); - - if ( !attaches ) { - doc.addEventListener( orig, handler, true ); - } - dataPriv.access( doc, fix, ( attaches || 0 ) + 1 ); - }, - teardown: function() { - var doc = this.ownerDocument || this.document || this, - attaches = dataPriv.access( doc, fix ) - 1; - - if ( !attaches ) { - doc.removeEventListener( orig, handler, true ); - dataPriv.remove( doc, fix ); - - } else { - dataPriv.access( doc, fix, attaches ); - } - } - }; - } ); -} -var location = window.location; - -var nonce = { guid: Date.now() }; - -var rquery = ( /\?/ ); - - - -// Cross-browser xml parsing -jQuery.parseXML = function( data ) { - var xml; - if ( !data || typeof data !== "string" ) { - return null; - } - - // Support: IE 9 - 11 only - // IE throws on parseFromString with invalid input. - try { - xml = ( new window.DOMParser() ).parseFromString( data, "text/xml" ); - } catch ( e ) { - xml = undefined; - } - - if ( !xml || xml.getElementsByTagName( "parsererror" ).length ) { - jQuery.error( "Invalid XML: " + data ); - } - return xml; -}; - - -var - rbracket = /\[\]$/, - rCRLF = /\r?\n/g, - rsubmitterTypes = /^(?:submit|button|image|reset|file)$/i, - rsubmittable = /^(?:input|select|textarea|keygen)/i; - -function buildParams( prefix, obj, traditional, add ) { - var name; - - if ( Array.isArray( obj ) ) { - - // Serialize array item. - jQuery.each( obj, function( i, v ) { - if ( traditional || rbracket.test( prefix ) ) { - - // Treat each array item as a scalar. - add( prefix, v ); - - } else { - - // Item is non-scalar (array or object), encode its numeric index. - buildParams( - prefix + "[" + ( typeof v === "object" && v != null ? i : "" ) + "]", - v, - traditional, - add - ); - } - } ); - - } else if ( !traditional && toType( obj ) === "object" ) { - - // Serialize object item. - for ( name in obj ) { - buildParams( prefix + "[" + name + "]", obj[ name ], traditional, add ); - } - - } else { - - // Serialize scalar item. - add( prefix, obj ); - } -} - -// Serialize an array of form elements or a set of -// key/values into a query string -jQuery.param = function( a, traditional ) { - var prefix, - s = [], - add = function( key, valueOrFunction ) { - - // If value is a function, invoke it and use its return value - var value = isFunction( valueOrFunction ) ? - valueOrFunction() : - valueOrFunction; - - s[ s.length ] = encodeURIComponent( key ) + "=" + - encodeURIComponent( value == null ? "" : value ); - }; - - if ( a == null ) { - return ""; - } - - // If an array was passed in, assume that it is an array of form elements. - if ( Array.isArray( a ) || ( a.jquery && !jQuery.isPlainObject( a ) ) ) { - - // Serialize the form elements - jQuery.each( a, function() { - add( this.name, this.value ); - } ); - - } else { - - // If traditional, encode the "old" way (the way 1.3.2 or older - // did it), otherwise encode params recursively. - for ( prefix in a ) { - buildParams( prefix, a[ prefix ], traditional, add ); - } - } - - // Return the resulting serialization - return s.join( "&" ); -}; - -jQuery.fn.extend( { - serialize: function() { - return jQuery.param( this.serializeArray() ); - }, - serializeArray: function() { - return this.map( function() { - - // Can add propHook for "elements" to filter or add form elements - var elements = jQuery.prop( this, "elements" ); - return elements ? jQuery.makeArray( elements ) : this; - } ) - .filter( function() { - var type = this.type; - - // Use .is( ":disabled" ) so that fieldset[disabled] works - return this.name && !jQuery( this ).is( ":disabled" ) && - rsubmittable.test( this.nodeName ) && !rsubmitterTypes.test( type ) && - ( this.checked || !rcheckableType.test( type ) ); - } ) - .map( function( _i, elem ) { - var val = jQuery( this ).val(); - - if ( val == null ) { - return null; - } - - if ( Array.isArray( val ) ) { - return jQuery.map( val, function( val ) { - return { name: elem.name, value: val.replace( rCRLF, "\r\n" ) }; - } ); - } - - return { name: elem.name, value: val.replace( rCRLF, "\r\n" ) }; - } ).get(); - } -} ); - - -var - r20 = /%20/g, - rhash = /#.*$/, - rantiCache = /([?&])_=[^&]*/, - rheaders = /^(.*?):[ \t]*([^\r\n]*)$/mg, - - // #7653, #8125, #8152: local protocol detection - rlocalProtocol = /^(?:about|app|app-storage|.+-extension|file|res|widget):$/, - rnoContent = /^(?:GET|HEAD)$/, - rprotocol = /^\/\//, - - /* Prefilters - * 1) They are useful to introduce custom dataTypes (see ajax/jsonp.js for an example) - * 2) These are called: - * - BEFORE asking for a transport - * - AFTER param serialization (s.data is a string if s.processData is true) - * 3) key is the dataType - * 4) the catchall symbol "*" can be used - * 5) execution will start with transport dataType and THEN continue down to "*" if needed - */ - prefilters = {}, - - /* Transports bindings - * 1) key is the dataType - * 2) the catchall symbol "*" can be used - * 3) selection will start with transport dataType and THEN go to "*" if needed - */ - transports = {}, - - // Avoid comment-prolog char sequence (#10098); must appease lint and evade compression - allTypes = "*/".concat( "*" ), - - // Anchor tag for parsing the document origin - originAnchor = document.createElement( "a" ); - originAnchor.href = location.href; - -// Base "constructor" for jQuery.ajaxPrefilter and jQuery.ajaxTransport -function addToPrefiltersOrTransports( structure ) { - - // dataTypeExpression is optional and defaults to "*" - return function( dataTypeExpression, func ) { - - if ( typeof dataTypeExpression !== "string" ) { - func = dataTypeExpression; - dataTypeExpression = "*"; - } - - var dataType, - i = 0, - dataTypes = dataTypeExpression.toLowerCase().match( rnothtmlwhite ) || []; - - if ( isFunction( func ) ) { - - // For each dataType in the dataTypeExpression - while ( ( dataType = dataTypes[ i++ ] ) ) { - - // Prepend if requested - if ( dataType[ 0 ] === "+" ) { - dataType = dataType.slice( 1 ) || "*"; - ( structure[ dataType ] = structure[ dataType ] || [] ).unshift( func ); - - // Otherwise append - } else { - ( structure[ dataType ] = structure[ dataType ] || [] ).push( func ); - } - } - } - }; -} - -// Base inspection function for prefilters and transports -function inspectPrefiltersOrTransports( structure, options, originalOptions, jqXHR ) { - - var inspected = {}, - seekingTransport = ( structure === transports ); - - function inspect( dataType ) { - var selected; - inspected[ dataType ] = true; - jQuery.each( structure[ dataType ] || [], function( _, prefilterOrFactory ) { - var dataTypeOrTransport = prefilterOrFactory( options, originalOptions, jqXHR ); - if ( typeof dataTypeOrTransport === "string" && - !seekingTransport && !inspected[ dataTypeOrTransport ] ) { - - options.dataTypes.unshift( dataTypeOrTransport ); - inspect( dataTypeOrTransport ); - return false; - } else if ( seekingTransport ) { - return !( selected = dataTypeOrTransport ); - } - } ); - return selected; - } - - return inspect( options.dataTypes[ 0 ] ) || !inspected[ "*" ] && inspect( "*" ); -} - -// A special extend for ajax options -// that takes "flat" options (not to be deep extended) -// Fixes #9887 -function ajaxExtend( target, src ) { - var key, deep, - flatOptions = jQuery.ajaxSettings.flatOptions || {}; - - for ( key in src ) { - if ( src[ key ] !== undefined ) { - ( flatOptions[ key ] ? target : ( deep || ( deep = {} ) ) )[ key ] = src[ key ]; - } - } - if ( deep ) { - jQuery.extend( true, target, deep ); - } - - return target; -} - -/* Handles responses to an ajax request: - * - finds the right dataType (mediates between content-type and expected dataType) - * - returns the corresponding response - */ -function ajaxHandleResponses( s, jqXHR, responses ) { - - var ct, type, finalDataType, firstDataType, - contents = s.contents, - dataTypes = s.dataTypes; - - // Remove auto dataType and get content-type in the process - while ( dataTypes[ 0 ] === "*" ) { - dataTypes.shift(); - if ( ct === undefined ) { - ct = s.mimeType || jqXHR.getResponseHeader( "Content-Type" ); - } - } - - // Check if we're dealing with a known content-type - if ( ct ) { - for ( type in contents ) { - if ( contents[ type ] && contents[ type ].test( ct ) ) { - dataTypes.unshift( type ); - break; - } - } - } - - // Check to see if we have a response for the expected dataType - if ( dataTypes[ 0 ] in responses ) { - finalDataType = dataTypes[ 0 ]; - } else { - - // Try convertible dataTypes - for ( type in responses ) { - if ( !dataTypes[ 0 ] || s.converters[ type + " " + dataTypes[ 0 ] ] ) { - finalDataType = type; - break; - } - if ( !firstDataType ) { - firstDataType = type; - } - } - - // Or just use first one - finalDataType = finalDataType || firstDataType; - } - - // If we found a dataType - // We add the dataType to the list if needed - // and return the corresponding response - if ( finalDataType ) { - if ( finalDataType !== dataTypes[ 0 ] ) { - dataTypes.unshift( finalDataType ); - } - return responses[ finalDataType ]; - } -} - -/* Chain conversions given the request and the original response - * Also sets the responseXXX fields on the jqXHR instance - */ -function ajaxConvert( s, response, jqXHR, isSuccess ) { - var conv2, current, conv, tmp, prev, - converters = {}, - - // Work with a copy of dataTypes in case we need to modify it for conversion - dataTypes = s.dataTypes.slice(); - - // Create converters map with lowercased keys - if ( dataTypes[ 1 ] ) { - for ( conv in s.converters ) { - converters[ conv.toLowerCase() ] = s.converters[ conv ]; - } - } - - current = dataTypes.shift(); - - // Convert to each sequential dataType - while ( current ) { - - if ( s.responseFields[ current ] ) { - jqXHR[ s.responseFields[ current ] ] = response; - } - - // Apply the dataFilter if provided - if ( !prev && isSuccess && s.dataFilter ) { - response = s.dataFilter( response, s.dataType ); - } - - prev = current; - current = dataTypes.shift(); - - if ( current ) { - - // There's only work to do if current dataType is non-auto - if ( current === "*" ) { - - current = prev; - - // Convert response if prev dataType is non-auto and differs from current - } else if ( prev !== "*" && prev !== current ) { - - // Seek a direct converter - conv = converters[ prev + " " + current ] || converters[ "* " + current ]; - - // If none found, seek a pair - if ( !conv ) { - for ( conv2 in converters ) { - - // If conv2 outputs current - tmp = conv2.split( " " ); - if ( tmp[ 1 ] === current ) { - - // If prev can be converted to accepted input - conv = converters[ prev + " " + tmp[ 0 ] ] || - converters[ "* " + tmp[ 0 ] ]; - if ( conv ) { - - // Condense equivalence converters - if ( conv === true ) { - conv = converters[ conv2 ]; - - // Otherwise, insert the intermediate dataType - } else if ( converters[ conv2 ] !== true ) { - current = tmp[ 0 ]; - dataTypes.unshift( tmp[ 1 ] ); - } - break; - } - } - } - } - - // Apply converter (if not an equivalence) - if ( conv !== true ) { - - // Unless errors are allowed to bubble, catch and return them - if ( conv && s.throws ) { - response = conv( response ); - } else { - try { - response = conv( response ); - } catch ( e ) { - return { - state: "parsererror", - error: conv ? e : "No conversion from " + prev + " to " + current - }; - } - } - } - } - } - } - - return { state: "success", data: response }; -} - -jQuery.extend( { - - // Counter for holding the number of active queries - active: 0, - - // Last-Modified header cache for next request - lastModified: {}, - etag: {}, - - ajaxSettings: { - url: location.href, - type: "GET", - isLocal: rlocalProtocol.test( location.protocol ), - global: true, - processData: true, - async: true, - contentType: "application/x-www-form-urlencoded; charset=UTF-8", - - /* - timeout: 0, - data: null, - dataType: null, - username: null, - password: null, - cache: null, - throws: false, - traditional: false, - headers: {}, - */ - - accepts: { - "*": allTypes, - text: "text/plain", - html: "text/html", - xml: "application/xml, text/xml", - json: "application/json, text/javascript" - }, - - contents: { - xml: /\bxml\b/, - html: /\bhtml/, - json: /\bjson\b/ - }, - - responseFields: { - xml: "responseXML", - text: "responseText", - json: "responseJSON" - }, - - // Data converters - // Keys separate source (or catchall "*") and destination types with a single space - converters: { - - // Convert anything to text - "* text": String, - - // Text to html (true = no transformation) - "text html": true, - - // Evaluate text as a json expression - "text json": JSON.parse, - - // Parse text as xml - "text xml": jQuery.parseXML - }, - - // For options that shouldn't be deep extended: - // you can add your own custom options here if - // and when you create one that shouldn't be - // deep extended (see ajaxExtend) - flatOptions: { - url: true, - context: true - } - }, - - // Creates a full fledged settings object into target - // with both ajaxSettings and settings fields. - // If target is omitted, writes into ajaxSettings. - ajaxSetup: function( target, settings ) { - return settings ? - - // Building a settings object - ajaxExtend( ajaxExtend( target, jQuery.ajaxSettings ), settings ) : - - // Extending ajaxSettings - ajaxExtend( jQuery.ajaxSettings, target ); - }, - - ajaxPrefilter: addToPrefiltersOrTransports( prefilters ), - ajaxTransport: addToPrefiltersOrTransports( transports ), - - // Main method - ajax: function( url, options ) { - - // If url is an object, simulate pre-1.5 signature - if ( typeof url === "object" ) { - options = url; - url = undefined; - } - - // Force options to be an object - options = options || {}; - - var transport, - - // URL without anti-cache param - cacheURL, - - // Response headers - responseHeadersString, - responseHeaders, - - // timeout handle - timeoutTimer, - - // Url cleanup var - urlAnchor, - - // Request state (becomes false upon send and true upon completion) - completed, - - // To know if global events are to be dispatched - fireGlobals, - - // Loop variable - i, - - // uncached part of the url - uncached, - - // Create the final options object - s = jQuery.ajaxSetup( {}, options ), - - // Callbacks context - callbackContext = s.context || s, - - // Context for global events is callbackContext if it is a DOM node or jQuery collection - globalEventContext = s.context && - ( callbackContext.nodeType || callbackContext.jquery ) ? - jQuery( callbackContext ) : - jQuery.event, - - // Deferreds - deferred = jQuery.Deferred(), - completeDeferred = jQuery.Callbacks( "once memory" ), - - // Status-dependent callbacks - statusCode = s.statusCode || {}, - - // Headers (they are sent all at once) - requestHeaders = {}, - requestHeadersNames = {}, - - // Default abort message - strAbort = "canceled", - - // Fake xhr - jqXHR = { - readyState: 0, - - // Builds headers hashtable if needed - getResponseHeader: function( key ) { - var match; - if ( completed ) { - if ( !responseHeaders ) { - responseHeaders = {}; - while ( ( match = rheaders.exec( responseHeadersString ) ) ) { - responseHeaders[ match[ 1 ].toLowerCase() + " " ] = - ( responseHeaders[ match[ 1 ].toLowerCase() + " " ] || [] ) - .concat( match[ 2 ] ); - } - } - match = responseHeaders[ key.toLowerCase() + " " ]; - } - return match == null ? null : match.join( ", " ); - }, - - // Raw string - getAllResponseHeaders: function() { - return completed ? responseHeadersString : null; - }, - - // Caches the header - setRequestHeader: function( name, value ) { - if ( completed == null ) { - name = requestHeadersNames[ name.toLowerCase() ] = - requestHeadersNames[ name.toLowerCase() ] || name; - requestHeaders[ name ] = value; - } - return this; - }, - - // Overrides response content-type header - overrideMimeType: function( type ) { - if ( completed == null ) { - s.mimeType = type; - } - return this; - }, - - // Status-dependent callbacks - statusCode: function( map ) { - var code; - if ( map ) { - if ( completed ) { - - // Execute the appropriate callbacks - jqXHR.always( map[ jqXHR.status ] ); - } else { - - // Lazy-add the new callbacks in a way that preserves old ones - for ( code in map ) { - statusCode[ code ] = [ statusCode[ code ], map[ code ] ]; - } - } - } - return this; - }, - - // Cancel the request - abort: function( statusText ) { - var finalText = statusText || strAbort; - if ( transport ) { - transport.abort( finalText ); - } - done( 0, finalText ); - return this; - } - }; - - // Attach deferreds - deferred.promise( jqXHR ); - - // Add protocol if not provided (prefilters might expect it) - // Handle falsy url in the settings object (#10093: consistency with old signature) - // We also use the url parameter if available - s.url = ( ( url || s.url || location.href ) + "" ) - .replace( rprotocol, location.protocol + "//" ); - - // Alias method option to type as per ticket #12004 - s.type = options.method || options.type || s.method || s.type; - - // Extract dataTypes list - s.dataTypes = ( s.dataType || "*" ).toLowerCase().match( rnothtmlwhite ) || [ "" ]; - - // A cross-domain request is in order when the origin doesn't match the current origin. - if ( s.crossDomain == null ) { - urlAnchor = document.createElement( "a" ); - - // Support: IE <=8 - 11, Edge 12 - 15 - // IE throws exception on accessing the href property if url is malformed, - // e.g. http://example.com:80x/ - try { - urlAnchor.href = s.url; - - // Support: IE <=8 - 11 only - // Anchor's host property isn't correctly set when s.url is relative - urlAnchor.href = urlAnchor.href; - s.crossDomain = originAnchor.protocol + "//" + originAnchor.host !== - urlAnchor.protocol + "//" + urlAnchor.host; - } catch ( e ) { - - // If there is an error parsing the URL, assume it is crossDomain, - // it can be rejected by the transport if it is invalid - s.crossDomain = true; - } - } - - // Convert data if not already a string - if ( s.data && s.processData && typeof s.data !== "string" ) { - s.data = jQuery.param( s.data, s.traditional ); - } - - // Apply prefilters - inspectPrefiltersOrTransports( prefilters, s, options, jqXHR ); - - // If request was aborted inside a prefilter, stop there - if ( completed ) { - return jqXHR; - } - - // We can fire global events as of now if asked to - // Don't fire events if jQuery.event is undefined in an AMD-usage scenario (#15118) - fireGlobals = jQuery.event && s.global; - - // Watch for a new set of requests - if ( fireGlobals && jQuery.active++ === 0 ) { - jQuery.event.trigger( "ajaxStart" ); - } - - // Uppercase the type - s.type = s.type.toUpperCase(); - - // Determine if request has content - s.hasContent = !rnoContent.test( s.type ); - - // Save the URL in case we're toying with the If-Modified-Since - // and/or If-None-Match header later on - // Remove hash to simplify url manipulation - cacheURL = s.url.replace( rhash, "" ); - - // More options handling for requests with no content - if ( !s.hasContent ) { - - // Remember the hash so we can put it back - uncached = s.url.slice( cacheURL.length ); - - // If data is available and should be processed, append data to url - if ( s.data && ( s.processData || typeof s.data === "string" ) ) { - cacheURL += ( rquery.test( cacheURL ) ? "&" : "?" ) + s.data; - - // #9682: remove data so that it's not used in an eventual retry - delete s.data; - } - - // Add or update anti-cache param if needed - if ( s.cache === false ) { - cacheURL = cacheURL.replace( rantiCache, "$1" ); - uncached = ( rquery.test( cacheURL ) ? "&" : "?" ) + "_=" + ( nonce.guid++ ) + - uncached; - } - - // Put hash and anti-cache on the URL that will be requested (gh-1732) - s.url = cacheURL + uncached; - - // Change '%20' to '+' if this is encoded form body content (gh-2658) - } else if ( s.data && s.processData && - ( s.contentType || "" ).indexOf( "application/x-www-form-urlencoded" ) === 0 ) { - s.data = s.data.replace( r20, "+" ); - } - - // Set the If-Modified-Since and/or If-None-Match header, if in ifModified mode. - if ( s.ifModified ) { - if ( jQuery.lastModified[ cacheURL ] ) { - jqXHR.setRequestHeader( "If-Modified-Since", jQuery.lastModified[ cacheURL ] ); - } - if ( jQuery.etag[ cacheURL ] ) { - jqXHR.setRequestHeader( "If-None-Match", jQuery.etag[ cacheURL ] ); - } - } - - // Set the correct header, if data is being sent - if ( s.data && s.hasContent && s.contentType !== false || options.contentType ) { - jqXHR.setRequestHeader( "Content-Type", s.contentType ); - } - - // Set the Accepts header for the server, depending on the dataType - jqXHR.setRequestHeader( - "Accept", - s.dataTypes[ 0 ] && s.accepts[ s.dataTypes[ 0 ] ] ? - s.accepts[ s.dataTypes[ 0 ] ] + - ( s.dataTypes[ 0 ] !== "*" ? ", " + allTypes + "; q=0.01" : "" ) : - s.accepts[ "*" ] - ); - - // Check for headers option - for ( i in s.headers ) { - jqXHR.setRequestHeader( i, s.headers[ i ] ); - } - - // Allow custom headers/mimetypes and early abort - if ( s.beforeSend && - ( s.beforeSend.call( callbackContext, jqXHR, s ) === false || completed ) ) { - - // Abort if not done already and return - return jqXHR.abort(); - } - - // Aborting is no longer a cancellation - strAbort = "abort"; - - // Install callbacks on deferreds - completeDeferred.add( s.complete ); - jqXHR.done( s.success ); - jqXHR.fail( s.error ); - - // Get transport - transport = inspectPrefiltersOrTransports( transports, s, options, jqXHR ); - - // If no transport, we auto-abort - if ( !transport ) { - done( -1, "No Transport" ); - } else { - jqXHR.readyState = 1; - - // Send global event - if ( fireGlobals ) { - globalEventContext.trigger( "ajaxSend", [ jqXHR, s ] ); - } - - // If request was aborted inside ajaxSend, stop there - if ( completed ) { - return jqXHR; - } - - // Timeout - if ( s.async && s.timeout > 0 ) { - timeoutTimer = window.setTimeout( function() { - jqXHR.abort( "timeout" ); - }, s.timeout ); - } - - try { - completed = false; - transport.send( requestHeaders, done ); - } catch ( e ) { - - // Rethrow post-completion exceptions - if ( completed ) { - throw e; - } - - // Propagate others as results - done( -1, e ); - } - } - - // Callback for when everything is done - function done( status, nativeStatusText, responses, headers ) { - var isSuccess, success, error, response, modified, - statusText = nativeStatusText; - - // Ignore repeat invocations - if ( completed ) { - return; - } - - completed = true; - - // Clear timeout if it exists - if ( timeoutTimer ) { - window.clearTimeout( timeoutTimer ); - } - - // Dereference transport for early garbage collection - // (no matter how long the jqXHR object will be used) - transport = undefined; - - // Cache response headers - responseHeadersString = headers || ""; - - // Set readyState - jqXHR.readyState = status > 0 ? 4 : 0; - - // Determine if successful - isSuccess = status >= 200 && status < 300 || status === 304; - - // Get response data - if ( responses ) { - response = ajaxHandleResponses( s, jqXHR, responses ); - } - - // Use a noop converter for missing script - if ( !isSuccess && jQuery.inArray( "script", s.dataTypes ) > -1 ) { - s.converters[ "text script" ] = function() {}; - } - - // Convert no matter what (that way responseXXX fields are always set) - response = ajaxConvert( s, response, jqXHR, isSuccess ); - - // If successful, handle type chaining - if ( isSuccess ) { - - // Set the If-Modified-Since and/or If-None-Match header, if in ifModified mode. - if ( s.ifModified ) { - modified = jqXHR.getResponseHeader( "Last-Modified" ); - if ( modified ) { - jQuery.lastModified[ cacheURL ] = modified; - } - modified = jqXHR.getResponseHeader( "etag" ); - if ( modified ) { - jQuery.etag[ cacheURL ] = modified; - } - } - - // if no content - if ( status === 204 || s.type === "HEAD" ) { - statusText = "nocontent"; - - // if not modified - } else if ( status === 304 ) { - statusText = "notmodified"; - - // If we have data, let's convert it - } else { - statusText = response.state; - success = response.data; - error = response.error; - isSuccess = !error; - } - } else { - - // Extract error from statusText and normalize for non-aborts - error = statusText; - if ( status || !statusText ) { - statusText = "error"; - if ( status < 0 ) { - status = 0; - } - } - } - - // Set data for the fake xhr object - jqXHR.status = status; - jqXHR.statusText = ( nativeStatusText || statusText ) + ""; - - // Success/Error - if ( isSuccess ) { - deferred.resolveWith( callbackContext, [ success, statusText, jqXHR ] ); - } else { - deferred.rejectWith( callbackContext, [ jqXHR, statusText, error ] ); - } - - // Status-dependent callbacks - jqXHR.statusCode( statusCode ); - statusCode = undefined; - - if ( fireGlobals ) { - globalEventContext.trigger( isSuccess ? "ajaxSuccess" : "ajaxError", - [ jqXHR, s, isSuccess ? success : error ] ); - } - - // Complete - completeDeferred.fireWith( callbackContext, [ jqXHR, statusText ] ); - - if ( fireGlobals ) { - globalEventContext.trigger( "ajaxComplete", [ jqXHR, s ] ); - - // Handle the global AJAX counter - if ( !( --jQuery.active ) ) { - jQuery.event.trigger( "ajaxStop" ); - } - } - } - - return jqXHR; - }, - - getJSON: function( url, data, callback ) { - return jQuery.get( url, data, callback, "json" ); - }, - - getScript: function( url, callback ) { - return jQuery.get( url, undefined, callback, "script" ); - } -} ); - -jQuery.each( [ "get", "post" ], function( _i, method ) { - jQuery[ method ] = function( url, data, callback, type ) { - - // Shift arguments if data argument was omitted - if ( isFunction( data ) ) { - type = type || callback; - callback = data; - data = undefined; - } - - // The url can be an options object (which then must have .url) - return jQuery.ajax( jQuery.extend( { - url: url, - type: method, - dataType: type, - data: data, - success: callback - }, jQuery.isPlainObject( url ) && url ) ); - }; -} ); - -jQuery.ajaxPrefilter( function( s ) { - var i; - for ( i in s.headers ) { - if ( i.toLowerCase() === "content-type" ) { - s.contentType = s.headers[ i ] || ""; - } - } -} ); - - -jQuery._evalUrl = function( url, options, doc ) { - return jQuery.ajax( { - url: url, - - // Make this explicit, since user can override this through ajaxSetup (#11264) - type: "GET", - dataType: "script", - cache: true, - async: false, - global: false, - - // Only evaluate the response if it is successful (gh-4126) - // dataFilter is not invoked for failure responses, so using it instead - // of the default converter is kludgy but it works. - converters: { - "text script": function() {} - }, - dataFilter: function( response ) { - jQuery.globalEval( response, options, doc ); - } - } ); -}; - - -jQuery.fn.extend( { - wrapAll: function( html ) { - var wrap; - - if ( this[ 0 ] ) { - if ( isFunction( html ) ) { - html = html.call( this[ 0 ] ); - } - - // The elements to wrap the target around - wrap = jQuery( html, this[ 0 ].ownerDocument ).eq( 0 ).clone( true ); - - if ( this[ 0 ].parentNode ) { - wrap.insertBefore( this[ 0 ] ); - } - - wrap.map( function() { - var elem = this; - - while ( elem.firstElementChild ) { - elem = elem.firstElementChild; - } - - return elem; - } ).append( this ); - } - - return this; - }, - - wrapInner: function( html ) { - if ( isFunction( html ) ) { - return this.each( function( i ) { - jQuery( this ).wrapInner( html.call( this, i ) ); - } ); - } - - return this.each( function() { - var self = jQuery( this ), - contents = self.contents(); - - if ( contents.length ) { - contents.wrapAll( html ); - - } else { - self.append( html ); - } - } ); - }, - - wrap: function( html ) { - var htmlIsFunction = isFunction( html ); - - return this.each( function( i ) { - jQuery( this ).wrapAll( htmlIsFunction ? html.call( this, i ) : html ); - } ); - }, - - unwrap: function( selector ) { - this.parent( selector ).not( "body" ).each( function() { - jQuery( this ).replaceWith( this.childNodes ); - } ); - return this; - } -} ); - - -jQuery.expr.pseudos.hidden = function( elem ) { - return !jQuery.expr.pseudos.visible( elem ); -}; -jQuery.expr.pseudos.visible = function( elem ) { - return !!( elem.offsetWidth || elem.offsetHeight || elem.getClientRects().length ); -}; - - - - -jQuery.ajaxSettings.xhr = function() { - try { - return new window.XMLHttpRequest(); - } catch ( e ) {} -}; - -var xhrSuccessStatus = { - - // File protocol always yields status code 0, assume 200 - 0: 200, - - // Support: IE <=9 only - // #1450: sometimes IE returns 1223 when it should be 204 - 1223: 204 - }, - xhrSupported = jQuery.ajaxSettings.xhr(); - -support.cors = !!xhrSupported && ( "withCredentials" in xhrSupported ); -support.ajax = xhrSupported = !!xhrSupported; - -jQuery.ajaxTransport( function( options ) { - var callback, errorCallback; - - // Cross domain only allowed if supported through XMLHttpRequest - if ( support.cors || xhrSupported && !options.crossDomain ) { - return { - send: function( headers, complete ) { - var i, - xhr = options.xhr(); - - xhr.open( - options.type, - options.url, - options.async, - options.username, - options.password - ); - - // Apply custom fields if provided - if ( options.xhrFields ) { - for ( i in options.xhrFields ) { - xhr[ i ] = options.xhrFields[ i ]; - } - } - - // Override mime type if needed - if ( options.mimeType && xhr.overrideMimeType ) { - xhr.overrideMimeType( options.mimeType ); - } - - // X-Requested-With header - // For cross-domain requests, seeing as conditions for a preflight are - // akin to a jigsaw puzzle, we simply never set it to be sure. - // (it can always be set on a per-request basis or even using ajaxSetup) - // For same-domain requests, won't change header if already provided. - if ( !options.crossDomain && !headers[ "X-Requested-With" ] ) { - headers[ "X-Requested-With" ] = "XMLHttpRequest"; - } - - // Set headers - for ( i in headers ) { - xhr.setRequestHeader( i, headers[ i ] ); - } - - // Callback - callback = function( type ) { - return function() { - if ( callback ) { - callback = errorCallback = xhr.onload = - xhr.onerror = xhr.onabort = xhr.ontimeout = - xhr.onreadystatechange = null; - - if ( type === "abort" ) { - xhr.abort(); - } else if ( type === "error" ) { - - // Support: IE <=9 only - // On a manual native abort, IE9 throws - // errors on any property access that is not readyState - if ( typeof xhr.status !== "number" ) { - complete( 0, "error" ); - } else { - complete( - - // File: protocol always yields status 0; see #8605, #14207 - xhr.status, - xhr.statusText - ); - } - } else { - complete( - xhrSuccessStatus[ xhr.status ] || xhr.status, - xhr.statusText, - - // Support: IE <=9 only - // IE9 has no XHR2 but throws on binary (trac-11426) - // For XHR2 non-text, let the caller handle it (gh-2498) - ( xhr.responseType || "text" ) !== "text" || - typeof xhr.responseText !== "string" ? - { binary: xhr.response } : - { text: xhr.responseText }, - xhr.getAllResponseHeaders() - ); - } - } - }; - }; - - // Listen to events - xhr.onload = callback(); - errorCallback = xhr.onerror = xhr.ontimeout = callback( "error" ); - - // Support: IE 9 only - // Use onreadystatechange to replace onabort - // to handle uncaught aborts - if ( xhr.onabort !== undefined ) { - xhr.onabort = errorCallback; - } else { - xhr.onreadystatechange = function() { - - // Check readyState before timeout as it changes - if ( xhr.readyState === 4 ) { - - // Allow onerror to be called first, - // but that will not handle a native abort - // Also, save errorCallback to a variable - // as xhr.onerror cannot be accessed - window.setTimeout( function() { - if ( callback ) { - errorCallback(); - } - } ); - } - }; - } - - // Create the abort callback - callback = callback( "abort" ); - - try { - - // Do send the request (this may raise an exception) - xhr.send( options.hasContent && options.data || null ); - } catch ( e ) { - - // #14683: Only rethrow if this hasn't been notified as an error yet - if ( callback ) { - throw e; - } - } - }, - - abort: function() { - if ( callback ) { - callback(); - } - } - }; - } -} ); - - - - -// Prevent auto-execution of scripts when no explicit dataType was provided (See gh-2432) -jQuery.ajaxPrefilter( function( s ) { - if ( s.crossDomain ) { - s.contents.script = false; - } -} ); - -// Install script dataType -jQuery.ajaxSetup( { - accepts: { - script: "text/javascript, application/javascript, " + - "application/ecmascript, application/x-ecmascript" - }, - contents: { - script: /\b(?:java|ecma)script\b/ - }, - converters: { - "text script": function( text ) { - jQuery.globalEval( text ); - return text; - } - } -} ); - -// Handle cache's special case and crossDomain -jQuery.ajaxPrefilter( "script", function( s ) { - if ( s.cache === undefined ) { - s.cache = false; - } - if ( s.crossDomain ) { - s.type = "GET"; - } -} ); - -// Bind script tag hack transport -jQuery.ajaxTransport( "script", function( s ) { - - // This transport only deals with cross domain or forced-by-attrs requests - if ( s.crossDomain || s.scriptAttrs ) { - var script, callback; - return { - send: function( _, complete ) { - script = jQuery( " -{% endmacro %} \ No newline at end of file diff --git a/_preview/44/genindex.html b/_preview/44/genindex.html deleted file mode 100644 index 0413274..0000000 --- a/_preview/44/genindex.html +++ /dev/null @@ -1,401 +0,0 @@ - - - - - - - - Index — ESGF Cookbook - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - -
-
- - - - - -
-
- -
- - - - - - - - - - - - - - -
- - -
- -
-
-
-
-
- -
- - -

Index

- -
- -
- - -
- -
-
-
-
-
- -
-
- - - -
-
- - - - - - - - - -
-
- - \ No newline at end of file diff --git a/_preview/44/index.html b/_preview/44/index.html deleted file mode 100644 index 960bb69..0000000 --- a/_preview/44/index.html +++ /dev/null @@ -1 +0,0 @@ - diff --git a/_preview/44/notebooks/complex-search.html b/_preview/44/notebooks/complex-search.html deleted file mode 100644 index c621ba9..0000000 --- a/_preview/44/notebooks/complex-search.html +++ /dev/null @@ -1,1373 +0,0 @@ - - - - - - - - Complex Searching with intake-esgf — ESGF Cookbook - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - -
-
- - - - - -
-
- -
- - - - - - - - - - - - - - - - - - -
- - - -
-
-
-
- -
- -

ESGF logo

-
-

Complex Searching with intake-esgf

-
-

Overview

-

In this tutorial we will present an interface under design to facilitate complex searching using intake-esgf. intake-esgf is a small intake and intake-esm inspired package under development in ESGF2. Please note that there is a name collison with an existing package in PyPI and conda. You will need to install the package from source.

-
-
-

Prerequisites

- - - - - - - - - - - - - - - - - - - - - - - - - -

Concepts

Importance

Notes

Install Package

Necessary

Understanding of NetCDF

Helpful

Familiarity with metadata structure

Familiar with intake-esm

Helpful

Similar interface

Transient climate response

Background

-
    -
  • Time to learn: 30 minutes

  • -
-
-
-

Imports

-
-
-
import intake_esgf
-from intake_esgf import ESGFCatalog
-
-
-
-
-
-
-

Initializing the Catalog

-

As with intake-esm we first instantiate the catalog. However, since we will populate the catalog with search results, the catalog starts empty. Internally, we query different ESGF index nodes for information about what datasets you wish to include in your analysis. As ESGF2 is actively working on an index redesign, our catlogs by default point to a Globus (ElasticSearch) based index at ALCF (Argonne Leadership Computing Facility).

-
-
-
cat = ESGFCatalog()
-print(cat)
-for ind in cat.indices: # Which indices are included?
-    print(ind)
-
-
-
-
-
Perform a search() to populate the catalog.
-GlobusESGFIndex('anl-dev')
-GlobusESGFIndex('ornl-dev')
-
-
-
-
-

We also provide support for connecting to the ESGF1 Solr-based indices. You may specify a server in the dictionary or multiple servers - just make sure to include True.

-

Uncommend the line setting all_indices=True to include all available indices.

-
-
-
intake_esgf.conf.set(indices={"esgf-node.llnl.gov": True,
-                              "esgf-node.ornl.gov": True,
-                              "esgf.ceda.ac.uk": True})
-
-intake_esgf.conf.set(all_indices=True)  # all federated indices
-
-cat = ESGFCatalog()
-for ind in cat.indices:
-    print(ind)
-
-
-
-
-
GlobusESGFIndex('anl-dev')
-GlobusESGFIndex('ornl-dev')
-SolrESGFIndex('esgf.ceda.ac.uk')
-SolrESGFIndex('esgf-data.dkrz.de')
-SolrESGFIndex('esgf-node.ipsl.upmc.fr')
-SolrESGFIndex('esg-dn1.nsc.liu.se')
-SolrESGFIndex('esgf-node.llnl.gov')
-SolrESGFIndex('esgf.nci.org.au')
-SolrESGFIndex('esgf-node.ornl.gov')
-
-
-
-
-
-
-

Populate the catalog

-

Many times, an analysis will require several variables across multiple experiments. For example, if one were to compute the transient climate response (TCRE), you would need tempererature (tas) and carbon emissions from land (nbp) and ocean (fgco2) for a 1% CO2 increase experiment (1pctCO2) as well as the control experiment (piControl). If TCRE is not in your particular science, that is ok for this notebook. It is a motivating example and the specifics are less important than the search concepts. First, we perform a search in a familiar syntax.

-
-
-
cat.search(
-    experiment_id=["piControl", "1pctCO2"],
-    variable_id=["tas", "fgco2", "nbp"],
-    table_id=["Amon", "Omon", "Lmon"],
-)
-print(cat)
-
-
-
-
-
Summary information for 415 results:
-mip_era                                                     [CMIP6]
-activity_drs                                                 [CMIP]
-institution_id    [MOHC, MRI, MPI-M, NCAR, NOAA-GFDL, NCC, NIMS-...
-source_id         [UKESM1-0-LL, MRI-ESM2-0, MPI-ESM1-2-LR, CESM2...
-experiment_id                                  [piControl, 1pctCO2]
-member_id         [r1i1p1f2, r1i2p1f1, r1i1p1f1, r2i1p1f1, r3i1p...
-table_id                                         [Lmon, Omon, Amon]
-variable_id                                       [nbp, fgco2, tas]
-grid_label                                            [gn, gr1, gr]
-dtype: object
-
-
-
-
-

Internally, this launches simultaneous searches that are combined locally to provide a global view of what datasets are available. While the Solr indices themselves can be searched in distributed fashion, they will not report if an index has failed to return a response. As index nodes go down from time to time, this can leave you with a false impression that you have found all the datasets of interest. By managing the searches locally, intake-esgf can report back to you that an index has failed and that your results may be incomplete.

-

If you would like details about what intake-esgf is doing, look in the local cache directory (${HOME}/.esgf/) for a esgf.log file. This is a full history of everything that intake-esgf has searched, downloaded, or accessed. You can also look at just this session by calling session_log(). In this case you will see how long each index took to return a response and if any failed

-
-
-
print(cat.session_log())
-
-
-
-
-
2025-01-08 12:57:30 └─GlobusESGFIndex('anl-dev') results=329 response_time=1.70
-2025-01-08 12:57:30 └─GlobusESGFIndex('ornl-dev') results=650 response_time=1.72
-2025-01-08 12:57:32 └─SolrESGFIndex('esgf-node.llnl.gov') results=681 response_time=3.53
-2025-01-08 12:57:34 └─SolrESGFIndex('esgf-node.ipsl.upmc.fr') results=58 response_time=5.84
-2025-01-08 12:57:36 └─SolrESGFIndex('esg-dn1.nsc.liu.se') results=62 response_time=7.73
-2025-01-08 12:57:41 └─SolrESGFIndex('esgf.nci.org.au') results=109 response_time=12.13
-2025-01-08 12:57:46 └─SolrESGFIndex('esgf-node.ornl.gov') results=650 response_time=17.60
-2025-01-08 12:57:46 └─SolrESGFIndex('esgf.ceda.ac.uk') results=231 response_time=17.72
-2025-01-08 12:57:51 └─SolrESGFIndex('esgf-data.dkrz.de') results=266 response_time=22.46
-2025-01-08 12:57:51 combine_time=0.16
-2025-01-08 12:57:51 search end total_time=22.67
-
-
-
-
-

At this stage of the search you have a catalog full of possibly relevant datasets for your analysis, stored in a pandas dataframe. You are free to view and manipulate this dataframe to help hone these results down. It is available to you as the df member of the ESGFCatalog. You should be careful to only remove rows as internally we could use any column in the downloading of the data. Also note that we have removed the user-facing notion of where the data is hosted. The id column of this dataframe is a list of full dataset_ids which includes the location information. At the point when you are ready to download data, we will choose locations automatically that are fastest for you.

-
-
-
cat.df
-
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
projectmip_eraactivity_drsinstitution_idsource_idexperiment_idmember_idtable_idvariable_idgrid_labelversionid
0CMIP6CMIP6CMIPMOHCUKESM1-0-LLpiControlr1i1p1f2Lmonnbpgn20200828[CMIP6.CMIP.MOHC.UKESM1-0-LL.piControl.r1i1p1f...
1CMIP6CMIP6CMIPMRIMRI-ESM2-01pctCO2r1i2p1f1Omonfgco2gn20210311[CMIP6.CMIP.MRI.MRI-ESM2-0.1pctCO2.r1i2p1f1.Om...
2CMIP6CMIP6CMIPMPI-MMPI-ESM1-2-LRpiControlr1i1p1f1Omonfgco2gn20190710[CMIP6.CMIP.MPI-M.MPI-ESM1-2-LR.piControl.r1i1...
3CMIP6CMIP6CMIPNCARCESM2-FV2piControlr1i1p1f1Amontasgn20191120[CMIP6.CMIP.NCAR.CESM2-FV2.piControl.r1i1p1f1....
4CMIP6CMIP6CMIPNOAA-GFDLGFDL-CM41pctCO2r1i1p1f1Amontasgr120180701[CMIP6.CMIP.NOAA-GFDL.GFDL-CM4.1pctCO2.r1i1p1f...
.......................................
1484CMIP6CMIP6CMIPEC-Earth-ConsortiumEC-Earth3-ESM-11pctCO2r1i1p1f1Omonfgco2gn20240925[CMIP6.CMIP.EC-Earth-Consortium.EC-Earth3-ESM-...
1485CMIP6CMIP6CMIPEC-Earth-ConsortiumEC-Earth3-ESM-1piControlr1i1p1f1Amontasgr20240925[CMIP6.CMIP.EC-Earth-Consortium.EC-Earth3-ESM-...
1486CMIP6CMIP6CMIPEC-Earth-ConsortiumEC-Earth3piControlr3i1p1f1Amontasgr20231010[CMIP6.CMIP.EC-Earth-Consortium.EC-Earth3.piCo...
1814CMIP6CMIP6CMIPMOHCUKESM1-0-LL1pctCO2r1i1p1f2Omonfgco2gn20191105[CMIP6.CMIP.MOHC.UKESM1-0-LL.1pctCO2.r1i1p1f2....
2092CMIP6CMIP6CMIPAWIAWI-ESM-1-REcoMpiControlr1i1p1f1Amontasgn20230314[CMIP6.CMIP.AWI.AWI-ESM-1-REcoM.piControl.r1i1...
-

415 rows × 12 columns

-
-
-
-
-

Model Groups

-

However, intake-esgf also provides you with some tools to help locate relevant data for your analysis. When conducting these kinds of analyses, we are seeking for unique combinations of a source_id, member_id, and grid_label that have all the variables that we need. We call these model groups. In an ESGF search, it is common to find a model that has, for example, a tas for r1i1p1f1 but not a fgco2. Sorting this out is time consuming and labor intensive. So first, we provide you a function to print out all model groups with the following function.

-
-
-
cat.model_groups().to_frame()
-
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
project
source_idmember_idgrid_label
ACCESS-CM2r1i1p1f1gn2
ACCESS-ESM1-5r1i1p1f1gn6
AWI-CM-1-1-MRr1i1p1f1gn2
AWI-ESM-1-1-LRr1i1p1f1gn2
AWI-ESM-1-REcoMr1i1p1f1gn1
............
UKESM1-0-LLr1i1p1f2gn6
r2i1p1f2gn3
r3i1p1f2gn3
r4i1p1f2gn3
UKESM1-1-LLr1i1p1f2gn6
-

154 rows × 1 columns

-
-
-

The function model_groups() returns a pandas Series (converted to a dataframe here for printing) with all unique combinations of (source_id,member_id,grid_label) along with the dataset count for each. This helps illustrate why it can be so difficult to locate all the data relevant to a given analysis. At the time of this writing, there are 148 model groups but relatively few of them with all 6 (2 experiments and 3 variables) datasets that we need. Furthermore, you cannot rely on a model group using r1i1p1f1 for its primary result. The results above show that UKESM does not even use f1 at all, further complicating the process of finding results.

-

In addition to this notion of model groups, intake-esgf provides you a method remove_incomplete() for determing which model groups you wish to keep in the current search. Internally, we will group the search results dataframe by model groups and apply a function of your design to the grouped portion of the dataframe. For example, for the current work, I could just check that there are 6 datasets in the sub-dataframe.

-
-
-
def shall_i_keep_it(sub_df):
-    if len(sub_df) == 6:
-        return True
-    return False
-
-
-cat.remove_incomplete(shall_i_keep_it)
-cat.model_groups().to_frame()
-
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
project
source_idmember_idgrid_label
ACCESS-ESM1-5r1i1p1f1gn6
CanESM5r1i1p1f1gn6
r1i1p2f1gn6
CanESM5-1r1i1p1f1gn6
r1i1p2f1gn6
CanESM5-CanOEr1i1p2f1gn6
CESM2r1i1p1f1gn6
CESM2-FV2r1i1p1f1gn6
CESM2-WACCMr1i1p1f1gn6
CESM2-WACCM-FV2r1i1p1f1gn6
CMCC-ESM2r1i1p1f1gn6
GISS-E2-1-Gr101i1p1f1gn6
r102i1p1f1gn6
INM-CM4-8r1i1p1f1gr16
INM-CM5-0r1i1p1f1gr16
MIROC-ES2Lr1i1p1f2gn6
MPI-ESM-1-2-HAMr1i1p1f1gn6
MPI-ESM1-2-LRr1i1p1f1gn6
MRI-ESM2-0r1i2p1f1gn6
NorCPM1r1i1p1f1gn6
NorESM2-LMr1i1p1f1gn6
r1i1p4f1gn6
NorESM2-MMr1i1p1f1gn6
UKESM1-0-LLr1i1p1f2gn6
UKESM1-1-LLr1i1p1f2gn6
-
-
-

You could write a much more complex check–it depends on what is relevant to your analysis. The effect is that the list of possible models with consistent results is now much more manageable. This method has the added benefit of forcing the user to be concrete about which models were included in an analysis.

-
-
-

Removing Additional Variants

-

It may also be that you wish to only include a single member_id in your analysis. The above search shows we have a few models with multiple variants that have all 6 required datasets. To be fair to those that only have 1, you may wish to only keep the smallest variant. We also provide this function as part of the ESGFCatalog object.

-
-
-
cat.remove_ensembles()
-cat.model_groups().to_frame()
-
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
project
source_idmember_idgrid_label
ACCESS-ESM1-5r1i1p1f1gn6
CanESM5r1i1p1f1gn6
CanESM5-1r1i1p1f1gn6
CanESM5-CanOEr1i1p2f1gn6
CESM2r1i1p1f1gn6
CESM2-FV2r1i1p1f1gn6
CESM2-WACCMr1i1p1f1gn6
CESM2-WACCM-FV2r1i1p1f1gn6
CMCC-ESM2r1i1p1f1gn6
GISS-E2-1-Gr101i1p1f1gn6
INM-CM4-8r1i1p1f1gr16
INM-CM5-0r1i1p1f1gr16
MIROC-ES2Lr1i1p1f2gn6
MPI-ESM-1-2-HAMr1i1p1f1gn6
MPI-ESM1-2-LRr1i1p1f1gn6
MRI-ESM2-0r1i2p1f1gn6
NorCPM1r1i1p1f1gn6
NorESM2-LMr1i1p1f1gn6
NorESM2-MMr1i1p1f1gn6
UKESM1-0-LLr1i1p1f2gn6
UKESM1-1-LLr1i1p1f2gn6
-
-
-
-
-

Summary

-

At this point, you would be ready to use to_dataset_dict() to download and load all datasets into a dictionary for analysis. The point of this notebook however is to expose the search capabilities. It is our goal to make annoying and time-consuming tasks easier by providing you smart interfaces for common operations. Let us know what else is painful for you in locating relevant data for your science.

-
-
- - - - -
- - -
-
-
- -
-
- - - -
-
- - - - - - - - - -
-
- - \ No newline at end of file diff --git a/_preview/44/notebooks/complex-search2-and-analysis.html b/_preview/44/notebooks/complex-search2-and-analysis.html deleted file mode 100644 index 0313ee9..0000000 --- a/_preview/44/notebooks/complex-search2-and-analysis.html +++ /dev/null @@ -1,1119 +0,0 @@ - - - - - - - - Complex Searching with intake and analysing employing xarray — ESGF Cookbook - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - -
-
- - - - - -
-
-
- -
- -

ESGF logo

-
-

Complex Searching with intake and analysing employing xarray

-
-

Overview

-

This tutorial we will present access multiple historical (as an example here) data available and analyze using intake. Put them in a dictionary format employing xarray and plotting simple area average time series over a specific region.

-
-
-

Imports

-
-
-
import warnings
-import intake
-from distributed import Client
-from matplotlib import pyplot as plt
-import numpy as np
-import pandas as pd
-import xarray as xr
-import dask
-xr.set_options(display_style='html')
-warnings.filterwarnings("ignore")
-
-
-
-
-
-
-
cat_url = "https://storage.googleapis.com/cmip6/pangeo-cmip6.json"
-col = intake.open_esm_datastore(cat_url)
-col
-
-
-
-
-

pangeo-cmip6 catalog with 7674 dataset(s) from 514818 asset(s):

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
unique
activity_id18
institution_id36
source_id88
experiment_id170
member_id657
table_id37
variable_id700
grid_label10
zstore514818
dcpp_init_year60
version736
derived_variable_id0
-
-
-
-
-
cat = col.search(experiment_id=["historical"],
-    variable_id = ["tas"],
-    member_id = ["r1i1p1f1"],
-    table_id = ["Amon",], 
-    source_id = [ "CMCC-ESM2", "CanESM5", "CESM2", "CESM2-FV2", ]
-)
-
-
-
-
-
-
-
cat.df
-
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
activity_idinstitution_idsource_idexperiment_idmember_idtable_idvariable_idgrid_labelzstoredcpp_init_yearversion
0CMIPNCARCESM2historicalr1i1p1f1Amontasgngs://cmip6/CMIP6/CMIP/NCAR/CESM2/historical/r1...NaN20190308
1CMIPCCCmaCanESM5historicalr1i1p1f1Amontasgngs://cmip6/CMIP6/CMIP/CCCma/CanESM5/historical...NaN20190429
2CMIPNCARCESM2-FV2historicalr1i1p1f1Amontasgngs://cmip6/CMIP6/CMIP/NCAR/CESM2-FV2/historica...NaN20191120
3CMIPCMCCCMCC-ESM2historicalr1i1p1f1Amontasgngs://cmip6/CMIP6/CMIP/CMCC/CMCC-ESM2/historica...NaN20210114
-
-
-
-
-
dset_dict = cat.to_dataset_dict(zarr_kwargs={'consolidated': True})
-list(dset_dict.keys())
-
-
-
-
-
--> The keys in the returned dictionary of datasets are constructed as follows:
-	'activity_id.institution_id.source_id.experiment_id.table_id.grid_label'
-
-
-
- -
-
- - 100.00% [4/4 00:16<00:00] -
-
['CMIP.NCAR.CESM2.historical.Amon.gn',
- 'CMIP.NCAR.CESM2-FV2.historical.Amon.gn',
- 'CMIP.CCCma.CanESM5.historical.Amon.gn',
- 'CMIP.CMCC.CMCC-ESM2.historical.Amon.gn']
-
-
-
-
-
-
-
ds = {}
-
-for key in dset_dict.keys():
-    # Sort the dataset by time
-    sorted_dataset = dset_dict[key].sortby("time")
-    
-    # Subset data for years 1900-2000
-    ds[key] = sorted_dataset.sel(time=slice("1900", "2000"))
-        
-    # Optional: Print a message indicating dataset processing
-    print(f"Processing dataset: {key}")
-
-
-
-
-
Processing dataset: CMIP.NCAR.CESM2.historical.Amon.gn
-Processing dataset: CMIP.NCAR.CESM2-FV2.historical.Amon.gn
-Processing dataset: CMIP.CCCma.CanESM5.historical.Amon.gn
-Processing dataset: CMIP.CMCC.CMCC-ESM2.historical.Amon.gn
-
-
-
-
-

ds now contains subset of datasets for each key in dset_dict

-

Let’s check ds

-
-
-
ds
-
-
-
-
-
{'CMIP.NCAR.CESM2.historical.Amon.gn': <xarray.Dataset> Size: 268MB
- Dimensions:         (lat: 192, nbnd: 2, lon: 288, member_id: 1,
-                      dcpp_init_year: 1, time: 1212)
- Coordinates:
-   * lat             (lat) float64 2kB -90.0 -89.06 -88.12 ... 88.12 89.06 90.0
-     lat_bnds        (lat, nbnd) float32 2kB dask.array<chunksize=(192, 2), meta=np.ndarray>
-   * lon             (lon) float64 2kB 0.0 1.25 2.5 3.75 ... 356.2 357.5 358.8
-     lon_bnds        (lon, nbnd) float32 2kB dask.array<chunksize=(288, 2), meta=np.ndarray>
-   * time            (time) object 10kB 1900-01-15 12:00:00 ... 2000-12-15 12:...
-     time_bnds       (time, nbnd) object 19kB dask.array<chunksize=(1212, 2), meta=np.ndarray>
-   * member_id       (member_id) object 8B 'r1i1p1f1'
-   * dcpp_init_year  (dcpp_init_year) float64 8B nan
- Dimensions without coordinates: nbnd
- Data variables:
-     tas             (member_id, dcpp_init_year, time, lat, lon) float32 268MB dask.array<chunksize=(1, 1, 600, 192, 288), meta=np.ndarray>
- Attributes: (12/61)
-     Conventions:                      CF-1.7 CMIP-6.2
-     activity_id:                      CMIP
-     branch_method:                    standard
-     branch_time_in_child:             674885.0
-     branch_time_in_parent:            219000.0
-     case_id:                          15
-     ...                               ...
-     intake_esm_attrs:variable_id:     tas
-     intake_esm_attrs:grid_label:      gn
-     intake_esm_attrs:zstore:          gs://cmip6/CMIP6/CMIP/NCAR/CESM2/histor...
-     intake_esm_attrs:version:         20190308
-     intake_esm_attrs:_data_format_:   zarr
-     intake_esm_dataset_key:           CMIP.NCAR.CESM2.historical.Amon.gn,
- 'CMIP.NCAR.CESM2-FV2.historical.Amon.gn': <xarray.Dataset> Size: 67MB
- Dimensions:         (lat: 96, nbnd: 2, lon: 144, member_id: 1,
-                      dcpp_init_year: 1, time: 1212)
- Coordinates:
-   * lat             (lat) float64 768B -90.0 -88.11 -86.21 ... 86.21 88.11 90.0
-     lat_bnds        (lat, nbnd) float64 2kB dask.array<chunksize=(96, 2), meta=np.ndarray>
-   * lon             (lon) float64 1kB 0.0 2.5 5.0 7.5 ... 352.5 355.0 357.5
-     lon_bnds        (lon, nbnd) float64 2kB dask.array<chunksize=(144, 2), meta=np.ndarray>
-   * time            (time) object 10kB 1900-01-15 12:00:00 ... 2000-12-15 12:...
-     time_bnds       (time, nbnd) object 19kB dask.array<chunksize=(1212, 2), meta=np.ndarray>
-   * member_id       (member_id) object 8B 'r1i1p1f1'
-   * dcpp_init_year  (dcpp_init_year) float64 8B nan
- Dimensions without coordinates: nbnd
- Data variables:
-     tas             (member_id, dcpp_init_year, time, lat, lon) float32 67MB dask.array<chunksize=(1, 1, 390, 96, 144), meta=np.ndarray>
- Attributes: (12/61)
-     Conventions:                      CF-1.7 CMIP-6.2
-     activity_id:                      CMIP
-     branch_method:                    standard
-     branch_time_in_child:             674885.0
-     branch_time_in_parent:            10950.0
-     case_id:                          1559
-     ...                               ...
-     intake_esm_attrs:variable_id:     tas
-     intake_esm_attrs:grid_label:      gn
-     intake_esm_attrs:zstore:          gs://cmip6/CMIP6/CMIP/NCAR/CESM2-FV2/hi...
-     intake_esm_attrs:version:         20191120
-     intake_esm_attrs:_data_format_:   zarr
-     intake_esm_dataset_key:           CMIP.NCAR.CESM2-FV2.historical.Amon.gn,
- 'CMIP.CCCma.CanESM5.historical.Amon.gn': <xarray.Dataset> Size: 40MB
- Dimensions:         (lat: 64, bnds: 2, lon: 128, member_id: 1,
-                      dcpp_init_year: 1, time: 1212)
- Coordinates:
-     height          float64 8B ...
-   * lat             (lat) float64 512B -87.86 -85.1 -82.31 ... 82.31 85.1 87.86
-     lat_bnds        (lat, bnds) float64 1kB dask.array<chunksize=(64, 2), meta=np.ndarray>
-   * lon             (lon) float64 1kB 0.0 2.812 5.625 ... 351.6 354.4 357.2
-     lon_bnds        (lon, bnds) float64 2kB dask.array<chunksize=(128, 2), meta=np.ndarray>
-   * time            (time) object 10kB 1900-01-16 12:00:00 ... 2000-12-16 12:...
-     time_bnds       (time, bnds) object 19kB dask.array<chunksize=(1212, 2), meta=np.ndarray>
-   * member_id       (member_id) object 8B 'r1i1p1f1'
-   * dcpp_init_year  (dcpp_init_year) float64 8B nan
- Dimensions without coordinates: bnds
- Data variables:
-     tas             (member_id, dcpp_init_year, time, lat, lon) float32 40MB dask.array<chunksize=(1, 1, 600, 64, 128), meta=np.ndarray>
- Attributes: (12/69)
-     CCCma_model_hash:                 3dedf95315d603326fde4f5340dc0519d80d10c0
-     CCCma_parent_runid:               rc3-pictrl
-     CCCma_pycmor_hash:                33c30511acc319a98240633965a04ca99c26427e
-     CCCma_runid:                      rc3.1-his01
-     Conventions:                      CF-1.7 CMIP-6.2
-     YMDH_branch_time_in_child:        1850:01:01:00
-     ...                               ...
-     intake_esm_attrs:variable_id:     tas
-     intake_esm_attrs:grid_label:      gn
-     intake_esm_attrs:zstore:          gs://cmip6/CMIP6/CMIP/CCCma/CanESM5/his...
-     intake_esm_attrs:version:         20190429
-     intake_esm_attrs:_data_format_:   zarr
-     intake_esm_dataset_key:           CMIP.CCCma.CanESM5.historical.Amon.gn,
- 'CMIP.CMCC.CMCC-ESM2.historical.Amon.gn': <xarray.Dataset> Size: 268MB
- Dimensions:         (lat: 192, bnds: 2, lon: 288, member_id: 1,
-                      dcpp_init_year: 1, time: 1212)
- Coordinates:
-     height          float64 8B ...
-   * lat             (lat) float64 2kB -90.0 -89.06 -88.12 ... 88.12 89.06 90.0
-     lat_bnds        (lat, bnds) float64 3kB dask.array<chunksize=(192, 2), meta=np.ndarray>
-   * lon             (lon) float64 2kB 0.0 1.25 2.5 3.75 ... 356.2 357.5 358.8
-     lon_bnds        (lon, bnds) float64 5kB dask.array<chunksize=(288, 2), meta=np.ndarray>
-   * time            (time) object 10kB 1900-01-16 12:00:00 ... 2000-12-16 12:...
-     time_bnds       (time, bnds) object 19kB dask.array<chunksize=(1212, 2), meta=np.ndarray>
-   * member_id       (member_id) object 8B 'r1i1p1f1'
-   * dcpp_init_year  (dcpp_init_year) float64 8B nan
- Dimensions without coordinates: bnds
- Data variables:
-     tas             (member_id, dcpp_init_year, time, lat, lon) float32 268MB dask.array<chunksize=(1, 1, 208, 192, 288), meta=np.ndarray>
- Attributes: (12/64)
-     Conventions:                      CF-1.7 CMIP-6.2
-     activity_id:                      CMIP
-     branch_method:                    standard
-     branch_time_in_child:             0.0
-     branch_time_in_parent:            0.0
-     cmor_version:                     3.6.0
-     ...                               ...
-     intake_esm_attrs:variable_id:     tas
-     intake_esm_attrs:grid_label:      gn
-     intake_esm_attrs:zstore:          gs://cmip6/CMIP6/CMIP/CMCC/CMCC-ESM2/hi...
-     intake_esm_attrs:version:         20210114
-     intake_esm_attrs:_data_format_:   zarr
-     intake_esm_dataset_key:           CMIP.CMCC.CMCC-ESM2.historical.Amon.gn}
-
-
-
-
-
-

Calculate regional mean for each dataset and visualizing time series

-
-
-
regn_mean = {} 
-for key in dset_dict.keys():
-    regn_mean[key] = ds[key]['tas'].sel(lon=slice(65, 100), lat=slice(5, 25)).mean(dim=['lon', 'lat']).squeeze()
-
-
-
-
-
-
-
regn_mean
-
-
-
-
-
{'CMIP.NCAR.CESM2.historical.Amon.gn': <xarray.DataArray 'tas' (time: 1212)> Size: 5kB
- dask.array<getitem, shape=(1212,), dtype=float32, chunksize=(600,), chunktype=numpy.ndarray>
- Coordinates:
-   * time            (time) object 10kB 1900-01-15 12:00:00 ... 2000-12-15 12:...
-     member_id       <U8 32B 'r1i1p1f1'
-     dcpp_init_year  float64 8B nan,
- 'CMIP.NCAR.CESM2-FV2.historical.Amon.gn': <xarray.DataArray 'tas' (time: 1212)> Size: 5kB
- dask.array<getitem, shape=(1212,), dtype=float32, chunksize=(822,), chunktype=numpy.ndarray>
- Coordinates:
-   * time            (time) object 10kB 1900-01-15 12:00:00 ... 2000-12-15 12:...
-     member_id       <U8 32B 'r1i1p1f1'
-     dcpp_init_year  float64 8B nan,
- 'CMIP.CCCma.CanESM5.historical.Amon.gn': <xarray.DataArray 'tas' (time: 1212)> Size: 5kB
- dask.array<getitem, shape=(1212,), dtype=float32, chunksize=(600,), chunktype=numpy.ndarray>
- Coordinates:
-     height          float64 8B ...
-   * time            (time) object 10kB 1900-01-16 12:00:00 ... 2000-12-16 12:...
-     member_id       <U8 32B 'r1i1p1f1'
-     dcpp_init_year  float64 8B nan,
- 'CMIP.CMCC.CMCC-ESM2.historical.Amon.gn': <xarray.DataArray 'tas' (time: 1212)> Size: 5kB
- dask.array<getitem, shape=(1212,), dtype=float32, chunksize=(404,), chunktype=numpy.ndarray>
- Coordinates:
-     height          float64 8B ...
-   * time            (time) object 10kB 1900-01-16 12:00:00 ... 2000-12-16 12:...
-     member_id       <U8 32B 'r1i1p1f1'
-     dcpp_init_year  float64 8B nan}
-
-
-
-
-
-
-
plt.rcParams['figure.figsize'] = [15, 4]
-plt.rcParams['lines.linewidth'] = 2
-plt.rcParams['font.size'] = 10
-plt.rcParams['font.weight'] = 'bold'
-
-
-
-
-
-

Visualizing the regional mean for each dataset

-
-
-
for key, regm in regn_mean.items():
-    source_id = key.split('.')[2]
-    regm.plot(label=source_id)
-    plt.title(f"Mean Surface Air Temperature for {source_id}")
-    plt.xlabel('Time')
-    plt.ylabel('Temperature (K)')
-    plt.legend()
-    plt.show()
-
-
-
-
-../_images/5808494c25fd412f677c3b813bad7aa21c31475308a20eafd84a55486b115e80.png -../_images/84d006b6aeb9ef5ce09f8df321b4ef9ce1083b5455589b7196d442b38c53cf7e.png -../_images/1c5d9e278bc0fc3fe32c19430fdb23450293a40ab751492ff79715c3bad935bd.png -../_images/c11fea2b54b611e1f8029f0ec5c4f9110be183e22caeb46954a0eef12274ffb1.png -
-
-
-
-
-

Calculating annual mean for each dataset and visualizing time series

-
-
-
annual_mean = {}
-for key, regm in regn_mean.items():
-    annual_mean[key] = regm.resample(time='Y').mean()
-
-
-
-
-
-
-
annual_mean
-
-
-
-
-
{'CMIP.NCAR.CESM2.historical.Amon.gn': <xarray.DataArray 'tas' (time: 101)> Size: 404B
- dask.array<stack, shape=(101,), dtype=float32, chunksize=(1,), chunktype=numpy.ndarray>
- Coordinates:
-     member_id       <U8 32B 'r1i1p1f1'
-     dcpp_init_year  float64 8B nan
-   * time            (time) object 808B 1900-12-31 00:00:00 ... 2000-12-31 00:...,
- 'CMIP.NCAR.CESM2-FV2.historical.Amon.gn': <xarray.DataArray 'tas' (time: 101)> Size: 404B
- dask.array<stack, shape=(101,), dtype=float32, chunksize=(1,), chunktype=numpy.ndarray>
- Coordinates:
-     member_id       <U8 32B 'r1i1p1f1'
-     dcpp_init_year  float64 8B nan
-   * time            (time) object 808B 1900-12-31 00:00:00 ... 2000-12-31 00:...,
- 'CMIP.CCCma.CanESM5.historical.Amon.gn': <xarray.DataArray 'tas' (time: 101)> Size: 404B
- dask.array<stack, shape=(101,), dtype=float32, chunksize=(1,), chunktype=numpy.ndarray>
- Coordinates:
-     height          float64 8B ...
-     member_id       <U8 32B 'r1i1p1f1'
-     dcpp_init_year  float64 8B nan
-   * time            (time) object 808B 1900-12-31 00:00:00 ... 2000-12-31 00:...,
- 'CMIP.CMCC.CMCC-ESM2.historical.Amon.gn': <xarray.DataArray 'tas' (time: 101)> Size: 404B
- dask.array<stack, shape=(101,), dtype=float32, chunksize=(1,), chunktype=numpy.ndarray>
- Coordinates:
-     height          float64 8B ...
-     member_id       <U8 32B 'r1i1p1f1'
-     dcpp_init_year  float64 8B nan
-   * time            (time) object 808B 1900-12-31 00:00:00 ... 2000-12-31 00:...}
-
-
-
-
-
-

Visualizing the regional annual mean for each dataset

-
-
-
for key, anmn in annual_mean.items():
-    source_id = key.split('.')[2]
-    anmn.plot(label=source_id)
-    plt.title(f"Mean Annual Surface Air Temperature for {source_id}")
-    plt.xlabel('Time')
-    plt.ylabel('Temperature (K)')
-    plt.legend()
-    plt.show()
-
-
-
-
-../_images/82c5f1c4fb4e292a933254a50f5039608f1be4b7306a99dfb3870b53e9d25c2b.png -../_images/2f59402efe2c987fc2f707efae49eb5acf7545c6c5d7f0820a76525bcbd48de2.png -../_images/91a24b4f21bfa277adb64c9c21efc282e89326fe8f4ea2fe4fef042b6800115a.png -../_images/776bb93bbeee04bd6a6dce60a8a4b7996373c9d6940d353d66268ad0afb9de09.png -
-
-
-
-

Visualizing the regional annual mean for each dataset in a single panel

-
-
-
# Create the plot
-plt.figure(figsize=(12, 6))
-
-# Plotting the annual mean for each dataset on the same plot
-for key, annm in annual_mean.items():
-    source_id = key.split('.')[2]
-    annm.plot(label=source_id)
-
-plt.title("Annual Mean Surface Air Temperature (Regional)")
-plt.xlabel('Time')
-plt.ylabel('Temperature (K)')
-plt.legend()
-plt.show()
-
-
-
-
-../_images/127c98cf57b1a0937f9936bdf4ac6b129311ec020321f971619eb8999fac309f.png -
-
-
-
- -
-
- - - - -
- - -
-
-
- -
-
- - - -
-
- - - - - - - - - -
-
- - \ No newline at end of file diff --git a/_preview/44/notebooks/ex-regrid-plot.html b/_preview/44/notebooks/ex-regrid-plot.html deleted file mode 100644 index 86a8976..0000000 --- a/_preview/44/notebooks/ex-regrid-plot.html +++ /dev/null @@ -1,1331 +0,0 @@ - - - - - - - - Demo: Regridding and Plotting with Rooki and Cartopy — ESGF Cookbook - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - -
-
- - - - - -
-
-
- -
- -

ESGF logo -Rooki logo -Cartopy logo

-
-

Demo: Regridding and Plotting with Rooki and Cartopy

-
-
-

Overview

-

In this notebook, we demonstrate how to use Rooki to regrid CMIP model data and plot it in Cartopy for two examples:

-
    -
  1. Regrid two CMIP models onto the same grid

  2. -
  3. Coarsen the output for one model

  4. -
-
-
-

Prerequisites

- - - - - - - - - - - - - - - - - - - - - - - - - -

Concepts

Importance

Notes

Intro to intake-esgf

Necessary

Intro to Cartopy

Necessary

Using Rooki to access CMIP6 data

Helpful

Familiarity with rooki

Understanding of NetCDF

Helpful

Familiarity with metadata structure

-
    -
  • Time to learn: 15 minutes

  • -
-
-
-
-

Imports

-
-
-
import os
-import intake_esgf
-
-# Run this on the DKRZ node in Germany, using the ESGF1 index node at LLNL
-os.environ["ROOK_URL"] = "http://rook.dkrz.de/wps"
-intake_esgf.conf.set(indices={"anl-dev": False,
-                               "ornl-dev": False,
-                               "esgf-node.llnl.gov": True})
-
-import rooki.operators as ops
-import matplotlib.pyplot as plt
-import matplotlib.colors as mcolors
-import cartopy.crs as ccrs
-import cartopy.feature as cfeature
-
-import intake_esgf
-from intake_esgf import ESGFCatalog
-from rooki import rooki
-from matplotlib.gridspec import GridSpec
-from mpl_toolkits.axes_grid1.inset_locator import inset_axes
-
-
-
-
-
-
-

Example 1: Regrid two CMIP6 models onto the same grid

-

In this example, we want to compare the historical precipitation output between two CMIP models, CESM2 and CanESM5. Here will will look at the annual mean precipitation for 2010.

-
-

Access the desired datasets using intake-esgf and rooki

-

The function and workflow to read in CMPI6 data using intake-esgf and rooki in the next few cells are adapted from intake-esgf-with-rooki.ipynb. Essentially, we use intake-esgf to find the dataset IDs we want and then subset and average them using rooki.

-
-
-
def separate_dataset_id(id_list):
-    rooki_id = id_list[0]
-    rooki_id = rooki_id.split("|")[0]
-    #rooki_id = f"css03_data.{rooki_id}"  # <-- just something you have to know for now :(
-    return rooki_id
-
-
-
-
-
-
-
cat = ESGFCatalog()
-cat.search(
-        activity_id='CMIP',
-        experiment_id=["historical",],
-        variable_id=["pr"],
-        member_id='r1i1p1f1',
-        grid_label='gn',
-        table_id="Amon",
-        source_id = [ "CESM2", "CanESM5"]
-    )
-
-dsets = [separate_dataset_id(dataset) for dataset in list(cat.df.id.values)]
-dsets
-
-
-
-
-
['CMIP6.CMIP.NCAR.CESM2.historical.r1i1p1f1.Amon.pr.gn.v20190401',
- 'CMIP6.CMIP.CCCma.CanESM5.historical.r1i1p1f1.Amon.pr.gn.v20190429']
-
-
-
-
-

Subset the data to get the precipitation variable for 2010 and then average by time:

-
-
-
dset_list = [[]]*len(dsets)
-
-for i, dset_id in enumerate(dsets):
-    wf = ops.AverageByTime(
-        ops.Subset(
-            ops.Input('pr', [dset_id]),
-            time='2010/2010'
-        )
-    )
-
-    resp = wf.orchestrate()
-
-    # if it worked, add the dataset to our list
-    if resp.ok:
-        dset_list[i] = resp.datasets()[0]
-        
-    # if it failed, tell us why
-    else:
-        print(resp.status)
-
-
-
-
-
Downloading to /tmp/metalink_8a_7wr94/pr_Amon_CESM2_historical_r1i1p1f1_gn_20100101-20100101_avg-year.nc.
-
-
-
Downloading to /tmp/metalink_g8cwp__j/pr_Amon_CanESM5_historical_r1i1p1f1_gn_20100101-20100101_avg-year.nc.
-
-
-
-
-

Print the dataset list to get an overview of the metadata structure:

-
-
-
print(dset_list)
-
-
-
-
-
[<xarray.Dataset> Size: 233kB
-Dimensions:    (time: 1, lat: 192, lon: 288, nbnd: 2)
-Coordinates:
-  * lat        (lat) float64 2kB -90.0 -89.06 -88.12 -87.17 ... 88.12 89.06 90.0
-  * lon        (lon) float64 2kB 0.0 1.25 2.5 3.75 ... 355.0 356.2 357.5 358.8
-  * time       (time) object 8B 2010-01-01 00:00:00
-Dimensions without coordinates: nbnd
-Data variables:
-    pr         (time, lat, lon) float32 221kB ...
-    lat_bnds   (time, lat, nbnd) float64 3kB ...
-    lon_bnds   (time, lon, nbnd) float64 5kB ...
-    time_bnds  (time, nbnd) object 16B ...
-Attributes: (12/45)
-    Conventions:            CF-1.7 CMIP-6.2
-    activity_id:            CMIP
-    branch_method:          standard
-    branch_time_in_child:   674885.0
-    branch_time_in_parent:  219000.0
-    case_id:                15
-    ...                     ...
-    sub_experiment_id:      none
-    table_id:               Amon
-    tracking_id:            hdl:21.14100/a2c2f719-6790-484b-9f66-392e62cd0eb8
-    variable_id:            pr
-    variant_info:           CMIP6 20th century experiments (1850-2014) with C...
-    variant_label:          r1i1p1f1, <xarray.Dataset> Size: 37kB
-Dimensions:    (lat: 64, time: 1, bnds: 2, lon: 128)
-Coordinates:
-  * lat        (lat) float64 512B -87.86 -85.1 -82.31 ... 82.31 85.1 87.86
-  * lon        (lon) float64 1kB 0.0 2.812 5.625 8.438 ... 351.6 354.4 357.2
-  * time       (time) object 8B 2010-01-01 00:00:00
-Dimensions without coordinates: bnds
-Data variables:
-    lat_bnds   (time, lat, bnds) float64 1kB ...
-    lon_bnds   (time, lon, bnds) float64 2kB ...
-    pr         (time, lat, lon) float32 33kB ...
-    time_bnds  (time, bnds) object 16B ...
-Attributes: (12/53)
-    CCCma_model_hash:            3dedf95315d603326fde4f5340dc0519d80d10c0
-    CCCma_parent_runid:          rc3-pictrl
-    CCCma_pycmor_hash:           33c30511acc319a98240633965a04ca99c26427e
-    CCCma_runid:                 rc3.1-his01
-    Conventions:                 CF-1.7 CMIP-6.2
-    YMDH_branch_time_in_child:   1850:01:01:00
-    ...                          ...
-    tracking_id:                 hdl:21.14100/363e1ebe-46e7-43dc-9feb-a7a4a0c...
-    variable_id:                 pr
-    variant_label:               r1i1p1f1
-    version:                     v20190429
-    license:                     CMIP6 model data produced by The Government ...
-    cmor_version:                3.4.0]
-
-
-
-
-
-
-

Compare the precipitation data between models

-

First, let’s quickly plot the 2010 annual mean precipitation for each model to see what we’re working with. Since precipitation values vary greatly in magnitude, using a log-normalized colormap makes the data easier to visualize.

-
-
-
for dset in dset_list:
-    dset.pr.plot(norm=mcolors.LogNorm())
-    plt.show()
-
-
-
-
-../_images/3aa6cfc3c9292c2d58babde4b6183c0fdc1cff0e9b3406f9999fe12d2b9fc71e.png -../_images/eab59dd0c13555370c75b68fc06b0cf9b0e7d6d74047473cf2f0e0fa49d3e1c8.png -
-
-

Uncomment and run the following cell. If we try to take the difference outright, it fails!

-
-
-
# pr_diff = dset_list[0].pr - dset_list[1].pr
-
-
-
-
-

The models have different grids so we can’t directly subtract the data. We can use the grid attribute to get information on which grid each uses.

-
-
-
print(dset_list[0].grid)
-print(dset_list[1].grid)
-
-
-
-
-
native 0.9x1.25 finite volume grid (192x288 latxlon)
-T63L49 native atmosphere, T63 Linear Gaussian Grid; 128 x 64 longitude/latitude; 49 levels; top level 1 hPa
-
-
-
-
-
-
-

Regrid the models onto the same grid with Rooki

-

Look at the documentation on the regrid operator to see the available grid types and regrid methods:

-
-
-
rooki.regrid?
-
-
-
-
-

Here we’ll do the same process as before to read in and subset the datasets with rooki, but now we regrid using ops.Regrid before averaging over time. In this example, we use method=nearest_s2d to regrid each model onto the target grid using a nearest neighbors method. The target grid is a 1.25° grid, specified by grid='1pt25deg'.

-
-
-
rg_list = [[]]*len(dsets)
-
-for i, dset_id in enumerate(dsets):
-    wf = ops.AverageByTime(
-        ops.Regrid(
-            ops.Subset(
-                ops.Input('pr', [dset_id]),
-                time='2010/2010'
-            ),
-            method='nearest_s2d',
-            grid='1pt25deg'
-        )
-    )
-
-
-    resp = wf.orchestrate()
-    
-    # if it worked, add the regridded dataset to our list
-    if resp.ok:
-        rg_list[i] = resp.datasets()[0]
-        
-    # if it failed, tell us why
-    else:
-        print(resp.status)
-        
-
-
-
-
-
Downloading to /tmp/metalink_2ksa4o8k/pr_Amon_CESM2_historical_r1i1p1f1_gr_20100101-20100101_avg-year.nc.
-
-
-
Downloading to /tmp/metalink_45wmx8u9/pr_Amon_CanESM5_historical_r1i1p1f1_gr_20100101-20100101_avg-year.nc.
-
-
-
-
-

Print the list of regridded datasets to get an overview of the metadata structure. Note how lat and lon are now the same and each dataset has additional attributes, including grid_original and regrid_operation, which all keep track of the regridding operations we just completed.

-
-
-
print(rg_list)
-
-
-
-
-
[<xarray.Dataset> Size: 177kB
-Dimensions:    (lat: 145, lon: 288, bnds: 2, time: 1, nbnd: 2)
-Coordinates:
-  * lat        (lat) float64 1kB -90.0 -88.75 -87.5 -86.25 ... 87.5 88.75 90.0
-  * lon        (lon) float64 2kB 0.0 1.25 2.5 3.75 ... 355.0 356.2 357.5 358.8
-    lat_bnds   (lat, bnds) float64 2kB ...
-    lon_bnds   (lon, bnds) float64 5kB ...
-  * time       (time) object 8B 2010-01-01 00:00:00
-Dimensions without coordinates: bnds, nbnd
-Data variables:
-    pr         (time, lat, lon) float32 167kB ...
-    time_bnds  (time, nbnd) object 16B ...
-Attributes: (12/50)
-    Conventions:                  CF-1.7 CMIP-6.2
-    activity_id:                  CMIP
-    branch_method:                standard
-    branch_time_in_child:         674885.0
-    branch_time_in_parent:        219000.0
-    case_id:                      15
-    ...                           ...
-    grid_original:                native 0.9x1.25 finite volume grid (192x288...
-    grid_label_original:          gn
-    nominal_resolution_original:  100 km
-    regrid_operation:             nearest_s2d_192x288_145x288_peri
-    regrid_tool:                  xESMF_v0.8.6
-    regrid_weights_uid:           79e1100d95467f7177a261a94d1333ad_f3646e1560..., <xarray.Dataset> Size: 177kB
-Dimensions:    (lat: 145, lon: 288, bnds: 2, time: 1)
-Coordinates:
-  * lat        (lat) float64 1kB -90.0 -88.75 -87.5 -86.25 ... 87.5 88.75 90.0
-  * lon        (lon) float64 2kB 0.0 1.25 2.5 3.75 ... 355.0 356.2 357.5 358.8
-    lat_bnds   (lat, bnds) float64 2kB ...
-    lon_bnds   (lon, bnds) float64 5kB ...
-  * time       (time) object 8B 2010-01-01 00:00:00
-Dimensions without coordinates: bnds
-Data variables:
-    pr         (time, lat, lon) float32 167kB ...
-    time_bnds  (time, bnds) object 16B ...
-Attributes: (12/58)
-    CCCma_model_hash:             3dedf95315d603326fde4f5340dc0519d80d10c0
-    CCCma_parent_runid:           rc3-pictrl
-    CCCma_pycmor_hash:            33c30511acc319a98240633965a04ca99c26427e
-    CCCma_runid:                  rc3.1-his01
-    Conventions:                  CF-1.7 CMIP-6.2
-    YMDH_branch_time_in_child:    1850:01:01:00
-    ...                           ...
-    grid_original:                T63L49 native atmosphere, T63 Linear Gaussi...
-    grid_label_original:          gn
-    nominal_resolution_original:  500 km
-    regrid_operation:             nearest_s2d_64x128_145x288_peri
-    regrid_tool:                  xESMF_v0.8.6
-    regrid_weights_uid:           549cab49a80314b5a85515237d530e30_f3646e1560...]
-
-
-
-
-

Now they are on the same grid!

-
-
-
print(rg_list[0].grid)
-print(rg_list[1].grid)
-
-
-
-
-
Global 1.25 degree grid with one cell centered at 0E,0N. As used by ERA-40.
-Global 1.25 degree grid with one cell centered at 0E,0N. As used by ERA-40.
-
-
-
-
-
-
-

Quick plot the before and after for each model

-

The plots largely look the same, as they should - with the nearest neighbors method, we are just shifting the precipitation data onto a different grid without averaging between grid cells.

-
-
-
print(dset_list[0].source_id)
-for ds in [dset_list[0], rg_list[0]]:
-    ds.pr.plot(norm=mcolors.LogNorm())
-    plt.show()
-
-
-
-
-
CESM2
-
-
-../_images/3aa6cfc3c9292c2d58babde4b6183c0fdc1cff0e9b3406f9999fe12d2b9fc71e.png -../_images/39e2ec5cc79b2824c035a8af05b40136ee1511e8f9ee20f7a05aee75dc17f0f8.png -
-
-
-
-
print(dset_list[1].source_id)
-for ds in [dset_list[1], rg_list[1]]:
-    ds.pr.plot(norm=mcolors.LogNorm())
-    plt.show()
-
-
-
-
-
CanESM5
-
-
-../_images/eab59dd0c13555370c75b68fc06b0cf9b0e7d6d74047473cf2f0e0fa49d3e1c8.png -../_images/6126f537773e8aa11905bbdff19e079cdcef31374783190fa68b5cc6d158ca58.png -
-
-
-

Take the difference between precipitation datasets and plot it

-

Now that both models are on the same grid, we can subtract the precipitation datasets and plot the difference!

-
-
-
pr_diff = rg_list[0] - rg_list[1]
-
-pr_diff.pr.plot(cmap="bwr")
-plt.show()
-
-
-
-
-../_images/a4325b9c2fd643a3c1e7d3174bd8fa3a93b44c7e51055108eef80e6df0ab7745.png -
-
-
-
-
-

Plot everything together

-

Plot the regridded precipitation data as well as the difference between models on the same figure. We can use Cartopy to make it pretty. With GridSpec, we can also split up the figure and organize it to use the same colorbar for more than one panel.

-
-
-
# set up figure
-fig = plt.figure(figsize=(6, 8))
-gs = GridSpec(3, 2, width_ratios=[1, 0.1], hspace=0.2)
-
-# specify the projection
-proj = ccrs.Mollweide()
-
-# set up plots for each model
-axpr_1 = plt.subplot(gs[0, 0], projection=proj)
-axpr_2 = plt.subplot(gs[1, 0], projection=proj)
-axdiff = plt.subplot(gs[2, 0], projection=proj)
-
-# axes where the colorbar will go 
-axcb_pr = plt.subplot(gs[:2, 1]) 
-axcb_diff = plt.subplot(gs[2, 1])
-axcb_pr.axis("off")
-axcb_diff.axis("off")
-
-# plot the precipitation for both models
-for i, ax in enumerate([axpr_1, axpr_2]):
-    ds_rg = rg_list[i]
-    pcm = ax.pcolormesh(ds_rg.lon, ds_rg.lat, ds_rg.pr.isel(time=0), norm=mcolors.LogNorm(vmin=1e-7, vmax=3e-4),
-                         transform=ccrs.PlateCarree()
-                       )
-    ax.set_title(ds_rg.parent_source_id)
-    ax.add_feature(cfeature.COASTLINE)
-    
-# now plot the difference
-pcmd = axdiff.pcolormesh(pr_diff.lon, pr_diff.lat, pr_diff.pr.isel(time=0), cmap="bwr", vmin=-3e-4, vmax=3e-4,
-                         transform=ccrs.PlateCarree()
-                        )
-axdiff.set_title("{a} - {b}".format(a=rg_list[0].parent_source_id, b=rg_list[1].parent_source_id))
-axdiff.add_feature(cfeature.COASTLINE)
-
-# set the precipitation colorbar
-axcb_pr_ins = inset_axes(axcb_pr, width="50%", height="75%", loc="center")
-cbar_pr = plt.colorbar(pcm, cax=axcb_pr_ins, orientation="vertical", extend="both")
-cbar_pr.set_label("{n} ({u})".format(n=rg_list[0].pr.long_name, u=rg_list[0].pr.units))
-
-# set the difference colorbar
-axcb_diff_ins = inset_axes(axcb_diff, width="50%", height="100%", loc="center")
-cbar_diff = plt.colorbar(pcmd, cax=axcb_diff_ins, orientation="vertical", extend="both")
-cbar_diff.set_label("Difference ({u})".format(u=pr_diff.pr.units))
-
-plt.show()
-
-
-
-
-
/home/runner/miniconda3/envs/cookbook-dev/lib/python3.10/site-packages/cartopy/io/__init__.py:241: DownloadWarning: Downloading: https://naturalearth.s3.amazonaws.com/110m_physical/ne_110m_coastline.zip
-  warnings.warn(f'Downloading: {url}', DownloadWarning)
-
-
-../_images/2b6ab2b83472c8617de439e282198c76a1564dbe39bc9b28ee50b179f0d3db2d.png -
-
-
-
-
-

Example 2: Coarsen the output for one model

-

We can also use Rooki to regrid the data from one model onto a coarser grid. In this case, it may make more sense to use a conservative regridding method, which will conserve the physical fluxes between grid cells, rather than the nearest neighbors method we used in Example 1.

-
-

Get the data using intake-esgf and Rooki again

-

In this example, we’ll look at the annual mean near-surface air temperature for CESM2 in 2010.

-
-
-
cat = ESGFCatalog()
-cat.search(
-        activity_id='CMIP',
-        experiment_id=["historical",],
-        variable_id=["tas"],
-        member_id='r1i1p1f1',
-        grid_label='gn',
-        table_id="Amon",
-        source_id = [ "CESM2"]
-    )
-
-dsets = [separate_dataset_id(dataset) for dataset in list(cat.df.id.values)]
-dsets
-
-
-
-
-
['CMIP6.CMIP.NCAR.CESM2.historical.r1i1p1f1.Amon.tas.gn.v20190308']
-
-
-
-
-

First, get the dataset with the original grid:

-
-
-
wf = ops.AverageByTime(
-    ops.Subset(
-        ops.Input('tas', [dsets[0]]),
-        time='2010/2010'
-    )
-)
-
-resp = wf.orchestrate()
-
-if resp.ok:
-    ds_og = resp.datasets()[0]
-else:
-    print(resp.status)
-
-
-
-
-
Downloading to /tmp/metalink_3ip6j7zx/tas_Amon_CESM2_historical_r1i1p1f1_gn_20100101-20100101_avg-year.nc.
-
-
-
-
-

Use the .grid attribute to get information on the native grid:

-
-
-
ds_og.grid
-
-
-
-
-
'native 0.9x1.25 finite volume grid (192x288 latxlon)'
-
-
-
-
-

The native grid is 0.9°x1.25°, so let’s try coarsening to a 1.25°x1.25° grid using the conservative method:

-
-
-
wf = ops.AverageByTime(
-    ops.Regrid(
-        ops.Subset(
-            ops.Input('tas', [dsets[0]]),
-            time='2010/2010'
-        ),
-        method='conservative',
-        grid='1pt25deg'
-    )
-)
-
-resp = wf.orchestrate()
-
-if resp.ok:
-    ds_125 = resp.datasets()[0]
-else:
-    print(resp.status)
-    
-
-
-
-
-
Downloading to /tmp/metalink_cdwqgjjy/tas_Amon_CESM2_historical_r1i1p1f1_gr_20100101-20100101_avg-year.nc.
-
-
-
-
-
-
-
ds_125.grid
-
-
-
-
-
'Global 1.25 degree grid with one cell centered at 0E,0N. As used by ERA-40.'
-
-
-
-
-

We can also make it even coarser by regridding to a 2.5°x2.5° grid:

-
-
-
wf = ops.AverageByTime(
-    ops.Regrid(
-        ops.Subset(
-            ops.Input('tas', [dsets[0]]),
-            time='2010/2010'
-        ),
-        method='conservative',
-        grid='2pt5deg'
-    )
-)
-
-resp = wf.orchestrate()
-
-if resp.ok:
-    ds_25 = resp.datasets()[0]
-else:
-    print(resp.status)
-    
-
-
-
-
-
Downloading to /tmp/metalink_5glyg4b7/tas_Amon_CESM2_historical_r1i1p1f1_gr_20100101-20100101_avg-year.nc.
-
-
-
-
-
-
-
ds_25.grid
-
-
-
-
-
'Global 2.5 degree grid with one cell centered at 1.25E,1.25N.'
-
-
-
-
-
-
-

Plot each dataset to look at the coarsened grids

-

Make a quick plot first:

-
-
-
for ds in [ds_og, ds_125, ds_25]:
-    ds["tas"].plot()
-    plt.show()
-    
-
-
-
-
-../_images/89890442113b0171d034a08149f548c799b0a701d57d9713549f71291aed93bf.png -../_images/d449925076c59dab607d2e3f5d9effe5df80364c08afa31767b10a296edacee5.png -../_images/1cbe0040c4a6b400a1c083340ad58556ec02ce780a0b829be2d66e5d4b612cb2.png -
-
-
-
-

Plot the coarsened datsets together using Cartopy

-

Now let’s zoom in on a smaller region, the continental US, to get a clear view of the difference in grid resolution. Here we can also decrease the colorbar limits to better see how the variable tas varies within the smaller region.

-
-
-
# set up the figure
-fig = plt.figure(figsize=(6, 8))
-gs = GridSpec(3, 2, width_ratios=[1, 0.1], height_ratios=[1, 1, 1], hspace=0.3, wspace=0.2)
-
-# specify the projection
-proj = ccrs.PlateCarree()
-
-# set up plot axes
-ax1 = plt.subplot(gs[0, 0], projection=proj)
-ax2 = plt.subplot(gs[1, 0], projection=proj)
-ax3 = plt.subplot(gs[2, 0], projection=proj)
-axes_list = [ax1, ax2, ax3]
-
-# set up colorbar axis
-axcb = plt.subplot(gs[:, 1])
-
-# loop through each dataset and its corresponding axis
-for i, dset in enumerate([ds_og, ds_125, ds_25]):
-    plot_ds = dset.tas.isel(time=0)
-    ax = axes_list[i]
-    pcm = ax.pcolormesh(plot_ds.lon, plot_ds.lat, plot_ds, vmin=270, vmax=302.5, transform=proj)
-    
-    # add borders and coastlines
-    ax.add_feature(cfeature.BORDERS)
-    ax.coastlines()
-    
-    # limit to CONUS for this example
-    ax.set_xlim(-130, -60)
-    ax.set_ylim(22, 52)
-    
-    # add grid labels on bottom & left only
-    gl = ax.gridlines(color="None", draw_labels=True)
-    gl.top_labels = False
-    gl.right_labels = False
-    
-    # label with the regrid type; if it fails, that means it hasn't been regridded
-    # (so label with the grid attribute instead)
-    try:
-        ax.set_title(dset.regrid_operation)
-    except:
-        ax.set_title(dset.grid)
-        
-# use the same colorbar for all plots
-axcb.axis("off")
-axcb_ins = inset_axes(axcb, width="50%", height="75%", loc="center")
-cbar = plt.colorbar(pcm, cax=axcb_ins, orientation="vertical", extend="both")
-cbar.set_label("{n} ({u})".format(n=plot_ds.long_name, u=plot_ds.units))
-        
-plt.show()
-
-
-
-
-
/home/runner/miniconda3/envs/cookbook-dev/lib/python3.10/site-packages/cartopy/io/__init__.py:241: DownloadWarning: Downloading: https://naturalearth.s3.amazonaws.com/50m_cultural/ne_50m_admin_0_boundary_lines_land.zip
-  warnings.warn(f'Downloading: {url}', DownloadWarning)
-
-
-
/home/runner/miniconda3/envs/cookbook-dev/lib/python3.10/site-packages/cartopy/io/__init__.py:241: DownloadWarning: Downloading: https://naturalearth.s3.amazonaws.com/50m_physical/ne_50m_coastline.zip
-  warnings.warn(f'Downloading: {url}', DownloadWarning)
-
-
-../_images/9f4d0a987a62ad23f57b5f0377e470253384e1e3902a90cf00f258924fbaa3fb.png -
-
-
-
-
-
-

Summary

-

Rooki offers a quick and easy way to regrid CMIP model data that can be located using intake-esgf. Cartopy lets us easily customize the plot to neatly display the geospatial data.

-
-
-

Resources and references

- -
-
- - - - -
- - -
-
-
- -
-
- - - -
-
- - - - - - - - - -
-
- - \ No newline at end of file diff --git a/_preview/44/notebooks/how-to-cite.html b/_preview/44/notebooks/how-to-cite.html deleted file mode 100644 index ec6f14f..0000000 --- a/_preview/44/notebooks/how-to-cite.html +++ /dev/null @@ -1,455 +0,0 @@ - - - - - - - - How to Cite This Cookbook — ESGF Cookbook - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - -
-
- - - - - -
-
- -
- - - - - - - - - - - - - - - - -
- - -
- -
-
-
-
-
- -
- -
-

How to Cite This Cookbook

-

The material in this Project Pythia Cookbook is licensed for free and open consumption and reuse. All code is served under Apache 2.0, while all non-code content is licensed under Creative Commons BY 4.0 (CC BY 4.0). Effectively, this means you are free to share and adapt this material so long as you give appropriate credit to the Cookbook authors and the Project Pythia community.

-

The source code for the book is released on GitHub and archived on Zenodo. This DOI will always resolve to the latest release of the book source:

-

DOI

-
- - - - -
- - -
-
-
- -
-
- - - -
-
- - - - - - - - - -
-
- - \ No newline at end of file diff --git a/_preview/44/notebooks/intro-search.html b/_preview/44/notebooks/intro-search.html deleted file mode 100644 index 00f7dba..0000000 --- a/_preview/44/notebooks/intro-search.html +++ /dev/null @@ -1,1699 +0,0 @@ - - - - - - - - Introduction to intake-esgf — ESGF Cookbook - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - -
-
- - - - - -
-
- -
- - - - - - - - - - - - - - - - - - -
- - - -
-
-
-
- -
- -

ESGF logo

-
-

Introduction to intake-esgf

-
-

Overview

-

In this tutorial we will discuss the basic functionality of intake-esgf and describe some of what it is doing under the hood. intake-esgf is an intake and intake-esm inspired package under development in ESGF2. Please note that there is a name collison with an existing package in PyPI and conda. You will need to install the package from source.

-
-
-

Prerequisites

- - - - - - - - - - - - - - - - - - - - - -

Concepts

Importance

Notes

Install Package

Necessary

pip install git+https://github.com/esgf2-us/intake-esgf

Familiar with intake-esm

Helpful

Similar interface

Understanding of NetCDF

Helpful

Familiarity with metadata structure

-
    -
  • Time to learn: 30 minutes

  • -
-
-
-

Imports

-
-
-
from intake_esgf import ESGFCatalog
-import matplotlib.pyplot as plt
-
-
-
-
-
-
-

Populate the Catalog

-

Unlike intake-esm, our catalogs initialize empty. This is because while intake-esm -loads a large file-based database into memory, we are going to populate a catalog by -searching one or many index nodes. The ESGFCatalog is configured by default to query -a Globus (ElasticSearch) based index which has information about holdings at the (Argonne Leadership Computing Facility (ALCF) only. We will demonstrate how this may be expanded to include other nodes later.

-
-
-
cat = ESGFCatalog()
-print(cat)  # <-- nothing to see here yet
-
-
-
-
-
Perform a search() to populate the catalog.
-
-
-
-
-
-
-
cat.search(
-    experiment_id="historical",
-    source_id="CanESM5",
-    frequency="mon",
-    variable_id=["gpp", "tas", "pr"],
-)
-print(cat)
-
-
-
-
-
Summary information for 195 results:
-mip_era                                                     [CMIP6]
-activity_drs                                                 [CMIP]
-institution_id                                              [CCCma]
-source_id                                                 [CanESM5]
-experiment_id                                          [historical]
-member_id         [r17i1p1f1, r3i1p1f1, r9i1p2f1, r23i1p1f1, r9i...
-table_id                                               [Lmon, Amon]
-variable_id                                          [gpp, pr, tas]
-grid_label                                                     [gn]
-dtype: object
-
-
-
-
-

The search has populated the catalog where results are stored internally as a pandas dataframe, where the columns are the facets common to ESGF. Printing the catalog will display each column as well as a possibly-truncated list of unique values. We can use these to help narrow down our search. In this case, we neglected to mention a member_id (also known as a variant_label). So we can repeat our search with this additional facet. Note that searches are not cumulative and so we need to repeat the previous facets in this subsequent search. Also, while for the tutorial’s sake we repeat the search here, in your own analysis codes, you could simply edit your previous search.

-
-
-
cat.search(
-    experiment_id="historical",
-    source_id="CanESM5",
-    frequency="mon",
-    variable_id=["gpp", "tas", "pr"],
-    variant_label="r1i1p1f1",  # addition from the last search
-)
-print(cat)
-
-
-
-
-
Summary information for 3 results:
-mip_era                  [CMIP6]
-activity_drs              [CMIP]
-institution_id           [CCCma]
-source_id              [CanESM5]
-experiment_id       [historical]
-member_id             [r1i1p1f1]
-table_id            [Amon, Lmon]
-variable_id       [tas, pr, gpp]
-grid_label                  [gn]
-dtype: object
-
-
-
-
-
-
-

Obtaining the datasets

-

Now we see that our search has located 3 datasets and thus we are ready to load these into memory. Like intake-esm, the catalog will generate a dictionary of xarray datasets. Internally, the catalog is again communicating with the index node and requesting file information. This includes which file or files are part of the datasets, their local paths, download locations, and verification information. We then try to make an optimal decision in getting the data to you as quickly as we can.

-
    -
  1. If you are running on a resource with direct access to the ESGF holdings (such a Jupyter notebook on nimbus.llnl.gov), then we check if the dataset files are locally available. We have a handful of locations built-in to intake-esgf but you can also set a location manually with cat.set_esgf_data_root().

  2. -
  3. If a dataset has associated files that have been previously downloaded into the local cache, then we will load these files into memory.

  4. -
  5. If no direct file access is found, then we will queue the dataset files for download. File downloads will occur in parallel from the locations which provide you the fastest transfer speeds. Initially we will randomize the download locations, but as you use intake-esgf, we keep track of which servers provide you fastest transfer speeds and future downloads will prefer these locations. Once downloaded, we check file validity, and load into xarray containers.

  6. -
-
-
-
dsd = cat.to_dataset_dict()
-
-
-
-
-
Downloading 131.5 [Mb]...
-
-
-
-
-

You will notice that progress bars inform you that file information is being obtained -and that downloads are taking place. As files are downloaded, they are placed into a -local cache in ${HOME}/.esgf in a directory structure that mirrors that of the -remote storage. For future analysis which uses these datasets, intake-esgf will -first check this cache to see if a file already exists and use it instead of -re-downloading. Then it returns a dictionary whose keys are by default the minimal set -of facets to uniquely describe a dataset in the current search.

-
-
-
print(dsd.keys())
-
-
-
-
-
dict_keys(['Amon.tas', 'Amon.pr', 'Lmon.gpp'])
-
-
-
-
-

During the download process, you may have also noticed that a progress bar informed -you that we were adding cell measures. If you have worked with ESGF data before, you -know that cell measure information like areacella is needed to take proper -area-weighted means/summations. Yet many times, model centers have not uploaded this -information uniformly in all submissions. We perform a search for each dataset being -placed in the dataset dictionary, progressively dropping dataset facets to find, if -possible, the cell measures that are closest to the dataset being downloaded. -Sometimes they are simply in another variant_label, but other times they could be in a -different activity_id. No matter where they are, we find them for you and add them -by default (disable with to_dataset_dict(add_measures=False)).

-

We determine which measures need downloaded by looking in the dataset attributes. Since tas is an atmospheric variable, we will see that its cell_measures = 'area: areacella'. If you print this variable you will see that measure has been added.

-
-
-
dsd["Amon.tas"]
-
-
-
-
-
- - - - - - - - - - - - - - -
<xarray.Dataset> Size: 65MB
-Dimensions:    (time: 1980, bnds: 2, lat: 64, lon: 128)
-Coordinates:
-  * time       (time) object 16kB 1850-01-16 12:00:00 ... 2014-12-16 12:00:00
-  * lat        (lat) float64 512B -87.86 -85.1 -82.31 ... 82.31 85.1 87.86
-  * lon        (lon) float64 1kB 0.0 2.812 5.625 8.438 ... 351.6 354.4 357.2
-    height     float64 8B ...
-Dimensions without coordinates: bnds
-Data variables:
-    time_bnds  (time, bnds) object 32kB ...
-    lat_bnds   (lat, bnds) float64 1kB ...
-    lon_bnds   (lon, bnds) float64 2kB ...
-    tas        (time, lat, lon) float32 65MB ...
-    areacella  (lat, lon) float32 33kB ...
-Attributes: (12/55)
-    CCCma_model_hash:            3dedf95315d603326fde4f5340dc0519d80d10c0
-    CCCma_parent_runid:          rc3-pictrl
-    CCCma_pycmor_hash:           33c30511acc319a98240633965a04ca99c26427e
-    CCCma_runid:                 rc3.1-his01
-    Conventions:                 CF-1.7 CMIP-6.2
-    YMDH_branch_time_in_child:   1850:01:01:00
-    ...                          ...
-    variant_label:               r1i1p1f1
-    version:                     v20190429
-    license:                     CMIP6 model data produced by The Government ...
-    cmor_version:                3.4.0
-    activity_drs:                CMIP
-    member_id:                   r1i1p1f1
-
-

However, for gpp we also need the land fractions, which is detected by the presence of area: where land in the cell_methods. You will notice that both areacella and sftlf are added to Lmon.gpp.

-
-
-
dsd["Lmon.gpp"]
-
-
-
-
-
- - - - - - - - - - - - - - -
<xarray.Dataset> Size: 65MB
-Dimensions:    (time: 1980, bnds: 2, lat: 64, lon: 128)
-Coordinates:
-  * time       (time) object 16kB 1850-01-16 12:00:00 ... 2014-12-16 12:00:00
-  * lat        (lat) float64 512B -87.86 -85.1 -82.31 ... 82.31 85.1 87.86
-  * lon        (lon) float64 1kB 0.0 2.812 5.625 8.438 ... 351.6 354.4 357.2
-    type       |S4 4B ...
-Dimensions without coordinates: bnds
-Data variables:
-    time_bnds  (time, bnds) object 32kB ...
-    lat_bnds   (lat, bnds) float64 1kB ...
-    lon_bnds   (lon, bnds) float64 2kB ...
-    gpp        (time, lat, lon) float32 65MB ...
-    areacella  (lat, lon) float32 33kB ...
-    sftlf      (lat, lon) float32 33kB ...
-Attributes: (12/55)
-    CCCma_model_hash:            3dedf95315d603326fde4f5340dc0519d80d10c0
-    CCCma_parent_runid:          rc3-pictrl
-    CCCma_pycmor_hash:           33c30511acc319a98240633965a04ca99c26427e
-    CCCma_runid:                 rc3.1-his01
-    Conventions:                 CF-1.7 CMIP-6.2
-    YMDH_branch_time_in_child:   1850:01:01:00
-    ...                          ...
-    variant_label:               r1i1p1f1
-    version:                     v20190429
-    license:                     CMIP6 model data produced by The Government ...
-    cmor_version:                3.4.0
-    activity_drs:                CMIP
-    member_id:                   r1i1p1f1
-
-
-
-

Simple Plotting

-
-
-
fig, axs = plt.subplots(figsize=(6, 12), nrows=3)
-
-# temperature
-ds = dsd["Amon.tas"]["tas"].mean(dim="time") - 273.15  # to [C]
-ds.plot(ax=axs[0], cmap="bwr", vmin=-40, vmax=40, cbar_kwargs={"label": "tas [C]"})
-
-# precipitation
-ds = dsd["Amon.pr"]["pr"].mean(dim="time") * 86400 / 999.8 * 1000  # to [mm d-1]
-ds.plot(ax=axs[1], cmap="Blues", vmax=10, cbar_kwargs={"label": "pr [mm d-1]"})
-
-# gross primary productivty
-ds = dsd["Lmon.gpp"]["gpp"].mean(dim="time") * 86400 * 1000  # to [g m-2 d-1]
-ds.plot(ax=axs[2], cmap="Greens", cbar_kwargs={"label": "gpp [g m-2 d-1]"})
-
-plt.tight_layout();
-
-
-
-
-../_images/478b095649ec4638a3a9de134c4a87b0743745559ddb2b965404711aa0b62fcb.png -
-
-
-
-

Summary

-

intake-esgf becomes the way that you download or locate data as well as load it into memory. It is a full specification of what your analysis is about and makes your script portable to other machines or even in use with serverside computing. We are actively developing this codebase. Let us know what other features you would like to see.

-
-
- - - - -
- - -
-
-
- -
-
- - - -
-
- - - - - - - - - -
-
- - \ No newline at end of file diff --git a/_preview/44/notebooks/notebook-template.html b/_preview/44/notebooks/notebook-template.html deleted file mode 100644 index 5842fc3..0000000 --- a/_preview/44/notebooks/notebook-template.html +++ /dev/null @@ -1,725 +0,0 @@ - - - - - - - - Project Pythia Notebook Template — ESGF Cookbook - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - -
-
- - - - - -
-
-
- -
- -

Let’s start here! If you can directly link to an image relevant to your notebook, such as canonical logos, do so here at the top of your notebook. You can do this with Markdown syntax,

-
-

![<image title>](http://link.com/to/image.png "image alt text")

-
-

or edit this cell to see raw HTML img demonstration. This is preferred if you need to shrink your embedded image. Either way be sure to include alt text for any embedded images to make your content more accessible.

-

Project Pythia Logo

-
-

Project Pythia Notebook Template

-

Next, title your notebook appropriately with a top-level Markdown header, #. Do not use this level header anywhere else in the notebook. Our book build process will use this title in the navbar, table of contents, etc. Keep it short, keep it descriptive. Follow this with a --- cell to visually distinguish the transition to the prerequisites section.

-
-
-

Overview

-

If you have an introductory paragraph, lead with it here! Keep it short and tied to your material, then be sure to continue into the required list of topics below,

-
    -
  1. This is a numbered list of the specific topics

  2. -
  3. These should map approximately to your main sections of content

  4. -
  5. Or each second-level, ##, header in your notebook

  6. -
  7. Keep the size and scope of your notebook in check

  8. -
  9. And be sure to let the reader know up front the important concepts they’ll be leaving with

  10. -
-
-
-

Prerequisites

-

This section was inspired by this template of the wonderful The Turing Way Jupyter Book.

-

Following your overview, tell your reader what concepts, packages, or other background information they’ll need before learning your material. Tie this explicitly with links to other pages here in Foundations or to relevant external resources. Remove this body text, then populate the Markdown table, denoted in this cell with | vertical brackets, below, and fill out the information following. In this table, lay out prerequisite concepts by explicitly linking to other Foundations material or external resources, or describe generally helpful concepts.

-

Label the importance of each concept explicitly as helpful/necessary.

- - - - - - - - - - - - - - - - - - - - - -

Concepts

Importance

Notes

Intro to Cartopy

Necessary

Understanding of NetCDF

Helpful

Familiarity with metadata structure

Project management

Helpful

-
    -
  • Time to learn: estimate in minutes. For a rough idea, use 5 mins per subsection, 10 if longer; add these up for a total. Safer to round up and overestimate.

  • -
  • System requirements:

    -
      -
    • Populate with any system, version, or non-Python software requirements if necessary

    • -
    • Otherwise use the concepts table above and the Imports section below to describe required packages as necessary

    • -
    • If no extra requirements, remove the System requirements point altogether

    • -
    -
  • -
-
-
-
-

Imports

-

Begin your body of content with another --- divider before continuing into this section, then remove this body text and populate the following code cell with all necessary Python imports up-front:

-
-
-
import sys
-
-
-
-
-
-
-

Your first content section

-

This is where you begin your first section of material, loosely tied to your objectives stated up front. Tie together your notebook as a narrative, with interspersed Markdown text, images, and more as necessary,

-
-
-
# as well as any and all of your code cells
-print("Hello world!")
-
-
-
-
-
Hello world!
-
-
-
-
-
-

A content subsection

-

Divide and conquer your objectives with Markdown subsections, which will populate the helpful navbar in Jupyter Lab and here on the Jupyter Book!

-
-
-
# some subsection code
-new = "helpful information"
-
-
-
-
-
-
-

Another content subsection

-

Keep up the good work! A note, try to avoid using code comments as narrative, and instead let them only exist as brief clarifications where necessary.

-
-
-
-

Your second content section

-

Here we can move on to our second objective, and we can demonstrate

-
-

Subsection to the second section

-
-

a quick demonstration

-
-
of further and further
-
-
header levels
-

as well \(m = a * t / h\) text! Similarly, you have access to other \(\LaTeX\) equation functionality via MathJax (demo below from link),

-
-()\[\begin{align} -\dot{x} & = \sigma(y-x) \\ -\dot{y} & = \rho x - y - xz \\ -\dot{z} & = -\beta z + xy -\end{align}\]
-

Check out any number of helpful Markdown resources for further customizing your notebooks and the Jupyter docs for Jupyter-specific formatting information. Don’t hesitate to ask questions if you have problems getting it to look just right.

-
-
-
-
-
-
-

Last Section

-

If you’re comfortable, and as we briefly used for our embedded logo up top, you can embed raw html into Jupyter Markdown cells (edit to see):

-
-

Info

-

Your relevant information here!

-
-

Feel free to copy this around and edit or play around with yourself. Some other admonitions you can put in:

-
-

Success

-

We got this done after all!

-
-
-

Warning

-

Be careful!

-
-
-

Danger

-

Scary stuff be here.

-
-

We also suggest checking out Jupyter Book’s brief demonstration on adding cell tags to your cells in Jupyter Notebook, Lab, or manually. Using these cell tags can allow you to customize how your code content is displayed and even demonstrate errors without altogether crashing our loyal army of machines!

-
-
-
-

Summary

-

Add one final --- marking the end of your body of content, and then conclude with a brief single paragraph summarizing at a high level the key pieces that were learned and how they tied to your objectives. Look to reiterate what the most important takeaways were.

-
-

What’s next?

-

Let Jupyter book tie this to the next (sequential) piece of content that people could move on to down below and in the sidebar. However, if this page uniquely enables your reader to tackle other nonsequential concepts throughout this book, or even external content, link to it here!

-
-
-
-

Resources and references

-

Finally, be rigorous in your citations and references as necessary. Give credit where credit is due. Also, feel free to link to relevant external material, further reading, documentation, etc. Then you’re done! Give yourself a quick review, a high five, and send us a pull request. A few final notes:

-
    -
  • Kernel > Restart Kernel and Run All Cells... to confirm that your notebook will cleanly run from start to finish

  • -
  • Kernel > Restart Kernel and Clear All Outputs... before committing your notebook, our machines will do the heavy lifting

  • -
  • Take credit! Provide author contact information if you’d like; if so, consider adding information here at the bottom of your notebook

  • -
  • Give credit! Attribute appropriate authorship for referenced code, information, images, etc.

  • -
  • Only include what you’re legally allowed: no copyright infringement or plagiarism

  • -
-

Thank you for your contribution!

-
-
- - - - -
- -
-
-
-
-
- -
-
- - - -
-
- - - - - - - - - -
-
- - \ No newline at end of file diff --git a/_preview/44/notebooks/rooki.html b/_preview/44/notebooks/rooki.html deleted file mode 100644 index b56e33e..0000000 --- a/_preview/44/notebooks/rooki.html +++ /dev/null @@ -1,1728 +0,0 @@ - - - - - - - - Compute Demo: Use Rooki to access CMIP6 data — ESGF Cookbook - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - -
-
- - - - - -
-
-
- -
- -
-

Compute Demo: Use Rooki to access CMIP6 data

-
-

Overview

-

Rooki is a Python client to interact with Rook data subsetting service for climate model data. This service is used in the backend by the European Copernicus Climate Data Store to access the CMIP6 data pool. The Rook service is deployed for load-balancing at IPSL (Paris) and DKRZ (Hamburg). The CMIP6 data pool is shared with ESGF. The provided CMIP6 subset for Copernicus is synchronized at both sites.

-

Rook provides operators for subsetting, averaging and regridding to retrieve a subset of the CMIP6 data pool. These operators are implemented by the clisops Python libray and are based on xarray. The clisops library is developed by Ouranos (Canada), CEDA (UK) and DKRZ (Germany).

-

The operators can be called remotly using the OGC Web Processing Service (WPS) standard.

-

rook 4 cds

-

ROOK: Remote Operations On Klimadaten

-
    -
  • Rook: https://github.com/roocs/rook

  • -
  • Rooki: https://github.com/roocs/rooki

  • -
  • Clisops: https://github.com/roocs/clisops

  • -
  • Rook Presentation: https://github.com/cehbrecht/talk-rook-status-kickoff-meeting-2022/blob/main/Rook_C3S2_380_2022-02-11.pdf

  • -
-
-
-

Prerequisites

- - - - - - - - - - - - - - - - - - - - - -

Concepts

Importance

Notes

Intro to Xarray

Necessary

Understanding of NetCDF

Helpful

Familiarity with metadata structure

Knowing OGC services

Helpful

Understanding of the service interfaces

-
    -
  • Time to learn: 15 minutes

  • -
-
-
-

Init Rooki

-
-
-
import os
-
-# Configuration line to set the wps node - in this case, use DKRZ in Germany
-os.environ['ROOK_URL'] = 'http://rook.dkrz.de/wps'
-
-from rooki import rooki
-
-
-
-
-
-
-

Retrieve subset of CMIP6 data

-

The CMIP6 dataset is identified by a dataset-id. An intake catalog as available to lookup the available datasets:

-

https://nbviewer.org/github/roocs/rooki/blob/master/notebooks/demo/demo-intake-catalog.ipynb

-
-
-
resp = rooki.subset(
-    collection='c3s-cmip6.CMIP.MPI-M.MPI-ESM1-2-HR.historical.r1i1p1f1.Amon.tas.gn.v20190710',
-    time='2000-01-01/2000-01-31',
-    area='-30,-40,70,80',
-)
-resp.ok
-
-
-
-
-
True
-
-
-
-
-
-

Open Dataset with xarray

-
-
-
ds = resp.datasets()[0]
-ds
-
-
-
-
-
Downloading to /tmp/metalink_sogaxh7w/tas_Amon_MPI-ESM1-2-HR_historical_r1i1p1f1_gn_20000116-20000116.nc.
-
-
-
- - - - - - - - - - - - - - -
<xarray.Dataset> Size: 61kB
-Dimensions:    (time: 1, bnds: 2, lat: 129, lon: 107)
-Coordinates:
-  * time       (time) datetime64[ns] 8B 2000-01-16T12:00:00
-  * lat        (lat) float64 1kB -39.74 -38.81 -37.87 ... 78.08 79.01 79.95
-  * lon        (lon) float64 856B -30.0 -29.06 -28.12 ... 67.5 68.44 69.38
-    height     float64 8B ...
-Dimensions without coordinates: bnds
-Data variables:
-    time_bnds  (time, bnds) datetime64[ns] 16B ...
-    lat_bnds   (lat, bnds) float64 2kB ...
-    lon_bnds   (lon, bnds) float64 2kB ...
-    tas        (time, lat, lon) float32 55kB ...
-Attributes: (12/47)
-    Conventions:            CF-1.7 CMIP-6.2
-    activity_id:            CMIP
-    branch_method:          standard
-    branch_time_in_child:   0.0
-    branch_time_in_parent:  0.0
-    contact:                cmip6-mpi-esm@dkrz.de
-    ...                     ...
-    title:                  MPI-ESM1-2-HR output prepared for CMIP6
-    variable_id:            tas
-    variant_label:          r1i1p1f1
-    license:                CMIP6 model data produced by MPI-M is licensed un...
-    cmor_version:           3.5.0
-    tracking_id:            hdl:21.14100/af75dd9f-d9c2-4e0e-a294-2bb0d5b740cf
-
-
-
-

Plot CMIP6 Dataset

-
-
-
ds.tas.isel(time=0).plot()
-
-
-
-
-
<matplotlib.collections.QuadMesh at 0x7f3a34704790>
-
-
-../_images/2bc12149c77fa3234456e10a7aef3ece7e88386d04c0672f74109321a87705b7.png -
-
-
-
-

Show Provenance

-

A provenance document is generated remotely to document the operation steps. -The provenance uses the W3C PROV standard.

-
-
-
from IPython.display import Image
-Image(resp.provenance_image())
-
-
-
-
-../_images/b0348690270c7f7b37dce64f011c1240fd79aa1110739b4ab780956236240df3.png -
-
-
-
-
-

Run workflow with subset and average operator

-

Instead of running a single operator one can also chain several operators in a workflow.

-
-

Use rooki operators to create a workflow

-
-
-
from rooki import operators as ops
-
-
-
-
-
-
-

Define the workflow

-

… internally the workflow tree is a json document

-
-
-
tas = ops.Input(
-    'tas', ['c3s-cmip6.CMIP.MPI-M.MPI-ESM1-2-HR.historical.r1i1p1f1.Amon.tas.gn.v20190710']
-)
-
-wf = ops.Subset(
-    tas, 
-    time="2000/2000",
-    time_components="month:jan,feb,mar",
-    area='-30,-40,70,80',  
-)
-
-wf = ops.WeightedAverage(wf)
-
-
-
-
-
-
-

Optional: look at the workflow json document

-

only to give some insight

-
-
-
import json
-print(json.dumps(wf._tree(), indent=4))
-
-
-
-
-
{
-    "inputs": {
-        "tas": [
-            "c3s-cmip6.CMIP.MPI-M.MPI-ESM1-2-HR.historical.r1i1p1f1.Amon.tas.gn.v20190710"
-        ]
-    },
-    "steps": {
-        "subset_tas_1": {
-            "run": "subset",
-            "in": {
-                "collection": "inputs/tas",
-                "time": "2000/2000",
-                "time_components": "month:jan,feb,mar",
-                "area": "-30,-40,70,80"
-            }
-        },
-        "weighted_average_tas_1": {
-            "run": "weighted_average",
-            "in": {
-                "collection": "subset_tas_1/output"
-            }
-        }
-    },
-    "outputs": {
-        "output": "weighted_average_tas_1/output"
-    }
-}
-
-
-
-
-
-
-

Submit workflow job

-
-
-
resp = wf.orchestrate()
-resp.ok
-
-
-
-
-
True
-
-
-
-
-
-
-

Open as xarray dataset

-
-
-
ds = resp.datasets()[0]
-ds
-
-
-
-
-
Downloading to /tmp/metalink_6e8jbvqb/tas_Amon_MPI-ESM1-2-HR_historical_r1i1p1f1_gn_20000116-20000316_w-avg.nc.
-
-
-
- - - - - - - - - - - - - - -
<xarray.Dataset> Size: 88B
-Dimensions:   (bnds: 2, time: 3)
-Coordinates:
-    height    float64 8B ...
-  * time      (time) datetime64[ns] 24B 2000-01-16T12:00:00 ... 2000-03-16T12...
-Dimensions without coordinates: bnds
-Data variables:
-    lat_bnds  (bnds) float64 16B ...
-    lon_bnds  (bnds) float64 16B ...
-    tas       (time) float64 24B ...
-Attributes: (12/47)
-    Conventions:            CF-1.7 CMIP-6.2
-    activity_id:            CMIP
-    branch_method:          standard
-    branch_time_in_child:   0.0
-    branch_time_in_parent:  0.0
-    contact:                cmip6-mpi-esm@dkrz.de
-    ...                     ...
-    title:                  MPI-ESM1-2-HR output prepared for CMIP6
-    variable_id:            tas
-    variant_label:          r1i1p1f1
-    license:                CMIP6 model data produced by MPI-M is licensed un...
-    cmor_version:           3.5.0
-    tracking_id:            hdl:21.14100/af75dd9f-d9c2-4e0e-a294-2bb0d5b740cf
-
-
-
-

Plot dataset

-
-
-
ds.tas.plot()
-
-
-
-
-
[<matplotlib.lines.Line2D at 0x7f3a2c42d4b0>]
-
-
-../_images/971a2ad4b7958692e5d5e956d5dccbda7c586356c248837053b533b0b134972f.png -
-
-
-
-

Show provenance

-
-
-
Image(resp.provenance_image())
-
-
-
-
-../_images/5aee04bc8b44818fd65cc3a075626a0cd397a837c4a89f6e8eae7e548dfad6ba.png -
-
-
-
-
-

Summary

-

In this notebook, we used the Rooki Python client to retrieve a subset of a CMIP6 dataset. The operations are executed remotely on a Rook subsetting service (using OGC API and xarray/clisops). The dataset is plotted and a provenance document is shown. We also showed that remote operators can be chained to be executed in a single workflow operation.

-
-

What’s next?

-

This service is used by the European Copernicus Climate Data Store.

-

We need to figure out how this service can be used in the new ESGF:

-
    -
  • where will it be deployed?

  • -
  • how can it be integrated in the ESGF search (STAC catalogs, …)

  • -
  • ???

  • -
-
-
-
-

Resources and references

- -
-
- - - - -
- - -
-
-
- -
-
- - - -
-
- - - - - - - - - -
-
- - \ No newline at end of file diff --git a/_preview/44/notebooks/rooki_enso_nonlinear.html b/_preview/44/notebooks/rooki_enso_nonlinear.html deleted file mode 100644 index afaf23d..0000000 --- a/_preview/44/notebooks/rooki_enso_nonlinear.html +++ /dev/null @@ -1,896 +0,0 @@ - - - - - - - - Compute Demo: ENSO nonlinearity index with CMIP6 data — ESGF Cookbook - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - -
-
- - - - - -
-
- -
- - - - - - - - - - - - - - - - - - -
- - - -
-
-
-
- -
- -
-
-

Compute Demo: ENSO nonlinearity index with CMIP6 data

-

Alpha output

-
-
-

Overview

-

In this demo we combine multiple multiple tools described in previous cookbooks to subset, regrid and process CMIP6 data. We will be computing a measure of ENSO nonlinearity by computing the EOFs of the pacific sea surface temperature anomalies. This measure is particularly useful for characterizing models by their ability to represent different ENSO extremes (Karamperidou et al., 2017).

-

The process we are going to follow in this demo is:

-
    -
  1. Find the CMIP6 data we need using intake-esgf

  2. -
  3. Subset the data and regrid it to a common grid using Rooki

  4. -
  5. Load the datasets into xarray and perform the computations

  6. -
  7. Plot the results

  8. -
-
-
-

Prerequisites

- - - - - - - - - - - - - - - - - - - - - - - - - -

Concepts

Importance

Notes

Intro to Xarray

Necessary

How to use xarray to work with NetCDF data

Intro to Intake-ESGF

Necessary

How to configure a search and use output

Intro to Rooki

Helpful

How to initialize and run rooki

Intro to EOFs

Helpful

Understanding of EOFs

-
    -
  • Time to learn: 20 minutes

  • -
-
-
-

Imports

-
-
-
import os
-import intake_esgf
-
-# Run this on the DKRZ node in Germany, using the ESGF1 index node at LLNL
-os.environ["ROOK_URL"] = "http://rook.dkrz.de/wps"
-intake_esgf.conf.set(indices={"anl-dev": False,
-                               "ornl-dev": False,
-                               "esgf-node.llnl.gov": True})
-
-import matplotlib.pyplot as plt
-import numpy as np
-import numpy.polynomial.polynomial as poly
-import xarray as xr
-import xeofs as xe
-from intake_esgf import ESGFCatalog
-from rooki import operators as ops
-from rooki import rooki
-
-
-
-
-
-
-

Retrieve subset of CMIP6 data

-

The CMIP6 dataset is identified by a dataset-id. Using intake-esgf we can query the ESGF database for the variables and models we are interested in. For this demo we are interested in the tos (sea surface temperature) variable for the historical runs. Also, for sake of simplicity we will only query a subset of the models available.

-
-
-
cat = ESGFCatalog()
-cat.search(
-    experiment_id=["historical"],
-    variable_id=["tos"],
-    table_id=["Omon"],
-    project=["CMIP6"],
-    grid_label=["gn"],
-    source_id=[
-        "CAMS-CSM1-0",
-        "FGOALS-g3",
-        "CMCC-CM2-SR5",
-        "CNRM-CM6-1",
-        "CNRM-ESM2-1",
-        "CESM2",
-    ],
-)
-cat.remove_ensembles()
-print(cat)
-
-
-
-
-
Summary information for 6 results:
-mip_era                                                     [CMIP6]
-activity_drs                                                 [CMIP]
-institution_id                [CAMS, NCAR, CNRM-CERFACS, CMCC, CAS]
-source_id         [CAMS-CSM1-0, CESM2, CNRM-ESM2-1, CNRM-CM6-1, ...
-experiment_id                                          [historical]
-member_id                                      [r1i1p1f1, r1i1p1f2]
-table_id                                                     [Omon]
-variable_id                                                   [tos]
-grid_label                                                     [gn]
-dtype: object
-
-
-
-
-

Once the catalog has been queried, we have to do some manipulation in pandas to keep only the dataset_id. This has to be done because the same data has multiple locations online, and these get appended at the end of the dataset_id. Rookie only accepts the dataset_id without the online location, so we get rid of it in the next step.

-
-
-
def keep_ds_id(ds):
-    return ds[0].split("|")[0]
-
-
-
-
-
-
-
collections = cat.df.id.apply(keep_ds_id).to_list()
-collections
-
-
-
-
-
['CMIP6.CMIP.CAMS.CAMS-CSM1-0.historical.r1i1p1f1.Omon.tos.gn.v20190708',
- 'CMIP6.CMIP.NCAR.CESM2.historical.r1i1p1f1.Omon.tos.gn.v20190308',
- 'CMIP6.CMIP.CNRM-CERFACS.CNRM-ESM2-1.historical.r1i1p1f2.Omon.tos.gn.v20181206',
- 'CMIP6.CMIP.CNRM-CERFACS.CNRM-CM6-1.historical.r1i1p1f2.Omon.tos.gn.v20180917',
- 'CMIP6.CMIP.CMCC.CMCC-CM2-SR5.historical.r1i1p1f1.Omon.tos.gn.v20200616',
- 'CMIP6.CMIP.CAS.FGOALS-g3.historical.r1i1p1f1.Omon.tos.gn.v20191107']
-
-
-
-
-

We are left with a list of dataset_ids that Rookie can accept as input for the next step.

-
-
-

Subset and regrid the data

-

We define a function that will do the subset and regridding for us for each of the dataset_ids we have. The function will take the dataset_id as input and then use Rookie functions to select 100 years of data for the tos variable in the Pacific Ocean region. We don’t need high resolution data for this particular use, so 2.5 degree resolution is enough.

-
-
-
def get_pacific_ocean(dataset_id):
-    wf = ops.Regrid(
-        ops.Subset(
-            ops.Input("tos", [dataset_id]),
-            time="1900-01-01/2000-01-31",
-            area="100,-20,280,20",
-        ),
-        method="nearest_s2d",
-        grid="2pt5deg",
-    )
-    resp = wf.orchestrate()
-    if resp.ok:
-        print(f"{resp.size_in_mb=}")
-        ds = resp.datasets()[0]
-    else:
-        ds = xr.Dataset()
-    return ds
-
-
-
-
-
-
-
sst_data = {dset: get_pacific_ocean(dset) for dset in collections}
-
-
-
-
-
resp.size_in_mb=47.61836910247803
-
-
-
Downloading to /tmp/metalink_toeryrsl/tos_Omon_CAMS-CSM1-0_historical_r1i1p1f1_gr_19000116-20000116_regrid-nearest_s2d-72x144_cells_grid.nc.
-
-
-
resp.size_in_mb=47.61574363708496
-
-
-
Downloading to /tmp/metalink_pebapymg/tos_Omon_CESM2_historical_r1i1p1f1_gr_19000115-20000115_regrid-nearest_s2d-72x144_cells_grid.nc.
-
-
-
resp.size_in_mb=47.6201171875
-
-
-
Downloading to /tmp/metalink_axoxb3cr/tos_Omon_CNRM-ESM2-1_historical_r1i1p1f2_gr_19000116-20000116_regrid-nearest_s2d-72x144_cells_grid.nc.
-
-
-
resp.size_in_mb=47.621886253356934
-
-
-
Downloading to /tmp/metalink_51a61hvs/tos_Omon_CNRM-CM6-1_historical_r1i1p1f2_gr_19000116-20000116_regrid-nearest_s2d-72x144_cells_grid.nc.
-
-
-
resp.size_in_mb=47.622283935546875
-
-
-
Downloading to /tmp/metalink_44ipjyd6/tos_Omon_CMCC-CM2-SR5_historical_r1i1p1f1_gr_19000116-20000116_regrid-nearest_s2d-72x144_cells_grid.nc.
-
-
-
resp.size_in_mb=47.61813259124756
-
-
-
Downloading to /tmp/metalink_b90bgc68/tos_Omon_FGOALS-g3_historical_r1i1p1f1_gr_19000116-20000116_regrid-nearest_s2d-72x144_cells_grid.nc.
-
-
-
-
-
-
-

ENSO nonlinearity measure: alpha value

-

This part of the demo is computation heavy. You can refer to Takahashi et al. (2011) and Karamperidou et al. (2017) for more details on the usefulness and computation of the alpha parameter.

-

The alpha parameter is computed by doing a quadratic fit to the first two EOFs for the DJF season of the SST anomalies in the Pacific region. We are looking to obtain two EOFs modes that represent the Eastern and central pacific SST patterns, which is why we include a correction factor to account for the fact the sometimes the EOFs come with the opposite sign.

-

The higher the value of alpha, the more nonlinear (or extreme) ENSO events can be represented by the model. Likewise, a model with lower alpha values will have a harder time representing extreme ENSO events, making it not suitable for climate studies of ENSO in a warming climate (Cai et al., 2018, 2021).

-

We are looking to obtain data that can reproduce a figure similar to the one below (taken from Karamperiou et al., 2017):

-

Alpha parameter

-

Each of the “wings” of this boomerang-shaped distribution represents a different ENSO extreme, with the left (right) wing representing the extreme central (eastern) pacific El Niño events. More details on Takahashi et al. (2011).

-
-
-
def compute_alpha(pc1, pc2):
-    coefs = poly.polyfit(pc1, pc2, deg=2)
-    xfit = np.arange(pc1.min(), pc1.max() + 0.1, 0.1)
-    fit = poly.polyval(xfit, coefs)
-    return coefs[-1], xfit, fit
-
-
-def correction_factor(model):
-    _eofs = model.components()
-    _subset = dict(lat=slice(-5, 5), lon=slice(140, 180))
-    corr_factor = np.zeros(2)
-    corr_factor[0] = 1 if _eofs.sel(mode=1, **_subset).mean() > 0 else -1
-    corr_factor[1] = 1 if _eofs.sel(mode=2, **_subset).mean() > 0 else -1
-    return xr.DataArray(corr_factor, coords=[("mode", [1, 2])])
-
-
-def compute_index(ds):
-    tos = ds.tos.sel(lat=slice(-20, 20), lon=slice(100, 280))
-    tos_anom = tos.groupby("time.month").apply(lambda x: x - x.mean("time"))
-
-    # Compute Eofs
-    model = xe.models.EOF(n_modes=2, use_coslat=True)
-    model.fit(tos_anom, dim="time")
-    corr_factor = correction_factor(model)
-    # eofs = s_model.components()
-    scale_factor = model.singular_values() / np.sqrt(model.explained_variance())
-    pcs = (
-        model.scores().convert_calendar("standard", align_on="date")
-        * scale_factor
-        * corr_factor
-    )
-
-    pc1 = pcs.sel(mode=1)
-    pc1 = pc1.sel(time=pc1.time.dt.month.isin([12, 1, 2]))
-    pc1 = pc1.resample(time="QS-DEC").mean().dropna("time")
-
-    pc2 = pcs.sel(mode=2)
-    pc2 = pc2.sel(time=pc2.time.dt.month.isin([12, 1, 2]))
-    pc2 = pc2.resample(time="QS-DEC").mean().dropna("time")
-
-    alpha, xfit, fit = compute_alpha(pc1, pc2)
-
-    return pc1, pc2, alpha, xfit, fit
-
-
-
-
-

Now we can compute the alpha parameter for each of the models we have selected.

-
-
-
alpha_fits = {}
-for key, item in sst_data.items():
-    if len(item.variables) == 0:
-        continue
-    alpha_fits[key] = compute_index(item)
-
-
-
-
-
-
-

Plot the results

-

Finally, we can plot the results of the alpha parameter for each of the models we have selected. This will give us an idea of how well the models represent different ENSO extremes.

-
-
-
fig, axs = plt.subplots(nrows=3, ncols=2, figsize=(8, 12))
-axs = axs.ravel()
-for num, (ds, (pc1, pc2, alpha, xfit, fit)) in enumerate(alpha_fits.items()):
-    ax = axs[num]
-    ax.axhline(0, color="k", linestyle="--", alpha=0.2)
-    ax.axvline(0, color="k", linestyle="--", alpha=0.2)
-
-    # draw a line 45 degrees
-    x = np.linspace(-6, 6, 100)
-    y = x
-    ax.plot(x, y, color="k", alpha=0.5, lw=1)
-    ax.plot(-x, y, color="k", alpha=0.5, lw=1)
-
-    ax.scatter(
-        pc1,
-        pc2,
-        s=8,
-        marker="o",
-        c="w",
-        edgecolors="k",
-        linewidths=0.5,
-    )
-
-    ax.plot(xfit, fit, c="r", label=f"$\\alpha=${alpha:.2f}")
-
-    ax.set_xlabel("PC1")
-    ax.set_ylabel("PC2")
-
-    ax.set_title(ds.split(".")[3])
-
-    ax.set_xlim(-4, 4)
-    ax.set_ylim(-4, 4)
-    ax.legend()
-fig.subplots_adjust(hspace=0.3)
-
-
-
-
-../_images/cf7fe39764ec23451e2c46a8c5814ba4c782ca937cc12560aeeedd3781682bbf.png -
-
-

From this example, we can see that from the subset of models we have selected, the alpha parameter is higher for CMCC-CM2-SR5 compared to the other models as the “boomerang” shape is better represented in this model. This indicates that this model is better at representing extreme ENSO events compared to the other models.

-
-
-

Summary

-

In this notebook, we used intake-esgf with Rooki Python client to retrieve a subset of a CMIP6 dataset. The subset and regrid operations are executed remotely on a Rook subsetting service (using OGC API and xarray/clisops). The dataset is analyzed using xeofs to extract a measurement used in ENSO research. We also showed that remote operators can be chained to be executed in a single workflow operation.

-
- -
-

References

-
    -
  • Cai, W., Santoso, A., Collins, M., Dewitte, B., Karamperidou, C., Kug, J.-S., Lengaigne, M., McPhaden, M. J., Stuecker, M. F., Taschetto, A. S., Timmermann, A., Wu, L., Yeh, S.-W., Wang, G., Ng, B., Jia, F., Yang, Y., Ying, J., Zheng, X.-T., … Zhong, W. (2021). Changing El Niño–Southern Oscillation in a warming climate. Nature Reviews Earth & Environment, 2(9), 628–644. https://doi.org/10.1038/s43017-021-00199-z

  • -
  • Cai, W., Wang, G., Dewitte, B., Wu, L., Santoso, A., Takahashi, K., Yang, Y., Carréric, A., & McPhaden, M. J. (2018). Increased variability of eastern Pacific El Niño under greenhouse warming. Nature, 564(7735), 201–206. https://doi.org/10.1038/s41586-018-0776-9

  • -
  • Karamperidou, C., Jin, F.-F., & Conroy, J. L. (2017). The importance of ENSO nonlinearities in tropical pacific response to external forcing. Climate Dynamics, 49(7), 2695–2704. https://doi.org/10.1007/s00382-016-3475-y

  • -
  • Takahashi, K., Montecinos, A., Goubanova, K., & Dewitte, B. (2011). ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophysical Research Letters, 38(10). https://doi.org/10.1029/2011GL047364

  • -
-
-
- - - - -
- - -
-
-
- -
-
- - - -
-
- - - - - - - - - -
-
- - \ No newline at end of file diff --git a/_preview/44/notebooks/running-on-nimbus.html b/_preview/44/notebooks/running-on-nimbus.html deleted file mode 100644 index 196c9c3..0000000 --- a/_preview/44/notebooks/running-on-nimbus.html +++ /dev/null @@ -1,528 +0,0 @@ - - - - - - - - Running Notebooks on Nimbus — ESGF Cookbook - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - -
-
- - - - - -
-
-
- -
- -
-

Running Notebooks on Nimbus

-

Interested in running your notebooks on ESGF infrastructure? Please follow these steps!

-
-

1. Apply for access to the Nimbus Access

-

Please fill out this form to request access to the Nimbus Jupyterhub!

-

You will be added to the Nimbus User Group, which is used for authentication!

-
-
-

2. Clone this repository

-

Once you log into the Jupyterhub (https://nimbus.llnl.gov/), go to your home directory (shown by default) and clone this repository

-
git clone https://github.com/ProjectPythia/esgf-cookbook.git
-
-
-
-
-

3. Build your Execution Environment

-

The cookbook environment is slightly different than the base environment available on the hub. You will need to build the required environment, using the environment.yml file in the repository.

-
conda env create -f esgf-cookbook/environment.yml
-
-
-
-
-

Activate Your Environment

-

Once you build the enivronment, you will need to activate it. You will need to follow the following steps:

-
# Make sure you can activate the environment
-source .bashrc
-
-# Activate the environment
-conda activate esgf-cookbook-dev
-
-
-
-
-

Open a Notebook and Select the esgf-cookbook-dev environment

-

Now that you have an environment, you can select this when opening a notebook. Select in the top right corner the kernel options, and select esgf-cookbook-dev.

-

Wait a second for the notebook to pick up on this, then execute your cells!

-

If you need to install more packages, or update versions, you can do so by updating your environment.yml file or by installing via the command line.

-
-
- - - - -
- - -
-
-
- -
-
- - - -
-
- - - - - - - - - -
-
- - \ No newline at end of file diff --git a/_preview/44/notebooks/use-intake-esgf-with-rooki.html b/_preview/44/notebooks/use-intake-esgf-with-rooki.html deleted file mode 100644 index 242750c..0000000 --- a/_preview/44/notebooks/use-intake-esgf-with-rooki.html +++ /dev/null @@ -1,2662 +0,0 @@ - - - - - - - - Using intake-esgf with rooki — ESGF Cookbook - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - -
-
- - - - - -
- -
-
-
- -
- -

Intake Rooki Demo

-
-
-

Using intake-esgf with rooki

-
-

Overview

-

In this notebook we will demonstrate how to use intake-esgf and rooki to perform server-side operations and return the result to the user. This will occur in several steps.

-
    -
  1. We use intake-esgf to find data which is local to the ORNL server and then form an id which rooki uses to load the data remotely.

  2. -
  3. We build a rooki workflow which uses these ids (rooki_id) to subset and average the data remotely.

  4. -
  5. The results are downloaded locally and we visualize them interactively using hvplot.

  6. -
-
-
-

Prerequisites

- - - - - - - - - - - - - - - - - - - - - -

Concepts

Importance

Notes

Intro to Intake-ESGF

Necessary

How to configure a search and use output

Intro to Rooki

Helpful

How to initialize and run rooki

Intro to hvPlot

Necessary

How to plot interactive visualizations

-
    -
  • Time to learn: 30 minutes

  • -
-
-
-
-

Imports

-

Before importing rooki, we need to set an environment variable that will signal the rooki client to use the web processing service (WPS) deployment located at Oak Ridge National Lab (ORNL).

-
-
-
import os
-
-# Configuration line to set the wps node - in this case, use ORNL in the USA
-url = "https://esgf-node.ornl.gov/wps"
-os.environ["ROOK_URL"] = url
-
-from rooki import operators as ops
-from rooki import rooki
-
-
-
-
-
-
-
# Other imports
-import holoviews as hv
-import hvplot.xarray
-import intake_esgf
-import matplotlib.pyplot as plt
-import panel as pn
-import xarray as xr
-from intake_esgf import ESGFCatalog
-
-hv.extension("bokeh")
-
-
-
-
-
-
-
-
-
-
-
-

Search and Find Data for Surface Temperature on the ORNL Node

-

Let’s start with refining which index we would like to search from. For this analysis, we are remotely computing on the ORNL node since this is where rooki is running. We know this from checking the ._url method of rooki!

-
-
-
rooki._url
-
-
-
-
-
'https://esgf-node.ornl.gov/wps'
-
-
-
-
- -
-
-

Extract IDs to Pass to Rooki

-

The catalog returns a lot of information about the datasets that were found, but the rooki WPS interface just needs an ID that looks similar to what we find in the id column of the dataframe. We need to remove the |esgf-node.ornl.gov on the end and prepend a ccs03_data. To do this we will write a function and apply it to the dataframe.

-
-
-
def build_rooki_id(id_list):
-    rooki_id = id_list[0]
-    rooki_id = rooki_id.split("|")[0]
-    rooki_id = f"css03_data.{rooki_id}"  # <-- just something you have to know for now :(
-    return rooki_id
-
-rooki_ids = cat.df.id.apply(build_rooki_id).to_list()
-rooki_ids
-
-
-
-
-
['css03_data.CMIP6.CMIP.NASA-GISS.GISS-E2-2-H.historical.r1i1p1f1.Amon.tas.gn.v20191120',
- 'css03_data.CMIP6.CMIP.CMCC.CMCC-ESM2.historical.r1i1p1f1.Amon.tas.gn.v20210114',
- 'css03_data.CMIP6.CMIP.NCAR.CESM2-WACCM.historical.r1i1p1f1.Amon.tas.gn.v20190227',
- 'css03_data.CMIP6.CMIP.CMCC.CMCC-CM2-SR5.historical.r1i1p1f1.Amon.tas.gn.v20200616',
- 'css03_data.CMIP6.CMIP.NASA-GISS.GISS-E2-1-G.historical.r1i1p1f1.Amon.tas.gn.v20180827',
- 'css03_data.CMIP6.CMIP.NASA-GISS.GISS-E2-2-G.historical.r1i1p1f1.Amon.tas.gn.v20191120',
- 'css03_data.CMIP6.CMIP.NCAR.CESM2-WACCM-FV2.historical.r1i1p1f1.Amon.tas.gn.v20191120',
- 'css03_data.CMIP6.CMIP.NCAR.CESM2-FV2.historical.r1i1p1f1.Amon.tas.gn.v20191120',
- 'css03_data.CMIP6.CMIP.CMCC.CMCC-CM2-HR4.historical.r1i1p1f1.Amon.tas.gn.v20200904',
- 'css03_data.CMIP6.CMIP.NASA-GISS.GISS-E2-1-H.historical.r1i1p1f1.Amon.tas.gn.v20190403',
- 'css03_data.CMIP6.CMIP.NCAR.CESM2.historical.r1i1p1f1.Amon.tas.gn.v20190308',
- 'css03_data.CMIP6.CMIP.NASA-GISS.GISS-E2-1-G-CC.historical.r1i1p1f1.Amon.tas.gn.v20190815',
- 'css03_data.CMIP6.CMIP.MIROC.MIROC6.historical.r1i1p1f1.Amon.tas.gn.v20181212']
-
-
-
-
-
-

Compute with Rooki

-

Now that we have a list of IDs to pass to rooki, let’s compute! In our case we are interested in the annual temperature from 1990-2000 over an area that includes India (latitude from 0 to 35, longitude from 65 to 100). The following function will construct a rooki workflow that uses operators (functions in the ops namespace) that rooki uses to:

-
    -
  • read in data (ops.Input)

  • -
  • subset in time and space (ops.Subset), and

  • -
  • average in time (ops.AverageByTime) on a yearly frequency.

  • -
-

We then check to make sure the response is okay, and if it is, return the processed dataset to the user! If something went wrong, the function will raise an error and show you the message that rooki sent back.

-
-
-
def india_annual_temperature(rooki_id):
-    workflow = ops.AverageByTime(
-        ops.Subset(
-            ops.Input("tas", [rooki_id]),
-            time="1990-01-01/2000-01-01",
-            area="65,0,100,35",
-        ),
-        freq="year",
-    )
-    response = workflow.orchestrate()
-    if not response.ok:
-        raise ValueError(response)
-    return response.datasets()[0]
-
-
-
-
-

Now let’s test a single rooki_id to demonstrate successful functionality. The rooki_id let’s the WPS know on which dataset we are intersted in operating and then the data is loaded remotely, subset, and then averaged. After this computation is finished on the server, the result is transferred to you and loaded into a xarray dataset. Inspect the dataset header to see that there are 10 times, one for each year and the latitude and longitude range spans our input values.

-
-
-
india_annual_temperature(rooki_ids[0])
-
-
-
-
-
Metalink content-type detected.
-Downloading to /tmp/metalink_45x5ch04/tas_Amon_GISS-E2-2-H_historical_r1i1p1f1_gn_19900101-19990101_avg-year.nc.
-
-
-
- - - - - - - - - - - - - - -
<xarray.Dataset> Size: 16kB
-Dimensions:    (lat: 18, time: 10, bnds: 2, lon: 14)
-Coordinates:
-  * lat        (lat) float64 144B 1.0 3.0 5.0 7.0 9.0 ... 29.0 31.0 33.0 35.0
-  * lon        (lon) float64 112B 66.25 68.75 71.25 73.75 ... 93.75 96.25 98.75
-    height     float64 8B ...
-  * time       (time) object 80B 1990-01-01 00:00:00 ... 1999-01-01 00:00:00
-Dimensions without coordinates: bnds
-Data variables:
-    lat_bnds   (time, lat, bnds) float64 3kB ...
-    lon_bnds   (time, lon, bnds) float64 2kB ...
-    tas        (time, lat, lon) float32 10kB ...
-    time_bnds  (time, bnds) object 160B ...
-Attributes: (12/48)
-    Conventions:            CF-1.7 CMIP-6.2
-    activity_id:            CMIP
-    branch_method:          standard
-    branch_time_in_child:   0.0
-    branch_time_in_parent:  0.0
-    contact:                Kenneth Lo (cdkkl@giss.nasa.gov)
-    ...                     ...
-    title:                  GISS-E2-2-H output prepared for CMIP6
-    tracking_id:            hdl:21.14100/503cf427-12d4-4e54-a431-b9843112f320
-    variable_id:            tas
-    variant_label:          r1i1p1f1
-    license:                CMIP6 model data produced by NASA Goddard Institu...
-    cmor_version:           3.3.2
-
-

Now that we have some confidence in our workflow function, we can iterate over rooki_id’s running for each and saving into a dictionary whose keys are the different models. You should see messages print to the screen which inform you where the temporary output is being downloaded. This location can be configured in rooki, but for now we will just load them into datasets.

-
-
-
dsd = {
-    rooki_id.split(".")[4]: india_annual_temperature(rooki_id)
-    for rooki_id in rooki_ids
-}
-
-
-
-
-
Metalink content-type detected.
-Downloading to /tmp/metalink_hsv1l9mm/tas_Amon_GISS-E2-2-H_historical_r1i1p1f1_gn_19900101-19990101_avg-year.nc.
-
-
-
Metalink content-type detected.
-Downloading to /tmp/metalink_0w7nr819/tas_Amon_CMCC-ESM2_historical_r1i1p1f1_gn_19900101-19990101_avg-year.nc.
-
-
-
Metalink content-type detected.
-Downloading to /tmp/metalink_hx1r16uf/tas_Amon_CESM2-WACCM_historical_r1i1p1f1_gn_19900101-19990101_avg-year.nc.
-
-
-
Metalink content-type detected.
-Downloading to /tmp/metalink_abol5_le/tas_Amon_CMCC-CM2-SR5_historical_r1i1p1f1_gn_19900101-19990101_avg-year.nc.
-
-
-
Metalink content-type detected.
-Downloading to /tmp/metalink_0cqg4rqh/tas_Amon_GISS-E2-1-G_historical_r1i1p1f1_gn_19900101-19990101_avg-year.nc.
-
-
-
Metalink content-type detected.
-Downloading to /tmp/metalink_4tggkvh8/tas_Amon_GISS-E2-2-G_historical_r1i1p1f1_gn_19900101-19990101_avg-year.nc.
-
-
-
Metalink content-type detected.
-Downloading to /tmp/metalink_s3ev68ul/tas_Amon_CESM2-WACCM-FV2_historical_r1i1p1f1_gn_19900101-19990101_avg-year.nc.
-
-
-
Metalink content-type detected.
-Downloading to /tmp/metalink_iqf0cik3/tas_Amon_CESM2-FV2_historical_r1i1p1f1_gn_19900101-19990101_avg-year.nc.
-
-
-
Metalink content-type detected.
-Downloading to /tmp/metalink_tcm2g0ug/tas_Amon_CMCC-CM2-HR4_historical_r1i1p1f1_gn_19900101-19990101_avg-year.nc.
-
-
-
Metalink content-type detected.
-Downloading to /tmp/metalink_3xgidbjw/tas_Amon_GISS-E2-1-H_historical_r1i1p1f1_gn_19900101-19990101_avg-year.nc.
-
-
-
Metalink content-type detected.
-Downloading to /tmp/metalink_hocbk671/tas_Amon_CESM2_historical_r1i1p1f1_gn_19900101-19990101_avg-year.nc.
-
-
-
Metalink content-type detected.
-Downloading to /tmp/metalink_4oyvztp5/tas_Amon_GISS-E2-1-G-CC_historical_r1i1p1f1_gn_19900101-19990101_avg-year.nc.
-
-
-
Metalink content-type detected.
-
-
-
Downloading to /tmp/metalink_8byu1m7_/tas_Amon_MIROC6_historical_r1i1p1f1_gn_19900101-19990101_avg-year.nc.
-
-
-
-
-
-
-
-

Visualize the Output

-

Let’s use hvPlot to visualize. The datasets are stored in a dictionary of datasets, we need to:

-
    -
  • Extract a single key

  • -
  • Plot a contour filled visualization, with some geographic features

  • -
-
-
-
tas = dsd["MIROC6"].tas
-tas.hvplot.contourf(
-    x="lon",
-    y="lat",
-    cmap="Reds",
-    levels=20,
-    clim=(250, 320),
-    features=["land", "ocean"],
-    alpha=0.7,
-    widget_location="bottom",
-    clabel="Yearly Average Temperature (K)",
-    geo=True,
-)
-
-
-
-
-
/home/runner/miniconda3/envs/cookbook-dev/lib/python3.10/site-packages/cartopy/io/__init__.py:241: DownloadWarning: Downloading: https://naturalearth.s3.amazonaws.com/110m_physical/ne_110m_ocean.zip
-  warnings.warn(f'Downloading: {url}', DownloadWarning)
-
-
-
/home/runner/miniconda3/envs/cookbook-dev/lib/python3.10/site-packages/cartopy/io/__init__.py:241: DownloadWarning: Downloading: https://naturalearth.s3.amazonaws.com/110m_physical/ne_110m_land.zip
-  warnings.warn(f'Downloading: {url}', DownloadWarning)
-
-
-
-
-
-
-
-
-
-
-

Summary

-

Within this notebook, we learned how to specify a specific index node to search from, pass discovered datasets to rooki, and chain remote-compute with several operations using rooki. We then visualized the output using hvPlot, leading to an interactive plot!

-
-

What’s next?

-

More adaptations of the intake-esgf + rooki to remotely compute on ESGF data.

-
-
- -
- - - - -
- - -
-
-
- -
-
- - - -
-
- - - - - - - - - -
-
- - \ No newline at end of file diff --git a/_preview/44/objects.inv b/_preview/44/objects.inv deleted file mode 100644 index f10281c..0000000 Binary files a/_preview/44/objects.inv and /dev/null differ diff --git a/_preview/44/search.html b/_preview/44/search.html deleted file mode 100644 index 03213db..0000000 --- a/_preview/44/search.html +++ /dev/null @@ -1,430 +0,0 @@ - - - - - - - - Search — ESGF Cookbook - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - -
-
- - - - - -
-
- -
- - - - - - - - - - - - - - -
- - -
- -
-
-
-
-
- -
- -

Search

- - - - -

- Searching for multiple words only shows matches that contain - all words. -

- - -
- - - -
- - - -
- -
- - -
- -
-
-
-
-
- -
-
- - - -
-
- - - - - - - - - -
-
- - \ No newline at end of file diff --git a/_preview/44/searchindex.js b/_preview/44/searchindex.js deleted file mode 100644 index 0039e0b..0000000 --- a/_preview/44/searchindex.js +++ /dev/null @@ -1 +0,0 @@ -Search.setIndex({docnames:["README","notebooks/complex-search","notebooks/complex-search2-and-analysis","notebooks/ex-regrid-plot","notebooks/how-to-cite","notebooks/intro-search","notebooks/notebook-template","notebooks/rooki","notebooks/rooki_enso_nonlinear","notebooks/running-on-nimbus","notebooks/use-intake-esgf-with-rooki"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":5,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.intersphinx":1,sphinx:56},filenames:["README.md","notebooks/complex-search.ipynb","notebooks/complex-search2-and-analysis.ipynb","notebooks/ex-regrid-plot.ipynb","notebooks/how-to-cite.md","notebooks/intro-search.ipynb","notebooks/notebook-template.ipynb","notebooks/rooki.ipynb","notebooks/rooki_enso_nonlinear.ipynb","notebooks/running-on-nimbus.md","notebooks/use-intake-esgf-with-rooki.ipynb"],objects:{},objnames:{},objtypes:{},terms:{"0":[1,2,3,4,5,7,8,10],"00":[2,3,5,7,10],"000000000":7,"00199":8,"002":10,"00activity_id":5,"00bound":7,"00parent_variant_label":7,"00ymdh_branch_time_in_par":5,"01":[1,2,3,5,7,8,10],"0119919826722":7,"011992":7,"011e":5,"012963":7,"016":8,"018":8,"01t01":5,"01t18":5,"02":[5,7,10],"021":8,"025743":7,"03":[5,7],"038887":7,"04":5,"044726631101724":5,"044727":5,"05":5,"051551":7,"06":[2,3,5,7],"0625":[5,7],"064799":7,"06479941071204":7,"07":5,"077007":7,"07700705430369":7,"0776":8,"077901":7,"08":[1,5,7],"09":[5,7],"090686":7,"091943881744044":5,"091944":5,"09652698831745":5,"096527":5,"0_historical_r1i1p1f1_gr_19000116":8,"0activity_dr":5,"0bound":10,"0branch_time_in_par":[5,7,10],"0contact":[5,7,10],"0e":3,"0m":1,"0mcombine_tim":1,"0n":3,"0parent_variant_label":5,"0tracking_id":7,"0x7f3a2c42d4b0":7,"0x7f3a34704790":7,"0x7f58bc7eeb60":10,"1":[1,2,5,7,8,10],"10":[2,3,5,6,7,8,10],"100":[2,3,5,7,8,10],"1000":5,"10025":10,"1007":8,"101":[2,5],"102":10,"1029":[7,8],"1038":[7,8],"103825":7,"104":5,"106":5,"107":7,"107coordin":7,"109":[1,5],"10950":2,"10bnd":10,"10kb":[2,10],"10m":10,"11":[2,5,7,10],"110m_physic":[3,10],"112":5,"112b":10,"115":5,"116502":7,"118":5,"12":[1,2,3,5,7,8,10],"120":5,"1212":2,"1223115":5,"123":5,"125":[5,7],"126":5,"128":[2,3,5],"128coordin":5,"129":[5,7],"129739":7,"12973913069453":7,"129lon":7,"12d4":10,"13":[1,7,10],"130":3,"131":5,"132":5,"135":5,"137":5,"13803":7,"1383":7,"138970990239372":5,"138971":5,"14":[5,7,10],"140":[5,8],"14100":[3,5,7,10],"1413":7,"14201065705359":7,"142011":7,"14284":7,"143":5,"144":[2,10],"144b":10,"144x90":10,"145":3,"146":5,"148":1,"1484":1,"1485":1,"1486":1,"149":5,"14coordin":10,"15":[2,3,5,7,10],"151":5,"154":[1,5],"155628":7,"1559":2,"157":5,"157752":5,"15775201158739":5,"15t12":7,"16":[1,2,5,7,10],"160":5,"160b":10,"16220160":5,"163":5,"165":5,"167kb":3,"168":5,"168764":7,"16b":[3,7],"16kb":[5,10],"16t12":7,"17":[1,3,7,10],"170":2,"171":5,"174":5,"177":5,"177kb":3,"17z":5,"17zdata_specs_vers":5,"18":[2,5,7,10],"180":[5,8,10],"1814":1,"181452":7,"182":5,"185":5,"1850":[2,3,5,7],"185920533189158":5,"185921":5,"1875":[5,7],"188":5,"18time":10,"18z":10,"18zdata_specs_vers":10,"19":[5,7,10],"1900":[2,8],"191":5,"192":[2,3,7],"192x288":3,"194":5,"19467874881559":7,"194679":7,"195":5,"196":5,"1980":5,"1980bnd":5,"199":5,"1990":10,"1991":10,"1992":10,"1993":10,"1994":10,"1995":10,"1996":10,"1997":10,"1998":10,"1999":10,"19990101_avg":10,"19kb":2,"1_historical_r1i1p1f2_gr_19000116":8,"1bnd":7,"1e":[3,5,7,10],"1frequenc":[5,7,10],"1institut":[5,7,10],"1kb":[2,3,5,7],"1original_nam":5,"1parent_variant_label":10,"1pctco2":1,"1product":[5,7,10],"1pt25deg":3,"1realm":[5,7,10],"2":[1,2,4,5,7,8,10],"20":[5,7,8,10],"2000":[2,7,8,10],"20000115_regrid":8,"20000116":7,"20000116_regrid":8,"20000316_w":7,"201":8,"2010":3,"20100101_avg":3,"2011":8,"2011gl047364":8,"2014":[3,5],"20146":7,"2017":[7,8],"2017ms001217sourc":7,"2018":[7,8,10],"20180701":1,"20180827":10,"20181212":10,"2018ms001400":7,"2019":[5,7,10],"20190227":10,"20190308":[2,10],"20190403":10,"20190429":2,"20190710":1,"20190815":10,"20191105":1,"20191120":[1,2,10],"202":5,"20200616":10,"20200828":1,"20200904":10,"2021":[8,10],"20210114":[2,10],"20210311":1,"2022":7,"20230314":1,"20231010":1,"20240925":1,"205":5,"206":8,"2066315276433":5,"206632":5,"207005":7,"20700512086066":7,"207778":7,"208":[2,5],"2092":1,"20m2025":1,"20th":3,"21":[2,3,5,7,10],"210":5,"213":5,"214":7,"216":5,"219":5,"219000":[2,3],"22":[1,3,5,7,10],"22057":7,"221kb":3,"222":5,"225":5,"227":5,"23":[5,7,10],"230":5,"231":1,"233":5,"233703":7,"233kb":3,"236":5,"239":5,"23experi":10,"23t03":10,"24":7,"241":[3,5,10],"244":5,"246401":7,"247":5,"24b":7,"25":[2,3,5,7,10],"250":[5,10],"2520":10,"253":5,"25419466535099":5,"254195":5,"255":5,"256":5,"258":[5,7],"259618":7,"259618270730414":7,"25e":3,"25n":3,"25t11":7,"26":[5,7],"261":5,"264":5,"266":1,"267":5,"268mb":2,"2695":8,"27":[7,10],"270":[3,5],"2704":8,"271992":7,"2719921848602":7,"272":5,"272716":7,"273":5,"275":5,"278":5,"28":[5,7],"280":[8,10],"281":5,"284":5,"285512":7,"286":5,"288":[2,3],"289":5,"29":[5,7,10],"290":5,"292":5,"295":5,"298":5,"298641":7,"29experi":5,"2activity_id":[7,10],"2bb0d5b740cf":7,"2bb0d5b740cfxarrai":7,"2bound":5,"2f":8,"2kb":[2,3,5,7,10],"2lat":[5,7],"2lon":10,"2pt5deg":[3,8],"2time":7,"2xarrai":10,"2ymdh_branch_time_in_child":5,"3":[1,2,3,5,7,8,10],"30":[1,5,7,10],"300":5,"301359621762764":5,"30136":5,"302":3,"303":5,"306":5,"309":5,"30experi":7,"30t17":5,"31":[2,3,5,7,8,10],"311349":7,"312":5,"3125":[5,7],"31291294788636":5,"312913":5,"315":5,"317":5,"32":[1,5,7],"320":[5,10],"323":5,"324557701757275":7,"324558":7,"326":5,"329":[1,5],"32b":2,"32kb":5,"32msearch":1,"33":[5,7,10],"331":5,"334":5,"336973":7,"336973173452":7,"337":5,"337654":7,"33c30511acc319a98240633965a04ca99c26427":[2,3,5],"33c30511acc319a98240633965a04ca99c26427ecccma_runid":5,"33kb":[3,5],"34":[1,5,7],"340":5,"343":5,"345":5,"3475":8,"348":5,"348364759491508":5,"348365":5,"34z":7,"34zdata_specs_vers":7,"35":[7,10],"350454":7,"351":[2,3,5],"352":2,"354":[2,3,5],"355":[2,3],"356":[2,3],"357":[2,3,5],"358":[2,3],"36":[1,2,5,7],"360":10,"360x180grid_label":10,"361":5,"36358":7,"363e1eb":3,"367756":5,"36775610831324":5,"37":[2,5,7],"374fbe5a2bcca535c40f7f23da271e49titl":5,"375":[5,7],"376297":7,"37kb":3,"38":[5,7,8],"384":7,"387658c8":5,"389497":7,"38bound":7,"39":[5,7],"390":2,"392e62cd0eb8":3,"3953069108194975":5,"395307":5,"3960":5,"3coordin":7,"3dedf95315d603326fde4f5340dc0519d80d10c0":[2,3,5],"3dedf95315d603326fde4f5340dc0519d80d10c0cccma_parent_runid":5,"3e":3,"3kb":[2,3,10],"4":[1,2,3,4,5,7,8,10],"40":[3,5,7,10],"401949":7,"40194911295724":7,"402593":7,"404":[2,7],"404b":2,"40mb":2,"41":[1,7],"415":1,"415395":7,"41619952608627":5,"4162":5,"42":[5,7],"428518":7,"43":[5,7],"4375":[5,7],"438":[3,5],"43dc":3,"43z":5,"44":7,"441244":7,"45":[3,5,7,8],"454436":7,"45z":5,"45zdata_specs_vers":5,"46":[1,5,7],"463648":5,"46364817811508":5,"46692081100363":7,"466921":7,"467531":7,"46e7":3,"47":[5,7,8],"48":[5,7,10],"480336":7,"484b":3,"49":[3,5,7,8],"493457":7,"499b":5,"4ab8":5,"4b":5,"4deg":7,"4e0e":7,"4e54":10,"5":[1,2,3,5,6,7,8,10],"50":[3,5,7],"500":[3,5],"503cf427":10,"50619":7,"50m_cultur":3,"50m_physic":3,"51":[1,5,7],"510769":5,"510769325211022":5,"512b":[2,3,5],"514818":2,"519375":7,"52":[3,7],"5201":5,"52560657265951":5,"525607":5,"53":[1,3,5,7],"53188891182717":7,"531889":7,"54":[5,7,10],"545277":7,"549cab49a80314b5a85515237d530e30_f3646e1560":3,"55":[5,7],"557756":5,"55775611523069":5,"558395":7,"55kb":7,"56":[5,7],"5625":[5,7],"564":8,"57":[1,5,7],"571136":7,"577607":5,"57760701082788":5,"58":[1,3,7],"584315":7,"59":[5,7],"596854":7,"5c2":5,"5kb":[2,3],"6":[1,2,3,5,7,8,10],"60":[1,2,3,7],"600":2,"61":[2,5,7],"610218":7,"61574363708496":8,"61813259124756":8,"61836910247803":8,"61kb":7,"62":[1,5,7],"6201171875":8,"621886253356934":8,"622283935546875":8,"623333":7,"625":[2,3,5,7],"625733674938296":5,"625734":5,"628":8,"63":7,"636081":7,"64":[2,3,5,7],"644":8,"649254":7,"64lon":5,"65":[2,5,7,10],"650":1,"657":2,"65mb":5,"66":[7,10],"661816":7,"67":[1,5,7],"67308962904537":5,"67309":5,"674885":[2,3],"675159":7,"6790":3,"67mb":2,"68":[5,7,10],"681":1,"6875":[5,7],"688272":7,"69":[2,7],"7":[1,2,3,5,7,8,10],"70":[1,5,7],"700":2,"701026":7,"71":[5,7,10],"714193":7,"72":[1,7],"72017393353477":5,"720174":5,"726776":7,"72x144_cells_grid":8,"73":[1,5,7,10],"736":2,"7368996803684":5,"7369":5,"74":7,"740099":7,"74009905729821":7,"75":[2,3,5,7,10],"75321":7,"75bound":10,"76":[5,7,10],"76597":7,"767145559195578":5,"767146":5,"7674":2,"768b":2,"77":7,"7735":8,"779132":7,"78":[5,7,10],"78735179896313":5,"787352":5,"79":[5,7],"791734":7,"79e1100d95467f7177a261a94d1333ad_f3646e1560":3,"8":[1,2,3,5,7,8,10],"80":7,"802":7,"805039":7,"805039385498155":7,"808b":2,"80b":10,"81":[5,7,10],"812":[2,3,5],"8125":[5,7],"818148":7,"8192":5,"82":[2,3,5],"822":2,"83":10,"830914":7,"83524096625064":5,"835241":5,"84":[1,5],"84407":7,"85":[2,3,5],"856691":7,"856b":7,"86":[2,3,5,10],"86379883923273":5,"863799":5,"86400":5,"869979577336935":7,"86998":7,"86bound":5,"87":[2,3,5,7],"872062df":5,"875":[5,7],"88":[2,3,10],"8825209937735":5,"882521":5,"883087":7,"88b":7,"89":[2,3],"895857":7,"8b":[2,3,5,7,10],"9":[3,5,7,8,10],"90":[2,3,5,10],"909009":7,"91":10,"92":5,"921645":7,"929574":5,"92957425448953":5,"93":10,"93491964067397":7,"93492":7,"9375":[5,7],"946962":7,"94696224738567":7,"947515":5,"94751515398974":5,"948025":7,"95":[5,7],"95bound":7,"96":[2,10],"960801":7,"973948":7,"976533553948642":5,"976534":5,"98":[5,10],"986599":7,"995c":5,"99702":5,"997020108491355":5,"998":7,"999":5,"99985958284597":7,"99986":7,"9e":7,"9eaca7681abcvariable_id":5,"9f66":3,"9feb":3,"9x1":3,"carr\u00e9ric":8,"case":[1,3,5,7,10],"default":[1,5,9],"do":[1,3,5,6,8,9,10],"final":[6,8],"function":[1,3,5,6,8,10],"import":[0,7],"long":[1,4],"new":[6,7,10],"ni\u00f1o":8,"return":[1,2,3,5,8,10],"short":6,"transient":1,"true":[1,2,3,5,7,8,10],"try":[3,5,6],"while":[1,4,5],A:[7,8,10],And:6,As:[1,3,5],At:1,BY:4,Be:6,By:1,For:[1,5,6,8,10],If:[0,1,3,5,6,9,10],In:[1,3,5,6,7,8,10],It:[1,5],Its:7,Near:[5,7,10],No:5,Or:6,The:[0,1,2,3,4,5,6,7,8,9,10],Then:[5,6],These:[6,7],To:[1,10],With:3,__init__:[3,10],_data_format_:2,_eof:8,_generatorcontextmanag:10,_subset:8,_tree:7,_url:10,a294:7,a2c2f719:3,a2d322762b918858e63dee163d841246titl:10,a431:10,a7a4a0c:3,aa0f:5,abil:8,abl:0,about:[1,5,7,10],abov:[1,6],ac:1,aca:5,acccess:0,accept:8,acces:0,access:[0,1,2,5,6],account:8,acknowledg:[5,7,10],across:1,activ:[0,1,5],activity_dr:[1,5,8,10],activity_id:[2,3,5,7,10],ad:[1,5,6,9],adapt:[3,4,10],add:[3,5,6],add_featur:3,add_measur:5,addhistori:5,addit:[3,5],admonit:6,adv:7,aerosol:[5,7,10],af75dd9f:7,afrac:5,after:[0,6,10],again:5,air:[2,3,5,7,10],air_temperaturelong_nam:[5,7,10],al:[7,8],alcf:[1,5],align:6,align_on:8,all:[0,1,3,4,5,6,7,10],all_indic:1,allow:6,along:1,alpha:10,alpha_fit:8,alreadi:5,also:[0,1,3,5,6,7,8,10],alt:6,alter:[5,7,10],altogeth:6,alwai:4,amazonaw:[3,10],amo:10,amon:[1,2,3,5,7,10],amontable_info:[5,7,10],an:[1,2,3,5,6,7,8,9,10],analys:1,analysi:[0,1,5,10],analyz:[0,2,8],ani:[1,5,6,7,10],anl:[1,3,8,10],anmn:2,annm:2,annoi:1,annual:[3,10],annual_mean:2,anomali:8,anoth:5,anywher:6,aogcmsub_experi:[5,7,10],apach:4,api:[7,8],append:8,appli:[1,5,8,10],appropri:[4,6],approxim:[6,7],ar:[0,1,2,3,4,5,7,8,10],arang:8,archiv:4,area:[2,5,7,8,10],area_typ:5,areacella:5,areacellaforcing_index:[5,7,10],areacellahistori:[7,10],argonn:[1,5],aris:[5,7,10],armi:6,around:6,arrai:[2,7,10],ask:6,asset:2,associ:5,atmo:[5,7,10],atmoschem:[5,7,10],atmospher:[3,5,10],atmosrefer:[5,7,10],attribut:[2,3,5,6,7,10],au:1,authent:9,author:[4,6],authorship:6,automat:1,autotroph:5,avail:[1,2,3,5,7,8,9],averag:[2,3,10],averagebytim:[3,10],avg:7,avoid:6,awi:1,ax1:3,ax2:3,ax3:3,ax:[3,5,8],axcb:3,axcb_diff:3,axcb_diff_in:3,axcb_in:3,axcb_pr:3,axcb_pr_in:3,axdiff:3,axes_grid1:3,axes_list:3,axhlin:8,axi:[3,7],axpr_1:3,axpr_2:3,axvlin:8,b9843112f320:10,b9843112f320variable_id:10,b:[3,8],back:[1,10],backend:7,background:[1,6],balanc:7,bar:5,base:[1,5,7,9,10],bashrc:9,basic:5,bc:5,becaus:[5,8,10],becom:5,been:[3,5,8],befor:[5,6,10],begin:6,being:[5,10],below:[0,6,8],benefit:1,beta:6,better:[3,8],beyond:[0,10],biomass:5,blob:7,blue:5,bnd:[2,3,5,7,10],bodi:6,bokeh:10,bold:2,book:[0,4,6],boomerang:8,border:3,both:[3,5,7],bottom:[3,6,10],bound:5,bracket:6,branch_method:[2,3,7,10],branch_time_in_child:[2,3,7,10],branch_time_in_par:[2,3,7,10],brief:6,briefli:6,build:[6,10],build_rooki_id:10,built:5,bwr:[3,5],c3:7,c:[3,5,8],ca:8,cach:[1,5],cacreation_d:5,cai:8,calendar:[5,10],call:[1,7],cam:8,can:[0,1,3,5,6,7,8,9,10],canada:[5,7],canadainstitution_id:5,canadian:5,canam5:5,canesm5:[1,2,3,5],canesm5parent_time_unit:5,canesm5source_typ:5,cannot:1,cano:1,canon:[6,8],capabl:1,carbon:[1,5],care:[1,6],carsten:0,cartopi:[6,10],case_id:[2,3],cat:[1,2,3,5,8,10],cat_url:2,catalog:[2,7,8,10],catlog:1,cax:3,cbar:3,cbar_diff:3,cbar_kwarg:5,cbar_pr:3,cc:[4,10],cc_historical_r1i1p1f1_gn_19900101:10,cccma:[2,3,5],cccma_model_hash:[2,3,5],cccma_parent_runid:[2,3,5],cccma_pycmor_hash:[2,3,5],cccma_runid:[2,3,5],cccmamip_era:5,ccmac:5,ccr:3,ccs03_data:10,cd:0,cdkkl:10,ceda:[1,7],cehbrecht:7,cell:[0,3,5,6,7,9,10],cell_arealong_nam:5,cell_measur:5,cell_method:5,center:[3,5],centr:5,central:8,centuri:3,cerfac:8,cesm2:[1,2,3,8,10],cf:[2,3,5,7,10],cfeatur:3,cfgphistori:5,cftime:[5,10],cftimeindex:[5,10],chain:[7,8,10],chang:[0,5,8],chapter:0,character:8,check:[1,2,5,6,10],chemistri:5,choos:1,chunksiz:2,chunktyp:2,citat:[5,6,7,10],clabel:10,clarif:6,class3:5,cleanli:6,clear:[3,6],click:0,client:[2,7,8,10],clim:10,climat:[0,1,5,7,8],clisop:[7,8],clone:0,closest:5,cloud:0,cm2:[1,8,10],cm4:1,cm5:1,cm6:8,cm:1,cmap:[3,5,10],cmcc:[1,2,8,10],cmip5:0,cmip6:[0,1,2,5,10],cmip6model_id:10,cmip6nominal_resolut:[5,7],cmip6parent_source_id:[5,7,10],cmip6realization_index:7,cmip6sourc:10,cmip6tracking_id:[5,10],cmip6variable_id:7,cmip:[1,2,3,5,7,8,10],cmip_table_com:5,cmipbranch_method:[5,7,10],cmipmember_id:5,cmipparent_experiment_id:[5,7,10],cmoc:5,cmor:[5,7,10],cmor_vers:[2,3,5,7,10],cmpi6:3,cnrm:8,co2:[1,7],coarser:3,coastlin:3,code:[0,4,5,6],codebas:5,coef:8,col:2,collect:[7,8],collier:0,collin:8,collison:[1,5],color:[3,8],colorbar:3,colormap:3,column:[1,5,10],com:[0,2,3,5,6,7,9,10],combin:[1,8],come:8,comfort:6,command:9,comment:[5,6],commit:6,common:[1,4,5,7,8,10],commun:[4,5],compar:8,complet:[0,3],complic:1,compon:8,comput:[0,1,5],compute_alpha:8,compute_index:8,concept:[1,3,5,6,7,8,10],conclud:6,concret:1,conda:[0,1,5,9],conduct:1,conf:[1,3,8,10],confid:10,configur:[5,7,8,10],confirm:6,connect:1,conquer:6,conroi:8,conserv:3,consid:6,consist:[1,5,7,10],consolid:2,consortium:1,construct:[2,10],consult:[5,7,10],consum:1,consumpt:4,contact:[6,7,10],contain:[2,5,10],content:[0,4,10],contextlib:10,continent:3,continu:[6,8],contour:10,contourf:10,contribut:6,control:1,conu:3,convent:[2,3,5,7,10],convert:1,convert_calendar:8,cookbook:[3,8,10],coord:8,coordin:[2,3,5,7,10],copernicu:[7,8],copi:6,copyright:6,corner:[0,9],corr_factor:8,correct:8,correction_factor:8,correspond:[3,7],could:[1,5,6],count:1,cover:0,cr:3,crash:6,creat:[0,2,9],creation:[5,7,10],creation_d:10,creativ:[4,5,7,10],creativecommon:[5,7,10],credit:[4,6],csm1:8,css03_data:[3,10],ctem1:5,cumul:5,current:[1,5],custom:[3,6],cyberinfrastructur:0,d9c2:7,d:[5,6],dai:[5,7,10],dask:2,data:[0,1,2,5],dataarrai:[2,8],databas:[5,8],datafram:[1,5,10],dataset:[0,1,8,10],dataset_id:[1,8],datasetdimens:[5,7,10],date:[5,7,8,10],datetime64:7,datetimeindex:7,datetimenoleap:[5,10],dcpp_init_year:2,de:[1,3,7,8],dec:8,decis:5,decreas:3,decreation_d:7,def848e7d856variable_id:5,def:[1,3,8,10],defin:8,deg:[5,8],degctok:5,degre:[3,5,8,10],degrees_eastaxi:[5,7,10],degrees_northaxi:[5,7,10],demo:6,demonstr:[3,5,10],denot:6,depend:1,deploi:7,deploy:10,derived_variable_id:2,describ:[0,5,6,8],descript:[3,6],design:1,detail:[0,1,8],detect:[5,10],determ:1,determin:5,dev:[0,1,3,5,8,10],develop:[1,5,7],dewitt:8,df:[1,2,3,8,10],dict:8,dict_kei:5,dictionari:[1,2,5,10],differ:[1,5,8,9,10],difficult:1,dim:[2,5,8],dimens:[2,3,5,7,10],direct:5,directli:[3,6],directori:[0,1,5,9],disabl:5,discov:10,discuss:5,displai:[3,5,6,7],display_styl:2,distinguish:6,distribut:[1,2,8],divid:6,djf:8,dkrz:[1,3,7,8],dn1:1,doc:[5,6,7,10],document:[3,6,10],documentationbranch_time_in_child:5,doe:1,doi:[4,7,8],don:[6,8],done:[6,8],dot:6,down:[1,5,6],download:[1,3,5,7,8,10],downloadwarn:[3,10],draw:8,draw_label:3,drop:5,dropna:8,ds:[2,3,5,7,8],ds_125:3,ds_25:3,ds_og:3,ds_rg:3,dsd:[5,10],dset:[3,8],dset_dict:2,dset_id:3,dset_list:3,dt:8,dtype:[1,2,5,7,8,10],due:[5,6],dump:7,dure:5,dynam:[7,8],e2:[1,10],e6ef8ececc8f338646ebfb3aeed36bfctitl:7,e:[0,5],each:[1,5,6,8,10],earth3:1,earth:[0,1,7,8],earthsyst:7,easi:3,easier:[1,3],easili:3,eastern:8,ec:[1,5],echam6:7,ecosystem:5,edgecolor:8,edit:[5,6],effect:[1,4],eh06f10af102nominal_resolut:10,ehbrecht:0,either:[0,5,6,7,10],el:8,elasticsearch:[1,5],els:[1,3,6,8],emb:6,embed:6,emiss:1,emot:7,empti:[1,5],enabl:[0,6],end:[1,6,8,10],energi:5,enivron:9,enough:8,enter:0,enumer:[3,8],env:[0,3,9,10],environ:[0,3,5,7,8,10],eof:8,equat:[5,6],era:3,error:[6,10],es2l:1,es:[5,7,10],esg:1,esgf1:[1,3,8],esgf2:[0,1,5],esgf:[7,8],esgfcatalog:[1,3,5,8,10],esm1:[1,7],esm2:[1,2,8,10],esm2_historical_r1i1p1f1_gn_19900101:10,esm:[1,5,7],essenti:3,estim:6,et:[7,8],etc:6,european:7,even:[0,1,3,5,6],event:8,everyth:1,ex:0,exampl:[0,1,2,5,8],except:3,exclud:[5,7,10],execut:[0,7,8],exist:[1,5,6],expand:[0,5],experi:[0,1,3],experiment_id:[1,2,3,5,8,10],explained_vari:8,explicitli:6,expos:1,express:[5,7,10],extend:3,extens:10,extent:[5,7,10],extern:[6,8],extra:6,extract:8,extrem:8,f085:5,f1:1,f:[0,2,3,8,9,10],face:1,facet:5,facil:[1,5],facilit:1,fact:8,factor:8,fail:[1,3],fair:1,fals:[1,3,5,8,10],familiar:[1,3,5,6,7],fashion:1,fastest:[1,5],featur:[3,5,10],feb:7,februari:5,feder:[0,1],feel:6,few:[1,3,6,10],fgco2:1,fgoal:8,fig:[3,5,8],figsiz:[2,3,5,8],figur:[0,2,3,7,8],file:[0,1,5,7,9,10],fill:[6,9,10],filterwarn:2,find:[1,3,5,8],finish:[6,10],finit:3,first:[0,1,3,5,8],fit:[5,7,8,10],five:6,fix:10,flag:[5,7,10],flku:5,flnd:5,float32:[2,3,5,7,10],float640:5,float641:10,float6466:10,float64:[2,3,5,7,10],flux:[3,5],focus:0,follow:[0,1,2,3,6,8,9,10],font:2,forc:[1,5,7,8,10],form:[9,10],format:[2,3,6],found:[1,5,7,10],foundat:6,fr:1,fraction:5,free:[1,4,6],freq:[5,7,10],frequenc:[5,10],from:[0,1,2,3,5,6,7,8,10],front:6,full:[1,5],fullest:[5,7,10],further:[1,5,7,10],further_info_url:[5,7,10],furtherinfo:[5,7,10],furthermor:1,futur:5,fv2:[1,2,10],fv2_historical_r1i1p1f1_gn_19900101:10,g3:8,g3_historical_r1i1p1f1_gr_19000116:8,g:[1,5,8,10],g_historical_r1i1p1f1_gn_19900101:10,gaussi:3,gaussian:[3,5],gener:[5,6,7],geo:10,geograph:10,geophys:[5,8],geosci:5,geospati:3,gerardo:0,germani:[3,7,8],germanyinstitution_id:7,get:[0,5,6,8],get_pacific_ocean:8,getitem:2,gfdl:1,giss:[1,10],gissmip_era:10,git:[0,5,9],github:[0,4,5,7,8,9],give:[4,6,7,8,10],given:1,gl:3,global:[1,2,3,5,7,10],globu:[1,5],globusesgfindex:1,gn:[1,2,3,5,7,8,10],gngrid_label:7,gnhistori:[5,7,10],go1:10,go:[1,3,5,8,9],goal:1,goddard:10,good:6,googleapi:2,got:6,goubanova:8,gov:[1,3,5,7,8,9,10],govern:[3,5,7,10],gpp:5,gppvariant_label:5,gpuccini:10,gr1:1,gr:1,greatli:3,green:5,greenhous:8,grid:[0,5,7,8,10],grid_label:[1,2,3,5,8,10],grid_label_origin:3,grid_origin:3,gridlin:3,gridspec:3,gross:5,gross_primary_productivity_of_biomass_expressed_as_carbonlong_nam:5,group:9,groupbi:8,grover:0,gs:[2,3],gt:[5,7,10],h:[6,10],h_historical_r1i1p1f1_gn_19900101:10,ha:[1,3,5,8],ham:1,hamburg:7,hamocc6:7,hand:5,harder:8,has_year_zero:[5,10],hasn:3,have:[0,1,3,5,6,8,9,10],hdl:[3,5,7,10],header:10,heavi:[6,8],height:[2,3,5,7,10],height_ratio:3,heightstandard_nam:[5,7,10],hello:6,help:[1,3,5,6,7,8,10],here:[1,2,3,5,6,10],hesit:6,hi:2,hibler:7,high:[6,7,8,10],higher:8,highlight:0,his01:[2,3,5],his01convent:5,histor:[2,3,5,7,8,10],histori:1,historica:[2,10],historicalexternal_vari:[5,7,10],hold:[5,10],holoview:10,home:[1,3,5,9,10],hone:1,hood:5,horizont:5,host:[0,1],how:[0,1,3,5,6,7,8,10],howev:[1,5,6],hpa:[3,5,7,10],hpagrid_label:5,hparent_time_unit:10,hr4:10,hr4_historical_r1i1p1f1_gn_19900101:10,hr:7,hr_historical_r1i1p1f1_gn_20000116:7,hrparent_time_unit:7,hrsource_typ:7,hsource_typ:10,hspace:[3,8],html:[2,5,6],http:[0,2,3,5,6,7,8,9,10],hub:9,hv:10,hvplot:10,i:[0,1,3],ic:[5,7],icon:0,id:[1,3,7,8],id_list:[3,10],idea:[6,8],identifi:[7,8],ignor:2,illustr:1,imag:[3,6,7],img:6,implement:7,impli:[5,7,10],impress:1,includ:[0,1,3,5,6,7,8,10],incomplet:1,increas:[1,7,8],ind:1,indent:7,index:[1,3,5,7],india:10,india_annual_temperatur:10,indic:[1,2,3,8,10],info:5,inform:[1,3,5,6,7,8,10],infrastructur:[0,9],infring:6,initi:[5,8,10],initialization_index:[7,10],inm:1,inorgan:5,input:[3,7,8,10],inset_ax:3,inset_loc:3,insight:7,inspect:10,inspir:[1,5,6],instal:[1,5,9],instanti:[1,10],instead:[3,5,6,7],institu:10,institut:[7,10],institution_id:[1,2,5,8,10],intak:[7,8],intake_esgf:[1,3,5,8,10],intake_esm_attr:2,intake_esm_dataset_kei:2,integr:7,intens:1,interact:[0,5,7,10],intercomparison:0,interest:[0,1,8,9,10],interfac:[1,5,7,10],intern:[1,5,7,10],interspers:6,interst:10,intro:[3,6,7,8,10],introductori:6,invert:7,io:[3,10],ipsl:[1,7],ipynb:[3,7],ipython:7,isel:[3,7],isin:8,issu:5,item:[2,8],iter:10,its:[1,3,5],j:[7,8],jacquelin:0,jan:[7,10],jia:8,jin:8,jsbach3:7,json:2,juptyerhub:0,jupyt:[0,5,6],jupyterhub:9,jupyterlab:0,just:[1,3,6,10],k:[2,7,8,10],karamperi:8,karamperid:8,kcell_method:[7,10],keep:[1,3,5,6,8],keep_ds_id:8,kei:[2,5,6,8,10],kenneth:10,kernel:[6,9],kg:5,kickoff:7,kind:1,km:3,kmparent_activity_id:[5,7,10],know:[0,1,3,5,6,7,10],known:5,koriginal_nam:5,kug:8,l:8,lab:[0,6,10],label:[2,3,5,6,8],labor:1,lai:6,lake:5,lambda:8,land:[1,5,7,10],land_area_fractionlong_nam:5,landcom:5,landfrac:5,landic:[5,7,10],landrefer:5,languag:0,larg:[3,5],last:5,lat:[2,3,5,7,8,10],lat_bnd:[2,3,5,7,10],lat_bndsunit:[5,7,10],later:5,latest:4,latex:6,latitud:[3,5,7,10],latitudearrai:[5,7,10],latitudestandard_nam:[5,7,10],latpandasindexpandasindex:[5,7,10],latxlon:3,launch:[0,1],law:[5,7,10],layer:7,lead:[6,10],leadership:[1,5],learn:[1,3,5,6,7,8,10],leav:[1,6],left:[3,8],legal:6,legend:[2,8],len:[1,3,8],lengaign:8,length:[5,7,10],less:1,let:[1,2,3,5,6,10],letter:8,level:[3,5,7,10],liabil:[5,7,10],lib:[3,10],librai:7,librari:7,licens:[3,4,5,7,10],lift:6,like:[0,1,5,6,10],likewis:8,lim2source_id:5,limadaten:7,limit:[3,5,7,10],line2d:7,line:[1,2,7,8,9,10],linear:[3,5],linestyl:8,linewidth:[2,8],link:6,linspac:8,list:[1,2,3,5,6,8,10],liu:1,live:0,ll:[0,1,3,6],llnl:[1,3,5,7,8,9,10],lm:1,lmon:[1,5],lmontable_info:5,lo:10,load:[1,5,7,8,10],loc:3,local:[0,1,5,10],locat:[1,3,5,8,10],log:[1,3,9],lognorm:3,logo:[3,6],lon:[2,3,5,7,8,10],lon_bnd:[2,3,5,7,10],lon_bndsunit:[5,7,10],long_nam:[3,5],longer:6,longitud:[3,5,7,10],longitudearrai:[5,7,10],longitudestandard_nam:[5,7,10],lonpandasindexpandasindex:[5,7,10],look:[1,5,6,8,10],lookup:7,loop:3,loos:6,lot:10,lower:8,loyal:6,lr:1,lsm:10,lt:[2,5,7,10],lw:8,m2:5,m2original_nam:5,m:[1,5,6,7,8],machin:[5,6],macv2:7,magnitud:3,mai:[1,3,5,7],main:[6,7],make:[1,3,5,6,7,8,9,10],manag:[1,6],mani:[1,5],manipul:[1,8],manual:[5,6],map:6,mar:7,march:10,mark:6,markdown:6,marker:8,mass:5,master:7,materi:[0,4,6],mathjax:6,matplotlib:[2,3,5,7,8,10],matrix:10,matter:5,mauritsen:7,max:[0,7,8],maxi:[5,7,10],mb:5,mcolor:3,mcphaden:8,md5:[5,7,10],mean:[3,4,5,8],meancell_measur:[5,7,10],measur:5,meet:7,member:1,member_id:[1,2,3,5,8,10],memori:5,mention:5,merchant:[5,7,10],mesh:5,messag:[2,10],meta:2,metadata:[1,3,5,6,7],metalink:10,metalink_0cqg4rqh:10,metalink_0w7nr819:10,metalink_2ksa4o8k:3,metalink_3ip6j7zx:3,metalink_3xgidbjw:10,metalink_44ipjyd6:8,metalink_45wmx8u9:3,metalink_45x5ch04:10,metalink_4oyvztp5:10,metalink_4tggkvh8:10,metalink_51a61hv:8,metalink_5glyg4b7:3,metalink_6e8jbvqb:7,metalink_8a_7wr94:3,metalink_8byu1m7_:10,metalink_abol5_l:10,metalink_axoxb3cr:8,metalink_b90bgc68:8,metalink_cdwqgjji:3,metalink_g8cwp__j:3,metalink_hocbk671:10,metalink_hsv1l9mm:10,metalink_hx1r16uf:10,metalink_iqf0cik3:10,metalink_pebapymg:8,metalink_s3ev68ul:10,metalink_sogaxh7w:7,metalink_tcm2g0ug:10,metalink_toeryrsl:8,meteorolog:7,meter:[5,7,10],method:[0,1,3,8,10],min:[6,8],miniconda3:[3,10],minim:5,minut:[1,3,5,6,7,8,10],mip_era:[1,5,8,10],miroc6:10,miroc:[1,10],mirror:5,miss:[5,7,10],mkwght:5,mltby12em9:5,mm:[1,5],mmip_era:7,mode:8,model:[0,5,7,8,10],model_group:1,modoki:8,mohc:1,mol:5,mollweid:3,moment:0,mon:5,monfurther_info_url:[5,7,10],montecino:8,month:[7,8],more:[1,3,5,6,8,9,10],most:6,motiv:1,mous:0,move:[0,6],mpi:[1,7],mpiom1:7,mpl_toolkit:3,mr:1,mri:1,much:1,mueller:7,multipl:[1,2,8],n:[3,7],n_mode:8,name:[1,5,7,10],namespac:10,nan:2,narr:6,narrow:5,nasa:10,nathan:0,nation:10,nativ:[3,5],natur:8,naturalearth:[3,10],navbar:6,navig:0,nbnd:[2,3],nbp:1,nbviewer:7,nc:[3,7,8,10],ncar:[1,2,3,8,10],ncc:1,nci:1,ncol:8,ndarrai:2,ne_110m_coastlin:3,ne_110m_land:10,ne_110m_ocean:10,ne_50m_admin_0_boundary_lines_land:3,ne_50m_coastlin:3,nearest:3,nearest_s2d:[3,8],nearest_s2d_192x288_145x288_peri:3,nearest_s2d_64x128_145x288_peri:3,neatli:3,necessari:[1,3,5,6,7,8,10],need:[0,1,5,6,7,8,9,10],neglect:5,neglig:[5,7,10],neighbor:3,nemo3:5,net:5,netcdf:[1,3,5,6,7,8],next:[3,8],ng:8,nim:1,nimbu:[0,5],noaa:1,node:[1,3,5,7,8],noleap:[5,10],nominal_resolution_origin:3,non:[4,6,10],none:[3,5,7,10],nonesub_experiment_id:[5,7,10],nonetable_id:[5,7,10],nonsequenti:6,norcpm1:1,noresm2:1,norm:3,normal:3,note:[1,3,5,6,7,8,10],notebook:[1,3,5,7,8,10],noth:5,notic:5,notion:1,now:[0,1,2,3,5,8,9,10],np:[2,8],npzd:5,nrow:[5,8],ns:7,nsc:1,nugent:0,num:8,number:6,numpi:[2,8],ny:10,o:[7,8],oak:10,object1850:5,object1990:10,object:[1,2,3,5,6,8,10],obs4mip:0,obtain:8,occupi:5,occur:[5,10],ocean:[1,5,7,8,10],ocnbgchem:[5,7,10],off:3,offer:3,ogc:[7,8],ok:[1,3,7,8,10],okai:10,om:1,oma:10,omip:5,omon:[1,8],onc:[5,8,9],one:[1,5,6,7,8,10],onli:[1,3,5,6,7,8,10],onlin:8,op:[3,7,8,10],open:4,open_esm_datastor:2,oper:[1,3,8,10],opposit:8,optim:5,option:[2,9],orca1:5,orchestr:[3,7,8,10],order:5,org:[1,5,7,8,10],organ:3,orient:3,origin:[3,5],original_nam:5,ornl:[1,3,8],os:[3,7,8,10],oscil:8,other:[0,5,6,8,10],otherwis:6,our:[1,3,5,6,10],ourano:7,out:[1,5,6,7,9],output:[0,5,6,7,8],outputproject_id:7,outputrealization_index:[5,10],outright:3,over:[2,3,10],overestim:6,own:5,oxid:5,p:10,pacif:8,packag:[1,3,5,6,9,10],page:6,pain:1,panda:[1,2,5,8],panel:[3,10],pangeo:2,paragraph:6,parallel:5,paramet:8,parent_source_id:3,pari:7,part:[1,5,8],particular:[1,5,7,8,10],particularli:8,pastexperiment_id:[5,7,10],path:5,pattern:8,pc1:8,pc2:8,pc:8,pcm:3,pcmd:3,pcmdi:[5,7,10],pcolormesh:3,pd:2,pdf:7,peopl:6,per:6,perat:7,percentag:5,perform:[1,5,8,10],permit:[5,7,10],photosynthesi:5,physic:[3,10],phytoplankton:5,pi:5,pick:9,pico:1,picontrol:1,picontrolparent_experiment_rip:10,picontrolparent_mip_era:[5,7],pictrl:[2,3,5],pictrlcccma_pycmor_hash:5,piec:6,pip:5,place:5,plagiar:6,plai:6,planck:7,plant:5,platecarre:3,pleas:[1,5,9],plot:[2,10],plot_d:3,plt:[2,3,5,8,10],pn:10,png:6,point:[1,6],poli:8,polyfit:8,polynomi:8,polyv:8,pool:7,popul:6,portabl:5,portion:1,possibl:[1,5],pr:[3,5],pr_amon_canesm5_historical_r1i1p1f1_gn_20100101:3,pr_amon_canesm5_historical_r1i1p1f1_gr_20100101:3,pr_amon_cesm2_historical_r1i1p1f1_gn_20100101:3,pr_amon_cesm2_historical_r1i1p1f1_gr_20100101:3,pr_diff:3,precipit:5,precursor:5,prefer:[5,6],prepar:[5,7,10],prepend:10,prescrib:[5,7],presenc:5,present:[0,1,2,7],press:0,pretti:3,previou:[5,8],previous:5,primari:[1,5],print:[1,2,3,5,6,7,8,10],problem:6,process:[1,2,3,5,6,7,8,10],produc:[3,5,7,10],product:5,productivti:5,program:0,progress:5,proj:3,project:[0,1,3,4,8,10],projectpythia:9,proper:[5,7,10],prov:7,provenance_imag:7,provid:[1,5,6,7,10],pull:6,purpos:[5,7,10],put:[2,6],py:[3,10],pypi:[1,5],pyplot:[2,3,5,8,10],pythia:[0,4],python3:[3,10],python:[0,6,7,8],qs:8,quadmesh:7,quadrat:8,queri:[1,5,8],question:6,queue:5,quickli:[3,5],r101i1p1f1:1,r102i1p1f1:1,r17i1p1f1:5,r1:[2,10],r1i1:1,r1i1p1:10,r1i1p1f1:[1,2,3,5,7,8,10],r1i1p1f1grid:[5,7,10],r1i1p1f1licens:[7,10],r1i1p1f1physics_index:[5,7,10],r1i1p1f1vers:5,r1i1p1f1xarrai:5,r1i1p1f2:[1,8],r1i1p1f:1,r1i1p1parent_mip_era:10,r1i1p2f1:1,r1i1p4f1:1,r1i1p:10,r1i2p1f1:1,r23i1p1f1:5,r2i1p1f1:1,r2i1p1f2:1,r3i1p1f1:[1,5],r3i1p1f2:1,r3i1p:1,r4i1p1f2:1,r9i1p2f1:5,r9i:5,r:[5,7,8,10],rais:10,random:5,rang:10,rate:5,rather:3,ravel:8,raw:6,rc3:[2,3,5],rcparam:2,re:[3,5,6],read:[3,6,10],reader:6,readi:[1,5],recent:[5,7,10],recip:0,recom:1,record:[5,7,10],red:10,redesign:1,refer:5,referenc:6,refin:[5,10],regim:8,region:[3,8],regm:2,regn_mean:2,regrid:7,regrid_oper:3,regrid_tool:3,regrid_weights_uid:3,reinterpret:8,reiter:6,rel:1,releas:4,relev:[1,6],reli:1,remot:[5,7,8,10],remotli:7,remov:[6,10],remove_ensembl:[1,8],remove_incomplet:1,reorder:5,repeat:5,replac:[0,5,7,10],report:[1,5],repositori:0,repres:8,reproduc:8,request:[5,6,9],requir:[1,5,6,7,9,10],resampl:[2,8],research:8,resolut:[3,7,8],resolv:4,resourc:5,resp:[3,7,8],respir:5,respons:[1,7,8,10],response_tim:1,restart:6,result:[1,5,10],reus:4,review:[6,8],rewrot:[5,7,10],rg_list:3,rho:6,rid:8,ridg:10,right:[0,6,8,9],right_label:3,rigor:6,rivera:0,rocket:0,rooc:[7,8],rook:[3,7,8],rook_c3s2_380_2022:7,rook_url:[3,7,8,10],rooki:8,rooki_id:[3,10],rough:6,round:6,row:1,run:[3,5,6,8,10],runidinitialization_index:5,runner:[3,10],s00382:8,s3:[3,10],s41586:8,s43017:8,s4:5,s:[2,3,5,8],s_model:8,safer:6,sake:[5,8],same:[2,8],santoso:8,save:10,scalar:[5,7,10],scale_factor:8,scari:6,scatter:8,scienc:1,scientif:0,scope:[0,6],score:8,screen:10,script:5,se:1,sea:[7,8],seaic:[5,7,10],search:[3,5,7,8],season:8,second:9,see:[0,1,3,5,6,8,10],seek:1,sel:[2,8],select:[0,8],semtner:7,send:6,sens:3,sent:10,separate_dataset_id:3,sequenti:6,seri:1,serv:4,server:[1,5,10],serversid:5,servic:[7,8,10],session:1,session_log:1,set:[1,3,5,7,8],set_esgf_data_root:5,set_label:3,set_opt:2,set_titl:[3,8],set_xlabel:8,set_xlim:[3,8],set_ylabel:8,set_ylim:[3,8],sever:[1,7,10],sftlf:5,shall_i_keep_it:1,shape:[2,8],share:[4,7],sharealik:[5,7,10],sheet:5,shift:[0,3],ship:0,should:[0,1,3,6,10],show:[1,2,3,8,10],shown:[7,9],shrink:6,side:10,sidebar:6,sigma:6,sign:8,signal:10,similar:[1,5,8,10],similarli:6,simpl:2,simplest:0,simpli:[0,5],simplic:8,simul:[5,7,10],simultan:1,sinc:[1,3,5,7,10],singl:[0,1,6,7,8,10],singular_valu:8,sisource_id:10,site:[3,7,10],size:[2,3,5,6,7,10],size_in_mb:8,slice:[2,8],slightli:9,small:1,smaller:3,smallest:1,smart:1,so:[1,3,4,5,6,8,9,10],softwar:6,solr:1,solresgfindex:1,some:[1,5,6,7,8,10],someth:[3,10],sometim:[5,8],sort:[1,2],sortbi:2,sorted_dataset:2,sourc:[1,3,4,5,9],source_id:[1,2,3,5,7,8,10],southern:8,sp:7,space:10,span:[0,10],special:5,special_issu:5,specif:[1,2,5,6,10],specifi:[1,3,5,10],spectral:7,speed:5,spin:5,split:[2,3,8,10],sqrt:8,squeez:2,sr5:[8,10],sr5_historical_r1i1p1f1_gn_19900101:10,sr5_historical_r1i1p1f1_gr_19000116:8,sst:8,sst_data:8,st:5,stac:[7,8],stack:2,stage:1,stagger:5,standard:[2,3,5,7,8,10],standard_nam:[5,7,10],standardbranch_time_in_child:[7,10],start:[0,1,6,10],state:6,statu:[3,7],step:[7,8,9,10],sthistori:5,storag:[2,5],store:[1,5,7,8,10],structur:[1,3,5,6,7],studi:[8,10],stuecker:8,stuff:6,sub:1,sub_df:1,sub_experiment_id:3,submiss:5,subplot:[3,5,8],subplots_adjust:8,subsequ:5,subset:[2,3,10],subset_tas_1:7,subtract:3,success:10,suggest:6,suitabl:8,sum:5,summar:6,summat:5,suppli:[5,7,10],support:1,sure:[0,1,6,9,10],surfac:[2,3,5,7,8],sy:6,synchron:7,syntax:[1,6],synthesi:5,syst:7,system:[0,6,7],t127:7,t63:[3,5],t63l49:[3,5],t:[3,6,7,8],ta:[1,2,3,5,7,10],tabl:[5,6],table_id:[1,2,3,5,8,10],tackl:6,tag:6,takahashi:8,take:[5,6,8],takeawai:6,taken:8,talk:7,target:3,tas_amon_cesm2:10,tas_amon_cesm2_historical_r1i1p1f1_gn_19900101:10,tas_amon_cesm2_historical_r1i1p1f1_gn_20100101:3,tas_amon_cesm2_historical_r1i1p1f1_gr_20100101:3,tas_amon_cmcc:10,tas_amon_giss:10,tas_amon_miroc6_historical_r1i1p1f1_gn_19900101:10,tas_amon_mpi:7,taschetto:8,task:1,tasvariant_label:[5,7,10],tcre:1,tell:[3,6],tello:0,temperatur:[2,3,5,8],temperaturecom:[5,7,10],temperatureunit:[5,7,10],tempereratur:1,temporari:10,term:[5,7,10],termsofus:[5,7,10],test:10,text:6,than:[1,3,5,9],thank:6,thei:[1,3,5,6],them:[0,1,2,3,5,6,10],themselv:1,thermodynam:7,thi:[0,1,2,3,5,6,7,8,10],those:1,through:[0,3],throughout:6,thu:5,ti:6,tie:6,tight_layout:5,time:[1,3,5,6,7,8,10],time_bnd:[2,3,5,7,10],time_bndsaxi:[5,7],time_compon:7,timearrai:[5,7],timepandasindexpandasindex:[5,7,10],timestandard_nam:[5,7],timmermann:8,titl:[0,2,6,7,10],tlong_nam:[5,7],tmp:[3,7,8,10],to_dataset_dict:[1,2,5],to_fram:1,to_list:[8,10],togeth:6,toma:10,took:1,tool:[1,8],top:[0,3,5,6,7,9,10],top_label:3,topic:6,tos:8,tos_anom:8,tos_omon_cam:8,tos_omon_cesm2_historical_r1i1p1f1_gr_19000115:8,tos_omon_cmcc:8,tos_omon_cnrm:8,tos_omon_fgo:8,total:6,total_tim:1,tp04:7,track:[3,5],tracking_id:[3,7,10],transfer:[5,10],transform:3,transit:6,treat:[5,7,10],tree:7,tripolar:[5,7],tropic:8,truncat:5,ture:6,tutori:[1,2,5],two:8,type:[3,5,10],typestandard_nam:5,u8:2,u:[3,5],uk:[1,7],ukesm1:1,ukesm:1,un:7,uncom:3,uncommend:1,under:[1,4,5,7,8,10],understand:[1,3,5,6,7,8],uniformli:5,uniqu:[1,2,5,6],unit:[3,5,7,10],unlik:5,unnam:7,until:0,up:[0,3,5,6,9],updat:9,upload:5,uplong_nam:[5,7,10],upmc:1,url:[3,10],us:[0,1,2,5,6,8,9],usa:10,usainstitution_id:10,use_coslat:8,user:[1,9,10],usual:[5,7,10],util:0,v20180827:10,v20180917:8,v20181206:8,v20181212:10,v20190227:10,v20190308:[3,8,10],v20190401:3,v20190403:10,v20190429:[3,5],v20190429licens:5,v20190708:8,v20190710:7,v20190815:10,v20191107:8,v20191120:10,v20200616:[8,10],v20200904:10,v20210114:10,v8p:5,valid:5,valu:[3,5,7,10],valueerror:10,vari:[3,10],variabl:[1,2,3,5,7,8,10],variable_id:[1,2,3,5,7,8,10],variablescom:5,variant_info:3,variant_label:[3,5,7,10],variou:3,verif:5,version:[1,2,3,5,6,7,9,10],vertic:[3,5,6],via:[0,5,6,7,9,10],victoria:5,view:[0,1,3],visual:[3,6],vmax:[3,5],vmin:[3,5],volum:3,w3c:7,w:[7,8],wa:6,waccm:[1,10],waccm_historical_r1i1p1f1_gn_19900101:10,wai:[0,3,5,6],wait:9,wang:8,want:3,warm:8,warn:[2,3,10],warranti:[5,7,10],we:[1,2,3,5,6,7,8,10],web:[7,10],weight:[2,5],weighted_averag:7,weighted_average_tas_1:7,weightedaverag:7,well:[0,1,3,5,6,8],went:10,were:[1,5,6,10],wf:[3,7,8],wghthistori:5,what:[1,3,5],when:[1,9],where:[1,3,5,6,7,10],which:[0,1,3,5,6,8,9,10],whose:[5,10],why:[1,3,8],widget_loc:10,width:3,width_ratio:3,wing:8,wish:1,within:[0,3,5,10],without:[2,3,5,6,7,8,10],wonder:6,work:[0,1,3,5,6,8,10],workflow:[3,8,10],world:6,would:[1,5,10],wp:[3,7,8,10],write:[1,10],wrong:10,wspace:3,wu:8,www:5,x1:3,x27:[5,7,10],x2:3,x:[3,5,6,7,8,10],x_area_fract:5,xarrai:[3,5,8,10],xe:8,xeof:8,xesmf_v0:3,xfit:8,xlabel:2,xlong_nam:[5,7,10],xr:[2,8,10],xy:6,xz:6,y:[2,6,8,10],yang:8,year:[2,3,8,10],yearli:10,yeh:8,yet:5,ying:8,ylabel:2,ylong_nam:[5,7,10],ymdh_branch_time_in_child:[2,3,5],yml:[0,9],york:10,you:[0,1,3,4,5,6,8,9,10],your:[1,5],yourself:6,ys:10,z:[6,8],zarr:2,zarr_kwarg:2,zenodo:4,zero:[7,8],zheng:8,zhong:8,zip:[3,10],zoom:3,zposit:[5,7,10],zstore:2},titles:["ESGF Cookbook","Complex Searching with intake-esgf","Complex Searching with intake and analysing employing xarray","Demo: Regridding and Plotting with Rooki and Cartopy","How to Cite This Cookbook","Introduction to intake-esgf","Project Pythia Notebook Template","Compute Demo: Use Rooki to access CMIP6 data","Compute Demo: ENSO nonlinearity index with CMIP6 data","Running Notebooks on Nimbus","Using intake-esgf with rooki"],titleterms:{"1":[3,9],"2":[3,9],"3":9,"import":[1,2,3,5,6,8,10],A:6,access:[3,7,9],activ:9,addit:1,after:3,again:3,alpha:8,analys:2,annual:2,anoth:6,appli:9,author:0,averag:7,befor:3,between:3,binder:0,build:9,calcul:2,cartopi:3,catalog:[1,5],cite:4,clone:9,cmip6:[3,7,8],coarsen:3,compar:3,complex:[1,2],comput:[7,8,10],content:6,contributor:0,cookbook:[0,4,9],creat:7,danger:6,data:[3,7,8,10],dataset:[2,3,5,7],datset:3,defin:7,demo:[3,7,8],demonstr:6,desir:3,dev:9,differ:3,document:7,each:[2,3],emploi:2,enso:8,environ:9,esgf:[0,1,3,5,9,10],everyth:3,exampl:3,execut:9,extract:10,find:10,first:6,further:6,get:3,grid:3,group:1,header:6,how:4,id:10,index:[8,10],info:6,init:7,initi:1,intak:[1,2,3,5,10],introduct:5,job:7,json:7,last:6,level:6,look:[3,7],machin:0,mean:2,measur:8,model:[1,3],motiv:0,next:[6,7,10],nimbu:9,node:10,nonlinear:8,notebook:[0,6,9],obtain:5,one:3,onto:3,open:[7,9],oper:7,option:7,ornl:10,output:[3,10],overview:[1,2,3,5,6,7,8,10],own:0,panel:2,pass:10,plot:[3,5,7,8],popul:[1,5],precipit:3,prerequisit:[1,3,5,6,7,8,10],project:6,proven:7,pythia:6,quick:[3,6],refer:[2,3,6,7,8,10],region:2,regrid:[3,8],remov:1,repositori:9,resourc:[3,6,7,8,10],result:8,retriev:[7,8],rooki:[3,7,10],run:[0,7,9],s:[6,7,10],same:3,search:[0,1,2,10],second:6,section:6,select:9,seri:2,set:10,show:7,simpl:5,singl:2,structur:0,submit:7,subsect:6,subset:[7,8],success:6,summari:[1,3,5,6,7,8,10],surfac:10,take:3,temperatur:10,templat:6,thi:[4,9],time:2,togeth:3,two:3,us:[3,7,10],valu:8,variant:1,visual:[2,10],warn:6,what:[6,7,10],workflow:[0,7],xarrai:[2,7],your:[0,6,9]}}) \ No newline at end of file