-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnogaps.cs
986 lines (928 loc) · 57.2 KB
/
nogaps.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
//Copyright (C) 2021 by Shahar Seifer, Elabum lab, Weizmann Institute of Science
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
using System;
using System.Collections.Generic;
using System.Text;
using System.IO;
namespace ClusterAlign
{
public class nogaps
{
public static double fillgaps(double psi0, double phi0, double[] theta_vec, int S, int contours, int ncenter, int Nx, int Ny, ref int[,] fidx, ref int[,] fidy, ref int[,] fidn, ref double[,] Bfinal, ref double[] Dx_vect, ref double[] Dy_vect, ClusterAlign.Program.tp[,] locations, int[] NFid, int main_IterationNum, ref double Theta_shift, double PreAlignmentTolx, double PreAlignmentToly, ref double xc0, ref double yc0, ref double report_phi, ref double report_psi,string basefilename) //S number of slices
{
double pi = Math.PI;
double phi_range = 15;
double psi_range = 15;
bool xisrotation = ClusterAlign.Settings4ClusterAlign2.Default.xisRotation; //(Math.Abs(phi0-0.5 * Math.PI)< 0.2 * Math.PI);
double a = 0, b = 0, c = 0, d = 0, e = 0, f = 0, g = 0, h = 0, i = 0;
double in_a = 0, in_b = 0, in_c = 0, in_d = 0, in_e = 0, in_f = 0, in_g = 0, in_h = 0, in_i = 0;
double Theta0 = 0;
double dtheta = theta_vec[2] - theta_vec[1];
double phi = 0, psi = 0;
double xc = Nx / 2.0;
double yc = Ny / 2.0;
double theta;
double z0temp1, z0temp2;
double Dx, Dy;
double xsim, ysim, zsim;
double[,] Fx = new double[contours, S];
double[,] Fy = new double[contours, S];
double best_angle_psi = psi0;
double best_angle_phi = phi0;
double[] zcenter = new double[contours];
double[] best_zcenter = new double[contours];
double[] grand_best_zcenter = new double[contours];
double[] xcenter = new double[contours];
double[] ycenter = new double[contours];
double[] previter_xcenter = new double[contours];
double[] previter_ycenter = new double[contours];
double[] previter_zcenter = new double[contours];
double[] grand_Dxbest = new double[ S];
double[] grand_Dybest = new double[S];
double[] Dxbest = new double[ S];
double[] Dybest = new double[S];
double[] Valt = new double[ S];
bool[] D_vect_valid = new bool[S];
bool[] best_D_vect_valid = new bool[ S];
bool[] grand_best_D_vect_valid = new bool[S];
Array.Clear(grand_best_D_vect_valid, 0, S);
double sumerror, error, error2, minerror;
int count;
int xc_ns, yc_ns;
double[] xfactor = new double[S];
double[] yfactor = new double[S];
for (int n = 0; n < S; n++)
{
if (ClusterAlign.Settings4ClusterAlign2.Default.coswindow)
{
if (xisrotation)
{
xfactor[n] = 1;
yfactor[n] = Math.Cos(theta_vec[n]); //multiplying by these factors means we restore the actual spatial dimensions
}
else
{
xfactor[n] = Math.Cos(theta_vec[n]);
yfactor[n] = 1;
}
}
else
{
xfactor[n] = 1;
yfactor[n] = 1;
}
}
Console.WriteLine("Fit to rigid body model:");
if (contours<3)
{
psi_range = 0;
}
if (contours < 2)
{
phi_range = 0;
}
//shift to center at xc,yc
for (int p = 1; p <= contours; p++)
{
for (int ns = 1; ns <= S; ns++)
{
if (ns - 1 == ncenter)
{
Fx[p - 1, ns - 1] = ((double)fidx[ns - 1, p - 1] - xc0) * xfactor[ns-1]; //make aspect ration normal to make eligible for rotation transformations
Fy[p - 1, ns - 1] = ((double)fidy[ns - 1, p - 1] - yc0) * yfactor[ns-1];
}
else
{
Fx[p - 1, ns - 1] = ((double)fidx[ns - 1, p - 1] - xc) * xfactor[ns - 1];
Fy[p - 1, ns - 1] = ((double)fidy[ns - 1, p - 1] - yc) * yfactor[ns - 1];
}
}
}
//see below: for nslice: the alignment corrections: Dx=xc-xc0, Dy=yc-yc0, so fidx,fidy will not change, since it is locations in respect to nonshifted images
double grand_minerror =0;
//already defined: double[] Dx_vect = new double[S];
//already defined: double[] Dy_vect = new double[S];
double[] Dx_vect_temp = new double[S]; //Dx_vect is updated only if solution found
double[] Dy_vect_temp = new double[S];
//using initial values of xcenter, ycenter, zcenter
for (int p = 1; p <= contours; p++)
{
previter_xcenter[p - 1] = Fx[p - 1, ncenter];
previter_ycenter[p - 1] = Fy[p - 1, ncenter];
previter_zcenter[p - 1] = 0;
}
double[] previter_Dx_vect = new double[S];
double[] previter_Dy_vect = new double[S];
//correct for ficticious aspect ratio of images, temporary for this module (then restore back near end)
for (int ns = 1; ns <= S; ns++)
{
Dx_vect[ns - 1] = Dx_vect[ns - 1] * xfactor[ns - 1];
Dy_vect[ns - 1] = Dy_vect[ns - 1] * yfactor[ns - 1];
}
Dx_vect.CopyTo(previter_Dx_vect, 0);//learn from previous rounds
Dy_vect.CopyTo(previter_Dy_vect, 0);
int found_gdx = 0;
int found_gdy = 0;
Array.Clear(zcenter,0, contours); //Start afresh each time, although at the end we publish z0values so matching could improve with iterations
for (int iteration = 1; iteration <=2; iteration++) //was 4 iterations
{
double z_ncenter;
grand_minerror = 1000000;
for (phi = (phi0 - phi_range * pi / 180); phi <= (phi0 + phi_range * pi / 180); phi = phi + (3 * pi / 180))//was -15 to 15 step of 3
{
for (psi = (psi0 -psi_range * pi / 180); psi <= (psi0 + psi_range * pi / 180); psi = psi + (3 * pi / 180))//tested -20 to 20, step of 4
{
//for (Theta_shift = -0 * pi / 180; Theta_shift <= 0 * pi / 180; Theta_shift = Theta_shift + 1 * pi / 180)//was step of 2
{
minerror = 1000000;
//double Theta0_best = 0;
//for (Theta0 = (-0*0.4 * dtheta + Theta00); Theta0 <= (0*0.4 * dtheta + Theta00); Theta0 = Theta0 + dtheta * 0.2)
{
if (1==1 ||iteration>1 || main_IterationNum > 0)//
{
// prepare better z0vect
for (int p = 1; p <= contours; p++)
{
int length_vecz0p = 0;
for (int ns = 1; ns <= S; ns++)
{
if (fidn[ns - 1, p - 1] >= 0)
{
length_vecz0p++;
}
}
double z0sum = 0;
int z0count = 0;
double[] vector_z0p = new double[length_vecz0p];
Array.Clear(vector_z0p, 0, length_vecz0p);
for (int ns = 1; ns <= S; ns++)
{
if (fidn[ns-1,p-1]>=0)//((Fx[p - 1, ns - 1] > -xc && Fy[p - 1, ns - 1] > -yc) || ns - 1 == ncenter)
{
theta = theta_vec[ns - 1] - Theta0;
Amat(theta, phi, psi, ref a, ref b, ref c, ref d, ref e, ref f, ref g, ref h, ref i);
Inv(a, b, c, d, e, f, g, h, i, ref in_a, ref in_b, ref in_c, ref in_d, ref in_e, ref in_f, ref in_g, ref in_h, ref in_i);
z0temp1 = (Fx[p - 1, ns - 1] + previter_Dx_vect[ns - 1]) - a * (previter_xcenter[p - 1]) - b * (previter_ycenter[p - 1]);
z0temp2 = (Fy[p - 1, ns - 1] + previter_Dy_vect[ns - 1]) - d * (previter_xcenter[p - 1])- e * (previter_ycenter[p - 1]);
if (Math.Pow(c, 2) + Math.Pow(f, 2) > 0)
{
vector_z0p[z0count] = (c * z0temp1 + f * z0temp2) / (Math.Pow(c, 2) + Math.Pow(f, 2));
z0sum = z0sum + (c * z0temp1 + f * z0temp2) / (Math.Pow(c, 2) + Math.Pow(f, 2));
z0count = z0count + 1;
}
}
}
if (z0count > 0)
{
zcenter[p - 1] = z0sum / z0count;
if (z0count>8)
{
Array.Sort(vector_z0p);
zcenter[p - 1] = vector_z0p[(int)(length_vecz0p/2)]; //median
}
}
}
}
theta = Theta0 + theta_vec[ncenter]; //- to +
Amat(theta, phi, psi, ref a, ref b, ref c, ref d, ref e, ref f, ref g, ref h, ref i);
Inv(a, b, c, d, e, f, g, h, i, ref in_a, ref in_b, ref in_c, ref in_d, ref in_e, ref in_f, ref in_g, ref in_h, ref in_i);
for (int p = 1; p <= contours; p++)
{
z_ncenter = i * zcenter[p - 1];
xcenter[p - 1] = in_a * (Fx[p - 1, ncenter]) + in_b * (Fy[p - 1, ncenter]) + in_c * z_ncenter + found_gdx;
ycenter[p - 1] = in_d * (Fx[p - 1, ncenter] )+ in_e * (Fy[p - 1, ncenter]) + in_f * z_ncenter + found_gdy;
}
// the solved for vairables are in a vector V: Dx[1] Dy[1]..Dx[S] Dy[s]
int Vcount,Vsubcount;
double Vtempx,Vtempy,Vsumx,Vsumy;
Array.Clear(D_vect_valid, 0, S); //default: false
for (int ns = 1; ns <= S; ns++)
{
if (ns - 1 == ncenter) continue;
int length_vecns = 0;
for (int p = 1; p <= contours; p++)
{
if (fidn[ns - 1, p - 1] >= 0) length_vecns++;
}
double[] vector_dxns = new double[length_vecns];
double[] vector_dyns = new double[length_vecns];
theta = theta_vec[ns - 1] + Theta0;
Amat(theta, phi, psi, ref a, ref b, ref c, ref d, ref e, ref f, ref g, ref h, ref i);
Inv(a, b, c, d, e, f, g, h, i, ref in_a, ref in_b, ref in_c, ref in_d, ref in_e, ref in_f, ref in_g, ref in_h, ref in_i);
Vcount = 0;
Vtempx = 0;
Vtempy = 0;
for (int p = 1; p <= contours; p++)
{
if (fidn[ns - 1, p - 1] >= 0 && fidn[ncenter, p - 1]>=0)
{
vector_dxns[Vcount]= a * xcenter[p - 1] + b * ycenter[p - 1] + c * zcenter[p - 1] - Fx[p - 1, ns - 1];
vector_dyns[Vcount] = d * xcenter[p - 1] + e * ycenter[p - 1] + f * zcenter[p - 1] - Fy[p - 1, ns - 1];
Vtempx = Vtempx + a * xcenter[p - 1] + b * ycenter[p - 1] + c * zcenter[p - 1] - Fx[p - 1, ns - 1];
Vtempy = Vtempy + d * xcenter[p - 1] + e * ycenter[p - 1] + f * zcenter[p - 1] - Fy[p - 1, ns - 1];
Vcount = Vcount + 1;
}
}
if (Vcount > 0)
{
Dx_vect_temp[ns - 1] = Vtempx / Vcount;
Dy_vect_temp[ns - 1] = Vtempy / Vcount;
D_vect_valid[ns - 1] = true;
if (Vcount>=9)
{
Array.Sort(vector_dxns);
Array.Sort(vector_dyns);
Vsumx = 0;
Vsumy = 0;
Vsubcount = 0;
for (int t=(int)(0.4*length_vecns);t< length_vecns-(int)(0.4 * length_vecns); t++)
{
Vsumx+= vector_dxns[t];
Vsumy += vector_dyns[t];
Vsubcount++;
}
Dx_vect_temp[ns - 1] = Vsumx / Vsubcount;
Dy_vect_temp[ns - 1] = Vsumy / Vsubcount;
}
if (Math.Abs(Dx_vect_temp[ns - 1]) > PreAlignmentTolx)
{
Dx_vect_temp[ns - 1] = Math.Sign(Dx_vect_temp[ns - 1]) * PreAlignmentTolx;
}
if (Math.Abs(Dy_vect_temp[ns - 1]) > PreAlignmentToly)
{
Dy_vect_temp[ns - 1] = Math.Sign(Dy_vect_temp[ns - 1]) * PreAlignmentToly;
}
}
else
{
D_vect_valid[ns - 1] = false;
Dx_vect_temp[ns - 1] = previter_Dx_vect[ns - 1];
Dy_vect_temp[ns - 1] = previter_Dy_vect[ns - 1];
}
}
sumerror = 0;
count = 0;
for (int p = 1; p <= contours; p++)
{
for (int ns = 1; ns <= S; ns++)
{
theta = theta_vec[ns - 1] + Theta_shift - Theta0;
Amat(theta, phi, psi, ref a, ref b, ref c, ref d, ref e, ref f, ref g, ref h, ref i);
Inv(a, b, c, d, e, f, g, h, i, ref in_a, ref in_b, ref in_c, ref in_d, ref in_e, ref in_f, ref in_g, ref in_h, ref in_i);
if (fidn[ns - 1, p - 1] >= 0 && fidn[ncenter, p - 1] >= 0)
{
xsim = a * xcenter[p - 1] + b * ycenter[p - 1] + c * zcenter[p - 1]; // z0vect(p) replaced with initial zcenter
ysim = d * xcenter[p - 1] + e * ycenter[p - 1] + f * zcenter[p - 1];
zsim = g * xcenter[p - 1] + h * ycenter[p - 1] + i * zcenter[p - 1];
error2 = Math.Pow((Fx[p - 1, ns - 1] + Dx_vect_temp[ns - 1] - xsim), 2) + Math.Pow((Fy[p - 1, ns - 1] + Dy_vect_temp[ns - 1] - ysim), 2);
sumerror = sumerror + error2;
count = count + 1;
}
}
}
error = Math.Sqrt(sumerror / count);
if (error < minerror)
{
minerror = error;
zcenter.CopyTo(best_zcenter, 0); //second argument is the starting index to copy (length: contour)
Dx_vect_temp.CopyTo(Dxbest, 0); //length S
Dy_vect_temp.CopyTo(Dybest, 0); //length S
D_vect_valid.CopyTo(best_D_vect_valid, 0);
}
}
if (minerror < grand_minerror)
{
grand_minerror = minerror;
best_angle_psi = psi;
best_angle_phi = phi;
Dxbest.CopyTo(grand_Dxbest, 0);
Dybest.CopyTo(grand_Dybest, 0);
best_D_vect_valid.CopyTo(grand_best_D_vect_valid, 0);
best_zcenter.CopyTo(grand_best_zcenter, 0);
}
} //for Theta_shift
} //for psi
} //for phi
psi = best_angle_psi;
phi = best_angle_phi;
for (int tempn = 1; tempn <= S; tempn = tempn + 1)
{
if (grand_best_D_vect_valid[tempn - 1] && Math.Abs(grand_Dxbest[tempn - 1]) <= PreAlignmentTolx && Math.Abs(grand_Dybest[tempn - 1]) <= PreAlignmentToly)
{
previter_Dx_vect[tempn - 1] = grand_Dxbest[tempn - 1];
previter_Dy_vect[tempn - 1] = grand_Dybest[tempn - 1];
}
}
grand_best_zcenter.CopyTo(zcenter,0);
theta = Theta0 + theta_vec[ncenter];//- to +
Amat(theta, phi, psi, ref a, ref b, ref c, ref d, ref e, ref f, ref g, ref h, ref i);
Inv(a, b, c, d, e, f, g, h, i, ref in_a, ref in_b, ref in_c, ref in_d, ref in_e, ref in_f, ref in_g, ref in_h, ref in_i);
for (int p = 1; p <= contours; p++)
{
z_ncenter = i * zcenter[p - 1];
previter_xcenter[p - 1] = in_a * Fx[p - 1, ncenter] + in_b * Fy[p - 1, ncenter] + in_c * z_ncenter + found_gdx;
previter_ycenter[p - 1] = in_d * Fx[p - 1, ncenter] + in_e * Fy[p - 1, ncenter] + in_f * z_ncenter + found_gdy;
previter_zcenter[p - 1] = zcenter[p - 1];
}
//optimize cener slice shift
int best_gdx = 0;
int best_gdy = 0;
double best_gerr = 1000;
double temp_gerr;
if (contours >= 10)
{
for (int gdx = -(int)(Math.Abs(Math.Cos(phi)) * 0.25*PreAlignmentTolx); gdx <= (int)(Math.Abs(Math.Cos(phi)) * 0.25*PreAlignmentTolx); gdx++)
{
for (int gdy = -(int)(Math.Abs(Math.Sin(phi)) * 0.25*PreAlignmentToly); gdy <= (int)(Math.Abs(Math.Sin(phi)) * 0.25*PreAlignmentToly); gdy++)
{
sumerror = 0;
count = 0;
for (int ns = 1; ns <= S; ns++)
{
if (ns - 1 == ncenter) continue;
theta = theta_vec[ns - 1] + Theta_shift - Theta0;
Amat(theta, phi, psi, ref a, ref b, ref c, ref d, ref e, ref f, ref g, ref h, ref i);
Inv(a, b, c, d, e, f, g, h, i, ref in_a, ref in_b, ref in_c, ref in_d, ref in_e, ref in_f, ref in_g, ref in_h, ref in_i);
Dx = previter_Dx_vect[ns - 1];
Dy = previter_Dy_vect[ns - 1];
for (int p = 1; p <= contours; p++)
{
xsim = a * (previter_xcenter[p - 1] + gdx) + b * (previter_ycenter[p - 1] + gdy) + c * previter_zcenter[p - 1];
ysim = d * (previter_xcenter[p - 1] + gdx) + e * (previter_ycenter[p - 1] + gdy) + f * previter_zcenter[p - 1];
//zsim = g * previter_xcenter[p - 1] + h * previter_ycenter[p - 1] + i * previter_zcenter[p - 1];
if (fidn[ns - 1, p - 1] >= 0 && fidn[ncenter, p - 1] >= 0)
{
error2 = Math.Pow((Fx[p - 1, ns - 1] + Dx + gdx - xsim), 2) + Math.Pow((Fy[p - 1, ns - 1] + Dy + gdy - ysim), 2);
sumerror = sumerror + error2;
count = count + 1;
}
}
}
temp_gerr = Math.Sqrt(sumerror / count) + 0.02 * Math.Sqrt(gdx * gdx + gdy * gdy);
if (temp_gerr < best_gerr)
{
best_gerr = temp_gerr;
best_gdx = gdx;
best_gdy = gdy;
}
}
}
}
found_gdx = best_gdx;
found_gdy = best_gdy;
if (found_gdx!= 0 || found_gdy!=0) Console.WriteLine("global dx={0:0}, dy={1:0}", found_gdx, found_gdy);
for (int p = 1; p <= contours; p++)
{
previter_xcenter[p - 1] = previter_xcenter[p - 1] + found_gdx;
previter_ycenter[p - 1] = previter_ycenter[p - 1] + found_gdy;
}
for (int ns = 1; ns <= S; ns++)
{
previter_Dx_vect[ns - 1] = previter_Dx_vect[ns - 1] + found_gdx;
previter_Dy_vect[ns - 1] = previter_Dy_vect[ns - 1] + found_gdy;
}
} //for iteration
Console.WriteLine("phi={0:0.0}, psi={1:0.0}", phi * 180 / pi,psi * 180 / pi);
report_phi = phi;
report_psi = psi;
previter_xcenter.CopyTo(xcenter, 0);
previter_ycenter.CopyTo(ycenter, 0);
previter_zcenter.CopyTo(zcenter, 0);
//Build or correct Dx_vect, Dy_vect (planar movement compensations): in case that the values are still not valid use data of all fiducials at center extrapoalted by model to other slices compared to actual points
//if values in previous iteration are valid then use those without additonal calculations.
//Fill_DxDy(previter_Dx_vect, previter_Dy_vect, grand_best_D_vect_valid, NFid, locations, Nx, Ny, xcenter, ycenter, zcenter, S, contours, theta_vec, Theta_shift, Theta0, phi, psi, Dx_vect, Dy_vect);
previter_Dx_vect.CopyTo(Dx_vect, 0);//store results in permanent vectors
previter_Dy_vect.CopyTo(Dy_vect, 0);
//correct back to aspect ratio of original images
for (int ns = 1; ns <= S; ns++)
{
Dx_vect[ns - 1] = Dx_vect[ns - 1] / xfactor[ns - 1];
Dy_vect[ns - 1] = Dy_vect[ns - 1] / yfactor[ns - 1];
}
//write_testfile(ref z0vect, "D:\\results\\z0vect.txt");
write_testfile(ref xcenter, basefilename + ".xcenter.txt");
write_testfile(ref ycenter, basefilename + ".ycenter.txt");
write_testfile(ref zcenter, basefilename + ".zcenter.txt");
write_testfile(ref Dx_vect, basefilename + ".Dx.txt");
write_testfile(ref Dy_vect, basefilename + ".Dy.txt");
//Fill Bfinal table
int cont, slice;
for (int n = 0; n <= S * contours - 1; n++)
{
cont = (int)(n / S);
slice = n % S;
if (fidn[slice, cont] >= 0 || slice == ncenter)//((Fx[cont + 1 - 1, slice + 1 - 1] > -xc && Fy[cont + 1 - 1, slice + 1 - 1] > -yc) || slice==ncenter)
{
xc_ns = (int)(slice == ncenter ? xc0 : xc);
yc_ns = (int)(slice == ncenter ? yc0 : yc);
Bfinal[n + 1 - 1, 1 - 1] = 0;
Bfinal[n + 1 - 1, 2 - 1] = cont;
Bfinal[n + 1 - 1, 3 - 1] = Math.Round(Fx[cont + 1 - 1, slice + 1 - 1] / xfactor[slice] + xc_ns);
Bfinal[n + 1 - 1, 4 - 1] = Math.Round(Fy[cont + 1 - 1, slice + 1 - 1] / yfactor[slice] + yc_ns);
Bfinal[n + 1 - 1, 5 - 1] = slice;
}
}
double[] fit_err = new double[S];
for (int ns = 1; ns <= S; ns++)
{
theta = theta_vec[ns - 1] + Theta_shift - Theta0;
Amat(theta, phi, psi, ref a, ref b, ref c, ref d, ref e, ref f, ref g, ref h, ref i);
Inv(a, b, c, d, e, f, g, h, i, ref in_a, ref in_b, ref in_c, ref in_d, ref in_e, ref in_f, ref in_g, ref in_h, ref in_i);
Dx = Dx_vect[ns - 1];
Dy = Dy_vect[ns - 1];
sumerror = 0;
count = 0;
for (int p = 1; p <= contours; p++)
{
xsim = a * xcenter[p - 1] + b * ycenter[p - 1] + c * zcenter[p - 1];
ysim = d * xcenter[p - 1] + e * ycenter[p - 1] + f * zcenter[p - 1];
zsim = g * xcenter[p - 1] + h * ycenter[p - 1] + i * zcenter[p - 1];
if (fidn[ns - 1, p - 1]<0 || fidn[ncenter, p - 1] < 0)
{
// implement simulation to fill gaps
Bfinal[(p - 1) * S + ns - 1, 1 - 1] = 0;
Bfinal[(p - 1) * S + ns - 1, 2 - 1] = p - 1; //contour (fiducial) number
Bfinal[(p - 1) * S + ns - 1, 3 - 1] = Math.Round(xsim / xfactor[ns-1] - Dx + xc);
Bfinal[(p - 1) * S + ns - 1, 4 - 1] = Math.Round(ysim / yfactor[ns-1] - Dy + yc);
Bfinal[(p - 1) * S + ns - 1, 5 - 1] = ns - 1; //slice number
//fill back the fiducial tables in program.c
fidx[ns - 1, p - 1] = (int)Math.Round(xsim / xfactor[ns - 1] - Dx + xc);
fidy[ns - 1, p - 1] = (int)Math.Round(ysim / yfactor[ns - 1] - Dy + yc);
fidn[ns - 1, p - 1] = -2; //still mark it as non-authentic point. Otherwise would be =p-1;
}
else //if points of FX/Fy do exit, then calculate error
{
error2 = Math.Pow((Fx[p - 1, ns - 1] + Dx*xfactor[ns - 1] - xsim), 2) + Math.Pow((Fy[p - 1, ns - 1] + Dy * yfactor[ns - 1] - ysim), 2);
sumerror = sumerror + error2;
count = count + 1;
}
}
if (count > 0)
{ fit_err[ns - 1] = Math.Sqrt(sumerror / count); }
else
{ fit_err[ns - 1] = -1; }
}
write_testfile(ref fit_err, basefilename + ".fit_err_by_slice.txt");
return grand_minerror;
}
public static void Amat(double theta, double phi, double psi, ref double a, ref double b, ref double c, ref double d, ref double e, ref double f, ref double g, ref double h, ref double i) //provides all elements of Amat
{
a = Math.Cos(theta) + (1 - Math.Cos(theta)) * Math.Pow(Math.Cos(psi), 2) * Math.Pow(Math.Sin(phi), 2);
b = 0 + (1 - Math.Cos(theta)) * Math.Pow(Math.Cos(psi), 2) * Math.Cos(phi) * Math.Sin(phi) - Math.Sin(theta) * Math.Sin(psi);
c = 0 + (1 - Math.Cos(theta)) * Math.Cos(psi) * Math.Sin(psi) * Math.Sin(phi) + Math.Sin(theta) * Math.Cos(psi) * Math.Cos(phi);
d = 0 + (1 - Math.Cos(theta)) * Math.Pow(Math.Cos(psi), 2) * Math.Cos(phi) * Math.Sin(phi) + Math.Sin(theta) * Math.Sin(psi);
e = Math.Cos(theta) + (1 - Math.Cos(theta)) * Math.Pow(Math.Cos(psi), 2) * Math.Pow(Math.Cos(phi), 2);
f = 0 + (1 - Math.Cos(theta)) * Math.Cos(psi) * Math.Sin(psi) * Math.Cos(phi) - Math.Sin(theta) * Math.Cos(psi) * Math.Sin(phi);
g = 0 + (1 - Math.Cos(theta)) * Math.Cos(psi) * Math.Sin(psi) * Math.Sin(phi) - Math.Sin(theta) * Math.Cos(psi) * Math.Cos(phi);
h = 0 + (1 - Math.Cos(theta)) * Math.Cos(psi) * Math.Sin(psi) * Math.Cos(phi) + Math.Sin(theta) * Math.Cos(psi) * Math.Sin(phi);
i = Math.Cos(theta) + (1 - Math.Cos(theta)) * Math.Pow(Math.Sin(psi), 2);
double thresh = 1e-6;
if (Math.Abs(a) < thresh) a = 0;
if (Math.Abs(b) < thresh) b = 0;
if (Math.Abs(c) < thresh) c = 0;
if (Math.Abs(d) < thresh) d = 0;
if (Math.Abs(e) < thresh) e = 0;
if (Math.Abs(f) < thresh) f = 0;
if (Math.Abs(g) < thresh) g = 0;
if (Math.Abs(h) < thresh) h = 0;
if (Math.Abs(i) < thresh) i = 0;
}
public static void Inv(double a, double b, double c, double d, double e, double f, double g, double h, double i, ref double in_a, ref double in_b, ref double in_c, ref double in_d, ref double in_e, ref double in_f, ref double in_g, ref double in_h, ref double in_i)
{
double G = a * (e * i - f * h) - b * (d * i - f * g) + c * (d * h - e * g);
in_a = (e * i - f * h) / G;
in_b = (c * h - b * i) / G;
in_c = (b * f - c * e) / G;
in_d = (f * g - d * i) / G;
in_e = (a * i - c * g) / G;
in_f = (c * d - a * f) / G;
in_g = (d * h - e * g) / G;
in_h = (b * g - a * h) / G;
in_i = (a * e - b * d) / G;
}
public static void write_testfile(ref double[] field, string FileName)
{
var sr = new StreamWriter(FileName, true, System.Text.Encoding.UTF8);//true: append
//sr.NewLine = "\n";
string gap="";
for (int i = 0; i < field.Length; i++)
{
if (i < field.Length - 1)
{gap = "\t"; }
else
{ gap = "\n"; }
sr.Write(field[i].ToString() + gap);
}
sr.Close();
}
/*public static double[] estimate_z(bool xisrotation, int ncenter, int Nx, int Ny, ClusterAlign.Program.tp[,] locations, int[] NFid, double PreAlignmentTolx, double PreAlignmentToly, ref double[] tiltangles)
//OLD code, not used, not effective
{
double maxz = 1000;
double fit_tol = 5;
int pstep = 3, mstep = 3;
double xc = Nx / 2.0;
double yc = Ny / 2.0;
int N = NFid[ncenter];
double[] z_values = new double[N];
Array.Clear(z_values, 0, N);
//find zvalues for fiducials in ncenter slice based on correlation with locations at ncenter+1 and ncenter-1
//step1: tentative image shifts
int shiftx_p = 0, shiftx_m = 0, shifty_p = 0, shifty_m = 0;
detect_DxDy_mp(NFid, locations, Nx, Ny, ncenter, mstep, pstep, N, PreAlignmentTolx, PreAlignmentToly, ref shiftx_p, ref shiftx_m, ref shifty_p, ref shifty_m);
//step2: choose the most likely track (near target + fitting to consistent model)
double costhm = Math.Cos(tiltangles[ncenter - mstep]);
double costhc = Math.Cos(tiltangles[ncenter]);
double costhp = Math.Cos(tiltangles[ncenter + pstep]);
double sinthm = Math.Sin(tiltangles[ncenter - mstep]);
double sinthc = Math.Sin(tiltangles[ncenter]);
double sinthp = Math.Sin(tiltangles[ncenter + pstep]);
double rangem = Math.Abs(maxz * (sinthm - sinthc));
double rangep = Math.Abs(maxz * (sinthp - sinthc));
double x, y, xm, ym, xp, yp, targetxm, targetxp, targetym, targetyp;
double delta, line_err, min_distance;
for (int nc = 0; nc < NFid[ncenter]; nc++)
{
x = locations[ncenter, nc].col - xc;
y = locations[ncenter, nc].row - yc;
if (xisrotation)
{
targetxm = x + shiftx_m; //still no clue about z, it's the best location to expect the fiducial in slice ncenter-1
targetym = y * costhm / costhc + shifty_m;
}
else
{
targetxm = x * costhm / costhc + shiftx_m; //still no clue about z, it's the best location to expect the fiducial in slice ncenter-1
targetym = y + shifty_m;
}
min_distance = rangem;
for (int nm = 0; nm < NFid[ncenter - mstep]; nm++)
{
xm = locations[ncenter - mstep, nm].col - xc;
ym = locations[ncenter - mstep, nm].row - yc;
if (xisrotation)
{
delta = (ym - targetym);
line_err = Math.Abs(xm - targetxm);
}
else
{
delta = (xm - targetxm);
line_err = Math.Abs(ym - targetym);
}
if (Math.Abs(delta) < min_distance && line_err <= fit_tol)
{
if (xisrotation)
{
targetxp = x + shiftx_p;
targetyp = y * costhp / costhc + delta * (sinthp - sinthc) / (sinthm - sinthc) + shifty_p; //delta expected to be z*(sinthm-sinthc)
}
else
{
targetxp = x * costhp / costhc + delta * (sinthp - sinthc) / (sinthm - sinthc) + shiftx_p; //delta expected to be z*(sinthm-sinthc)
targetyp = y + shifty_p;
}
for (int np = 0; np < NFid[ncenter + pstep]; np++)
{
xp = locations[ncenter + pstep, np].col - xc;
yp = locations[ncenter + pstep, np].row - yc;
if (Math.Abs(xp - targetxp) <= fit_tol && Math.Abs(yp - targetyp) <= fit_tol)
{
min_distance = Math.Abs(delta);
z_values[nc] = delta / (sinthm - sinthc);
}
}
}
}
}
//write_testfile(ref z_values, "D:\\results\\z_initial.txt");
return z_values;
} */
/*public static void detect_DxDy_mp(int[] NFid, ClusterAlign.Program.tp[,] locations, int Nx, int Ny, int ncenter, int mstep, int pstep, int contours, double PreAlignmentTolx, double PreAlignmentToly, ref int shiftx_p, ref int shiftx_m, ref int shifty_p, ref int shifty_m)
//OLD code, not used and less effective
{
//Compare ncenter image to ncenter-1 and ncenter+1 and derive image shifts
int coarse_factor = 8;
int bin = 4;
int range_factor = coarse_factor;
double xc = Nx / 2.0;
double yc = Ny / 2.0;
int nx_coarse = (int)((Nx / bin) / coarse_factor) + 1;
int ny_coarse = (int)((Ny / bin) / coarse_factor) + 1;
bool[,] mesh1 = new bool[nx_coarse, ny_coarse];
bool[,] mesh2 = new bool[nx_coarse, ny_coarse];
bool[,] mesh1_full = new bool[nx_coarse * coarse_factor, ny_coarse * coarse_factor];
bool[,] mesh2_full = new bool[nx_coarse * coarse_factor, ny_coarse * coarse_factor];
int count_mesh;
int count_mesh_max;
int cost, cost_max, cost_fine, cost_fine_max;
int shift_Dx_fine = 0, shift_Dy_fine = 0, shift_Dx_fine_best = 0, shift_Dy_fine_best = 0;
int sh_limit = (int)(nx_coarse * 0.3);
Int64 sum_shift_Dx;
Int64 sum_shift_Dy;
int xpnt, ypnt;
int xpnt_coarse, ypnt_coarse, xpnt_coarse1, ypnt_coarse1;
int shift_Dx_best = 0, shift_Dy_best = 0;
for (int ns = (ncenter- mstep) +1; ns <= (ncenter + pstep) + 1; ns=ns+mstep+pstep)
{
{
Console.WriteLine("Slice {0} alignment is compromised due to low number of tracked fiducials.", ns);
//Overwrite values of Dx_vect, Dy_vect in slices ncenter-1 ->m, and ncenter+1 ->p
//prepare mesh1 with fiducial points in slice ncenter
Array.Clear(mesh1, 0, nx_coarse * ny_coarse);
Array.Clear(mesh1_full, 0, nx_coarse * coarse_factor * ny_coarse * coarse_factor);
int count_points = 0;
for (int p = 1; p <= contours; p++)
{
xpnt = locations[ncenter, p - 1].col;
ypnt = locations[ncenter, p - 1].row;
if (xpnt >= 0 && xpnt < Nx && ypnt >= 0 && ypnt < Ny)
{
xpnt_coarse = Math.Max(Math.Min((int)((xpnt / bin) / coarse_factor), nx_coarse - 1), 0);
ypnt_coarse = Math.Max(Math.Min((int)((ypnt / bin) / coarse_factor), ny_coarse - 1), 0);
mesh1[xpnt_coarse, ypnt_coarse] = true;
count_points++;
mesh1_full[(int)(xpnt / bin), (int)(ypnt / bin)] = true;
}
}
//prepare mesh2 with information in locations (all optically reconginzed fiducials)
Array.Clear(mesh2, 0, nx_coarse * ny_coarse);
Array.Clear(mesh2_full, 0, nx_coarse * coarse_factor * ny_coarse * coarse_factor);
for (int pnt = 1; pnt <= NFid[ns - 1]; pnt++)
{
xpnt = locations[ns - 1, pnt - 1].col;
ypnt = locations[ns - 1, pnt - 1].row;
if (xpnt < 0 || ypnt < 0 || xpnt > Nx - 1 || ypnt > Ny - 1) continue;
mesh2_full[(int)(xpnt / bin), (int)(ypnt / bin)] = true;
xpnt_coarse = (int)((xpnt / bin) / coarse_factor);
ypnt_coarse = (int)((ypnt / bin) / coarse_factor);
mesh2[xpnt_coarse, ypnt_coarse] = true;
}
count_mesh_max = 0;
cost_max = 0;
for (int shift_Dx = -sh_limit; shift_Dx <= sh_limit; shift_Dx++)
{
for (int shift_Dy = -sh_limit; shift_Dy <= sh_limit; shift_Dy++)
{
cost = 0;
count_mesh = 0;
sum_shift_Dx = 0;
sum_shift_Dy = 0;
int xpnt_coarse_min = Math.Max(0, -shift_Dx);
int ypnt_coarse_min = Math.Max(0, -shift_Dy);
int xpnt_coarse_max = Math.Min(nx_coarse, nx_coarse - shift_Dx);
int ypnt_coarse_max = Math.Min(ny_coarse, ny_coarse - shift_Dy);
for (xpnt_coarse = xpnt_coarse_min; xpnt_coarse < xpnt_coarse_max; xpnt_coarse++)
{
for (ypnt_coarse = ypnt_coarse_min; ypnt_coarse < ypnt_coarse_max; ypnt_coarse++)
{
xpnt_coarse1 = xpnt_coarse + shift_Dx;
ypnt_coarse1 = ypnt_coarse + shift_Dy;
if (mesh1[xpnt_coarse1, ypnt_coarse1] && mesh2[xpnt_coarse, ypnt_coarse])
{
cost_fine_max = 0;
shift_Dx_fine_best = 0;
shift_Dy_fine_best = 0;
for (shift_Dx_fine = -range_factor + 1; shift_Dx_fine < range_factor; shift_Dx_fine++)
{
for (shift_Dy_fine = -range_factor + 1; shift_Dy_fine < range_factor; shift_Dy_fine++)
{
int min_tempx = Math.Max(0, -shift_Dx_fine - xpnt_coarse1 * coarse_factor);
int max_tempx = Math.Min(coarse_factor, nx_coarse * coarse_factor - xpnt_coarse1 * coarse_factor - shift_Dx_fine);
int min_tempy = Math.Max(0, -shift_Dy_fine - ypnt_coarse1 * coarse_factor);
int max_tempy = Math.Min(coarse_factor, ny_coarse * coarse_factor - ypnt_coarse1 * coarse_factor - shift_Dy_fine);
int ref1x = shift_Dx_fine + xpnt_coarse1 * coarse_factor;
int ref1y = shift_Dy_fine + ypnt_coarse1 * coarse_factor;
int ref2x = xpnt_coarse * coarse_factor;
int ref2y = ypnt_coarse * coarse_factor;
cost_fine = 0;
for (int tempx = min_tempx; tempx < max_tempx; tempx++)
{
for (int tempy = min_tempy; tempy < max_tempy; tempy++)
{
//correlation is positive if matching shift distance is up to range_factor pixels
if (mesh1_full[ref1x + tempx, ref1y + tempy] && mesh2_full[ref2x + tempx, ref2y + tempy])
{
cost_fine++;
}
}
}
if (cost_fine > cost_fine_max)
{
cost_fine_max = cost_fine;
shift_Dx_fine_best = shift_Dx_fine;
shift_Dy_fine_best = shift_Dy_fine;
}
//if (flag) break;
}
//if (flag) break;
}
if (cost_fine_max > 0)
{
count_mesh++;
cost = cost + cost_fine_max;
sum_shift_Dx = sum_shift_Dx + shift_Dx * coarse_factor + shift_Dx_fine_best;
sum_shift_Dy = sum_shift_Dy + shift_Dy * coarse_factor + shift_Dy_fine_best;
}
}
}
}
if (cost > cost_max)
{
cost_max = cost;
count_mesh_max = count_mesh;
shift_Dx_best = bin * (int)(sum_shift_Dx / count_mesh);
shift_Dy_best = bin * (int)(sum_shift_Dy / count_mesh);
}
}
}
if (count_mesh_max > 0.5 * count_points && Math.Abs(shift_Dx_best) <= 5*PreAlignmentTolx && Math.Abs(shift_Dy_best) <= 5*PreAlignmentToly)
{
if (ns-1==ncenter-mstep)
{
shiftx_m = shift_Dx_best;
shifty_m = shift_Dy_best;
}
else
{
shiftx_p = shift_Dx_best;
shifty_p = shift_Dy_best;
}
}
}
}
} */
/*public static void Fill_DxDy(bool[] grand_best_D_vect_valid, int[] NFid, ClusterAlign.Program.tp[,] locations, int Nx, int Ny, double[] xcenter, double[] ycenter, double[] zcenter, int S, int contours, double[] theta_vec, double Theta_shift, double Theta0, double phi, double psi, double[] Dx_vect, double[] Dy_vect, double PreAlignmentTolx, double PreAlignmentToly)
//OLD code, not used and less effective
{
int coarse_factor = 8;
int bin = 4;
int range_factor = coarse_factor;
double a = 0, b = 0, c = 0, d = 0, e = 0, f = 0, g = 0, h = 0, i = 0;
double in_a = 0, in_b = 0, in_c = 0, in_d = 0, in_e = 0, in_f = 0, in_g = 0, in_h = 0, in_i = 0;
double xc = Nx / 2.0;
double yc = Ny / 2.0;
int nx_coarse = (int)((Nx / bin) / coarse_factor) + 1;
int ny_coarse = (int)((Ny / bin) / coarse_factor) + 1;
bool[,] mesh1 = new bool[nx_coarse, ny_coarse];
bool[,] mesh2 = new bool[nx_coarse, ny_coarse];
bool[,] mesh1_full = new bool[nx_coarse * coarse_factor, ny_coarse * coarse_factor];
bool[,] mesh2_full = new bool[nx_coarse * coarse_factor, ny_coarse * coarse_factor];
double theta, Dx, Dy, xsim, ysim;
int count_mesh;
int count_mesh_max;
int cost, cost_max, cost_fine, cost_fine_max;
int shift_Dx_fine = 0, shift_Dy_fine = 0, shift_Dx_fine_best = 0, shift_Dy_fine_best = 0;
int sh_limit = (int)(nx_coarse * 0.3);
Int64 sum_shift_Dx;
Int64 sum_shift_Dy;
int xpnt, ypnt;
int xpnt_coarse, ypnt_coarse, xpnt_coarse1, ypnt_coarse1;
int shift_Dx_best = 0, shift_Dy_best = 0;
for (int ns = 1; ns <= S; ns++)
{
if (grand_best_D_vect_valid[(ns - 1)*2] == false || grand_best_D_vect_valid[(ns - 1) * 2+1] == false)
{
Console.WriteLine("Slice {0} alignment is compromised due to low number of tracked fiducials.", ns);
//Overwrite missing/wrong values of Dx_vect, Dy_vect according to all fiducial fitting to simulated values
//prepare mesh1 with simulated fidx,fidy points completly based on model to avoid confusion with multiple Dx/Dy values
Array.Clear(mesh1, 0, nx_coarse * ny_coarse);
Array.Clear(mesh1_full, 0, nx_coarse * coarse_factor * ny_coarse * coarse_factor);
int count_points = 0;
theta = theta_vec[ns - 1]+ Theta_shift - Theta0;
Amat(theta, phi, psi, ref a, ref b, ref c, ref d, ref e, ref f, ref g, ref h, ref i);
Inv(a, b, c, d, e, f, g, h, i, ref in_a, ref in_b, ref in_c, ref in_d, ref in_e, ref in_f, ref in_g, ref in_h, ref in_i);
Dx = Dx_vect[ns - 1];
Dy = Dy_vect[ns - 1];
for (int p = 1; p <= contours; p++)
{
xsim = a * xcenter[p - 1] + b * ycenter[p - 1] + c * zcenter[p - 1];
ysim = d * xcenter[p - 1] + e * ycenter[p - 1] + f * zcenter[p - 1];
xpnt = (int)Math.Round(xsim - Dx + xc);
ypnt = (int)Math.Round(ysim - Dy + yc);
if (xpnt >= 0 && xpnt < Nx && ypnt >= 0 && ypnt < Ny)
{
xpnt_coarse = Math.Max(Math.Min((int)((xpnt / bin) / coarse_factor), nx_coarse - 1), 0);
ypnt_coarse = Math.Max(Math.Min((int)((ypnt / bin) / coarse_factor), ny_coarse - 1), 0);
mesh1[xpnt_coarse, ypnt_coarse] = true;
count_points++;
mesh1_full[(int)(xpnt / bin), (int)(ypnt / bin)] = true;
}
}
//prepare mesh2 with information in locations (all optically reconginzed fiducials)
Array.Clear(mesh2, 0, nx_coarse * ny_coarse);
Array.Clear(mesh2_full, 0, nx_coarse * coarse_factor * ny_coarse * coarse_factor);
for (int pnt = 1; pnt <= NFid[ns - 1]; pnt++)
{
xpnt = locations[ns - 1, pnt - 1].col;
ypnt = locations[ns - 1, pnt - 1].row;
if (xpnt < 0 || ypnt < 0 || xpnt > Nx - 1 || ypnt > Ny - 1) continue;
mesh2_full[(int)(xpnt / bin), (int)(ypnt / bin)] = true;
xpnt_coarse = (int)((xpnt / bin) / coarse_factor);
ypnt_coarse = (int)((ypnt / bin) / coarse_factor);
mesh2[xpnt_coarse, ypnt_coarse] = true;
}
count_mesh_max = 0;
cost_max = 0;
for (int shift_Dx = -sh_limit; shift_Dx <= sh_limit; shift_Dx++)
{
for (int shift_Dy = -sh_limit; shift_Dy <= sh_limit; shift_Dy++)
{
cost = 0;
count_mesh = 0;
sum_shift_Dx = 0;
sum_shift_Dy = 0;
int xpnt_coarse_min = Math.Max(0, -shift_Dx);
int ypnt_coarse_min = Math.Max(0, -shift_Dy);
int xpnt_coarse_max = Math.Min(nx_coarse, nx_coarse - shift_Dx);
int ypnt_coarse_max = Math.Min(ny_coarse, ny_coarse - shift_Dy);
for (xpnt_coarse = xpnt_coarse_min; xpnt_coarse < xpnt_coarse_max; xpnt_coarse++)
{
for (ypnt_coarse = ypnt_coarse_min; ypnt_coarse < ypnt_coarse_max; ypnt_coarse++)
{
xpnt_coarse1 = xpnt_coarse + shift_Dx;
ypnt_coarse1 = ypnt_coarse + shift_Dy;
if (mesh1[xpnt_coarse1, ypnt_coarse1] && mesh2[xpnt_coarse, ypnt_coarse])
{
cost_fine_max = 0;
shift_Dx_fine_best = 0;
shift_Dy_fine_best = 0;
for (shift_Dx_fine = -range_factor + 1; shift_Dx_fine < range_factor; shift_Dx_fine++)
{
for (shift_Dy_fine = -range_factor + 1; shift_Dy_fine < range_factor; shift_Dy_fine++)
{
int min_tempx = Math.Max(0, -shift_Dx_fine - xpnt_coarse1 * coarse_factor);
int max_tempx = Math.Min(coarse_factor, nx_coarse * coarse_factor - xpnt_coarse1 * coarse_factor - shift_Dx_fine);
int min_tempy = Math.Max(0, -shift_Dy_fine - ypnt_coarse1 * coarse_factor);
int max_tempy = Math.Min(coarse_factor, ny_coarse * coarse_factor - ypnt_coarse1 * coarse_factor - shift_Dy_fine);
int ref1x = shift_Dx_fine + xpnt_coarse1 * coarse_factor;
int ref1y = shift_Dy_fine + ypnt_coarse1 * coarse_factor;
int ref2x = xpnt_coarse * coarse_factor;
int ref2y = ypnt_coarse * coarse_factor;
cost_fine = 0;
for (int tempx = min_tempx; tempx < max_tempx; tempx++)
{
for (int tempy = min_tempy; tempy < max_tempy; tempy++)
{
//correlation is positive if matching shift distance is up to range_factor pixels
if (mesh1_full[ref1x + tempx, ref1y + tempy] && mesh2_full[ref2x + tempx, ref2y + tempy])
{
cost_fine++;
}
}
}
if (cost_fine > cost_fine_max)
{
cost_fine_max = cost_fine;
shift_Dx_fine_best = shift_Dx_fine;
shift_Dy_fine_best = shift_Dy_fine;
}
//if (flag) break;
}
//if (flag) break;
}
if (cost_fine_max > 0)
{
count_mesh++;
cost = cost + cost_fine_max;
sum_shift_Dx = sum_shift_Dx + shift_Dx * coarse_factor + shift_Dx_fine_best;
sum_shift_Dy = sum_shift_Dy + shift_Dy * coarse_factor + shift_Dy_fine_best;
}
}
}
}
if (cost > cost_max)
{
cost_max = cost;
count_mesh_max = count_mesh;
shift_Dx_best = bin * (int)(sum_shift_Dx / count_mesh);
shift_Dy_best = bin * (int)(sum_shift_Dy / count_mesh);
}
}
}
if (count_mesh_max > 0.75 * count_points && Math.Abs(Dx_vect[ns - 1] + shift_Dx_best )<= PreAlignmentTolx && Math.Abs(Dy_vect[ns - 1] + shift_Dy_best) <= PreAlignmentToly)
{
Dx_vect[ns - 1] = Dx_vect[ns - 1] + shift_Dx_best;
Dy_vect[ns - 1] = Dy_vect[ns - 1] + shift_Dy_best;
}
}
else
{
//Dx_vect[ns - 1] = old_Dx_vect[ns - 1];
//Dy_vect[ns - 1] = old_Dy_vect[ns - 1];
}
}
}*/
}
}