-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmpl_config.py
113 lines (93 loc) · 4.37 KB
/
mpl_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
"""
MAPLE Workflow
This is the configuration file for maple workflow
(1) modifies required Mask R-CNN configurations
(2) indicates the local environment to execute the workflow i.e where files are located
Project: Permafrost Discovery Gateway: Mapping Application for Arctic Permafrost Land Environment(MAPLE)
PI : Chandi Witharana
Author : Rajitha Udwalpola
"""
import os
import gcsfs
import google.auth
from config import Config
class MPL_Config(object):
"""Initializes MPL_Config object.
Arguments:
root_dir -- Path to where the workflow will be ran from.
weight_file -- Path to the Mask-RCNN model weights. Should be relative to the
root directory.
logging -- Whether to enable logging messages when running the workflow.
crop_size -- Used to determine tile size when splitting the image up.
num_spus_per_core -- Number of GPUs available per node.
"""
def __init__(
self,
root_dir="",
adc_dir="",
weight_file="hyp_best_train_weights_final.h5",
logging=True,
crop_size=200,
num_gpus_per_core=1,
):
# Do not change this section
# Code depends on the relative locations indicated so should not change
# Code expects some of the locations to be available when executing.
# -----------------------------------------------------------------
self.ROOT_DIR = root_dir if root_dir else os.getcwd()
self.INPUT_IMAGE_DIR = self.ROOT_DIR + r"/data/input_img_local"
self.DIVIDED_IMAGE_DIR = self.ROOT_DIR + r"/data/divided_img"
self.OUTPUT_SHP_DIR = self.ROOT_DIR + r"/data/output_shp"
self.FINAL_SHP_DIR = self.ROOT_DIR + r"/data/final_shp"
self.PROJECTED_SHP_DIR = self.ROOT_DIR + r"/data/projected_shp"
self.WATER_MASK_DIR = self.ROOT_DIR + r"/data/water_mask"
self.TEMP_W_IMG_DIR = self.ROOT_DIR + r"/data/water_mask/temp"
self.OUTPUT_IMAGE_DIR = self.ROOT_DIR + r"/data/output_img"
self.WORKER_ROOT = self.ROOT_DIR + r"/data"
self.MODEL_DIR = self.ROOT_DIR + r"/local_dir/datasets/logs"
self.RAY_OUTPUT_SHAPEFILES_DIR = self.ROOT_DIR + r"/data/ray_output_shapefiles"
self.GCP_FILESYSTEM = None
if (self.ROOT_DIR.startswith(
"gcs://") or self.ROOT_DIR.startswith("gs://")):
if adc_dir:
print("You are using application default credentials to authenticate.")
creds, _ = google.auth.load_credentials_from_file(
adc_dir, scopes=["https://www.googleapis.com/auth/cloud-platform"])
self.GCP_FILESYSTEM = gcsfs.GCSFileSystem(
project="pdg-project-406720", token=creds)
else:
print("Please specify an application default credentials directory if you are running this code on your local computer.")
self.GCP_FILESYSTEM = gcsfs.GCSFileSystem(
project="pdg-project-406720")
# ADDED to include inference cleaning post-processing
self.CLEAN_DATA_DIR = self.ROOT_DIR + r"/data/cln_data"
self.INPUT_DATA_BOUNDARY_FILE_PATH = self.ROOT_DIR + r"/data/input_bound"
# -----------------------------------------------------------------
# Location of the weight file used for the inference
self.WEIGHT_PATH = self.ROOT_DIR + r"/" + weight_file
# -----------------------------------------------------------------
self.CROP_SIZE = crop_size
self.LOGGING = logging
self.NUM_GPUS_PER_CORE = num_gpus_per_core
class PolygonConfig(Config):
"""Configuration for training on the toy dataset.
Derives from the base Config class and overrides some values.
"""
# Give the configuration a recognizable name
NAME = "ice_wedge_polygon"
# We use a GPU with 12GB memory, which can fit two images.
# Adjust down if you use a smaller GPU.
IMAGES_PER_GPU = 1
# Number of classes (including background)
NUM_CLASSES = 1 + 1 + 1 # Background + highcenter + lowcenter
# Number of training steps per epoch
STEPS_PER_EPOCH = 340
# Skip detections with < 70% confidence
DETECTION_MIN_CONFIDENCE = 0.3
# Max number of final detections
DETECTION_MAX_INSTANCES = 200
# Non-maximum suppression threshold for detection
DETECTION_NMS_THRESHOLD = 0.3
RPN_NMS_THRESHOLD = 0.8
IMAGE_MIN_DIM = 200
IMAGE_MAX_DIM = 256