-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtile_infer.py
195 lines (146 loc) · 6.63 KB
/
tile_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import tifffile as tiff
import numpy as np
from operational_config import *
from tqdm import tqdm
from dataloader import *
import os
import cv2
import rasterio
from rasterio.mask import mask
import rasterio.mask
import geopandas as gpd
import torch
def clip_image(input_img_name, footprint_shp):
# Path to the input GeoTIFF satellite image
input_img_path = os.path.join(Operational_Config.INPUT_SCENE_DIR, input_img_name)
# Get filename of input image to save new output
new_file_name = os.path.splitext(input_img_name)[0]
# Path at which clipped raster will be saved
clipped_img_path = os.path.join(Operational_Config.OUTPUT_DIR, "%s_clipped.tif" % new_file_name)
# Read the footprint shapefile
footprints = gpd.read_file(footprint_shp)
# Filter footprints by filename
footprint = footprints[footprints['S_FILENAME'] == os.path.basename(input_img_name)]
# If there are no matching footprints, return empty lists
if len(footprint) == 0:
return [], []
# Open the image using rasterio
with rasterio.open(input_img_path) as src:
raster_crs = src.crs # Get the CRS of the raster
# Reproject the shapefile to match the raster CRS if needed
if footprint.crs != raster_crs:
footprint = footprint.to_crs(raster_crs)
# Get the geometry of the footprint
footprint_geom = footprint.geometry.values[0]
# Read the image data with the reprojected footprint
out_image, out_transform = rasterio.mask.mask(src, [footprint_geom], crop=True)
out_meta = src.meta
# Extract the NoData value from the source raster
no_data_value = src.nodata
# Update the metadata for the clipped raster
out_meta.update({
"driver": "GTiff",
"height": out_image.shape[1],
"width": out_image.shape[2],
"transform": out_transform
})
# Save the clipped raster
with rasterio.Env(CHECK_DISK_FREE_SPACE="NO"):
with rasterio.open(clipped_img_path, "w", **out_meta) as dest:
dest.write(out_image)
return no_data_value # Returning NoData value
# def tile_image(input_img_name):
# # Tile size in pixels
# tile_size = Operational_Config.SIZE
# # Load the full image using tifffile
# image = tiff.imread(input_img_name)
# # Calculate the number of rows and columns of tiles
# num_rows = image.shape[0] // tile_size
# num_cols = image.shape[1] // tile_size
# tiles = []
# skipped_indices = [] # Initialize a list to store skipped tile indices
# for row in range(num_rows):
# for col in range(num_cols):
# top = row * tile_size
# bottom = top + tile_size
# left = col * tile_size
# right = left + tile_size
# # Extract the tile from the image
# tile = image[top:bottom, left:right, ...]
# # Check if all pixels in the tile are equal to the "no-data" value (65536)
# if not np.all(tile == 0):
# tiles.append(tile)
# else:
# skipped_indices.append(row * num_cols + col) # Record the skipped tile index
# return tiles, skipped_indices
def tile_image(input_img_name, no_data_value):
# Tile size in pixels
tile_size = Operational_Config.SIZE
# Overlap in pixels
overlap = Operational_Config.OVERLAP_FACTOR
stride = int(tile_size * (1 - overlap))
# Load the full image using tifffile
image = tiff.imread(input_img_name)
# Calculate the number of rows and columns of tiles
num_rows = (image.shape[0] - tile_size) // stride + 1
num_cols = (image.shape[1] - tile_size) // stride + 1
tiles = []
skipped_indices = [] # Initialize a list to store skipped tile indices
no_data_masks = [] # Initialize a list to store NoData masks for each tile
for row in range(num_rows):
for col in range(num_cols):
top = row * stride
left = col * stride
bottom = top + tile_size
right = left + tile_size
# Extract the tile from the image
tile = image[top:bottom, left:right, ...]
# Create a NoData mask at the pixel level for this tile (across all channels)
no_data_mask_tile = np.all(tile == no_data_value, axis=-1) # True if all channels are NoData
no_data_masks.append(no_data_mask_tile)
# Check if all pixels in the tile are equal to the "no-data" value (65536)
if not np.all(tile == no_data_value):
tiles.append(tile)
else:
skipped_indices.append(row * num_cols + col) # Record the skipped tile index
return tiles, skipped_indices, no_data_masks
def infer_image(input_img_name, no_data_value):
# Get filename of input image
new_file_name = os.path.splitext(input_img_name)[0]
# Path to clipped input GeoTIFF satellite image
clipped_img_path = os.path.join(Operational_Config.OUTPUT_DIR,"%s_clipped.tif"%new_file_name)
# Path to the input GeoTIFF satellite image
input_img_path = os.path.join(Operational_Config.INPUT_SCENE_DIR, input_img_name)
if Operational_Config.FOOTPRINT_DIR is not None:
# Split the image into tiles
image_tiles, skipped_indices, no_data_masks = tile_image(clipped_img_path, no_data_value)
else:
image_tiles, skipped_indices, no_data_masks = tile_image(input_img_path, no_data_value)
# Create a GeoTIFF dataset with the list of image tiles
dataset = InferDataset(image_tiles, preprocessing=get_preprocessing_test(Operational_Config.PREPROCESS))
# Load the best saved checkpoint
best_model = torch.load(Operational_Config.WEIGHT_DIR)
# Move the model to the GPU
best_model = best_model.to('cuda')
# Set the model to evaluation mode
best_model.eval()
# Create an empty list to store predictions
predictions = []
# Perform inference on tiles
for i, tile in tqdm(enumerate(dataset), total=len(dataset)):
# Keep the tile data on the CPU
tile = tile.astype(np.float32)
tile = to_tensor(tile)
# Transfer the tile data to the GPU for prediction
# Transpose the tensor to [1, 3, 256, 256]
tile = tile.transpose(2, 0, 1)
tile = torch.from_numpy(tile).unsqueeze(0).to('cuda')
tile = tile.permute(0, 3, 1, 2) # Transpose to [1, 3, 256, 256]
with torch.no_grad():
prediction = best_model(tile)
# Append the prediction to the list
predictions.append(prediction.cpu())
# Delete the input tile from GPU memory
del tile
torch.cuda.empty_cache()
return predictions, skipped_indices, no_data_masks