-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbatch_simulations.py
245 lines (210 loc) · 8.71 KB
/
batch_simulations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# batch_simulations.py
"""Manage several simulations in batch form."""
import os
import sys
import json
import shutil
import traceback
import itertools
import numpy as np
from tqdm import tqdm
from copy import deepcopy
import multiprocessing as mp
from functools import partial
from scipy.interpolate import interp1d
from KS_order import KS, KSAssim
def fourier_projector(spec, modes=21):
mod_spec = spec.copy()
mod_spec[modes:] = 0
return np.fft.irfft(mod_spec)
def pointwise_projector(spec, interp_points, domain, interpolation="cubic"):
"""Project the data based on point-wise observations.
Parameters
----------
spec : ndarray
The true state in Fourier space
interp_points : ndarray
The points at which we observe the solution.
domain : ndarray
The problem domain (important for some interpolation methods)
"""
x = np.fft.irfft(spec)
observations = interp1d(domain, x, kind="linear")(interp_points)
interpolator = interp1d(interp_points, observations,
kind=interpolation, fill_value="extrapolate")
return interpolator(domain)
def l2_norm(x):
return (np.sum(np.abs(x)**2)) ** .5
# This needs to be a function, not a class method,
# so it can be used with the multiprocessing library.
def run_simulation(initial_guess={"lambda2": 2}, mu=1, dt=.01,
alpha=None, max_t=10, modes=21, alpha_scale=None,
mu_scale=None, order=2, timestepper="rk3",
lambda2=1, N=512, start_xspec=None,
start_x=None, pointwise_interpolation=None, **kwargs):
# Initialize true solution from common starting point
true = KS(dt=dt, N=N,
lambda2=lambda2, timestepper=timestepper, **kwargs)
if start_x is not None and start_xspec is not None:
true.xspec = start_xspec.copy()
true.x = start_x.copy()
estimate_params = list(initial_guess.keys())
if pointwise_interpolation is not None:
domain = true.get_domain()
num_interpolation_points = modes
# Get num_interpolation_points pts spaced evenly across the grid
# spacing = N // num_interpolation_points
# inds = np.arange(0, N, spacing)[:num_interpolation_points]
interp_points = np.linspace(domain[0], domain[-1],
num_interpolation_points)
projector = partial(pointwise_projector,
interp_points=interp_points, domain=domain,
interpolation=pointwise_interpolation)
else:
projector = partial(fourier_projector, modes=modes)
kwargs = {k:v for k,v in kwargs.items() if k not in initial_guess}
assimilator = KSAssim(projector, N=N, mu=mu, alpha=alpha,
dt=dt, timestepper=timestepper, order=order,
estimate_params=estimate_params,
**initial_guess, **kwargs)
max_n = int(max_t/dt)
interp_errors = []
true_errors = []
param_errors = {p: [] for p in estimate_params}
for n in range(max_n):
target = projector(true.xspec)
projected_state = projector(assimilator.xspec)
interp_errors.append(l2_norm(target-projected_state))
true_errors.append(assimilator.error(true))
for p in param_errors:
param_errors[p].append(
np.abs(getattr(assimilator, p) - getattr(true,p))
)
assimilator.set_target(target)
assimilator.advance()
true.advance()
result = {p: np.array(arr) for p,arr in param_errors.items()}
result.update({
"interp_errors": np.array(interp_errors),
"true_errors": np.array(true_errors)}
)
return result
def simulation_wrapper(params, **kwargs):
try:
return run_simulation(**params, **kwargs)
except Exception:
message = traceback.format_exc()
print(params, message)
return None
class BatchSimulator:
"""A class to run batch simulations of KSE."""
def __init__(self, outdir, lambda2=1, N=256,
warmup_time=10, warmup_dt=1e-4, overwrite=False):
"""Run normal KSE for 10 seconds to get into the chaotic realm."""
warmup = KS(lambda2=lambda2, N=N, dt=warmup_dt)
for i in range(int(warmup_time/warmup_dt)):
warmup.advance()
self.start_x = warmup.x
self.start_xspec = warmup.xspec
self.outdir = outdir
self.N = N
self.lambda2 = lambda2
# Make the directory, ensuring uniqueness.
if os.path.exists(outdir):
if not overwrite:
ans = input(f"Directory {outdir} already exists!"
" Remove [Y/N]? ")
if ans.strip().lower() != "y":
print("Aborting!")
sys.exit(0)
shutil.rmtree(outdir)
os.makedirs(outdir)
print("Initialized the chaotic initial state.")
def _expand_scales(self, params):
if "dt" in params:
if "mu_scale" in params:
params["mu"] = params["mu_scale"] / params["dt"]
if "alpha_scale" in params:
params["alpha"] = params["alpha_scale"] / params["dt"]
def get_param_list(self, base_params, ranges={}, grid=True):
if not len(ranges):
raise RuntimeWarning("No parameter ranges specified "
"(nothing to do!)")
return
param_list = []
params_to_vary = list(ranges.keys())
if "mu_scale" in base_params and "mu" in ranges:
raise ValueError("Cannot both set mu_scale and vary mu!")
if "alpha_scale" in base_params and "alpha" in ranges:
raise ValueError("Cannot both set alpha_scale and vary alpha!")
if grid is True:
for choice in itertools.product(
*[ranges[p] for p in params_to_vary]
):
input_params = deepcopy(base_params)
for c, p in zip(choice, params_to_vary):
input_params[p] = c
self._expand_scales(input_params)
param_list.append(input_params)
else:
# vary one parameter at a time - no grid search
for p, param_vals in ranges.items():
for val in param_vals:
input_params = deepcopy(base_params)
input_params[p] = val
self._expand_scales(input_params)
param_list.append(input_params)
return param_list
def run_batch(self, base_params, ranges={}, grid=True, n_jobs=None):
param_list = self.get_param_list(base_params, ranges=ranges, grid=grid)
print(param_list)
self.run_simulations_low(param_list, n_jobs=n_jobs)
def run_simulations_low(self, param_list, n_jobs=None):
index = []
index_file = f"{self.outdir}/index.json"
if n_jobs is None:
# Run at 75% capacity by default
n_jobs = (3*mp.cpu_count() // 4)
n_simulations = len(param_list)
processes = min(max(1, n_jobs), n_simulations)
pool = mp.Pool(processes=processes)
func = partial(simulation_wrapper,
start_xspec=self.start_xspec,
start_x=self.start_x,
N=self.N,
lambda2=self.lambda2)
i = 0
for result in tqdm(
pool.imap(func=func, iterable=param_list), total=n_simulations
):
params = param_list[i]
if result is not None:
filename = f"{self.outdir}/results_{i}.npz"
np.savez(filename, **result)
index.append({
"succeded": True,
"params": params,
"filename": filename})
else:
index.append({
"succeded": False,
"params": params,
"error":""})
i += 1
if (i+1) % 10 == 0:
print(f"Completed {i+1} of {len(param_list)} simulations,"
" saving index file.")
with open(index_file, "w") as fp:
json.dump(index, fp)
print(f"Completed all {len(param_list)} simulations,"
" saving index file.")
with open(index_file, "w") as fp:
json.dump(index, fp)
# =============================================================================
if __name__ == "__main__":
sim = BatchSimulator("test", warmup_time=0.001)
sim.run_batch({"initial_guess": {"lambda2": 2}},
ranges={
"mu_scale": [.8,1.8],
"alpha_scale": [.01, .1],
"dt":[1e-2, 1e-3, 1e-4]})