-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsem_rpanades.html
3815 lines (3423 loc) · 186 KB
/
sem_rpanades.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8"/>
<title>An overview of GW and its applications to core level spectroscopy</title>
<meta name="author" content="(Dr. Ramón L. Panadés Barrueta)"/>
<style type="text/css">
.underline { text-decoration: underline; }
</style>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/reveal.js/dist/reveal.css"/>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/reveal.js/dist/theme/serif.css" id="theme"/>
<link rel="stylesheet" href="./mod.css"/>
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<base target="_blank">
</head>
<body>
<div class="reveal">
<div class="slides">
<section id="sec-title-slide"><h1 class="title">An overview of GW and its applications to core level spectroscopy</h1>
<br>
<h3 class="author"> Dr. Ramón L. Panadés Barrueta</h3>
<h3 class="author"><a href="http://panadestein.github.io "target="_blank">panadestein.github.io</a></h3>
</section>
<section id="sec-table-of-contents"><div id="table-of-contents">
<h2>Table of Contents</h2>
<div id="text-table-of-contents">
<ul>
<li><a href="#/slide-orgbe2674c">Why is it called GW anyway?</a></li>
<li><a href="#/slide-org3bdee20">Practical GW calculations</a></li>
<li><a href="#/slide-org5df0e4a">Example application to core level spectroscopy</a></li>
<li><a href="#/slide-org516b74f">Learning resources</a></li>
</ul>
</div>
</div>
</section>
<section>
<section id="slide-orgbe2674c">
<h2 id="orgbe2674c">Why is it called GW anyway?</h2>
<div class="outline-text-2" id="text-orgbe2674c">
</div>
</section>
<section id="slide-org9fb71f7">
<h3 id="org9fb71f7">GW in a nutshell</h3>
<aside class="notes">
<p>
There is a family of GW methods, the simplest one is the single-shot GoWo
You can use also for computing correlation energies of course
DFT and GW were developed almost at the same time, but the latter was computationally
more expensive, which delayed its widespread application
</p>
</aside>
<ul>
<li>Perturbative methods for solving the many-body problem.</li>
<li><p>
The main object in the method is the one-particle Green's function:
</p>
<div>
\begin{equation*}
\LARGE{G(\mathbf{r}, \mathbf{r'}; \omega) = \sum_n \frac{f_n(\mathbf{r})f_n^{*}(\mathbf{r'})}
{\hbar\omega - \epsilon_n +i\eta\hbar\text{sgn}(\epsilon_n-\mu)}}
\end{equation*}
</div></li>
<li>Excellent for charge excitations (IPs, EAs, fundamental gaps, CE)</li>
<li>Can be used for finite size or extended systems, up to hundreds of atoms.</li>
</ul>
</section>
<section id="slide-orgb7e6a05">
<h3 id="orgb7e6a05">Derivation</h3>
<aside class="notes">
<p>
The functional derivative method was developed by Schwinger. The Hedin's equations
are the first step in the GW derivation, which is a lengthy process
Beware that the numbers are a convenient abbreviation 1 -> (r<sub>1</sub>, t<sub>1</sub>)
</p>
</aside>
<p style="text-justify: auto; font-size: 70%">
GW is an approximation to an exact set of integro-differential equations
(<a href="https://journals.aps.org/pr/abstract/10.1103/PhysRev.139.A796">Hedin's equations</a>). The latter
can be derived using a diagrammatic approach, or alternatively the
<a href="#/slide-funcder">Schwinger's</a> functional derivative technique.
</p>
<img src="./Figures/gweq.svg" width="35%" style="padding: 29px; border: 0px;">
<img src="./Figures/hedin_eqs.jpg" width="30%" style="padding: 29px; border: 0px;">
<p style="font-size: 40%">Image from
<a href="https://www.frontiersin.org/articles/10.3389/fchem.2019.00377/full" target="_blank">GW compendium</a></p>
</section>
<section id="slide-org2296966">
<h3 id="org2296966">From Hedin's equations to GW</h3>
<img src="./Figures/hedin_pentagon.svg" width="30%" style="border: 0px;">
<img class="fragment" data-fragment-index="1" src="./Figures/gw_pentagon.svg" width="45%" style="border: 0px;">
<p class="fragment" data-fragment-index="1" style="font-size: 40%">Images from
<a href="https://docs.abinit.org/theory/mbt/" target="_blank">ABINIT</a> website</p>
</section>
</section>
<section>
<section id="slide-org3bdee20">
<h2 id="org3bdee20">Practical GW calculations</h2>
<div class="outline-text-2" id="text-org3bdee20">
</div>
</section>
<section id="slide-orgc171c04">
<h3 id="orgc171c04">Quasiparticle equation</h3>
<aside class="notes">
<p>
Practical GW calculations usually start from a DFT calculation
</p>
</aside>
<p>
Starting from Dyson's equation in differential form:
</p>
<div>
\begin{equation*}
[i\hbar\frac{\partial}{\partial t_1} - h(1)]G(1,2)-\int d3\Sigma(1,3)G(3,2)=\delta(1,2)
\end{equation*}
</div>
<p>
Taking the Fourier transform to the energy domain and using the eigenvalue expansion of the Green's function:
</p>
<div class="r-stack DIV" id="org3939e58">
<div data-fragment-index="1" class="fragment fade-out">
\begin{equation*}
[-\omega -h(r_1)]G(r_1,r_2;\omega)-\int dr_3\Sigma(r_1,r_3;\omega)G(r_3,r_2;\omega) = \delta(r_1-r_2)
\end{equation*}
</div>
<div data-fragment-index="1" class="fragment fade-in-then-out">
\begin{equation*}
G(r_1,r_2;\omega) = \sum_s \frac{\phi_{s\sigma}^0(r_1)\phi_{s\sigma}^{0*}(r_2)}
{\omega-\epsilon^{0}_{s\sigma}-i\eta\text{sgn}(E_F-\epsilon^0_{s\sigma})}
\end{equation*}
</div>
<div data-fragment-index="2" class="fragment appear">
\begin{equation*}
h(r_1)\phi_{s\sigma}(r_1) -\int dr_3\Sigma(r_1,r_3)\phi_{s\sigma}(r_3) = \phi_{s\sigma}(r_1)\epsilon_{s\sigma}
\end{equation*}
</div>
</div>
</section>
<section id="slide-orgf513640">
<h3 id="orgf513640">Typical G<sub>0</sub>W<sub>0</sub> algorithm</h3>
<img src="./Figures/algo.svg" width="60%" style="border: 0px;">
<p style="font-size: 60%">
GW typically scales as \(\color{red}{\mathbf{O(N^4)}}\), we are working on
reducing the scaling to \(\color{green}{\mathbf{O(N^3)}}\)
</p>
</section>
<section id="slide-org86e714e">
<h3 id="org86e714e">The contour deformation approach for the self-energy</h3>
<p style="font-size: 70%;">
A clever application of <a href="https://en.wikipedia.org/wiki/Jordan%27s_lemma">Jordan's Lemma</a> and
<a href="https://en.wikipedia.org/wiki/Residue_theorem">Cauchy's residue theorem</a>.
Integral self-energy expression is a consequence of
the <a href="https://en.wikipedia.org/wiki/Convolution_theorem">Convolution theorem</a>.
</p>
<img src="./Figures/cd_mine.svg" width="45%" style="border: 0px; float: left;">
<img src="./Figures/cd_eq.svg" width="45%" style="border: 0px; float: right; margin-top: 75px;">
<p style="font-size: 40%; clear: both;">
<a href="https://pubs.acs.org/doi/10.1021/acs.jctc.8b00458" target="_blank">
Golze et al. JCTC 14.9 (2018)</a></p>
</section>
</section>
<section>
<section id="slide-org5df0e4a">
<h2 id="org5df0e4a">Example application to core level spectroscopy</h2>
<div class="outline-text-2" id="text-org5df0e4a">
</div>
</section>
<section id="slide-org3a75d4c">
<h3 id="org3a75d4c">Software packages implementing GW methods</h3>
<table style="margin-left: 20%; margin-right:auto;">
<tbody>
<td>
<a href="https://www.abinit.org/">
<img src="./Figures/abinit.svg" width="20%" style="padding: 15px; border: 0px;"></a>
<a href="https://berkeleygw.org/">
<img src="./Figures/bgw.png" width="23%" style="padding: 15px; border: 0px;"></a>
<a href="http://perso.neel.cnrs.fr/xavier.blase/fiesta/">
<img src="./Figures/logofiesta.png" width="13%" style="padding: 15px; border: 0px;"></a>
</td>
<tbody>
</table>
<table style="margin-left: 20%; margin-right:auto;">
<tbody>
<td>
<a href="https://vasp.at/">
<img src="./Figures/vasp.png" width="15%" style="padding: 15px; border: 0px;"></a>
<a href="https://aims-web.rz-berlin.mpg.de/">
<img src="./Figures/aims.png" width="27%" style="padding: 15px; border: 0px;"></a>
<a href="https://www.cp2k.org/">
<img src="./Figures/cp2k.png" width="15%" style="padding: 15px; border: 0px;"></a>
</td>
<tbody>
</table>
<p style="font-size: 60%">
See Table 1 in the <a href="https://www.frontiersin.org/articles/10.3389/fchem.2019.00377/full">
GW compendium</a> for a complete list
</p>
</section>
<section id="slide-org8ea8e7f">
<h3 id="org8ea8e7f">Computation of the spectral function of the H<sub>2</sub>O 1s orbital</h3>
<ul style="line-height: 45px">
<li>Showcase FHI-aims workflow with a small application</li>
<li><p>
The contour deformation technique has a larger scaling for
core levels \(\color{red}{O(N^5)}\) due to the number of residues:
</p>
<div>
\begin{equation*}
\color{red}{N_{res}N_{occ}N_{virt}N^2_{aux}} \qquad \color{blue}{N_{\omega}N_{occ}N_{virt}N^2_{aux}}
\end{equation*}
</div></li>
<li>Description of satellite structure is expensive due to spectral function</li>
</ul>
</section>
<section id="slide-org7c078e0">
<h4 id="org7c078e0"></h4>
<p>
The <font color="green"> geometry.in</font> file
</p>
<div class="org-src-container">
<pre class="src src-example" ><code trim>atom 0.00000000 -0.00000000 -0.00614048 O
atom 0.76443318 -0.00000000 0.58917024 H
atom -0.76443318 0.00000000 0.58917024 H
</code></pre>
</div>
</section>
<section id="slide-orgf976221">
<h4 id="orgf976221"></h4>
<p>
The <font color="green"> control.in</font> file
</p>
<div class="org-src-container">
<pre class="src src-example" ><code trim>####################################################
# H2O molecule calculation
# Using def2-QVPZ basis for light and heavy elements
####################################################
#-------------------General options----------------------------
xc pbe # DFT functional
hybrid_xc_coeff 0.45 # Exchange mixing parameter
qpe_calc gw # Single shot GoWo
KS_method serial # Solve the geneigenval problem serial algorithm
override_illconditioning .true. # Override safe options for overlap matrix
RI_method v # Resolution of the identity for GW
prodbas_threshold 1.e-5 # Prevent ill-conditioning of auxiliary basis set
spin none # No spin specified, why?
partition_type rho_r2 # Patition type for integration grids
occupation_type gaussian 0.000001 # Broadening scheme used to find Fermi level
empty_states 25000 # Kohn-Sham states beyond the occupied levels
density_update_method density_matrix # Density matrix updating scheme
sc_accuracy_rho 1E-5 # SCF options
sc_accuracy_eev 1E-5
sc_accuracy_etot 1E-5
sc_iter_limit 400
#--------------------------------------------------------------
#-------------------GW specific options------------------------
anacon_type 1 # Pade analytic continuation
n_anacon_par 16 # Number of parameters in the Pade approximation
frequency_points 200 # Number of imaginary frequency points in \Sigma
contour_def_gw 1 1 # Range of states for which CD is applied
contour_eta 0.002 # Infinitesimal in Lehmann representation
state_lower_limit 1 # Lowest single-particle eigenstate
calc_spectral_func -560 -500 0.001 # Compute spectral function
#--------------------------------------------------------------
#-------------------Relativistic options-----------------------
relativistic none # Non-relativistic calculation
override_relativity .true. # Do not stop the code when questionable input
#--------------------------------------------------------------
#-------------------Density mixing options---------------------
mixer pulay
n_max_pulay 10
charge_mix_param 0.2
#--------------------------------------------------------------
################################################################################
#
# FHI-aims code project
# VB, Fritz-Haber Institut, 2007
#
# Suggested "safe" defaults for H atom (to be pasted into control.in file)
#
################################################################################
species H
include_min_basis false
pure_gauss true
cut_pot 6.0 2.5 1.0
l_hartree 8
basis_dep_cutoff 0.d0
radial_base 100 7.0
radial_multiplier 8
angular_grids auto
angular 1202
angular_acc 1.0e-08
angular_min 110
basis_acc 1.0e-5
# global species definitions
nucleus 1
mass 1.00794
#
#
#
################################################################################
#
# Definition of "minimal" basis
#
################################################################################
# valence basis states
valence 1 s 1.
# ion occupancy
ion_occ 1 s 0.5
################################################################################
#
# Suggested additional basis functions. For production calculations,
# uncomment them one after another (the most important basis functions are
# listed first).
#
# Basis constructed for dimers: 0.5 A, 0.7 A, 1.0 A, 1.5 A, 2.5 A
#
################################################################################
# H cc-pVQZ
gaussian 0 3
82.6400000 0.0020060
12.4100000 0.0153430
2.8240000 0.0755790
gaussian 0 1 0.7977000
gaussian 0 1 0.2581000
gaussian 0 1 0.0898900
gaussian 1 1 2.2920000
gaussian 1 1 0.8380000
gaussian 1 1 0.2920000
gaussian 2 1 2.0620000
gaussian 2 1 0.6620000
gaussian 3 1 1.3970000
################################################################################
#
# FHI-aims code project
# VB, Fritz-Haber Institut, 2007
#
# Suggested "safe" defaults for O atom (to be pasted into control.in file)
#
################################################################################
species O
include_min_basis false
pure_gauss true
cut_pot 6.0 2.5 1.0
l_hartree 8
basis_dep_cutoff 0.d0
radial_base 100 7.0
radial_multiplier 8
angular_grids auto
angular 1202
angular_acc 1.0e-08
angular_min 110
basis_acc 1.0e-5
# global species definitions
nucleus 8
mass 15.9994
#
#
#
################################################################################
#
# Definition of "minimal" basis
#
################################################################################
# valence basis states
valence 2 s 2.
valence 2 p 4.
# ion occupancy
ion_occ 2 s 1.
ion_occ 2 p 3.
################################################################################
#
# Suggested additional basis functions. For production calculations,
# uncomment them one after another (the most important basis functions are
# listed first).
#
# Constructed for dimers: 1.0 A, 1.208 A, 1.5 A, 2.0 A, 3.0 A
#
################################################################################
# O cc-pVQZ
gaussian 0 9
61420.0000000 0.0000900
9199.0000000 0.0006980
2091.0000000 0.0036640
590.9000000 0.0152180
192.3000000 0.0524230
69.3200000 0.1459210
26.9700000 0.3052580
11.1000000 0.3985080
4.6820000 0.2169800
gaussian 0 9
61420.0000000 -0.0000200
9199.0000000 -0.0001590
2091.0000000 -0.0008290
590.9000000 -0.0035080
192.3000000 -0.0121560
69.3200000 -0.0362610
26.9700000 -0.0829920
11.1000000 -0.1520900
4.6820000 -0.1153310
gaussian 0 1 1.4280000
gaussian 0 1 0.5547000
gaussian 0 1 0.2067000
gaussian 1 3
63.4200000 0.0060440
14.6600000 0.0417990
4.4590000 0.1611430
gaussian 1 1 1.5310000
gaussian 1 1 0.5302000
gaussian 1 1 0.1750000
gaussian 2 1 3.7750000
gaussian 2 1 1.3000000
gaussian 2 1 0.4440000
gaussian 3 1 2.6660000
gaussian 3 1 0.8590000
gaussian 4 1 1.8460000
</code></pre>
</div>
</section>
<section id="slide-org25a6586">
<h4 id="org25a6586"></h4>
<p>
The <font color="green"> aims.out</font> file
</p>
<div class="org-src-container">
<pre class="src src-example" ><code trim>------------------------------------------------------------
Invoking FHI-aims ...
When using FHI-aims, please cite the following reference:
Volker Blum, Ralf Gehrke, Felix Hanke, Paula Havu,
Ville Havu, Xinguo Ren, Karsten Reuter, and Matthias Scheffler,
'Ab Initio Molecular Simulations with Numeric Atom-Centered Orbitals',
Computer Physics Communications 180, 2175-2196 (2009)
In addition, many other developments in FHI-aims are likely important for
your particular application. A partial list of references is given at the end of
this file. Thank you for giving credit to the authors of these developments.
For any questions about FHI-aims, please visit our slack channel at
https://fhi-aims.slack.com
and our main development and support site at
https://aims-git.rz-berlin.mpg.de .
The latter site, in particular, has a wiki to collect information, as well
as an issue tracker to log discussions, suggest improvements, and report issues
or bugs. https://aims-git.rz-berlin.mpg.de is also the main development site
of the project and all new and updated code versions can be obtained there.
Please send an email to [email protected] and we will add
you to these sites. They are for you and everyone is welcome there.
------------------------------------------------------------
Date : 20210920, Time : 144849.255
Time zero on CPU 1 : 0.120000000000000E-01 s.
Internal wall clock time zero : 401381329.255 s.
FHI-aims created a unique identifier for this run for later identification
aims_uuid : 1834686C-6A3D-44DB-AA67-5CBBADA1A125
Build configuration of the current instance of FHI-aims
-------------------------------------------------------
FHI-aims version : 210802
Commit number : 8af8a52de
CMake host system : Linux-4.9.0-14-amd64
CMake version : 3.7.2
Fortran compiler : /usr/local/share/intel/parallel_studio_xe_2017/compilers_and_libraries/linux/mpi/intel64/bin/mpiifort (Intel) version 17.0.4.20170411
Fortran compiler flags: -O3 -ip -fp-model precise
C compiler : /usr/local/share/intel/parallel_studio_xe_2017/compilers_and_libraries/linux/bin/intel64/icc (Intel) version 17.0.4.20170411
C compiler flags : -O3 -ip -fp-model precise -std=gnu99
ELPA2 kernel : AVX2
Using MPI
Using ScaLAPACK
Using LibXC
Using i-PI
Using RLSY
Linking against: /usr/local/share/intel/parallel_studio_xe_2017/compilers_and_libraries_2017/linux/mkl/lib/intel64/libmkl_intel_lp64.so
/usr/local/share/intel/parallel_studio_xe_2017/compilers_and_libraries_2017/linux/mkl/lib/intel64/libmkl_sequential.so
/usr/local/share/intel/parallel_studio_xe_2017/compilers_and_libraries_2017/linux/mkl/lib/intel64/libmkl_core.so
/usr/local/share/intel/parallel_studio_xe_2017/compilers_and_libraries_2017/linux/mkl/lib/intel64/libmkl_scalapack_lp64.so
/usr/local/share/intel/parallel_studio_xe_2017/compilers_and_libraries_2017/linux/mkl/lib/intel64/libmkl_blacs_intelmpi_lp64.so
Using 8 parallel tasks.
Task 0 on host cpch06 reporting.
Task 1 on host cpch06 reporting.
Task 2 on host cpch06 reporting.
Task 3 on host cpch06 reporting.
Task 4 on host cpch06 reporting.
Task 5 on host cpch06 reporting.
Task 6 on host cpch06 reporting.
Task 7 on host cpch06 reporting.
Performing system and environment tests:
| Environment variable OMP_NUM_THREADS correctly set to 1.
| Checking for ScaLAPACK...
| Testing pdtran()...
| All pdtran() tests passed.
Obtaining array dimensions for all initial allocations:
-----------------------------------------------------------------------
Parsing control.in (first pass over file, find array dimensions only).
The contents of control.in will be repeated verbatim below
unless switched off by setting 'verbatim_writeout .false.' .
in the first line of control.in .
-----------------------------------------------------------------------
####################################################
# H2O molecule calculation
# Using def2-QVPZ basis for light and heavy elements
####################################################
#-------------------General options----------------------------
xc pbe # DFT functional
qpe_calc gw # Single shot GoWo
KS_method serial # Solve the geneigenval problem serial algorithm
override_illconditioning .true. # Override safe options for overlap matrix
RI_method v # Resolution of the identity for GW
prodbas_threshold 1.e-5 # Prevent ill-conditioning of auxiliary basis set
spin none # No spin specified, why?
partition_type rho_r2 # Patition type for integration grids
occupation_type gaussian 0.000001 # Broadening scheme used to find Fermi level
empty_states 25000 # Kohn-Sham states beyond the occupied levels
density_update_method density_matrix # Density matrix updating scheme
sc_accuracy_rho 1E-5 # SCF options
sc_accuracy_eev 1E-5
sc_accuracy_etot 1E-5
sc_iter_limit 400
#--------------------------------------------------------------
#-------------------GW specific options------------------------
anacon_type 1 # Pade analytic continuation
n_anacon_par 16 # Number of parameters in the Pade approximation
frequency_points 200 # Number of imaginary frequency points in \Sigma
#contour_def_gw 5 5 # Range of states for which CD is applied
#contour_eta 0.001 # Infinitesimal in Lehmann representation
state_lower_limit 1 # Lowest single-particle eigenstate
#--------------------------------------------------------------
#-------------------Relativistic options-----------------------
relativistic none # Non-relativistic calculation
override_relativity .true. # Do not stop the code when questionable input
#--------------------------------------------------------------
#-------------------Density mixing options---------------------
mixer pulay
n_max_pulay 10
charge_mix_param 0.2
#--------------------------------------------------------------
################################################################################
#
# FHI-aims code project
# VB, Fritz-Haber Institut, 2007
#
# Suggested "safe" defaults for H atom (to be pasted into control.in file)
#
################################################################################
species H
include_min_basis false
pure_gauss true
cut_pot 6.0 2.5 1.0
l_hartree 8
basis_dep_cutoff 0.d0
radial_base 100 7.0
radial_multiplier 8
angular_grids auto
angular 1202
angular_acc 1.0e-08
angular_min 110
basis_acc 1.0e-5
# global species definitions
nucleus 1
mass 1.00794
#
#
#
################################################################################
#
# Definition of "minimal" basis
#
################################################################################
# valence basis states
valence 1 s 1.
# ion occupancy
ion_occ 1 s 0.5
################################################################################
#
# Suggested additional basis functions. For production calculations,
# uncomment them one after another (the most important basis functions are
# listed first).
#
# Basis constructed for dimers: 0.5 A, 0.7 A, 1.0 A, 1.5 A, 2.5 A
#
################################################################################
# H cc-pVQZ
gaussian 0 3
82.6400000 0.0020060
12.4100000 0.0153430
2.8240000 0.0755790
gaussian 0 1 0.7977000
gaussian 0 1 0.2581000
gaussian 0 1 0.0898900
gaussian 1 1 2.2920000
gaussian 1 1 0.8380000
gaussian 1 1 0.2920000
gaussian 2 1 2.0620000
gaussian 2 1 0.6620000
gaussian 3 1 1.3970000
################################################################################
#
# FHI-aims code project
# VB, Fritz-Haber Institut, 2007
#
# Suggested "safe" defaults for O atom (to be pasted into control.in file)
#
################################################################################
species O
include_min_basis false
pure_gauss true
cut_pot 6.0 2.5 1.0
l_hartree 8
basis_dep_cutoff 0.d0
radial_base 100 7.0
radial_multiplier 8
angular_grids auto
angular 1202
angular_acc 1.0e-08
angular_min 110
basis_acc 1.0e-5
# global species definitions
nucleus 8
mass 15.9994
#
#
#
################################################################################
#
# Definition of "minimal" basis
#
################################################################################
# valence basis states
valence 2 s 2.
valence 2 p 4.
# ion occupancy
ion_occ 2 s 1.
ion_occ 2 p 3.
################################################################################
#
# Suggested additional basis functions. For production calculations,
# uncomment them one after another (the most important basis functions are
# listed first).
#
# Constructed for dimers: 1.0 A, 1.208 A, 1.5 A, 2.0 A, 3.0 A
#
################################################################################
# O cc-pVQZ
gaussian 0 9
61420.0000000 0.0000900
9199.0000000 0.0006980
2091.0000000 0.0036640
590.9000000 0.0152180
192.3000000 0.0524230
69.3200000 0.1459210
26.9700000 0.3052580
11.1000000 0.3985080
4.6820000 0.2169800
gaussian 0 9
61420.0000000 -0.0000200
9199.0000000 -0.0001590
2091.0000000 -0.0008290
590.9000000 -0.0035080
192.3000000 -0.0121560
69.3200000 -0.0362610
26.9700000 -0.0829920
11.1000000 -0.1520900
4.6820000 -0.1153310
gaussian 0 1 1.4280000
gaussian 0 1 0.5547000
gaussian 0 1 0.2067000
gaussian 1 3
63.4200000 0.0060440
14.6600000 0.0417990
4.4590000 0.1611430
gaussian 1 1 1.5310000
gaussian 1 1 0.5302000
gaussian 1 1 0.1750000
gaussian 2 1 3.7750000
gaussian 2 1 1.3000000
gaussian 2 1 0.4440000
gaussian 3 1 2.6660000
gaussian 3 1 0.8590000
gaussian 4 1 1.8460000
-----------------------------------------------------------------------
Completed first pass over input file control.in .
-----------------------------------------------------------------------
-----------------------------------------------------------------------
Parsing geometry.in (first pass over file, find array dimensions only).
The contents of geometry.in will be repeated verbatim below
unless switched off by setting 'verbatim_writeout .false.' .
in the first line of geometry.in .
-----------------------------------------------------------------------
atom 0.00000000 -0.00000000 -0.00614048 O
atom 0.76443318 -0.00000000 0.58917024 H
atom -0.76443318 0.00000000 0.58917024 H
-----------------------------------------------------------------------
Completed first pass over input file geometry.in .
-----------------------------------------------------------------------
Basic array size parameters:
| Number of species : 2
| Number of atoms : 3
| Max. basis fn. angular momentum : 4
| Max. atomic/ionic basis occupied n: 2
| Max. number of basis fn. types : 1
| Max. radial fns per species/type : 22
| Max. logarithmic grid size : 1430
| Max. radial integration grid size : 807
| Max. angular integration grid size: 1202
| Max. angular grid division number : 8
| Radial grid for Hartree potential : 1430
| Number of spin channels : 1
------------------------------------------------------------
Reading file control.in.
------------------------------------------------------------
XC: Using PBE gradient-corrected functionals.
GW quasiparticle calculation of excited states will be started after the DFT/HF calculation.
Kohn-Sham eigenvalues and eigenfunctions calculated by LAPACK via ELSI.
override_illconditioning: Explicitly overriding any built-in checks for an ill-conditioned overlap matrix.
*** WARNING: If you use this flag, you should really know what you are doing.
*** DO NOT keep this flag set by default in all your control.in files.
The 'V' version of RI (resolution of identity) technique is used.
Threshold for auxiliary basis singularities: 0.1000E-04
Spin treatment: No spin polarisation.
Partition function in integrals calculations: rho / r^2
Occupation type: Gaussian broadening, width = 0.100000E-05 eV.
Number of empty states per atom: 25000
Convergence accuracy of self-consistent charge density: 0.1000E-04
Convergence accuracy of sum of eigenvalues: 0.1000E-04
Convergence accuracy of total energy: 0.1000E-04
Maximum number of s.-c. iterations : 400
Using Pade approximation for analytical continuation.
Number of fitting parameters for analytical continuation : 16
Number of frequency points used for the self-energy calculation: 200
Lower limit of the eigenstates for the self-energy correction : 1
Non-relativistic treatment of kinetic energy.
override_relativity: Explicitly overriding any built-in relativity checks.
If you use this flag, you should really know what you are doing.
Using pulay charge density mixing.
Pulay mixing - number of memorized iterations: 10
Charge density mixing - mixing parameter: 0.2000
Reading configuration options for species H .
| Found request to include minimal basis fns. : F
| Found request to include pure gaussian fns. : T
| Found cutoff potl. onset [A], width [A], scale factor : 6.00000 2.50000 1.00000
| Found l_max for Hartree potential : 8
| Threshold for basis-dependent cutoff potential is 0.000000E+00
| Found data for basic radial integration grid : 100 points, outermost radius = 7.000 A
| Found multiplier for basic radial grid : 8
| Found angular grid specification: automatic.
| Found max. number of angular integration points per radial shell : 1202
| Found accuracy criterion for angular integrations : 0.1000E-07
| Will adapt angular grid densities automatically.
| Found min. number of angular integration points per radial shell : 110
| Found basis singularity cutoff : 0.1000E-04
| Found nuclear charge : 1.0000
| Found atomic mass : 1.00794000000000 amu
| Found free-atom valence shell : 1 s 1.000
| No ionic wave fns used. Skipping ion_occ.
| Found contracted cartesian Gaussian basis function : L = 0 , 3 elementary Gaussians:
| alpha = 0.826400E+02 weight = 0.200600E-02
| alpha = 0.124100E+02 weight = 0.153430E-01
| alpha = 0.282400E+01 weight = 0.755790E-01
| In terms of angular momentum, this radial function adds:
| 1 s-type basis function
| Found primitive cartesian Gaussian basis function : 0 0.797700E+00
| In terms of angular momentum, this radial function adds:
| 1 s-type basis function
| Found primitive cartesian Gaussian basis function : 0 0.258100E+00
| In terms of angular momentum, this radial function adds:
| 1 s-type basis function
| Found primitive cartesian Gaussian basis function : 0 0.898900E-01
| In terms of angular momentum, this radial function adds:
| 1 s-type basis function
| Found primitive cartesian Gaussian basis function : 1 0.229200E+01
| In terms of angular momentum, this radial function adds:
| 3 p-type basis functions
| Found primitive cartesian Gaussian basis function : 1 0.838000E+00
| In terms of angular momentum, this radial function adds:
| 3 p-type basis functions
| Found primitive cartesian Gaussian basis function : 1 0.292000E+00
| In terms of angular momentum, this radial function adds:
| 3 p-type basis functions
| Found primitive cartesian Gaussian basis function : 2 0.206200E+01
| In terms of angular momentum, this radial function adds:
| 5 d-type basis functions
| Found primitive cartesian Gaussian basis function : 2 0.662000E+00
| In terms of angular momentum, this radial function adds:
| 5 d-type basis functions
| Found primitive cartesian Gaussian basis function : 3 0.139700E+01
| In terms of angular momentum, this radial function adds:
| 7 f-type basis functions
Species H : Missing cutoff potential type.
Defaulting to exp(1/x)/(1-x)^2 type cutoff potential.
Species H : No 'logarithmic' tag. Using default grid for free atom:
| Default logarithmic grid data [bohr] : 0.1000E-03 0.1000E+03 0.1012E+01
Species H : Using default innermost maximum threshold i_radial= 2 for radial functions.
Species H : Default cutoff onset for free atom density etc. is infinite
since the product basis is used (hybrid functionals, Hartree-Fock, GW etc.).
Species H : Basic radial grid will be enhanced according to radial_multiplier = 8, to contain 807 grid points.
Reading configuration options for species O .
| Found request to include minimal basis fns. : F
| Found request to include pure gaussian fns. : T
| Found cutoff potl. onset [A], width [A], scale factor : 6.00000 2.50000 1.00000
| Found l_max for Hartree potential : 8
| Threshold for basis-dependent cutoff potential is 0.000000E+00
| Found data for basic radial integration grid : 100 points, outermost radius = 7.000 A
| Found multiplier for basic radial grid : 8
| Found angular grid specification: automatic.
| Found max. number of angular integration points per radial shell : 1202
| Found accuracy criterion for angular integrations : 0.1000E-07
| Will adapt angular grid densities automatically.
| Found min. number of angular integration points per radial shell : 110
| Found basis singularity cutoff : 0.1000E-04
| Found nuclear charge : 8.0000
| Found atomic mass : 15.9994000000000 amu
| Found free-atom valence shell : 2 s 2.000
| Found free-atom valence shell : 2 p 4.000
| No ionic wave fns used. Skipping ion_occ.
| No ionic wave fns used. Skipping ion_occ.
| Found contracted cartesian Gaussian basis function : L = 0 , 9 elementary Gaussians:
| alpha = 0.614200E+05 weight = 0.900000E-04
| alpha = 0.919900E+04 weight = 0.698000E-03
| alpha = 0.209100E+04 weight = 0.366400E-02
| alpha = 0.590900E+03 weight = 0.152180E-01
| alpha = 0.192300E+03 weight = 0.524230E-01
| alpha = 0.693200E+02 weight = 0.145921E+00
| alpha = 0.269700E+02 weight = 0.305258E+00
| alpha = 0.111000E+02 weight = 0.398508E+00
| alpha = 0.468200E+01 weight = 0.216980E+00
| In terms of angular momentum, this radial function adds:
| 1 s-type basis function
| Found contracted cartesian Gaussian basis function : L = 0 , 9 elementary Gaussians:
| alpha = 0.614200E+05 weight = -.200000E-04
| alpha = 0.919900E+04 weight = -.159000E-03
| alpha = 0.209100E+04 weight = -.829000E-03
| alpha = 0.590900E+03 weight = -.350800E-02
| alpha = 0.192300E+03 weight = -.121560E-01
| alpha = 0.693200E+02 weight = -.362610E-01
| alpha = 0.269700E+02 weight = -.829920E-01
| alpha = 0.111000E+02 weight = -.152090E+00
| alpha = 0.468200E+01 weight = -.115331E+00
| In terms of angular momentum, this radial function adds:
| 1 s-type basis function
| Found primitive cartesian Gaussian basis function : 0 0.142800E+01
| In terms of angular momentum, this radial function adds:
| 1 s-type basis function
| Found primitive cartesian Gaussian basis function : 0 0.554700E+00
| In terms of angular momentum, this radial function adds:
| 1 s-type basis function
| Found primitive cartesian Gaussian basis function : 0 0.206700E+00
| In terms of angular momentum, this radial function adds:
| 1 s-type basis function
| Found contracted cartesian Gaussian basis function : L = 1 , 3 elementary Gaussians:
| alpha = 0.634200E+02 weight = 0.604400E-02
| alpha = 0.146600E+02 weight = 0.417990E-01
| alpha = 0.445900E+01 weight = 0.161143E+00
| In terms of angular momentum, this radial function adds:
| 3 p-type basis functions
| Found primitive cartesian Gaussian basis function : 1 0.153100E+01
| In terms of angular momentum, this radial function adds:
| 3 p-type basis functions
| Found primitive cartesian Gaussian basis function : 1 0.530200E+00
| In terms of angular momentum, this radial function adds:
| 3 p-type basis functions
| Found primitive cartesian Gaussian basis function : 1 0.175000E+00
| In terms of angular momentum, this radial function adds:
| 3 p-type basis functions
| Found primitive cartesian Gaussian basis function : 2 0.377500E+01
| In terms of angular momentum, this radial function adds:
| 5 d-type basis functions
| Found primitive cartesian Gaussian basis function : 2 0.130000E+01
| In terms of angular momentum, this radial function adds:
| 5 d-type basis functions
| Found primitive cartesian Gaussian basis function : 2 0.444000E+00
| In terms of angular momentum, this radial function adds:
| 5 d-type basis functions
| Found primitive cartesian Gaussian basis function : 3 0.266600E+01
| In terms of angular momentum, this radial function adds:
| 7 f-type basis functions
| Found primitive cartesian Gaussian basis function : 3 0.859000E+00
| In terms of angular momentum, this radial function adds:
| 7 f-type basis functions
| Found primitive cartesian Gaussian basis function : 4 0.184600E+01
| In terms of angular momentum, this radial function adds:
| 9 g-type basis functions
Species O : Missing cutoff potential type.
Defaulting to exp(1/x)/(1-x)^2 type cutoff potential.
Species O : No 'logarithmic' tag. Using default grid for free atom:
| Default logarithmic grid data [bohr] : 0.1000E-03 0.1000E+03 0.1012E+01
Species O : Using default innermost maximum threshold i_radial= 2 for radial functions.
Species O : Default cutoff onset for free atom density etc. is infinite
since the product basis is used (hybrid functionals, Hartree-Fock, GW etc.).
Species O : Basic radial grid will be enhanced according to radial_multiplier = 8, to contain 807 grid points.
Finished reading input file 'control.in'.
------------------------------------------------------------
------------------------------------------------------------
Reading geometry description geometry.in.
------------------------------------------------------------
| The smallest distance between any two atoms is 0.96889264 AA.
| The first atom of this pair is atom number 1 .
| The second atom of this pair is atom number 2 .
Input structure read successfully.
The structure contains 3 atoms, and a total of 10.000 electrons.
Input geometry:
| No unit cell requested.
| Atomic structure:
| Atom x [A] y [A] z [A]
| 1: Species O 0.00000000 0.00000000 -0.00614048
| 2: Species H 0.76443318 0.00000000 0.58917024
| 3: Species H -0.76443318 0.00000000 0.58917024
Finished reading input file 'control.in'.
------------------------------------------------------------
Reading geometry description geometry.in.
------------------------------------------------------------
Consistency checks for stacksize environment parameter are next.
| Maximum stacksize for task 0: unlimited
| Maximum stacksize for task 1: unlimited
| Maximum stacksize for task 2: unlimited
| Maximum stacksize for task 3: unlimited
| Maximum stacksize for task 4: unlimited
| Maximum stacksize for task 5: unlimited
| Maximum stacksize for task 6: unlimited
| Maximum stacksize for task 7: unlimited
| Current stacksize for task 0: unlimited