-
Notifications
You must be signed in to change notification settings - Fork 816
/
Copy pathsubmit_model.py
153 lines (132 loc) · 5.54 KB
/
submit_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from parl import layers
from mlp_model import ActorModel, CriticModel
from paddle import fluid
from parl.utils import logger
VEL_OBS_DIM = 4 + 15
OBS_DIM = 98 + VEL_OBS_DIM
ACT_DIM = 22
class EnsembleBaseModel(object):
def __init__(self,
model_dirname=None,
stage_name=None,
ensemble_num=12,
use_cuda=False):
self.stage_name = stage_name
self.ensemble_num = ensemble_num
self.actors = []
self.critics1 = []
self.critics2 = []
for i in range(ensemble_num):
self.actors.append(
ActorModel(
OBS_DIM,
VEL_OBS_DIM,
ACT_DIM,
stage_name=stage_name,
model_id=i))
self.critics1.append(
CriticModel(
OBS_DIM,
VEL_OBS_DIM,
ACT_DIM,
stage_name=stage_name,
model_id=i * 2))
self.critics2.append(
CriticModel(
OBS_DIM,
VEL_OBS_DIM,
ACT_DIM,
stage_name=stage_name,
model_id=i * 2 + 1))
self._define_program()
self.place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
self.fluid_executor = fluid.Executor(self.place)
self.fluid_executor.run(self.startup_program)
if model_dirname is not None:
self._load_params(model_dirname)
def _load_params(self, dirname):
logger.info('[{}]: Loading model from {}'.format(
self.stage_name, dirname))
fluid.io.load_params(
executor=self.fluid_executor,
dirname=dirname,
main_program=self.ensemble_predict_program,
filename='model.ckpt')
def _define_program(self):
self.ensemble_predict_program = fluid.Program()
self.startup_program = fluid.Program()
with fluid.program_guard(self.ensemble_predict_program,
self.startup_program):
obs = layers.data(name='obs', shape=[OBS_DIM], dtype='float32')
action = self._ensemble_predict(obs)
self.ensemble_predict_output = [action]
def _ensemble_predict(self, obs):
actor_outputs = []
for i in range(self.ensemble_num):
actor_outputs.append(self.actors[i].predict(obs))
batch_actions = layers.concat(actor_outputs, axis=0)
batch_obs = layers.expand(obs, expand_times=[self.ensemble_num, 1])
critic_outputs = []
for i in range(self.ensemble_num):
critic1_output = self.critics1[i].predict(batch_obs, batch_actions)
critic1_output = layers.unsqueeze(critic1_output, axes=[1])
critic2_output = self.critics2[i].predict(batch_obs, batch_actions)
critic2_output = layers.unsqueeze(critic2_output, axes=[1])
critic_output = layers.elementwise_min(critic1_output,
critic2_output)
critic_outputs.append(critic_output)
score_matrix = layers.concat(critic_outputs, axis=1)
# Normalize scores given by each critic
sum_critic_score = layers.reduce_sum(
score_matrix, dim=0, keep_dim=True)
sum_critic_score = layers.expand(
sum_critic_score, expand_times=[self.ensemble_num, 1])
norm_score_matrix = score_matrix / sum_critic_score
actions_mean_score = layers.reduce_mean(
norm_score_matrix, dim=1, keep_dim=True)
best_score_id = layers.argmax(actions_mean_score, axis=0)
best_score_id = layers.cast(best_score_id, dtype='int32')
ensemble_predict_action = layers.gather(batch_actions, best_score_id)
ensemble_predict_action = layers.squeeze(
ensemble_predict_action, axes=[0])
return ensemble_predict_action
def pred_batch(self, obs):
feed = {'obs': obs}
action = self.fluid_executor.run(
self.ensemble_predict_program,
feed=feed,
fetch_list=self.ensemble_predict_output)[0]
return action
class SubmitModel(object):
def __init__(self, use_cuda=False):
self.stage0_model = EnsembleBaseModel(
model_dirname='./stage0_saved_models',
stage_name='stage0',
use_cuda=use_cuda)
self.stage1_model = EnsembleBaseModel(
model_dirname='./stage1_saved_models',
stage_name='stage1',
use_cuda=use_cuda)
def pred_batch(self, obs, target_change_times):
batch_obs = np.expand_dims(obs, axis=0).astype('float32')
if target_change_times == 0:
action = self.stage0_model.pred_batch(batch_obs)
else:
action = self.stage1_model.pred_batch(batch_obs)
return action
if __name__ == '__main__':
submit_model = SubmitModel()