-
Notifications
You must be signed in to change notification settings - Fork 816
/
Copy pathactor.py
executable file
·115 lines (94 loc) · 4.52 KB
/
actor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gym
import numpy as np
import parl
from atari_model import AtariModel
from collections import defaultdict
from atari_agent import AtariAgent
from parl.env import VectorEnv
from parl.env.atari_wrappers import wrap_deepmind, MonitorEnv, get_wrapper_by_cls
from parl.utils.rl_utils import calc_gae
from parl.algorithms import A2C
@parl.remote_class(wait=False)
class Actor(object):
def __init__(self, config):
self.config = config
self.envs = []
for _ in range(config['env_num']):
env = gym.make(config['env_name'])
env = wrap_deepmind(env, dim=config['env_dim'], obs_format='NCHW')
self.envs.append(env)
self.vector_env = VectorEnv(self.envs)
self.obs_batch = self.vector_env.reset()
obs_shape = env.observation_space.shape
act_dim = env.action_space.n
self.config['obs_shape'] = obs_shape
self.config['act_dim'] = act_dim
model = AtariModel(act_dim)
algorithm = A2C(model, vf_loss_coeff=config['vf_loss_coeff'])
self.agent = AtariAgent(algorithm, config)
def sample(self):
sample_data = defaultdict(list)
env_sample_data = {}
for env_id in range(self.config['env_num']):
env_sample_data[env_id] = defaultdict(list)
for i in range(self.config['sample_batch_steps']):
actions_batch, values_batch = self.agent.sample(
np.stack(self.obs_batch))
next_obs_batch, reward_batch, done_batch, info_batch = \
self.vector_env.step(actions_batch)
for env_id in range(self.config['env_num']):
env_sample_data[env_id]['obs'].append(self.obs_batch[env_id])
env_sample_data[env_id]['actions'].append(
actions_batch[env_id])
env_sample_data[env_id]['rewards'].append(reward_batch[env_id])
env_sample_data[env_id]['dones'].append(done_batch[env_id])
env_sample_data[env_id]['values'].append(values_batch[env_id])
# Calculate advantages when the episode is done or reach max sample steps.
if done_batch[
env_id] or i == self.config['sample_batch_steps'] - 1:
next_value = 0
if not done_batch[env_id]:
next_obs = np.expand_dims(next_obs_batch[env_id], 0)
next_value = self.agent.value(next_obs)
values = env_sample_data[env_id]['values']
rewards = env_sample_data[env_id]['rewards']
advantages = calc_gae(rewards, values, next_value,
self.config['gamma'],
self.config['lambda'])
target_values = advantages + values
sample_data['obs'].extend(env_sample_data[env_id]['obs'])
sample_data['actions'].extend(
env_sample_data[env_id]['actions'])
sample_data['advantages'].extend(advantages)
sample_data['target_values'].extend(target_values)
env_sample_data[env_id] = defaultdict(list)
self.obs_batch = next_obs_batch
# size of sample_data: env_num * sample_batch_steps
for key in sample_data:
sample_data[key] = np.stack(sample_data[key])
return sample_data
def get_metrics(self):
metrics = defaultdict(list)
for env in self.envs:
monitor = get_wrapper_by_cls(env, MonitorEnv)
if monitor is not None:
for episode_rewards, episode_steps in monitor.next_episode_results(
):
metrics['episode_rewards'].append(episode_rewards)
metrics['episode_steps'].append(episode_steps)
return metrics
def set_weights(self, params):
self.agent.set_weights(params)