-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelloworld.py
33 lines (25 loc) · 939 Bytes
/
helloworld.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# Deep Learning with TF
# Author : PSN
# Date : 18/04/2019 [00:57 CEST]
# License : Apache 2.0
import tensorflow as tf
class myCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs={}):
if(logs.get('acc') > 0.98):
print("\nReached 98% accuracy so cancelling training!,",logs.get('acc'))
self.model.stop_training = True
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train,x_test = x_train/255.0, x_test/255.0
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28,28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
callbacks = myCallback()
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=10, callbacks=[callbacks])
model.evaluate(x_test, y_test)