本目录下提供infer.cc
快速完成SCRFD在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。
在部署前,需确认以下两个步骤
-
- 软硬件环境满足要求,参考FastDeploy环境要求
-
- 根据开发环境,下载预编译部署库和samples代码,参考FastDeploy预编译库
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
mkdir build
cd build
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j
#下载官方转换好的SCRFD模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/scrfd_500m_bnkps_shape640x640.onnx
wget https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/lite/resources/test_lite_face_detector_3.jpg
# CPU推理
./infer_demo scrfd_500m_bnkps_shape640x640.onnx test_lite_face_detector_3.jpg 0
# GPU推理
./infer_demo scrfd_500m_bnkps_shape640x640.onnx test_lite_face_detector_3.jpg 1
# GPU上TensorRT推理
./infer_demo scrfd_500m_bnkps_shape640x640.onnx test_lite_face_detector_3.jpg 2
运行完成可视化结果如下图所示
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
fastdeploy::vision::facedet::SCRFD(
const string& model_file,
const string& params_file = "",
const RuntimeOption& runtime_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX)
SCRFD模型加载和初始化,其中model_file为导出的ONNX模型格式。
参数
- model_file(str): 模型文件路径
- params_file(str): 参数文件路径,当模型格式为ONNX时,此参数传入空字符串即可
- runtime_option(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
- model_format(ModelFormat): 模型格式,默认为ONNX格式
SCRFD::Predict(cv::Mat* im, FaceDetectionResult* result, float conf_threshold = 0.25, float nms_iou_threshold = 0.5)模型预测接口,输入图像直接输出检测结果。
参数
- im: 输入图像,注意需为HWC,BGR格式
- result: 检测结果,包括检测框,各个框的置信度, FaceDetectionResult说明参考视觉模型预测结果
- conf_threshold: 检测框置信度过滤阈值
- nms_iou_threshold: NMS处理过程中iou阈值
用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
- size(vector<int>): 通过此参数修改预处理过程中resize的大小,包含两个整型元素,表示[width, height], 默认值为[640, 640]
- padding_value(vector<float>): 通过此参数可以修改图片在resize时候做填充(padding)的值, 包含三个浮点型元素, 分别表示三个通道的值, 默认值为[114, 114, 114]
- is_no_pad(bool): 通过此参数让图片是否通过填充的方式进行resize,
is_no_pad=ture
表示不使用填充的方式,默认值为is_no_pad=false
- is_mini_pad(bool): 通过此参数可以将resize之后图像的宽高这是为最接近
size
成员变量的值, 并且满足填充的像素大小是可以被stride
成员变量整除的。默认值为is_mini_pad=false
- stride(int): 配合
stris_mini_pad
成员变量使用, 默认值为stride=32
- downsample_strides(vector<int>): 通过此参数可以修改生成anchor的特征图的下采样倍数, 包含三个整型元素, 分别表示默认的生成anchor的下采样倍数, 默认值为[8, 16, 32]
- landmarks_per_face(int): 如果使用具有人脸关键点的输出, 可以修改人脸关键点数量, 默认值为
landmarks_per_face=5
- use_kps(bool): 通过此参数可以设置模型是否使用关键点,如果ONNX文件没有关键点输出则需要将
use_kps=false
, 并将landmarks_per_face=0
, 默认值为use_kps=true
- num_anchors(int): 通过此参数可以设置每个锚点预测的anchor数量, 需要跟进训练模型的参数设定, 默认值为
num_anchors=2