diff --git a/docs/conf.py b/docs/conf.py index b3f3340af..0a1ed342b 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -16,6 +16,7 @@ import datetime import json import os +import pathlib import sys import warnings @@ -67,13 +68,13 @@ # Dump indicators to json. The json is added to the html output (html_extra_path) # It is read by _static/indsearch.js to populate the table in indicators.rst os.makedirs("_dynamic", exist_ok=True) -with open("_dynamic/indicators.json", "w") as f: +with pathlib.Path("_dynamic/indicators.json").open("w") as f: json.dump(indicators, f) # Dump variables information -with open("variables.json", "w") as fout: - with open("../src/xclim/data/variables.yml") as fin: +with pathlib.Path("variables.json").open("w") as fout: + with pathlib.Path("../src/xclim/data/variables.yml").open() as fin: data = yaml.safe_load(fin) json.dump(data, fout) diff --git a/src/xclim/cli.py b/src/xclim/cli.py index 8a5dbdb34..e7caed251 100644 --- a/src/xclim/cli.py +++ b/src/xclim/cli.py @@ -518,7 +518,7 @@ def cli(ctx, **kwargs): # numpydoc ignore=PR01 @cli.result_callback() @click.pass_context -def write_file(ctx, *args, **kwargs): # numpydoc ignore=PR01 +def write_file(ctx, *_, **kwargs): # numpydoc ignore=PR01 """Write the output dataset to file.""" if ctx.obj["output"] is not None: if ctx.obj["verbose"]: diff --git a/src/xclim/core/bootstrapping.py b/src/xclim/core/bootstrapping.py index 5dbe7a449..81fe85e88 100644 --- a/src/xclim/core/bootstrapping.py +++ b/src/xclim/core/bootstrapping.py @@ -126,13 +126,17 @@ def bootstrap_func(compute_index_func: Callable, **kwargs) -> xarray.DataArray: :cite:cts:`zhang_avoiding_2005` """ # Identify the input and the percentile arrays from the bound arguments - per_key = None + per_key, da_key = None, None for name, val in kwargs.items(): if isinstance(val, DataArray): if "percentile_doy" in val.attrs.get("history", ""): per_key = name else: da_key = name + if da_key is None or per_key is None: + raise KeyError( + "The input data and the percentile DataArray must be provided as named arguments." + ) # Extract the DataArray inputs from the arguments da: DataArray = kwargs.pop(da_key) per_da: DataArray | None = kwargs.pop(per_key, None) diff --git a/src/xclim/core/dataflags.py b/src/xclim/core/dataflags.py index f521a8eb5..eb574b91d 100644 --- a/src/xclim/core/dataflags.py +++ b/src/xclim/core/dataflags.py @@ -639,11 +639,11 @@ def data_flags( # noqa: C901 >>> from xclim.core.dataflags import data_flags >>> ds = xr.open_dataset(path_to_pr_file) - >>> flagged = data_flags(ds.pr, ds) + >>> flagged_multi = data_flags(ds.pr, ds) >>> # The next example evaluates only one data flag, passing specific parameters. It also aggregates the flags >>> # yearly over the "time" dimension only, such that a True means there is a bad data point for that year >>> # at that location. - >>> flagged = data_flags( + >>> flagged_single = data_flags( ... ds.pr, ... ds, ... flags={"very_large_precipitation_events": {"thresh": "250 mm d-1"}}, diff --git a/src/xclim/core/indicator.py b/src/xclim/core/indicator.py index d27103765..7d417e2e1 100644 --- a/src/xclim/core/indicator.py +++ b/src/xclim/core/indicator.py @@ -873,7 +873,7 @@ def __call__(self, *args, **kwds): out_attrs.pop("units", None) else: out_attrs = {} - out_attrs = [out_attrs.copy() for i in range(self.n_outs)] + out_attrs = [out_attrs.copy() for _ in range(self.n_outs)] das, params = self._preprocess_and_checks(das, params) @@ -943,7 +943,9 @@ def __call__(self, *args, **kwds): return outs[0] return tuple(outs) - def _parse_variables_from_call(self, args, kwds) -> tuple[OrderedDict, dict]: + def _parse_variables_from_call( + self, args, kwds + ) -> tuple[OrderedDict, OrderedDict, OrderedDict | dict]: """Extract variable and optional variables from call arguments.""" # Bind call arguments to `compute` arguments and set defaults. ba = self.__signature__.bind(*args, **kwds) diff --git a/src/xclim/core/units.py b/src/xclim/core/units.py index 909808a8d..2bdb233a4 100644 --- a/src/xclim/core/units.py +++ b/src/xclim/core/units.py @@ -1308,7 +1308,7 @@ def _check_output_has_units( # FIXME: This needs to be properly annotated for mypy compliance. # See: https://mypy.readthedocs.io/en/stable/generics.html#declaring-decorators -def declare_relative_units(**units_by_name) -> Callable: +def declare_relative_units(**units_by_name: str) -> Callable: r""" Function decorator checking the units of arguments. @@ -1317,7 +1317,7 @@ def declare_relative_units(**units_by_name) -> Callable: Parameters ---------- - **units_by_name : dict + **units_by_name : str Mapping from the input parameter names to dimensions relative to other parameters. The dimensions can be a single parameter name as `` or more complex expressions, such as ` * [time]`. @@ -1430,7 +1430,7 @@ def declare_units(**units_by_name) -> Callable: Parameters ---------- - **units_by_name : dict + **units_by_name : str Mapping from the input parameter names to their units or dimensionality ("[...]"). If this decorates a function previously decorated with :py:func:`declare_relative_units`, the relative unit declarations are made absolute with the information passed here. diff --git a/src/xclim/ensembles/_base.py b/src/xclim/ensembles/_base.py index 52047e03d..64ea60bd9 100644 --- a/src/xclim/ensembles/_base.py +++ b/src/xclim/ensembles/_base.py @@ -187,6 +187,7 @@ def ensemble_mean_std_max_min( ds_out[f"{v}_max"] = ens[v].max(dim="realization") ds_out[f"{v}_min"] = ens[v].min(dim="realization") + enough = None if min_members != 1: enough = ens[v].notnull().sum("realization") >= min_members diff --git a/src/xclim/ensembles/_reduce.py b/src/xclim/ensembles/_reduce.py index fabe81b04..72d501184 100644 --- a/src/xclim/ensembles/_reduce.py +++ b/src/xclim/ensembles/_reduce.py @@ -8,6 +8,7 @@ from __future__ import annotations +from typing import Any from warnings import warn import numpy as np @@ -128,7 +129,7 @@ def kkz_reduce_ensemble( *, dist_method: str = "euclidean", standardize: bool = True, - **cdist_kwargs, + **cdist_kwargs: Any, ) -> list: r""" Return a sample of ensemble members using KKZ selection. @@ -152,7 +153,7 @@ def kkz_reduce_ensemble( standardize : bool Whether to standardize the input before running the selection or not. Standardization consists in translation as to have a zero mean and scaling as to have a unit standard deviation. - **cdist_kwargs : dict + **cdist_kwargs : Any All extra arguments are passed as-is to `scipy.spatial.distance.cdist`, see its docs for more information. Returns diff --git a/src/xclim/indices/_agro.py b/src/xclim/indices/_agro.py index c66408f0d..52726c3f9 100644 --- a/src/xclim/indices/_agro.py +++ b/src/xclim/indices/_agro.py @@ -1215,7 +1215,7 @@ def standardized_precipitation_index( ... method="ML", ... zero_inflated=True, ... ) # First getting params - >>> spi_3 = standardized_precipitation_index(pr, params=params) + >>> spi_3_fitted = standardized_precipitation_index(pr, params=params) """ fitkwargs = fitkwargs or {} dist_methods = {"gamma": ["ML", "APP"], "fisk": ["ML", "APP"]} diff --git a/src/xclim/indices/_threshold.py b/src/xclim/indices/_threshold.py index 13420027b..9f11be29c 100644 --- a/src/xclim/indices/_threshold.py +++ b/src/xclim/indices/_threshold.py @@ -1973,7 +1973,6 @@ def hot_spell_max_magnitude( thresh: Quantified = "25.0 degC", window: int = 3, freq: str = "YS", - op: str = ">", resample_before_rl: bool = True, ) -> xarray.DataArray: """ @@ -1993,8 +1992,6 @@ def hot_spell_max_magnitude( Minimum number of days with temperature above threshold to qualify as a heatwave. freq : str Resampling frequency. - op : {">", ">=", "gt", "ge"} - Comparison operation. Default: ">". resample_before_rl : bool Determines if the resampling should take place before or after the run length encoding (or a similar algorithm) is applied to runs. @@ -3273,8 +3270,8 @@ def dry_spell_frequency( -------- >>> from xclim.indices import dry_spell_frequency >>> pr = xr.open_dataset(path_to_pr_file).pr - >>> dsf = dry_spell_frequency(pr=pr, op="sum") - >>> dsf = dry_spell_frequency(pr=pr, op="max") + >>> dsf_sum = dry_spell_frequency(pr=pr, op="sum") + >>> dsf_max = dry_spell_frequency(pr=pr, op="max") """ pram = rate2amount(convert_units_to(pr, "mm/d", context="hydro"), out_units="mm") return spell_length_statistics( @@ -3481,8 +3478,8 @@ def wet_spell_frequency( -------- >>> from xclim.indices import wet_spell_frequency >>> pr = xr.open_dataset(path_to_pr_file).pr - >>> dsf = wet_spell_frequency(pr=pr, op="sum") - >>> dsf = wet_spell_frequency(pr=pr, op="min") + >>> dsf_sum = wet_spell_frequency(pr=pr, op="sum") + >>> dsf_min = wet_spell_frequency(pr=pr, op="min") """ pram = rate2amount(convert_units_to(pr, "mm/d", context="hydro"), out_units="mm") return spell_length_statistics( diff --git a/src/xclim/indices/helpers.py b/src/xclim/indices/helpers.py index abe8e86de..4475830fc 100644 --- a/src/xclim/indices/helpers.py +++ b/src/xclim/indices/helpers.py @@ -803,9 +803,7 @@ def make_hourly_temperature(tasmin: xr.DataArray, tasmax: xr.DataArray) -> xr.Da hourly = data.resample(time="h").ffill().isel(time=slice(0, -1)) # To avoid "invalid value encountered in log" warning we set hours before sunset to 1 - nighttime_hours = nighttime_hours = ( - hourly.time.dt.hour + 1 - hourly.daylength - ).clip(1) + nighttime_hours = (hourly.time.dt.hour + 1 - hourly.daylength).clip(1) return xr.where( hourly.time.dt.hour < hourly.daylength, diff --git a/src/xclim/indices/run_length.py b/src/xclim/indices/run_length.py index fc75d7577..894a08902 100644 --- a/src/xclim/indices/run_length.py +++ b/src/xclim/indices/run_length.py @@ -107,7 +107,7 @@ def resample_and_rl( Resampling frequency. dim : str The dimension along which to find runs. - **kwargs : dict + **kwargs : Any Keyword arguments needed in `compute`. Returns diff --git a/src/xclim/sdba/_adjustment.py b/src/xclim/sdba/_adjustment.py index 1d32c268e..4398cec0e 100644 --- a/src/xclim/sdba/_adjustment.py +++ b/src/xclim/sdba/_adjustment.py @@ -339,9 +339,9 @@ def _npdft_adjust(sim, af_q, rots, quantiles, method, extrap): def mbcn_adjust( - ref: xr.Dataset, - hist: xr.Dataset, - sim: xr.Dataset, + ref: xr.DataArray, + hist: xr.DataArray, + sim: xr.DataArray, ds: xr.Dataset, pts_dims: Sequence[str], interp: str, @@ -350,7 +350,7 @@ def mbcn_adjust( base_kws_vars: dict, adj_kws: dict, period_dim: str | None, -) -> xr.DataArray: +) -> xr.Dataset: """Perform the adjustment portion MBCn multivariate bias correction technique. The function :py:func:`mbcn_train` pre-computes the adjustment factors for each rotation @@ -696,7 +696,7 @@ def npdf_transform(ds: xr.Dataset, **kwargs) -> xr.Dataset: hist : simulated timeseries on the reference period sim : Simulated timeseries on the projected period. rot_matrices : Random rotation matrices. - **kwargs : dict + **kwargs : Any pts_dim : multivariate dimension name base : Adjustment class base_kws : Kwargs for initialising the adjustment object diff --git a/src/xclim/sdba/processing.py b/src/xclim/sdba/processing.py index d102143ca..0466fde48 100644 --- a/src/xclim/sdba/processing.py +++ b/src/xclim/sdba/processing.py @@ -852,14 +852,14 @@ def grouped_time_indexes(times, group): Time indexes of the blocks (built with a rolling window of `group.window` if any). """ - def _get_group_complement(da, group): + def _get_group_complement(_da, _group): # complement of "dayofyear": "year", etc. - gr = group if isinstance(group, str) else group.name - if gr == "time.dayofyear": - return da.time.dt.year - if gr == "time.month": - return da.time.dt.strftime("%Y-%d") - raise NotImplementedError(f"Grouping {gr} not implemented.") + _gr = _group if isinstance(_group, str) else _group.name + if _gr == "time.dayofyear": + return _da.time.dt.year + if _gr == "time.month": + return _da.time.dt.strftime("%Y-%d") + raise NotImplementedError(f"Grouping {_gr} not implemented.") # does not work with group == "time.month" group = group if isinstance(group, Grouper) else Grouper(group) @@ -871,14 +871,14 @@ def _get_group_complement(da, group): ) if gr == "time.dayofyear": # time indices for each block with window = 1 - g_idxs = timeind.groupby(gr).apply( + g_idxs = timeind.groupby(gr).map( lambda da: da.assign_coords(time=_get_group_complement(da, gr)).rename( {"time": "year"} ) ) # time indices for each block with general window da = timeind.rolling(time=win, center=True).construct(window_dim=win_dim0) - gw_idxs = da.groupby(gr).apply( + gw_idxs = da.groupby(gr).map( lambda da: da.assign_coords(time=_get_group_complement(da, gr)).stack( {win_dim: ["time", win_dim0]} ) diff --git a/src/xclim/sdba/utils.py b/src/xclim/sdba/utils.py index 12af93139..f8c2a6d2f 100644 --- a/src/xclim/sdba/utils.py +++ b/src/xclim/sdba/utils.py @@ -6,7 +6,7 @@ from __future__ import annotations import itertools -from collections.abc import Callable +from collections.abc import Callable, Sequence from warnings import warn import bottleneck as bn @@ -80,7 +80,9 @@ def map_cdf( ) -def ecdf(x: xr.DataArray, value: float, dim: str = "time") -> xr.DataArray: +def ecdf( + x: xr.DataArray, value: float, dim: str | Sequence[str] = "time" +) -> xr.DataArray: """Return the empirical CDF of a sample at a given value. Parameters @@ -948,7 +950,7 @@ def _skipna_correlation(data): # The output out = np.empty((nv, nv), dtype=coef.dtype) # A 2D mask of removed variables - M = (mask_omit)[:, np.newaxis] | (mask_omit)[np.newaxis, :] + M = mask_omit[:, np.newaxis] | mask_omit[np.newaxis, :] out[~M] = coef.flatten() out[M] = np.nan return out diff --git a/src/xclim/testing/helpers.py b/src/xclim/testing/helpers.py index 11fb0ac2e..6b21fba59 100644 --- a/src/xclim/testing/helpers.py +++ b/src/xclim/testing/helpers.py @@ -173,13 +173,12 @@ def add_doctest_filepaths() -> dict[str, Any]: dict[str, Any] A dictionary of xdoctest namespace objects. """ - namespace: dict = {} - namespace["np"] = np - namespace["xclim"] = xclim - namespace["tas"] = test_timeseries( - np.random.rand(365) * 20 + 253.15, variable="tas" - ) - namespace["pr"] = test_timeseries(np.random.rand(365) * 5, variable="pr") + namespace = { + "np": np, + "xclim": xclim, + "tas": test_timeseries(np.random.rand(365) * 20 + 253.15, variable="tas"), + "pr": test_timeseries(np.random.rand(365) * 5, variable="pr"), + } return namespace