-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cu
83 lines (67 loc) · 2.56 KB
/
main.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
/*
* execution program for the whole project. Have no idea what project to carry on for now.
* Will figure out lately. This document is a playground for cuda C/C++ programming.
* Possible future extensions include improving computing speed of large statistical learning
* models or computing matrix operations, which is the related field of my major study.
*/
#include <stdio.h>
#include <cuda_runtime.h>
__global__ void vectorAdd(float *a, float *b, float *c, int n) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n) {
printf("Thread %d: BlockIdx %d, ThreadIdx %d\n", i, blockIdx.x, threadIdx.x);
printf("Thread %d: %f + %f = %f\n", i, a[i], b[i], a[i] + b[i]);
c[i] = a[i] + b[i];
}
}
int main() {
int n = 256; // Size of the vectors
int size = n * sizeof(float);
// Allocate host memory
float *h_a = (float*)malloc(size);
float *h_b = (float*)malloc(size);
float *h_c = (float*)malloc(size);
// Initialize input vectors on the host
for (int i = 0; i < n; ++i) {
h_a[i] = i;
h_b[i] = 2 * i;
}
// Allocate device memory
float *d_a, *d_b, *d_c;
cudaMalloc((void **)&d_a, size);
cudaMalloc((void **)&d_b, size);
cudaMalloc((void **)&d_c, size);
// Copy input vectors from host to GPU
cudaMemcpy(d_a, h_a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, h_b, size, cudaMemcpyHostToDevice);
// Launch the vectorAdd kernel on the GPU
int blockSize = 256;
int numBlocks = (n + blockSize - 1) / blockSize;
vectorAdd<<<numBlocks, blockSize>>>(d_a, d_b, d_c, n);
// Print some values from device arrays
for (int i = 0; i < n; ++i) {
float a_val, b_val, c_val;
cudaMemcpy(&a_val, d_a + i, sizeof(float), cudaMemcpyDeviceToHost);
cudaMemcpy(&b_val, d_b + i, sizeof(float), cudaMemcpyDeviceToHost);
cudaMemcpy(&c_val, d_c + i, sizeof(float), cudaMemcpyDeviceToHost);
printf("Device Array Values %d: %f, %f, %f\n", i, a_val, b_val, c_val);
}
// Copy the result from GPU to host
cudaMemcpy(h_c, d_c, size, cudaMemcpyDeviceToHost);
// Print some values from device arrays
for (int i = 0; i < n; ++i) {
float c_val;
cudaMemcpy(&c_val, d_c + i, sizeof(float), cudaMemcpyDeviceToHost);
// printf("Device Array Values %d: %f\n", i, c_val);
// Print intermediate values
printf("Intermediate Result %d: %f\n", i, h_c[i]);
}
// Cleanup
free(h_a);
free(h_b);
free(h_c);
cudaFree(d_a);
cudaFree(d_b);
cudaFree(d_c);
return 0;
}