-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathsetup.py
99 lines (84 loc) · 3.53 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from subprocess import call
import sys
if sys.argv[-1] == "install":
call(["apt-get","install","python-setuptools"])
from setuptools import setup
import tarfile
import os
from shutil import copy2, rmtree
name = 'lrn2'
version = '2.1.0'
if sys.argv[-1] == "install":
install = ["apt-get", "install"]
call(install + ["python-dev"])
call(install + ["gFortran"])
call(install + ["libblas-dev"])
call(install + ["liblapack-dev"])
call(install + ["python-pip"])
call(install + ["libpng-dev"])
call(install + ["libfreetype6-dev"])
call(["pip", "install", "numpy"])
setup(name = name,
version = version,
description = 'Lrn2 Python package for learning representations from data',
url = 'http://lrn2cre8.ofai.at/lrn2/doc',
author = 'Stefan Lattner, Maarten Grachten, Carlos Eduardo Cancino Chacón',
packages = ['lrn2',
'lrn2.application',
'lrn2.application.classification',
'lrn2.application.segmentation',
'lrn2.application.similarity',
'lrn2.application.visualization',
'lrn2.data',
'lrn2.data.domain',
'lrn2.data.formats',
'lrn2.data.formats.midi_utils',
'lrn2.data.formats.midi_utils.midi_backend',
'lrn2.nn_bricks',
'lrn2.util'],
install_requires = ['jinja2',
'scikit-learn',
'matplotlib',
'configobj',
'scipy',
'theano',
'liac-arff',
'mpld3'],
data_files = [('lrn2/util/', ['lrn2/util/config_spec.ini'])]
)
if sys.argv[-1] == "sdist":
# copy examples and bin into tar.gz without copying them during installation
print "Adding demo folders..."
pkg_name = name + '-' + version
pkg_file = pkg_name + '.tar.gz'
files_to_add = [os.path.join("examples", "mnist_pretrain", "config_model.ini"),
os.path.join("examples", "mnist_pretrain", "run_demo.py"),
os.path.join("examples", "mnist_convolutional", "config_model.ini"),
os.path.join("examples", "mnist_convolutional", "run_demo.py"),
os.path.join("examples", "custom_layer", "config_model.ini"),
os.path.join("examples", "custom_layer", "run_demo.py"),
os.path.join("examples", "rnn_predict", "config_model.ini"),
os.path.join("examples", "rnn_predict", "run_demo.py"),
os.path.join("lrn2", "util", "config_spec.ini"),
"setup_mac.py",
]
# Extract existing tar (python cannot append on compressed tar files)
tar = tarfile.open(os.path.join("dist", pkg_file), "r:gz")
tar.extractall()
tar.close()
# create additional folders and copy additional files
for f in files_to_add:
new_folder = os.path.join(pkg_name, os.path.split(f)[0])
if not os.path.exists(new_folder):
os.makedirs(new_folder)
copy2(f, os.path.join(pkg_name, f))
# pack whole folder structure in tar file
with tarfile.open(os.path.join("dist", pkg_file), "w:gz") as tar:
for dirpath, dirnames, filenames in os.walk(pkg_name):
for f in filenames:
tar.add(os.path.join(dirpath, f))
rmtree(pkg_name)
print "...done."