This repository has been archived by the owner on May 22, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathfreeze.py
312 lines (276 loc) · 11.5 KB
/
freeze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Converts a trained checkpoint into a frozen model for mobile inference.
Once you've trained a model using the `train.py` script, you can use this tool
to convert it into a binary GraphDef file that can be loaded into the Android,
iOS, or Raspberry Pi example code. Here's an example of how to run it:
bazel run tensorflow/examples/speech_commands/freeze -- \
--sample_rate=16000 --dct_coefficient_count=40 --window_size_ms=20 \
--window_stride_ms=10 --clip_duration_ms=1000 \
--model_architecture=conv \
--start_checkpoint=/tmp/speech_commands_train/conv.ckpt-1300 \
--output_file=/tmp/my_frozen_graph.pb
One thing to watch out for is that you need to pass in the same arguments for
`sample_rate` and other command line variables here as you did for the training
script.
The resulting graph has an input for WAV-encoded data named 'wav_data', one for
raw PCM data (as floats in the range -1.0 to 1.0) called 'decoded_sample_data',
and the output is called 'labels_softmax'.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os.path
import sys
import tensorflow as tf
import input_data
import models
from tensorflow.python.framework import graph_util
from tensorflow.python.ops import gen_audio_ops as audio_ops
# If it's available, load the specialized feature generator. If this doesn't
# work, try building with bazel instead of running the Python script directly.
# bazel run tensorflow/examples/speech_commands:freeze_graph
try:
from tensorflow.lite.experimental.microfrontend.python.ops import audio_microfrontend_op as frontend_op # pylint:disable=g-import-not-at-top
except ImportError:
frontend_op = None
FLAGS = None
def create_inference_graph(wanted_words, sample_rate, clip_duration_ms,
clip_stride_ms, window_size_ms, window_stride_ms,
feature_bin_count, model_architecture, preprocess):
"""Creates an audio model with the nodes needed for inference.
Uses the supplied arguments to create a model, and inserts the input and
output nodes that are needed to use the graph for inference.
Args:
wanted_words: Comma-separated list of the words we're trying to recognize.
sample_rate: How many samples per second are in the input audio files.
clip_duration_ms: How many samples to analyze for the audio pattern.
clip_stride_ms: How often to run recognition. Useful for models with cache.
window_size_ms: Time slice duration to estimate frequencies from.
window_stride_ms: How far apart time slices should be.
feature_bin_count: Number of frequency bands to analyze.
model_architecture: Name of the kind of model to generate.
preprocess: How the spectrogram is processed to produce features, for
example 'mfcc', 'average', or 'micro'.
Returns:
Input and output tensor objects.
Raises:
Exception: If the preprocessing mode isn't recognized.
"""
words_list = input_data.prepare_words_list(wanted_words.split(','))
model_settings = models.prepare_model_settings(
len(words_list), sample_rate, clip_duration_ms, window_size_ms,
window_stride_ms, feature_bin_count, preprocess)
runtime_settings = {'clip_stride_ms': clip_stride_ms}
wav_data_placeholder = tf.compat.v1.placeholder(tf.string, [],
name='wav_data')
decoded_sample_data = tf.audio.decode_wav(
wav_data_placeholder,
desired_channels=1,
desired_samples=model_settings['desired_samples'],
name='decoded_sample_data')
spectrogram = audio_ops.audio_spectrogram(
decoded_sample_data.audio,
window_size=model_settings['window_size_samples'],
stride=model_settings['window_stride_samples'],
magnitude_squared=True)
if preprocess == 'average':
fingerprint_input = tf.nn.pool(
input=tf.expand_dims(spectrogram, -1),
window_shape=[1, model_settings['average_window_width']],
strides=[1, model_settings['average_window_width']],
pooling_type='AVG',
padding='SAME')
elif preprocess == 'mfcc':
fingerprint_input = audio_ops.mfcc(
spectrogram,
sample_rate,
dct_coefficient_count=model_settings['fingerprint_width'])
elif preprocess == 'micro':
if not frontend_op:
raise Exception(
'Micro frontend op is currently not available when running TensorFlow'
' directly from Python, you need to build and run through Bazel, for'
' example'
' `bazel run tensorflow/examples/speech_commands:freeze_graph`')
sample_rate = model_settings['sample_rate']
window_size_ms = (model_settings['window_size_samples'] *
1000) / sample_rate
window_step_ms = (model_settings['window_stride_samples'] *
1000) / sample_rate
int16_input = tf.cast(
tf.multiply(decoded_sample_data.audio, 32767), tf.int16)
micro_frontend = frontend_op.audio_microfrontend(
int16_input,
sample_rate=sample_rate,
window_size=window_size_ms,
window_step=window_step_ms,
num_channels=model_settings['fingerprint_width'],
out_scale=1,
out_type=tf.float32)
fingerprint_input = tf.multiply(micro_frontend, (10.0 / 256.0))
else:
raise Exception('Unknown preprocess mode "%s" (should be "mfcc",'
' "average", or "micro")' % (preprocess))
fingerprint_size = model_settings['fingerprint_size']
reshaped_input = tf.reshape(fingerprint_input, [-1, fingerprint_size])
logits = models.create_model(
reshaped_input, model_settings, model_architecture, is_training=False,
runtime_settings=runtime_settings)
# Create an output to use for inference.
softmax = tf.nn.softmax(logits, name='labels_softmax')
return reshaped_input, softmax
def save_graph_def(file_name, frozen_graph_def):
"""Writes a graph def file out to disk.
Args:
file_name: Where to save the file.
frozen_graph_def: GraphDef proto object to save.
"""
tf.io.write_graph(
frozen_graph_def,
os.path.dirname(file_name),
os.path.basename(file_name),
as_text=False)
tf.compat.v1.logging.info('Saved frozen graph to %s', file_name)
def save_saved_model(file_name, sess, input_tensor, output_tensor):
"""Writes a SavedModel out to disk.
Args:
file_name: Where to save the file.
sess: TensorFlow session containing the graph.
input_tensor: Tensor object defining the input's properties.
output_tensor: Tensor object defining the output's properties.
"""
# Store the frozen graph as a SavedModel for v2 compatibility.
builder = tf.compat.v1.saved_model.builder.SavedModelBuilder(file_name)
tensor_info_inputs = {
'input': tf.compat.v1.saved_model.utils.build_tensor_info(input_tensor)
}
tensor_info_outputs = {
'output': tf.compat.v1.saved_model.utils.build_tensor_info(output_tensor)
}
signature = (
tf.compat.v1.saved_model.signature_def_utils.build_signature_def(
inputs=tensor_info_inputs,
outputs=tensor_info_outputs,
method_name=tf.compat.v1.saved_model.signature_constants
.PREDICT_METHOD_NAME))
builder.add_meta_graph_and_variables(
sess,
[tf.compat.v1.saved_model.tag_constants.SERVING],
signature_def_map={
tf.compat.v1.saved_model.signature_constants
.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
signature,
},
)
builder.save()
def main(_):
if FLAGS.quantize:
try:
_ = tf.contrib
except AttributeError as e:
msg = e.args[0]
msg += ('\n\n The --quantize option still requires contrib, which is not '
'part of TensorFlow 2.0. Please install a previous version:'
'\n `pip install tensorflow<=1.15`')
e.args = (msg,)
raise e
# Create the model and load its weights.
sess = tf.compat.v1.InteractiveSession()
input_tensor, output_tensor = create_inference_graph(
FLAGS.wanted_words, FLAGS.sample_rate, FLAGS.clip_duration_ms,
FLAGS.clip_stride_ms, FLAGS.window_size_ms, FLAGS.window_stride_ms,
FLAGS.feature_bin_count, FLAGS.model_architecture, FLAGS.preprocess)
if FLAGS.quantize:
tf.contrib.quantize.create_eval_graph()
models.load_variables_from_checkpoint(sess, FLAGS.start_checkpoint)
# Turn all the variables into inline constants inside the graph and save it.
frozen_graph_def = graph_util.convert_variables_to_constants(
sess, sess.graph_def, ['labels_softmax'])
if FLAGS.save_format == 'graph_def':
save_graph_def(FLAGS.output_file, frozen_graph_def)
elif FLAGS.save_format == 'saved_model':
save_saved_model(FLAGS.output_file, sess, input_tensor, output_tensor)
else:
raise Exception('Unknown save format "%s" (should be "graph_def" or'
' "saved_model")' % (FLAGS.save_format))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--sample_rate',
type=int,
default=16000,
help='Expected sample rate of the wavs',)
parser.add_argument(
'--clip_duration_ms',
type=int,
default=1000,
help='Expected duration in milliseconds of the wavs',)
parser.add_argument(
'--clip_stride_ms',
type=int,
default=30,
help='How often to run recognition. Useful for models with cache.',)
parser.add_argument(
'--window_size_ms',
type=float,
default=30.0,
help='How long each spectrogram timeslice is',)
parser.add_argument(
'--window_stride_ms',
type=float,
default=10.0,
help='How long the stride is between spectrogram timeslices',)
parser.add_argument(
'--feature_bin_count',
type=int,
default=40,
help='How many bins to use for the MFCC fingerprint',
)
parser.add_argument(
'--start_checkpoint',
type=str,
default='',
help='If specified, restore this pretrained model before any training.')
parser.add_argument(
'--model_architecture',
type=str,
default='conv',
help='What model architecture to use')
parser.add_argument(
'--wanted_words',
type=str,
default='yes,no,up,down,left,right,on,off,stop,go',
help='Words to use (others will be added to an unknown label)',)
parser.add_argument(
'--output_file', type=str, help='Where to save the frozen graph.')
parser.add_argument(
'--quantize',
type=bool,
default=False,
help='Whether to train the model for eight-bit deployment')
parser.add_argument(
'--preprocess',
type=str,
default='mfcc',
help='Spectrogram processing mode. Can be "mfcc" or "average"')
parser.add_argument(
'--save_format',
type=str,
default='graph_def',
help='How to save the result. Can be "graph_def" or "saved_model"')
FLAGS, unparsed = parser.parse_known_args()
tf.compat.v1.app.run(main=main, argv=[sys.argv[0]] + unparsed)