-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutilsV3.py
540 lines (448 loc) · 19.5 KB
/
utilsV3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
'''
iou_width_height,intersection_over_union,non_max_suppression,mean_average_precision
are the function from : https://github.com/aladdinpersson/Machine-Learning-Collection/tree/master/ML/Pytorch/object_detection/YOLOv3
plot_image,get_evaluation_bboxes are modified to fit the format of our data
'''
import config
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import numpy as np
import os
import torch
from collections import Counter
from torch.utils.data import DataLoader
from tqdm import tqdm
import time
def iou_width_height(boxes1, boxes2):
"""
Parameters:
boxes1 (tensor): width and height of the first bounding boxes
boxes2 (tensor): width and height of the second bounding boxes
Returns:
tensor: Intersection over union of the corresponding boxes
"""
intersection = torch.min(boxes1[..., 0], boxes2[..., 0]) * torch.min(
boxes1[..., 1], boxes2[..., 1]
)
union = (
boxes1[..., 0] * boxes1[..., 1] + boxes2[..., 0] * boxes2[..., 1] - intersection
)
return intersection / union
def intersection_over_union(boxes_preds, boxes_labels, box_format="midpoint"):
"""
Video explanation of this function:
https://youtu.be/XXYG5ZWtjj0
This function calculates intersection over union (iou) given pred boxes
and target boxes.
Parameters:
boxes_preds (tensor): Predictions of Bounding Boxes (BATCH_SIZE, 4)
boxes_labels (tensor): Correct labels of Bounding Boxes (BATCH_SIZE, 4)
box_format (str): midpoint/corners, if boxes (x,y,w,h) or (x1,y1,x2,y2)
Returns:
tensor: Intersection over union for all examples
"""
if box_format == "midpoint":
box1_x1 = boxes_preds[..., 0:1] - boxes_preds[..., 2:3] / 2
box1_y1 = boxes_preds[..., 1:2] - boxes_preds[..., 3:4] / 2
box1_x2 = boxes_preds[..., 0:1] + boxes_preds[..., 2:3] / 2
box1_y2 = boxes_preds[..., 1:2] + boxes_preds[..., 3:4] / 2
box2_x1 = boxes_labels[..., 0:1] - boxes_labels[..., 2:3] / 2
box2_y1 = boxes_labels[..., 1:2] - boxes_labels[..., 3:4] / 2
box2_x2 = boxes_labels[..., 0:1] + boxes_labels[..., 2:3] / 2
box2_y2 = boxes_labels[..., 1:2] + boxes_labels[..., 3:4] / 2
if box_format == "corners":
box1_x1 = boxes_preds[..., 0:1]
box1_y1 = boxes_preds[..., 1:2]
box1_x2 = boxes_preds[..., 2:3]
box1_y2 = boxes_preds[..., 3:4]
box2_x1 = boxes_labels[..., 0:1]
box2_y1 = boxes_labels[..., 1:2]
box2_x2 = boxes_labels[..., 2:3]
box2_y2 = boxes_labels[..., 3:4]
x1 = torch.max(box1_x1, box2_x1)
y1 = torch.max(box1_y1, box2_y1)
x2 = torch.min(box1_x2, box2_x2)
y2 = torch.min(box1_y2, box2_y2)
intersection = (x2 - x1).clamp(0) * (y2 - y1).clamp(0)
box1_area = abs((box1_x2 - box1_x1) * (box1_y2 - box1_y1))
box2_area = abs((box2_x2 - box2_x1) * (box2_y2 - box2_y1))
return intersection / (box1_area + box2_area - intersection + 1e-6)
def non_max_suppression(bboxes, iou_threshold, threshold, box_format="corners"):
"""
Video explanation of this function:
https://youtu.be/YDkjWEN8jNA
Does Non Max Suppression given bboxes
Parameters:
bboxes (list): list of lists containing all bboxes with each bboxes
specified as [class_pred, prob_score, x1, y1, x2, y2]
iou_threshold (float): threshold where predicted bboxes is correct
threshold (float): threshold to remove predicted bboxes (independent of IoU)
box_format (str): "midpoint" or "corners" used to specify bboxes
Returns:
list: bboxes after performing NMS given a specific IoU threshold
"""
assert type(bboxes) == list
bboxes = [box for box in bboxes if box[1] > threshold]
bboxes = sorted(bboxes, key=lambda x: x[1], reverse=True)
bboxes_after_nms = []
while bboxes:
chosen_box = bboxes.pop(0)
bboxes = [
box
for box in bboxes
if box[0] != chosen_box[0]
or intersection_over_union(
torch.tensor(chosen_box[2:]),
torch.tensor(box[2:]),
box_format=box_format,
)
< iou_threshold
]
bboxes_after_nms.append(chosen_box)
return bboxes_after_nms
def mean_average_precision(
pred_boxes, true_boxes, iou_threshold=0.5, box_format="midpoint", num_classes=20
):
"""
Video explanation of this function:
https://youtu.be/FppOzcDvaDI
This function calculates mean average precision (mAP)
Parameters:
pred_boxes (list): list of lists containing all bboxes with each bboxes
specified as [train_idx, class_prediction, prob_score, x1, y1, x2, y2]
true_boxes (list): Similar as pred_boxes except all the correct ones
iou_threshold (float): threshold where predicted bboxes is correct
box_format (str): "midpoint" or "corners" used to specify bboxes
num_classes (int): number of classes
Returns:
float: mAP value across all classes given a specific IoU threshold
"""
# list storing all AP for respective classes
average_precisions = []
# used for numerical stability later on
epsilon = 1e-6
for c in range(num_classes):
detections = []
ground_truths = []
# Go through all predictions and targets,
# and only add the ones that belong to the
# current class c
for detection in pred_boxes:
if detection[1] == c:
detections.append(detection)
for true_box in true_boxes:
if true_box[1] == c:
ground_truths.append(true_box)
# find the amount of bboxes for each training example
# Counter here finds how many ground truth bboxes we get
# for each training example, so let's say img 0 has 3,
# img 1 has 5 then we will obtain a dictionary with:
# amount_bboxes = {0:3, 1:5}
amount_bboxes = Counter([gt[0] for gt in ground_truths])
# We then go through each key, val in this dictionary
# and convert to the following (w.r.t same example):
# ammount_bboxes = {0:torch.tensor[0,0,0], 1:torch.tensor[0,0,0,0,0]}
for key, val in amount_bboxes.items():
amount_bboxes[key] = torch.zeros(val)
# sort by box probabilities which is index 2
detections.sort(key=lambda x: x[2], reverse=True)
TP = torch.zeros((len(detections)))
FP = torch.zeros((len(detections)))
total_true_bboxes = len(ground_truths)
# If none exists for this class then we can safely skip
if total_true_bboxes == 0:
continue
for detection_idx, detection in enumerate(detections):
# Only take out the ground_truths that have the same
# training idx as detection
ground_truth_img = [
bbox for bbox in ground_truths if bbox[0] == detection[0]
]
num_gts = len(ground_truth_img)
best_iou = 0
for idx, gt in enumerate(ground_truth_img):
iou = intersection_over_union(
torch.tensor(detection[3:]),
torch.tensor(gt[3:]),
box_format=box_format,
)
if iou > best_iou:
best_iou = iou
best_gt_idx = idx
if best_iou > iou_threshold:
# only detect ground truth detection once
if amount_bboxes[detection[0]][best_gt_idx] == 0:
# true positive and add this bounding box to seen
TP[detection_idx] = 1
amount_bboxes[detection[0]][best_gt_idx] = 1
else:
FP[detection_idx] = 1
# if IOU is lower then the detection is a false positive
else:
FP[detection_idx] = 1
TP_cumsum = torch.cumsum(TP, dim=0)
FP_cumsum = torch.cumsum(FP, dim=0)
recalls = TP_cumsum / (total_true_bboxes + epsilon)
precisions = TP_cumsum / (TP_cumsum + FP_cumsum + epsilon)
precisions = torch.cat((torch.tensor([1]), precisions))
recalls = torch.cat((torch.tensor([0]), recalls))
# torch.trapz for numerical integration
average_precisions.append(torch.trapz(precisions, recalls))
return sum(average_precisions) / len(average_precisions)
def plot_image(image, boxes, idx,classlab, save_path=None):
"""Plots predicted bounding boxes on the image and saves both the original and plotted images."""
if save_path and not os.path.exists(save_path):
os.makedirs(save_path) # Create the directory if it doesn't exist
cmap = plt.get_cmap("tab20b")
class_labels = config.MY_LABELS if config.DATASET == 'COCO' else config.PASCAL_CLASSES
colors = [cmap(i) for i in np.linspace(0, 1, len(class_labels))]
im = np.array(image)
height, width, _ = im.shape
fig_orig, ax_orig = plt.subplots(1, figsize=(width / 100, height / 100))
ax_orig.imshow(im)
ax_orig.axis('off')
# Save the original image
if save_path:
plt.savefig(f'{save_path}_original_{classlab}_{idx}.png', bbox_inches='tight', pad_inches=0,dpi=100)
plt.close(fig_orig)
# Create figure and axes for the annotated image
fig, ax = plt.subplots(1, figsize=(width / 100, height / 100))
ax.imshow(im)
ax.axis('off')
# Store class labels for the filename
detected_classes = []
# Create a Rectangle patch for each box
for box in boxes:
assert len(box) == 6, "box should contain class pred, confidence, x, y, width, height"
class_pred = int(box[0])
detected_classes.append(class_labels[class_pred]) # Add class label to list
box = box[2:]
upper_left_x = box[0] - box[2] / 2
upper_left_y = box[1] - box[3] / 2
text_x = upper_left_x * width
if upper_left_y > 0.1: # if there is space above the box
text_y = (upper_left_y - 0.1) * height # above the box
else:
text_y = (upper_left_y + box[3] + 0.1) * height # below the box
rect = patches.Rectangle(
(upper_left_x * width, upper_left_y * height),
box[2] * width,
box[3] * height,
linewidth=2,
edgecolor=colors[class_pred],
facecolor="none",
)
ax.add_patch(rect)
plt.text(
text_x,
text_y,
s=class_labels[class_pred],
color="white",
verticalalignment="top",
bbox={"color": colors[class_pred], "pad": 0, "alpha": 0.5},
)
# Save the annotated image
if save_path:
# Join all detected class labels to include in the filename
classes_in_filename = "_".join(detected_classes)
plt.savefig(f'{save_path}_annotated_{classes_in_filename}_{idx}.png', pad_inches=0,dpi=100, bbox_inches='tight')
plt.close(fig)
def create_combined_color_image(data, colors=[(1, 1, 1), (0.5, 0.6, 1)], display=True):
"""
Visialized the event data as a combined color image.
parameters:
data - event data with shape [time_steps, channels, height, width]
colors - tuple of colors for each channel, default is [(1, 1, 1), (0.5, 0.6, 1)]
display - show the image in a new window, default is True
returns:
combined_image - image with shape [height, width, 3]
"""
#get the shape
num_time_points, channels, height, width = data.shape
# create a black image
combined_image = np.zeros((height, width, 3))
# calculate all events in each timestep and turn them into a color data.
for t in range(num_time_points):
for c in range(channels):
color = colors[c]
for i in range(3):
combined_image[:, :, i] += data[t, c] * color[i]
# normalize the image
combined_image = np.clip(combined_image / num_time_points, 0, 1)
if display:
# display image
plt.imshow(combined_image)
plt.title("Combined Color Image Over Time Steps")
plt.axis('off')
plt.show()
return combined_image
def get_evaluation_bboxes(
loader,
model,
iou_threshold,
anchors,
threshold, # threshold for class confidence score
box_format="midpoint",
device="cuda",
):
# make sure model is in eval before get bboxes
model.eval()
train_idx = 0
all_pred_boxes = []
all_true_boxes = []
for batch_idx, (x, labels,_) in enumerate(tqdm(loader)):
x = x.to(device).float()
with torch.no_grad():
predictions = model(x)
batch_size = x.shape[0]
bboxes = [[] for _ in range(batch_size)]
for i in range(3):
Sy = predictions[i].shape[2]
Sx = predictions[i].shape[3]
anchor = torch.tensor([*anchors[i]]).to(device) * torch.tensor([Sx, Sy]).unsqueeze(0).to(config.DEVICE)
boxes_scale_i = cells_to_bboxes(
predictions[i], anchor, Sx=Sx, Sy= Sy,is_preds=True
)
for idx, (box) in enumerate(boxes_scale_i):
bboxes[idx] += box
# we just want one bbox for each label, not one for each scale
true_bboxes = cells_to_bboxes(labels[2], anchor, Sx=Sx, Sy=Sy, is_preds=False)
for idx in range(batch_size):
#print(idx)
nms_boxes = non_max_suppression(
bboxes[idx],
iou_threshold=iou_threshold,
threshold=threshold,
box_format=box_format,
)
for nms_box in nms_boxes:
all_pred_boxes.append([train_idx] + nms_box)
for box in true_bboxes[idx]:
if box[1] > threshold:
all_true_boxes.append([train_idx] + box)
train_idx += 1
model.train()
return all_pred_boxes, all_true_boxes
def cells_to_bboxes(predictions, anchors, Sx,Sy, is_preds=True):
"""
Scales the predictions coming from the model to
be relative to the entire image such that they for example later
can be plotted or.
goal: to reshape the box to the original image size
modified from: https://github.com/aladdinpersson/Machine-Learning-Collection/tree/master/ML/Pytorch/object_detection/YOLOv3
to fix the different size in the x/y direction
INPUT:
predictions: tensor of size (N, 3, Sx, Sy, num_classes+5)
anchors: the anchors used for the predictions
S: the number of cells the image is divided in on the width (and height)
is_preds: whether the input is predictions or the true bounding boxes
OUTPUT:
converted_bboxes: the converted boxes of sizes (N, num_anchors, Sx, Sy, 1+5) with class index,
object score, bounding box coordinates
"""
BATCH_SIZE = predictions.shape[0]
num_anchors = len(anchors)
box_predictions = predictions[..., 1:5]
if is_preds:
anchors = anchors.reshape(1, len(anchors), 1, 1, 2)
box_predictions[..., 0:2] = torch.sigmoid(box_predictions[..., 0:2])
box_predictions[..., 2:] = torch.exp(box_predictions[..., 2:]) * anchors
scores = torch.sigmoid(predictions[..., 0:1])
best_class = torch.argmax(predictions[..., 5:], dim=-1).unsqueeze(-1) #
else:
scores = predictions[..., 0:1]
best_class = predictions[..., 5:6]
cell_indices_x = (
torch.arange(Sx)
.repeat(predictions.shape[0], num_anchors, Sy, 1)
.unsqueeze(-1)
.to(predictions.device)
)
cell_indices_y = (
torch.arange(Sy)
.repeat(predictions.shape[0], num_anchors, Sx, 1)
.unsqueeze(-1)
.to(predictions.device)
)
# calculate the x and y coordinate of the boxes
x = 1 / Sx * (box_predictions[..., 0:1] + cell_indices_x)
y = 1 / Sy * (box_predictions[..., 1:2] + cell_indices_y.permute(0, 1, 3, 2, 4))
w_h = torch.cat([
1 / Sx * box_predictions[..., 2:3], #
1 / Sy * box_predictions[..., 3:4] # reshape the box
], dim=-1)
converted_bboxes = torch.cat((best_class, scores, x, y, w_h), dim=-1).reshape(BATCH_SIZE, num_anchors * Sx * Sy, 6)
return converted_bboxes.tolist()
def check_class_accuracy(model, loader, threshold,num_classes):
'''
goal: check the classificaiton accuracy
modified: add the function to check the pridiction time and the accuracy for each class
'''
model.eval()
class_correct = torch.zeros(num_classes,device=config.DEVICE)
class_totals = torch.zeros(num_classes,device=config.DEVICE)
tot_class_preds, correct_class = 0, 0
tot_noobj, correct_noobj = 0, 0
tot_obj, correct_obj = 0, 0
for idx, (x, y,_) in enumerate(tqdm(loader)):
x = x.to(config.DEVICE).float()
with torch.no_grad():
start_time = time.time()
out = model(x)
end_time = time.time()
timecom = end_time - start_time
for i in range(3):
y[i] = y[i].to(config.DEVICE)
obj = y[i][..., 0] == 1 # in paper this is Iobj_i
noobj = y[i][..., 0] == 0 # in paper this is Iobj_i
class_preds = torch.argmax(out[i][..., 5:][obj], dim=-1)
for c in range(num_classes):
class_mask = y[i][..., 5][obj] == c
class_correct[c] += torch.sum(class_preds[class_mask] == c)
class_totals[c] += torch.sum(class_mask)
correct_class += torch.sum(
torch.argmax(out[i][..., 5:][obj], dim=-1) == y[i][..., 5][obj]
)
tot_class_preds += torch.sum(obj)
obj_preds = torch.sigmoid(out[i][..., 0]) > threshold
correct_obj += torch.sum(obj_preds[obj] == y[i][..., 0][obj])
tot_obj += torch.sum(obj)
correct_noobj += torch.sum(obj_preds[noobj] == y[i][..., 0][noobj])
tot_noobj += torch.sum(noobj)
class_accuracies = (class_correct / (class_totals + 1e-16)) * 100
print(f"Class accuracy is: {(correct_class/(tot_class_preds+1e-16))*100:2f}%")
print(f"No obj accuracy is: {(correct_noobj/(tot_noobj+1e-16))*100:2f}%")
print(f"Obj accuracy is: {(correct_obj/(tot_obj+1e-16))*100:2f}%")
print(f"Time is: {timecom:2f}")
model.train()
return (correct_class/(tot_class_preds+1e-16))*100,(correct_noobj/(tot_noobj+1e-16))*100,(correct_obj/(tot_obj+1e-16))*100,timecom,class_accuracies
def get_mean_std(loader):
# var[X] = E[X**2] - E[X]**2
channels_sum, channels_sqrd_sum, num_batches = 0, 0, 0
for data, _ in tqdm(loader):
channels_sum += torch.mean(data, dim=[0, 2, 3])
channels_sqrd_sum += torch.mean(data ** 2, dim=[0, 2, 3])
num_batches += 1
mean = channels_sum / num_batches
std = (channels_sqrd_sum / num_batches - mean ** 2) ** 0.5
return mean, std
def save_checkpoint(model, optimizer, epoch, run,data, finish,accdata,filename="my_checkpoint.pth.tar"):
torch.save({
'run': run,
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'latest_result':data,
'finish':finish,
'class_accs':accdata,
}, filename)
def load_checkpoint(checkpoint_file, model, optimizer):
checkpoint = torch.load(checkpoint_file)
if ~checkpoint['finish']:
print(checkpoint['finish'])
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
print( checkpoint['epoch'])
return checkpoint['run'], checkpoint['epoch'],checkpoint['latest_result'],checkpoint['finish']
else:
return 0,0,[],False