-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathExample2.py
81 lines (61 loc) · 2.37 KB
/
Example2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from neuromllite import (
RandomLayout,
Cell,
Synapse,
InputSource,
Input,
RectangularRegion,
)
from neuromllite.NetworkGenerator import generate_network
from neuromllite.utils import load_network_json
from neuromllite.DefaultNetworkHandler import DefaultNetworkHandler
################################################################################
### Reuse network from Example1
net = load_network_json("Example1_TestNetwork.json")
net.id = "Example2_TestNetwork"
net.notes = (
"A simple network with 2 populations & projection between them. "
+ "Cells are specified to be NeuroML 2 HH cell models & pre population "
"is given a spiking input."
)
################################################################################
### Add some elements to the network & save new JSON
r1 = RectangularRegion(id="region1", x=0, y=0, z=0, width=1000, height=100, depth=1000)
r2 = RectangularRegion(
id="region2", x=0, y=200, z=0, width=1000, height=100, depth=1000
)
net.regions.append(r1)
net.regions.append(r2)
net.populations[0].random_layout = RandomLayout(region=r1.id)
net.populations[1].random_layout = RandomLayout(region=r2.id)
net.populations[0].component = "hhcell"
net.populations[1].component = "hhcell"
net.cells.append(Cell(id="hhcell", neuroml2_source_file="test_files/hhcell.cell.nml"))
net.synapses.append(
Synapse(id="ampa", neuroml2_source_file="test_files/ampa.synapse.nml")
)
input_source = InputSource(
id="poissonFiringSyn", neuroml2_source_file="test_files/inputs.nml"
)
net.input_sources.append(input_source)
net.inputs.append(
Input(
id="stim_%s" % net.populations[0].id,
input_source=input_source.id,
population=net.populations[0].id,
percentage=80,
)
)
print(net.to_json())
new_file = net.to_json_file("%s.json" % net.id)
################################################################################
### Use a handler which just prints info on positions, etc.
def_handler = DefaultNetworkHandler()
generate_network(net, def_handler)
################################################################################
### Export to some formats, e.g. try:
### python Example2.py -graph2
from neuromllite.NetworkGenerator import check_to_generate_or_run
from neuromllite import Simulation
import sys
check_to_generate_or_run(sys.argv, Simulation(id="SimExample2", network=new_file))