forked from guillaume-chevalier/Smoothly-Blend-Image-Patches
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsmooth_tiled_predictions.py
444 lines (367 loc) · 14.6 KB
/
smooth_tiled_predictions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
# MIT License
# Copyright (c) 2017 Vooban Inc.
# Coded by: Guillaume Chevalier
# Source to original code and license:
# https://github.com/Vooban/Smoothly-Blend-Image-Patches
# https://github.com/Vooban/Smoothly-Blend-Image-Patches/blob/master/LICENSE
"""Do smooth predictions on an image from tiled prediction patches."""
import numpy as np
import scipy.signal
from tqdm import tqdm
import gc
if __name__ == '__main__':
import matplotlib.pyplot as plt
PLOT_PROGRESS = True
# See end of file for the rest of the __main__.
else:
PLOT_PROGRESS = False
def _spline_window(window_size, power=2):
"""
Squared spline (power=2) window function:
https://www.wolframalpha.com/input/?i=y%3Dx**2,+y%3D-(x-2)**2+%2B2,+y%3D(x-4)**2,+from+y+%3D+0+to+2
"""
intersection = int(window_size/4)
wind_outer = (abs(2*(scipy.signal.triang(window_size))) ** power)/2
wind_outer[intersection:-intersection] = 0
wind_inner = 1 - (abs(2*(scipy.signal.triang(window_size) - 1)) ** power)/2
wind_inner[:intersection] = 0
wind_inner[-intersection:] = 0
wind = wind_inner + wind_outer
wind = wind / np.average(wind)
return wind
cached_2d_windows = dict()
def _window_2D(window_size, power=2):
"""
Make a 1D window function, then infer and return a 2D window function.
Done with an augmentation, and self multiplication with its transpose.
Could be generalized to more dimensions.
"""
# Memoization
global cached_2d_windows
key = "{}_{}".format(window_size, power)
if key in cached_2d_windows:
wind = cached_2d_windows[key]
else:
wind = _spline_window(window_size, power)
wind = np.expand_dims(np.expand_dims(wind, 3), 3)
wind = wind * wind.transpose(1, 0, 2)
if PLOT_PROGRESS:
# For demo purpose, let's look once at the window:
plt.imshow(wind[:, :, 0], cmap="viridis")
plt.title("2D Windowing Function for a Smooth Blending of "
"Overlapping Patches")
plt.show()
cached_2d_windows[key] = wind
return wind
def _pad_img(img, window_size, subdivisions):
"""
Add borders to img for a "valid" border pattern according to "window_size" and
"subdivisions".
Image is an np array of shape (x, y, nb_channels).
"""
aug = int(round(window_size * (1 - 1.0/subdivisions)))
more_borders = ((aug, aug), (aug, aug), (0, 0))
ret = np.pad(img, pad_width=more_borders, mode='reflect')
# gc.collect()
if PLOT_PROGRESS:
# For demo purpose, let's look once at the window:
plt.imshow(ret)
plt.title("Padded Image for Using Tiled Prediction Patches\n"
"(notice the reflection effect on the padded borders)")
plt.show()
return ret
def _unpad_img(padded_img, window_size, subdivisions):
"""
Undo what's done in the `_pad_img` function.
Image is an np array of shape (x, y, nb_channels).
"""
aug = int(round(window_size * (1 - 1.0/subdivisions)))
ret = padded_img[
aug:-aug,
aug:-aug,
:
]
# gc.collect()
return ret
def _rotate_mirror_do(im):
"""
Duplicate an np array (image) of shape (x, y, nb_channels) 8 times, in order
to have all the possible rotations and mirrors of that image that fits the
possible 90 degrees rotations.
It is the D_4 (D4) Dihedral group:
https://en.wikipedia.org/wiki/Dihedral_group
"""
mirrs = []
mirrs.append(np.array(im))
mirrs.append(np.rot90(np.array(im), axes=(0, 1), k=1))
mirrs.append(np.rot90(np.array(im), axes=(0, 1), k=2))
mirrs.append(np.rot90(np.array(im), axes=(0, 1), k=3))
im = np.array(im)[:, ::-1]
mirrs.append(np.array(im))
mirrs.append(np.rot90(np.array(im), axes=(0, 1), k=1))
mirrs.append(np.rot90(np.array(im), axes=(0, 1), k=2))
mirrs.append(np.rot90(np.array(im), axes=(0, 1), k=3))
return mirrs
def _rotate_mirror_undo(im_mirrs):
"""
merges a list of 8 np arrays (images) of shape (x, y, nb_channels) generated
from the `_rotate_mirror_do` function. Each images might have changed and
merging them implies to rotated them back in order and average things out.
It is the D_4 (D4) Dihedral group:
https://en.wikipedia.org/wiki/Dihedral_group
"""
origs = []
origs.append(np.array(im_mirrs[0]))
origs.append(np.rot90(np.array(im_mirrs[1]), axes=(0, 1), k=3))
origs.append(np.rot90(np.array(im_mirrs[2]), axes=(0, 1), k=2))
origs.append(np.rot90(np.array(im_mirrs[3]), axes=(0, 1), k=1))
origs.append(np.array(im_mirrs[4])[:, ::-1])
origs.append(np.rot90(np.array(im_mirrs[5]), axes=(0, 1), k=3)[:, ::-1])
origs.append(np.rot90(np.array(im_mirrs[6]), axes=(0, 1), k=2)[:, ::-1])
origs.append(np.rot90(np.array(im_mirrs[7]), axes=(0, 1), k=1)[:, ::-1])
return np.mean(origs, axis=0)
def _windowed_subdivs(padded_img, window_size, subdivisions, nb_classes, pred_func):
"""
Create tiled overlapping patches.
Returns:
5D numpy array of shape = (
nb_patches_along_X,
nb_patches_along_Y,
patches_resolution_along_X,
patches_resolution_along_Y,
nb_output_channels
)
Note:
patches_resolution_along_X == patches_resolution_along_Y == window_size
"""
WINDOW_SPLINE_2D = _window_2D(window_size=window_size, power=2)
step = int(window_size/subdivisions)
padx_len = padded_img.shape[0]
pady_len = padded_img.shape[1]
subdivs = []
for i in range(0, padx_len-window_size+1, step):
subdivs.append([])
for j in range(0, padx_len-window_size+1, step):
patch = padded_img[i:i+window_size, j:j+window_size, :]
subdivs[-1].append(patch)
# Here, `gc.collect()` clears RAM between operations.
# It should run faster if they are removed, if enough memory is available.
gc.collect()
subdivs = np.array(subdivs)
gc.collect()
a, b, c, d, e = subdivs.shape
subdivs = subdivs.reshape(a * b, c, d, e)
gc.collect()
subdivs = pred_func(subdivs)
gc.collect()
subdivs = np.array([patch * WINDOW_SPLINE_2D for patch in subdivs])
gc.collect()
# Such 5D array:
subdivs = subdivs.reshape(a, b, c, d, nb_classes)
gc.collect()
return subdivs
def _recreate_from_subdivs(subdivs, window_size, subdivisions, padded_out_shape):
"""
Merge tiled overlapping patches smoothly.
"""
step = int(window_size/subdivisions)
padx_len = padded_out_shape[0]
pady_len = padded_out_shape[1]
y = np.zeros(padded_out_shape)
a = 0
for i in range(0, padx_len-window_size+1, step):
b = 0
for j in range(0, padx_len-window_size+1, step):
windowed_patch = subdivs[a, b]
y[i:i+window_size, j:j+window_size] = y[i:i+window_size, j:j+window_size] + windowed_patch
b += 1
a += 1
return y / (subdivisions ** 2)
def predict_img_with_smooth_windowing(input_img, window_size, subdivisions, nb_classes, pred_func):
"""
Apply the `pred_func` function to square patches of the image, and overlap
the predictions to merge them smoothly.
See 6th, 7th and 8th idea here:
http://blog.kaggle.com/2017/05/09/dstl-satellite-imagery-competition-3rd-place-winners-interview-vladimir-sergey/
"""
pad = _pad_img(input_img, window_size, subdivisions)
pads = _rotate_mirror_do(pad)
# Note that the implementation could be more memory-efficient by merging
# the behavior of `_windowed_subdivs` and `_recreate_from_subdivs` into
# one loop doing in-place assignments to the new image matrix, rather than
# using a temporary 5D array.
# It would also be possible to allow different (and impure) window functions
# that might not tile well. Adding their weighting to another matrix could
# be done to later normalize the predictions correctly by dividing the whole
# reconstructed thing by this matrix of weightings - to normalize things
# back from an impure windowing function that would have badly weighted
# windows.
# For example, since the U-net of Kaggle's DSTL satellite imagery feature
# prediction challenge's 3rd place winners use a different window size for
# the input and output of the neural net's patches predictions, it would be
# possible to fake a full-size window which would in fact just have a narrow
# non-zero dommain. This may require to augment the `subdivisions` argument
# to 4 rather than 2.
res = []
for pad in tqdm(pads):
# For every rotation:
sd = _windowed_subdivs(pad, window_size, subdivisions, nb_classes, pred_func)
one_padded_result = _recreate_from_subdivs(
sd, window_size, subdivisions,
padded_out_shape=list(pad.shape[:-1])+[nb_classes])
res.append(one_padded_result)
# Merge after rotations:
padded_results = _rotate_mirror_undo(res)
prd = _unpad_img(padded_results, window_size, subdivisions)
prd = prd[:input_img.shape[0], :input_img.shape[1], :]
if PLOT_PROGRESS:
plt.imshow(prd)
plt.title("Smoothly Merged Patches that were Tiled Tighter")
plt.show()
return prd
def cheap_tiling_prediction(img, window_size, nb_classes, pred_func):
"""
Does predictions on an image without tiling.
"""
original_shape = img.shape
full_border = img.shape[0] + (window_size - (img.shape[0] % window_size))
prd = np.zeros((full_border, full_border, nb_classes))
tmp = np.zeros((full_border, full_border, original_shape[-1]))
tmp[:original_shape[0], :original_shape[1], :] = img
img = tmp
print(img.shape, tmp.shape, prd.shape)
for i in tqdm(range(0, prd.shape[0], window_size)):
for j in range(0, prd.shape[0], window_size):
im = img[i:i+window_size, j:j+window_size]
prd[i:i+window_size, j:j+window_size] = pred_func([im])
prd = prd[:original_shape[0], :original_shape[1]]
if PLOT_PROGRESS:
plt.imshow(prd)
plt.title("Cheaply Merged Patches")
plt.show()
return prd
def get_dummy_img(xy_size=128, nb_channels=3):
"""
Create a random image with different luminosity in the corners.
Returns an array of shape (xy_size, xy_size, nb_channels).
"""
x = np.random.random((xy_size, xy_size, nb_channels))
x = x + np.ones((xy_size, xy_size, 1))
lin = np.expand_dims(
np.expand_dims(
np.linspace(0, 1, xy_size),
nb_channels),
nb_channels)
x = x * lin
x = x * lin.transpose(1, 0, 2)
x = x + x[::-1, ::-1, :]
x = x - np.min(x)
x = x / np.max(x) / 2
gc.collect()
if PLOT_PROGRESS:
plt.imshow(x)
plt.title("Random image for a test")
plt.show()
return x
def round_predictions(prd, nb_channels_out, thresholds):
"""
From a threshold list `thresholds` containing one threshold per output
channel for comparison, the predictions are converted to a binary mask.
"""
assert (nb_channels_out == len(thresholds))
prd = np.array(prd)
for i in range(nb_channels_out):
# Per-pixel and per-channel comparison on a threshold to
# binarize prediction masks:
prd[:, :, i] = prd[:, :, i] > thresholds[i]
return prd
if __name__ == '__main__':
###
# Image:
###
img_resolution = 600
# 3 such as RGB, but there could be more in other cases:
nb_channels_in = 3
# Get an image
input_img = get_dummy_img(img_resolution, nb_channels_in)
# Normally, preprocess the image for input in the neural net:
# input_img = to_neural_input(input_img)
###
# Neural Net predictions params:
###
# Number of output channels. E.g. a U-Net may output 10 classes, per pixel:
nb_channels_out = 3
# U-Net's receptive field border size, it does not absolutely
# need to be a divisor of "img_resolution":
window_size = 128
# This here would be the neural network's predict function, to used below:
def predict_for_patches(small_img_patches):
"""
Apply prediction on images arranged in a 4D array as a batch.
Here, we use a random color filter for each patch so as to see how it
will blend.
Note that the np array shape of "small_img_patches" is:
(nb_images, x, y, nb_channels_in)
The returned arra should be of the same shape, except for the last
dimension which will go from nb_channels_in to nb_channels_out
"""
small_img_patches = np.array(small_img_patches)
rand_channel_color = np.random.random(size=(
small_img_patches.shape[0],
1,
1,
small_img_patches.shape[-1])
)
return small_img_patches * rand_channel_color * 2
###
# Doing cheap tiled prediction:
###
# Predictions, blending the patches:
cheaply_predicted_img = cheap_tiling_prediction(
input_img, window_size, nb_channels_out, pred_func=predict_for_patches
)
###
# Doing smooth tiled prediction:
###
# The amount of overlap (extra tiling) between windows. A power of 2, and is >= 2:
subdivisions = 2
# Predictions, blending the patches:
smoothly_predicted_img = predict_img_with_smooth_windowing(
input_img, window_size, subdivisions,
nb_classes=nb_channels_out, pred_func=predict_for_patches
)
###
# Demonstrating that the reconstruction is correct:
###
# No more plots from now on
PLOT_PROGRESS = False
# useful stats to get a feel on how high will be the error relatively
print(
"Image's min and max pixels' color values:",
np.min(input_img),
np.max(input_img))
# First, defining a prediction function that just returns the patch without
# any modification:
def predict_same(small_img_patches):
"""
Apply NO prediction on images arranged in a 4D array as a batch.
This implies that nb_channels_in == nb_channels_out: dimensions
and contained values are unchanged.
"""
return small_img_patches
same_image_reconstructed = predict_img_with_smooth_windowing(
input_img, window_size, subdivisions,
nb_classes=nb_channels_out, pred_func=predict_same
)
diff = np.mean(np.abs(same_image_reconstructed - input_img))
print(
"Mean absolute reconstruction difference on pixels' color values:",
diff)
print(
"Relative absolute mean error on pixels' color values:",
100*diff/(np.max(input_img)) - np.min(input_img),
"%")
print(
"A low error (e.g.: 0.28 %) confirms that the image is still "
"the same before and after reconstruction if no changes are "
"made by the passed prediction function.")