-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathautoencoder_t-sne.py
260 lines (224 loc) · 10.2 KB
/
autoencoder_t-sne.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# ==============================================================================
# MIT License
#
# Copyright (c) 2017 Vooban Inc.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ------------------------------------------------------------------------------
# See:
# https://github.com/Vooban/Autoencoder-TensorBoard-t-SNE
# ==============================================================================
# This work also includes content licensed by Norman Heckscher under the
# Apache 2.0 License, and which was modified by Vooban Inc.:
#
# Copyright 2016 Norman Heckscher. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ------------------------------------------------------------------------------
# See:
# https://github.com/normanheckscher/mnist-tensorboard-embeddings
# Therefore mostly the current file is upgraded and changed from
# Norman Heckscher's original code.
# ==============================================================================
# This work also includes content licensed by Parag K. Mital under the
# Apache 2.0 License, and which was modified by Vooban Inc.:
#
# Copyright 2016 Parag K. Mital
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ------------------------------------------------------------------------------
# See:
# https://github.com/pkmital/tensorflow_tutorials/blob/master/python/07_autoencoder.py
# Therefore mostly the function "autoencoder" as well as the training phase in
# "train_autoencoder_and_embed" are taken and modified from Parag K. Mital's
# original code.
# ==============================================================================
"""MNIST dimensionality reduction with an Autoencoder, TensorFlow & TensorBoard.
First, an autoencoder is trained to learn to compress the data and embed it.
Then, the embeddings are saved to TensorBoard logs for visualization.
For more information on using TensorBoard, see:
https://www.tensorflow.org/versions/r0.12/how_tos/embedding_viz/index.html#tensorboard-embedding-visualization
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from tensorflow.contrib.tensorboard.plugins import projector
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
import argparse
import sys
import math
import os
FLAGS = None
NB_TEST_DATA = 10000
def autoencoder(dimensions=[784, 512, 256, 64]):
"""Build a deep autoencoder w/ tied weights.
Parameters
----------
dimensions : list, optional
The number of neurons for each layer of the autoencoder.
Returns
-------
x : Tensor
Input placeholder to the network
z : Tensor
Inner-most latent representation
y : Tensor
Output reconstruction of the input
cost : Tensor
Overall cost to use for training
"""
# %% input to the network
x = tf.placeholder(tf.float32, [None, dimensions[0]], name='x')
current_input = x
# %% Build the encoder
encoder = []
for layer_i, n_output in enumerate(dimensions[1:]):
n_input = int(current_input.get_shape()[1])
W = tf.Variable(
tf.random_uniform([n_input, n_output],
-1.0 / math.sqrt(n_input),
1.0 / math.sqrt(n_input)))
b = tf.Variable(tf.zeros([n_output]))
encoder.append(W)
output = tf.nn.tanh(tf.matmul(current_input, W) + b)
current_input = output
# Latent representation (embedding, neural coding)
z = current_input
encoder.reverse()
# Build the decoder using the same weights
for layer_i, n_output in enumerate(dimensions[:-1][::-1]):
W = tf.transpose(encoder[layer_i])
b = tf.Variable(tf.zeros([n_output]))
output = tf.nn.tanh(tf.matmul(current_input, W) + b)
current_input = output
# Now have the reconstruction through the network
y = current_input
# Cost function measures pixel-wise difference
cost = tf.reduce_sum(tf.square(y - x))
return {'x': x, 'z': z, 'y': y, 'cost': cost}
def train_autoencoder_and_embed():
"""Test the autoencoder using MNIST."""
import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data
import matplotlib.pyplot as plt
# load MNIST as before
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
mean_img = np.mean(mnist.train.images, axis=0)
ae = autoencoder(dimensions=[784, 256, 64])
learning_rate = 0.001
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(ae['cost'])
# We create a session to use the graph
sess = tf.Session()
sess.run(tf.global_variables_initializer())
# Fit all training data
batch_size = 50
n_epochs = 30
for epoch_i in range(n_epochs):
for batch_i in range(mnist.train.num_examples // batch_size):
batch_xs, _ = mnist.train.next_batch(batch_size)
train = np.array([img - mean_img for img in batch_xs])
sess.run(optimizer, feed_dict={ae['x']: train})
print(epoch_i, sess.run(ae['cost'], feed_dict={ae['x']: train}))
# Get embeddings.
# If you have too much to get and that it does not fit in memory, you may
# need to use a batch size or to force to use the CPU rather than the GPU.
test = [img - mean_img for img in mnist.test.images]
embedded_data = sess.run(
ae['z'],
feed_dict={ae['x']: test}
)
return embedded_data, sess
def generate_embeddings():
# Load data, train an autoencoder and transform data
embedded_data, sess = train_autoencoder_and_embed()
# Input set for Embedded TensorBoard visualization
# Performed with cpu to conserve memory and processing power
with tf.device("/cpu:0"):
embedding = tf.Variable(tf.stack(embedded_data, axis=0), trainable=False, name='embedding')
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
writer = tf.summary.FileWriter(FLAGS.log_dir + '/projector', sess.graph)
# Add embedding tensorboard visualization. Need tensorflow version
# >= 0.12.0RC0
config = projector.ProjectorConfig()
embed= config.embeddings.add()
embed.tensor_name = 'embedding:0'
embed.metadata_path = os.path.join(FLAGS.log_dir + '/projector/metadata.tsv')
embed.sprite.image_path = os.path.join(FLAGS.data_dir + '/mnist_10k_sprite.png')
# Specify the width and height of a single thumbnail.
embed.sprite.single_image_dim.extend([28, 28])
projector.visualize_embeddings(writer, config)
# We save the embeddings for TensorBoard, setting the global step as
# The number of data examples
saver.save(sess, os.path.join(
FLAGS.log_dir, 'projector/a_model.ckpt'), global_step=NB_TEST_DATA)
sess.close()
def generate_metadata_file():
# Import data
mnist = input_data.read_data_sets(FLAGS.data_dir,
one_hot=True)
# The ".tsv" file will contain one number per row to point to the good label
# for each test example in the dataset.
# For example, labels could be saved as plain text on those lines if needed.
# In our case we have only 10 possible different labels, so their
# "uniqueness" is recognised to later associate colors automatically in
# TensorBoard.
def save_metadata(file):
with open(file, 'w') as f:
for i in range(NB_TEST_DATA):
c = np.nonzero(mnist.test.labels[::1])[1:][0][i]
f.write('{}\n'.format(c))
save_metadata(FLAGS.log_dir + '/projector/metadata.tsv')
def main(_):
if tf.gfile.Exists(FLAGS.log_dir + '/projector'):
tf.gfile.DeleteRecursively(FLAGS.log_dir + '/projector')
tf.gfile.MkDir(FLAGS.log_dir + '/projector')
tf.gfile.MakeDirs(FLAGS.log_dir + '/projector') # fix the directory to be created
generate_metadata_file()
generate_embeddings()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str, default='./mnist_data',
help='Directory for storing input data')
parser.add_argument('--log_dir', type=str, default='./logs',
help='Summaries log directory')
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)