forked from wlgjs8/Segmentation-based-Registration
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
93 lines (75 loc) · 2.35 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
TRAINING_EPOCH = 500
NUM_CLASSES = 1
RESIZE_DEPTH = 64
RESIZE_HEIGHT = 128
RESIZE_WIDTH = 128
### 치아에 대한 ISO 기준 Numbering ###
UPPER_TOOTH_NUM = [
'21', '22', '23', '24', '25', '26', '27', '28',
'11', '12', '13', '14', '15', '16', '17', '18',
]
LOWER_TOOTH_NUM = [
'31', '32', '33', '34', '35', '36', '37', '38',
'41', '42', '43', '44', '45', '46', '47', '48',
]
### OSSTEM Dataset에서 개별 치아에 대한 Detection을 위한 Train / Test 분리 ###
DETECTION_TRAIN = [
'1', '2', '3', '4', '5',
'6', '7',
'12', '13', '14', '15',
'16', '17', '18', '19',
'21', '22', '23', '24',
'26', '27', '28', '29', '30',
'34', '35',
'38',
'42', '45',
'50',
]
DETECTION_TEST = [
'37','41','46','47','48','8','9','40'
]
### OSSTEM Dataset에서 개별 치아에 대한 Metal Classification 을 위한 Train / Test 분리 ###
METAL_TRAIN = [
'2', '3', '4', '5',
'6', '7',
'14', '15',
'17', '18',
'22', '23',
'29', '30',
'34',
'37', '38',
'46', '47', '50',
]
METAL_TEST = [
'1', '41', '8', '12', '13', '28', '35', '42',
]
### OSSTEM Dataset 한장씩 봤을 때, 영상과 Segmentation Annotation이 달라 Box, Center GT랑 일치하지 않는 Noisy한 치아 Case ###
OUTLIER = {'1' : ['34'],
'2' : ['12', '13'],
'3' : ['17', '34', '36', '42', '43', '44', '45', '47'],
'4' : ['16', '23', '25', '35', '37', '42', '47'],
'5' : ['35'],
'10' : ['11'],
'11' : ['11'],
'14' : ['31'],
'16' : ['42'],
'17' : ['43'],
'18' : ['13'],
'22' : ['33'],
'24' : ['13'],
'27' : ['45'],
'40' : ['16'],
'42' : ['46'],
'45' : ['25']}
### Focal Loss 의 Positive 정의를 위한 Epsilon ###
FOCAL_EPSILON = 1e-3
### DR Loss 주기 시작하는 Epoch ###
DR_EPOCH = 40
### Metal BCE Loss 주기 시작하는 Epoch ###
METAL_EPOCH = 40
### Metal Classification Label Smoothing을 위한 Epsilon ###
METAL_EPSILON = 0.05
### OTSU 알고리즘을 통해 Segmentation 할 환자번호 (폴더번호) ###
OTSU_PERSON_INDEX = [
'1', '2', '3', '4'
]