-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvex_opt.py
41 lines (29 loc) · 852 Bytes
/
convex_opt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# A really low-tech method for finding the input to the minimum of a 1D convex function
def convex_1d_opt(fun, range_low, range_high, num_iter=100, eps=1e-8):
# Bisection method with emperical derivative
# Non-analytic derivative
def grad(x):
numer = fun(x + eps) - fun(x - eps)
denom = 2*eps
return numer / eps
for _ in range(num_iter):
guess_x = (range_low + range_high) / 2
deriv = grad(guess_x)
if deriv < 0:
# optimum is higher
range_low = guess_x
elif deriv > 0:
# optimum is lower
range_high = guess_x
else:
# we are at the optimum
break
return guess_x
if __name__ == '__main__':
# Simple test:
def fun(x):
return x ** 2 - 2 * x
print('{:.4f}'.format(convex_1d_opt(fun, -5, 10)))
def fun(x):
return 1 - (1 - x ** 2) ** 0.5
print('{:.4f}'.format(convex_1d_opt(fun, -1, 1)))