Skip to content

Latest commit

 

History

History
30 lines (21 loc) · 1.17 KB

data_prep.md

File metadata and controls

30 lines (21 loc) · 1.17 KB

Data Preparation

Download Nuscenes

Download and prepare nuscenes dataset following UniAD's instruction to ./UniAD/data

Create a deployment docker container

Step 1: create a deployment docker container and run

docker run -it --gpus all --shm-size=8g -v </host/system/path/to/UniAD>:/workspace/UniAD uniad_torch1.12 /bin/bash

Step 2: inside the deployment docker container, build uniad_mmdet3d

cd /workspace/UniAD/third_party/uniad_mmdet3d/
python3 setup.py build develop --user

Generate Preprocessed Data

Inside deployment docker container, generate six inputs to ./UniAD/nuscenes_np/uniad_onnx_input for ONNX exportation, and NUM_FRAME preprocessed inputs to ./UniAD/nuscenes_np/uniad_trt_input for inference application. By default we set NUM_FRAME to 69 which covers the first two scenes, user can choose any number in the range of [6, 6018].

cd /workspace/UniAD
PYTHONPATH=$(pwd) python3  ./tools/process_metadata.py --num_frame NUM_FRAME

<- Last Page: Environment Preparation

-> Next Page: UniAD-tiny Traning and Exportation